JP2016073161A - 電動車両の制御装置 - Google Patents

電動車両の制御装置 Download PDF

Info

Publication number
JP2016073161A
JP2016073161A JP2014203483A JP2014203483A JP2016073161A JP 2016073161 A JP2016073161 A JP 2016073161A JP 2014203483 A JP2014203483 A JP 2014203483A JP 2014203483 A JP2014203483 A JP 2014203483A JP 2016073161 A JP2016073161 A JP 2016073161A
Authority
JP
Japan
Prior art keywords
vibration
unsprung
vehicle
torque
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014203483A
Other languages
English (en)
Inventor
翔 大野
Sho Ono
翔 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014203483A priority Critical patent/JP2016073161A/ja
Publication of JP2016073161A publication Critical patent/JP2016073161A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】バネ下のワインドアップ方向の振動を抑制する。【解決手段】バネ下に駆動源を有する電動車両の制御装置は、駆動源のトルク指令値を設定し、設定したトルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行い、振動低減振動低減処理が行われたトルク指令値に基づいて、車両の駆動源のトルクを制御する。【選択図】図1

Description

本発明は、電動車両の制御装置に関する。
従来、上下方向における車両の振動を、制駆動力の反力の垂直成分によって抑制する走行装置が知られている(特許文献1参照)。この走行装置では、車輪の回転速度変動及び車輪の制駆動力に基づいて得られる車輪の接地荷重変動と、車両の上下方向における荷重変動との関係に基づいて制駆動の反力の垂直成分を求め、この垂直成分から得られた制駆動力で車輪を駆動する。このような構成によって、車両の上下方向に対する振動を検出するためのセンサを別個に設けることなく、車両の振動を抑制する。
特開2008−179277号公報
ここで、バネ下に電動機等の駆動源を有する電動車両は、バネ下の重量が増加するためバネ下の固有振動数が低下し、かつ急峻に駆動力を発生させることができるため、電動機ユニットを含むバネ下のワインドアップ方向の振動、すなわち、駆動輪の回転軸周りの振動が発生しやすく、サスペンションを介して車体に振動・異音が伝わってしまう。特許文献1に記載の技術は、車両の上下方向における振動を抑制することを目的としているため、バネ下のワインドアップ方向の振動を抑制することができない。
本発明は、バネ下のワインドアップ方向の振動を抑制する技術を提供することを目的とする。
本発明による電動車両の制御装置は、バネ下に駆動源を有する電動車両の制御装置であって、駆動源のトルク指令値を設定し、設定したトルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行い、振動低減処理が行われたトルク指令値に基づいて、車両の駆動源のトルクを制御する。
本発明によれば、駆動源のトルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行うので、バネ下のワインドアップ方向の振動を抑制することができる。
図1は、一実施の形態における電動車両の制御装置を備えた電動車両の主要構成を示すブロック図である。 図2は、電動モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。 図3は、アクセル開度−トルクテーブルの一例を示す図である。 図4は、第1のトルク指令値Tm1 *を算出してから、モータ4Rの最終トルク指令値TmR2 *と、モータ4Lの最終トルク指令値TmL2 *とを算出する制御ブロックを示す図である。 図5は、車両のバネ下前後振動系をモデル化した図である。 図6は、バネ下制振制御演算処理のFF演算部のブロック図である。 図7は、図6に示すFF演算部のブロック図と等価な構成のブロック図である。 図8は、FB演算部の構成を示すブロック図である。 図9は、FF演算部のブロック図と共に、図8に示すFB演算部のブロック図と等価な構成のブロック図を示す。 図10は、伝達関数H1(s)のフィルタ特性を示す図である。 図11は、FF演算部およびFB演算部の別の構成を示すブロック図である。 図12は、トルク指令値を急峻に立ち上げた場合の車両の挙動を示す図であって、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行わない従来の制御結果を示す図である。 図13は、トルク指令値を急峻に立ち上げた場合の車両の挙動を示す図であって、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行う本実施形態の制御結果を示す図である。
図1は、一実施の形態における電動車両の制御装置を備えた電動車両の主要構成を示すブロック図である。電動車両は、車両の駆動源の一部または全部として電動モータを備え、電動モータの駆動力により走行可能な車両であって、例えば電気自動車であるが、電気自動車に限定されることはなく、ハイブリッド自動車や燃料電池自動車であってもよい。この電動車両は、バネ下に駆動源の電動モータを有する。
電動モータコントローラ2は、車速V、アクセル開度θ、電動モータ(三相交流モータ)4R、4Lの回転子位相α、電動モータ4に流れる電流iu、iv、iw等の車両状態を示す信号をデジタル信号として入力し、入力された信号に基づいて、電動モータ4R、4Lを制御するためのPWM信号を生成する。また、生成したPWM信号に応じてインバータ3の駆動信号を生成する。
インバータ3は、例えば、各相ごとに2対のスイッチング素子(例えば、IGBTやMOS−FET等のパワー半導体素子)を備える。電動モータコントローラ2からの駆動信号に応じてスイッチング素子がオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4Rに所望の電流を流す。
電動モータ4Rは、駆動輪9Rのホイール内に配置されたインホイールモータであり、インバータ3から供給される交流電流により駆動力を発生する。発生した駆動力は、減速ギア8Rを介して右側の駆動輪9Rに伝達される。電動モータ4Rはまた、車両の走行時に駆動輪9Rに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4Rの回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。
電流センサ7Rは、電動モータ4Rに流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。
回転センサ6Rは、例えば、レゾルバやエンコーダであり、電動モータ4Rの回転子位相αを検出する。
インバータ3は、また、駆動信号に応じてスイッチング素子がオン/オフされることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4Lに所望の電流を流す。
電動モータ4Lは、駆動輪9Lのホイール内に配置されたインホイールモータであり、インバータ3から供給される交流電流により駆動力を発生する。発生した駆動力は、減速ギア8Lを介して左側の駆動輪9Lに伝達される。電動モータ4Lはまた、車両の走行時に駆動輪9Lに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4Lの回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。
電流センサ7Lは、電動モータ4Lに流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。
回転センサ6Lは、例えば、レゾルバやエンコーダであり、電動モータ4Lの回転子位相αを検出する。
図2は、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。以下では、電動モータ4Rを対象とした説明を行うが、電動モータ4Lに対しても同じ処理を行う。ただし、ステップS202の処理は、電動モータ4R、4Lの両方に共通する同じ処理であるため、一方の電動モータを対象として処理を行った場合、他方の電動モータに対しては、算出済みの値を用いるようにしてもよい。
ステップS201では、車両状態を示す信号を入力する。ここでは、車速V(km/h)、アクセル開度θ(%)、電動モータ4Rの回転子位相α(rad)、電動モータ4Rの回転数Nm(rpm)、電動モータ4Rに流れる三相交流電流iu、iv、iw、バッテリ1とインバータ3間の直流電圧値Vdc(V)を入力する。
車速V(km/h)は、図示しない車速センサや、図示しないブレーキコントローラ等の他のコントローラより通信にて取得する。または、左右のモータ回転速度の平均値にタイヤ動半径Rを乗算し、ファイナルギアのギア比で除算することにより車速v(m/s)を求め、3600/1000を乗算することにより単位変換して、車速V(km/h)を求める。
アクセル開度θ(%)は、図示しないアクセル開度センサから取得するか、図示しない車両コントローラ等の他のコントローラから通信にて取得する。
電動モータ4Rの回転子位相α(rad)は、回転センサ6Rから取得する。電動モータ4Rの回転数Nm(rpm)は、回転子の角速度ω(電気角)を電動モータ4Rの極対数で除算して、電動モータ4の機械的な角速度であるモータ回転速度ωm(rad/s)を求め、求めたモータ回転速度ωmに60/(2π)を乗算することによって求める。回転子の角速度ωは、回転子位相αを微分することによって求める。
電動モータ4Rに流れる電流iu、iv、iw(A)は、電流センサ7Rから取得する。
直流電圧値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)、または、図示しないバッテリコントローラから送信される電源電圧値から求める。
ステップS202では、第1のトルク指令値Tm1 *を設定する。具体的には、ステップS201で入力されたアクセル開度θおよび車速Vに基づいて、図3に示すアクセル開度−トルクテーブルを参照することにより、第1のトルク指令値Tm1 *を設定する。
ステップS203では、ステップS202で算出された第1のトルク指令値Tm1 *を1/2倍することによって、電動モータ4Rのトルク指令値TmR1 *を算出し、算出したトルク指令値TmR1 *に対して、バネ下のワインドアップ方向における振動(以下、バネ下ワインドアップ振動と呼ぶ)の固有振動周波数成分を低減するバネ下制振制御演算処理を行うことによって、電動モータ4Rの最終トルク指令値TmR2 *を算出する。最終トルク指令値TmR2 *の詳しい算出方法については後述する。
ステップS204では、ステップS203で算出したモータ4Rの最終トルク指令値TmR2 *、モータ回転速度ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id*、q軸電流目標値iq*を求める。例えば、トルク指令値、モータ回転速度、および直流電圧値と、d軸電流目標値およびq軸電流目標値との関係を定めたテーブルを予め用意しておいて、このテーブルを参照することにより、d軸電流目標値id*、q軸電流目標値iq*を求める。
ステップS205では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS204で求めたd軸電流目標値id*およびq軸電流目標値iq*と一致させるための電流制御を行う。このため、まず初めに、ステップS201で入力された三相交流電流値iu、iv、iwと、電動モータ4Rの回転子位相αとに基づいて、d軸電流idおよびq軸電流iqを求める。続いて、d軸、q軸電流指令値id*、iq*と、d軸、q軸電流id、iqとの偏差から、d軸、q軸電圧指令値vd、vqをそれぞれ算出する。なお、算出したd軸、q軸電圧指令値vd、vqに対して、d−q直交座標軸間の干渉電圧を相殺するために必要な非干渉電圧を加算するようにしてもよい。
次に、d軸、q軸電圧指令値vd、vqと、電動モータ4Rの回転子位相αから、三相交流電圧指令値vu、vv、vwを求める。そして、求めた三相交流電圧指令値vu、vv、vwと直流電圧値Vdcから、PWM信号tu(%)、tv(%)、tw(%)を求める。このようにして求めたPWM信号tu、tv、twにより、インバータ3のスイッチング素子を開閉することによって、電動モータ4Rをトルク指令値で指示された所望のトルクで駆動することができる。
図4は、第1のトルク指令値Tm1 *を算出してから、モータ4Rの最終トルク指令値TmR2 *(=Tm2 */2)と、モータ4Lの最終トルク指令値TmL2 *(=Tm2 */2)とを算出する制御ブロックを示す図である。
乗算器41Rは、第1のトルク指令値Tm1 *に1/2を乗算することにより、電動モータ4Rのトルク指令値TmR1 *を算出する。乗算器41Lは、第1のトルク指令値Tm1 *に1/2を乗算することにより、電動モータ4Lのトルク指令値TmL1 *を算出する。
バネ下制振制御演算部400Rは、フィードフォワード演算部401R(以下、FF演算部401Rと呼ぶ)と、フィードバック演算部402R(以下、FB演算部402Rと呼ぶ)と、加算部403Rとを備え、電動モータ4Rのトルク指令値TmR1 *を入力して、図2のステップS203の処理、すなわち、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行う。また、バネ下制振制御演算部400Lは、フィードフォワード演算部401L(以下、FF演算部401Lと呼ぶ)と、フィードバック演算部402L(以下、FB演算部402Lと呼ぶ)と、加算部403Lとを備え、電動モータ4Lのトルク指令値TmL1 *を入力して、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行う。なお、図4における電流指令値演算処理部42R、42Lは、図2のステップS204の処理を行い、電流制御演算部43R、43Lは、図2のステップS205の処理を行う。
FF演算部401Rで行われる処理内容について以下で説明する。
図5は、車両のバネ下前後振動系をモデル化した図であり、車両の運動方程式は、次式(1)〜(10)で表される。
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
Figure 2016073161
ここで、式(1)〜(10)中の各パラメータは、以下に示す通りである。
m:モータイナーシャ
w:駆動軸イナーシャ(1軸分)
M:車両質量
m:モータユニット質量(1軸分)
u:モータユニット支持部質量(1軸分)
d:出力軸のねじり剛性
t:タイヤと路面の摩擦に関する係数
b:サスペンション車体支持部のねじり剛性
u:サスペンションのモータユニット支持部のねじり剛性
N:オーバーオールギア比
r:タイヤ荷重半径
b:サスペンション車体支持部からモータユニット支持部までの長さ
u:サスペンションのモータユニット支持部からモータユニット回転中心までの長さ
ωm:モータ回転速度
ωw:駆動輪角速度
ωb:サスペンションねじれ角速度
ωu:モータユニットワインドアップ角速度
m:モータトルク
d:駆動軸トルク
F:駆動力(1軸分)
V:車体速度
v:モータユニット速度
u:モータユニット支持部速度
θd:出力軸ねじり角
ただし、式(5)中のSt(θ)は、出力軸ねじり角θdの上限および下限を制限する飽和関数であり、次式(11)で定義する。
Figure 2016073161
式(11)において、θBLは、電動モータから出力軸までのオーバーオールでのギアバックラッシュ量である。
式(1)〜(10)をラプラス変換してトルク指令値Tmから出力軸ねじり角θdまでの伝達特性を求めると、次式(12)となる。ただし、式(12)中のGd(s)、F(s)はそれぞれ式(13)、(14)で表される。
Figure 2016073161
Figure 2016073161
Figure 2016073161
式(13)、(14)において、各項の定数は上述した車両諸元によって求まる定数である。式(13)、(14)からバネ下ワインドアップ振動系とバネ下前後振動系のダイナミクス(力学特性)を抽出すると、次式(15)、(16)となる。
Figure 2016073161
Figure 2016073161
式(15)において、ωp1、ζp1はそれぞれ、バネ下ワインドアップ振動系の固有振動周波数と減衰係数であり、ωp2、ζp2はそれぞれ、バネ下前後振動系の固有振動周波数と減衰係数である。また、式(15)におけるkdsは、車両諸元によって決まる定数であり、式(15)、(16)におけるgd(s)、kf(s)はそれぞれ、車両諸元によって決まる伝達特性である。ωp1は、サスペンションのモータユニット支持部のねじり剛性によって決まるパラメータであり、ωp2は、サスペンション車体支持部のねじり剛性によって決まるパラメータである。なお、モータユニットには、電動モータ4R(4L)が含まれる。
サスペンションのモータユニット支持部のねじり剛性は、ロアサスペンションメンバ取り付け点のワインドアップ方向の剛性、アッパーサスペンションメンバ取り付け点のワインドアップ方向の剛性、およびサスペンションコイルスプリングのワインドアップ方向の剛性をそれぞれ加味して求めてもよいし、実験的に求めてもよい。
また、サスペンション車体支持部のねじり剛性は、サスペンションサブフレーム車体取り付け点の前後方向の剛性、ロアサスペンションメンバ取り付け点の前後方向の剛性、およびアッパーサスペンションメンバ取り付け点の前後方向の剛性をそれぞれ加味して求めてもよいし、実験的に求めてもよい。
駆動軸トルクTdは、式(5)、(12)より、次式(17)で表される。
Figure 2016073161
ここで、駆動軸トルクの規範応答を次式(18)、(19)とする。
Figure 2016073161
Figure 2016073161
式(19)において、ζr1、ωr1はそれぞれ、バネ下ワインドアップ振動系の理想モデルの減衰係数と固有振動周波数であり、ζr2、ωr2はそれぞれ、バネ下前後振動系の理想モデルの減衰係数と固有振動周波数である。
Td=Tdrとなるようなトルク指令値Tmを求めると、次式(20)で表される。
Figure 2016073161
ただし、式(20)中のGINVは、車両のバネ下ワインドアップ振動系の固有振動周波数を除去または低減するフィルタであり、次式(21)で表される。
Figure 2016073161
トルク入力に対する車両のバネ下ワインドアップ振動伝達特性は、式(15)で表されるので、式(21)で表されるフィルタGINVは、トルク入力に対する車両のバネ下ワインドアップ振動伝達特性の逆特性を含む伝達特性を有する。
式(12)および式(20)より、車両のバネ下ワインドアップ振動系の固有振動周波数を除去または低減するフィルタGINV(601)と、出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数Gd(s)(602)、F(s)(604)と、飽和関数(603)より、バネ下制振制御演算処理のFF演算部401Rのブロック図は、図6のように構成される。出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数Gd(s)(602)、F(s)(604)は、出力軸ねじり角のダイナミクスからバネ下ワインドアップ振動系のダイナミクスを抽出した特性である。
式(12)に式(20)を代入すると、次式(22)に等価変換できる。
Figure 2016073161
従って、図7に示すように、車両のバネ下ワインドアップ振動系の固有振動周波数を除去または低減するフィルタGINV(701)と、出力軸トルクの不感帯特性を補償する出力軸トルクの理想線形伝達関数Gdr(s)(702)、F(s)(704)と、飽和関数(703)より、バネ下制振制御演算処理のFF演算部401Rを構成することもできる。
詳細な説明は省略するが、FF演算部401Lで行われる処理およびブロック構成図についても、FF演算部401Rで行われる処理およびブロック構成図と同様である。
続いて、図4のFB演算部402Rで行われる処理について説明する。
図8は、FB演算部402Rの構成を示すブロック図である。FB演算部402Rは、伝達関数Gp(s)(801)と、伝達関数Gps(s)(802)と、伝達関数Gd(s)(803)と、飽和関数(804)と、フィルタF(s)(805)と、伝達関数H(s)/Gp(s)(806)とを備える。
伝達関数Gp(s)は、車両へのモータトルク入力に対するモータ回転速度の伝達特性を示す線形プラントモデルであり、伝達関数Gps(s)は、モータ回転速度のバックラッシュ補償分を算出する伝達関数である。伝達関数H(s)は、分母の次数と分子の次数との差分が伝達関数Gp(s)の分母の次数と分子の次数との差分以上となるように設定されている。バネ下制振制御後のトルク指令値TmR2 *とFF演算部401Rの出力FFoutRを入力として、伝達関数Gp(s)(801)、伝達関数Gps(s)(802)、伝達関数Gd(s)(803)、飽和関数(804)、フィルタF(s)(805)により、モータ回転速度の推定値ωm^を求める。そして、求めたモータ回転速度の推定値ωm^と、実モータ回転速度ωmとの差分を伝達関数H(s)/Gp(s)(806)に入力することにより、FB演算部402Rの出力FBoutRを算出する。
図9は、FF演算部401Rのブロック図と共に、図8に示すFB演算部402Rのブロック図と等価な構成のブロック図を示す。図9に示すように、FF演算部401Rで算出された出力軸ねじり角θdのリミット値St(θd)を伝達関数Gps(s)の入力としてもよい。
以下、伝達関数Gp(s)および伝達関数Gps(s)について説明する。式(1)〜(8)をラプラス変換してトルク指令値からモータ回転速度までの伝達特性を求めると、次式(23)が得られる。ただし、Gp(s)、Gps(s)はそれぞれ、式(24)、(25)で表される。
Figure 2016073161
Figure 2016073161
Figure 2016073161
式(24)、(25)中の各項のa0〜a7、b0〜b7、c1〜c6は、上述した車両諸元によって求まる定数である。
式(24)、(25)からバネ下ワインドアップ振動系とバネ下前後振動系のダイナミクスを抽出すると、次式(26)、(27)となる。式(26)、(27)中のkp、kps、gps(s)は、車両諸元によって決まる定数と伝達特性である。
Figure 2016073161
Figure 2016073161
伝達関数H(s)について説明する。伝達関数H(s)は、H(s)=H1(s)・H2(s)で表される。H1(s)は、バンドパスフィルタとした場合に振動のみを低減するフィードバック要素となる。この際、図10に示すようにフィルタの特性を設定すると、最も大きな効果を得ることができる。すなわち、伝達関数H1(s)は、ローパス側、およびハイパス側の減衰特性が一致し、かつ、バネ下ワインドアップ振動周波数が対数軸(logスケール)上で通過帯域の中央部近傍となるように設定されている。そして、例えばH1(s)を1次のハイパスフィルタと1次のローパスフィルタで構成する場合、周波数fp1をバネ下ワインドアップ振動周波数とし、kを任意の値として次式(28)のように構成する。ただし、式(28)において、τL=1/(2πfHC)、fHC=k・fp1、τH=1/(2πfLC)、fLC=fp1/kである。
Figure 2016073161
2(s)もH1(s)と同様の構成であるが、通過帯域の中心周波数fp2をバネ下前後振動周波数とする。
また、式(1)、(5)、(8)よりモータ回転速度を演算することもできるので、図11に示すように、モータ回転速度の規範応答ωrをFF演算部401Rで演算し、FB演算部402Rの出力FBoutRを伝達特性Gp(s)に入力して算出したモータ回転速度補償値にモータ回転速度の規範応答ωrを加算して、モータ回転速度の推定値ωm^を求めるようにしてもよい。
図12および図13は、トルク指令値を急峻に立ち上げた場合の車両の挙動を示す図であり、図12は、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行わない従来の制御結果を示し、図13は、バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行う本実施形態の制御結果を示す。図12および図13では上から順に、トルク指令値、車両前後加速度、バネ下ワインドアップ加速度、モータ回転数を示している。
バネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行わない場合には、トルク指令値を急峻に立ち上げた場合に、駆動力に起因するバネ下ワインドアップ振動が発生し、車両前後加速度、バネ下ワインドアップ加速度およびモータ回転数に振動が発生している。
これに対して、本実施形態における電動車両の制御装置によれば、トルク指令値に対してバネ下ワインドアップ振動を抑制するバネ下制振制御演算処理を行うことにより、車両前後加速度、バネ下ワインドアップ加速度、およびモータ回転数の振動の発生が抑えられている。これにより、高レスポンスかつショックのない滑らかな車両応答を得ることができる。
以上、一実施の形態における電動車両の制御装置によれば、バネ下に駆動源を有する電動車両の制御装置であって、駆動源のトルク指令値を設定し、設定したトルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行い、振動低減処理が行われたトルク指令値に基づいて、車両の駆動源のトルクを制御する。これにより、車両のバネ下のワインドアップ方向における振動の発生を抑制することができる。
トルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行うバネ下制振制御演算部(400R、400L)は、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減するフィルタGINV(601)と、出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数Gd(s)(602)、F(s)(604)と、出力軸トルクの不感帯特性を補償する際に算出される出力軸ねじり角の上限および下限を制限する飽和関数(603)とを備える。これにより、トルク伝達系に不感帯が存在する場合でも、車両のバネ下のワインドアップ方向における振動を低減することができる。
また、車両のバネ下のワインドアップ方向における振動の固有振動周波数は、サスペンションの駆動源支持部の剛性に基づいて決定するので、車両のバネ下のワインドアップ方向における振動の固有振動周波数を適確に設定することができる。
また、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減するフィルタGINVは、トルク入力に対する車両のバネ下ワインドアップ振動伝達特性の逆特性を含む伝達特性を有するので、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を効果的に低減することができる。
出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数Gd(s)、F(s)は、出力軸ねじり角のダイナミクスからバネ下ワインドアップ振動系のダイナミクスを抽出した特性であるので、出力軸トルクの不感帯特性を効果的に補償することができる。
飽和関数(603)の上限および下限を、駆動源から出力軸までに存在するギアのバックラッシュ量に基づいて定めるので、出力軸トルクの不感帯幅を適確に設定して、出力軸トルクの不感帯特性を効果的に補償することができる。
本発明は、上述した一実施の形態に限定されることはない。
2…電動モータコントローラ(トルク指令値設定手段、バネ下振動低減手段、トルク制御手段)
3…インバータ
4R、4L…電動モータ

Claims (6)

  1. バネ下に駆動源を有する電動車両の制御装置において、
    前記駆動源のトルク指令値を設定するトルク指令値設定手段と、
    前記トルク指令値に対して、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減する処理を行うバネ下振動低減手段と、
    前記バネ下振動低減手段による振動低減処理が行われたトルク指令値に基づいて、前記車両の駆動源のトルクを制御するトルク制御手段と、
    を備えることを特徴とする電動車両の制御装置。
  2. 請求項1に記載の電動車両の制御装置において、
    前記バネ下振動低減手段は、車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減するフィルタと、出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数と、前記出力軸トルクの不感帯特性を補償する際に算出される出力軸ねじり角の上限および下限を制限する飽和関数とを備える、
    ことを特徴とする電動車両の制御装置。
  3. 請求項1または請求項2に記載の電動車両の制御装置において、
    前記車両のバネ下のワインドアップ方向における振動の固有振動周波数は、サスペンションの駆動源支持部の剛性に基づいて決定する、
    ことを特徴とする電動車両の制御装置。
  4. 請求項2に記載の電動車両の制御装置において、
    前記車両のバネ下のワインドアップ方向における振動の固有振動周波数成分を低減するフィルタは、トルク入力に対する車両のバネ下ワインドアップ振動伝達特性の逆特性を含む伝達特性を有する、
    ことを特徴とする電動車両の制御装置。
  5. 請求項2に記載の電動車両の制御装置において、
    前記出力軸トルクの不感帯特性を補償する出力軸トルクの線形伝達関数は、出力軸ねじり角のダイナミクスからバネ下ワインドアップ振動系のダイナミクスを抽出した特性である、
    ことを特徴とする電動車両の制御装置。
  6. 請求項2に記載の電動車両の制御装置において、
    前記飽和関数の上限および下限を、前記駆動源から出力軸までに存在するギアのバックラッシュ量に基づいて定める、
    ことを特徴とする電動車両の制御装置。
JP2014203483A 2014-10-01 2014-10-01 電動車両の制御装置 Pending JP2016073161A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014203483A JP2016073161A (ja) 2014-10-01 2014-10-01 電動車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014203483A JP2016073161A (ja) 2014-10-01 2014-10-01 電動車両の制御装置

Publications (1)

Publication Number Publication Date
JP2016073161A true JP2016073161A (ja) 2016-05-09

Family

ID=55867629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014203483A Pending JP2016073161A (ja) 2014-10-01 2014-10-01 電動車両の制御装置

Country Status (1)

Country Link
JP (1) JP2016073161A (ja)

Similar Documents

Publication Publication Date Title
JP6791377B2 (ja) 電動車両の制御方法、及び、制御装置
JP6135775B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP5900609B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6330820B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6492399B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP5862436B2 (ja) 電動車両の制御装置
JP7155674B2 (ja) 電動車両の制御方法、及び、制御装置
JP2012200051A (ja) 車両用モータ制御装置
JP2015195698A (ja) 車両の制御装置
WO2014054657A1 (ja) 電動車両の制御装置および電動車両の制御方法
JP6686658B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP6819081B2 (ja) 電動車両の制御方法、及び、制御装置
JP6191777B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP2014192930A (ja) 各輪独立駆動台車の制御装置
JP5915349B2 (ja) 電動車両の制振制御装置
JP6954062B2 (ja) 電動車両の制御方法、及び、制御装置
JP2016073161A (ja) 電動車両の制御装置
JP2015023623A (ja) 電動車両の制御装置および電動車両の制御方法
JP2020205682A (ja) 電動車両の制御方法、及び、制御装置
WO2015079574A1 (ja) 電動車両の制御装置および電動車両の制御方法
JP7326960B2 (ja) 電動車両の制御方法および電動車両の制御装置
JP2013240258A (ja) 電動車両の制振制御装置
CN117836168A (zh) 电动车辆的控制方法以及电动车辆的控制装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205