JP2013240258A - 電動車両の制振制御装置 - Google Patents

電動車両の制振制御装置 Download PDF

Info

Publication number
JP2013240258A
JP2013240258A JP2012204629A JP2012204629A JP2013240258A JP 2013240258 A JP2013240258 A JP 2013240258A JP 2012204629 A JP2012204629 A JP 2012204629A JP 2012204629 A JP2012204629 A JP 2012204629A JP 2013240258 A JP2013240258 A JP 2013240258A
Authority
JP
Japan
Prior art keywords
vibration
electric vehicle
control device
vehicle
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204629A
Other languages
English (en)
Inventor
Hiromasa Komatsu
弘征 小松
Takeshi Ito
健 伊藤
Yushi Katsumata
雄史 勝又
Sho Ono
翔 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012204629A priority Critical patent/JP2013240258A/ja
Publication of JP2013240258A publication Critical patent/JP2013240258A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

【課題】ピッチング運動に起因する車両振動を抑制する。
【解決手段】車両情報に基づいてモータトルク指令値(第1のトルク指令値)を設定し、駆動輪につながるモータのトルクを制御する機能を有する電動車両の制振制御装置は、モータトルク指令値に対して、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理を施し、車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値(第2のトルク指令値)に従って、モータトルクを制御する。フィルタリング処理では、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタを用いる。
【選択図】図2

Description

本発明は、電動車両の制振制御装置に関する。
従来、アクセル開度や車速などから算出される駆動モータの駆動トルク要求値に対して、車両のトルク伝達系の固有振動周波数成分を除去又は低減するフィルタリング処理を行って駆動トルク目標値を算出し、駆動モータのトルクが駆動トルク目標値に一致するように、駆動モータの電流を制御する電気自動車のモータ制御装置が知られている(特許文献1参照)。
また、特許文献2に記載の車両の制振制御装置では、例えば特許文献1に記載の方法により決定した駆動トルク目標値に対して、駆動トルク目標値からモータ特性モデルを考慮して算出されるモータ回転速度推定値と実モータ回転速度との偏差を、駆動力伝達系の固有振動周波数を中心周波数とするバンドパスフィルタとモータ特性モデルの逆系で構成されたフィルタに通して算出したトルク指令値を加えることによって、最終駆動トルク目標値を算出している。これにより、道路勾配やトルク伝達系の外乱やモータ特性モデル誤差などによる影響を除去し、かつ、車両のトルク伝達系の固有振動周波数成分を除去または低減することにより、制振効果と急峻なトルクの立ち上がりを両立することができる。
特開2001−45613号公報 特開2003−9566号公報
しかしながら、特許文献1および2に記載の制御装置において、車両の出力軸トルクを急峻に立ち上げた場合、固有振動数が1〜2Hz程度のピッチング運動に起因する振動を励起してしまう場合がある。ピッチング運動に起因する振動は、駆動軸トルクやモータ回転速度にその振動成分が発生しないので、特許文献1や2に記載の制御装置では除去することができない。
本発明は、ピッチング運動に起因する車両振動を抑制することを目的とする。
本発明による電動車両の制振制御装置は、モータトルク指令値に対して、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理を施し、フィルタリング処理が施されたモータトルク指令値に従って、モータトルクを制御する。フィルタリング処理では、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタを用いる。
本発明によれば、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいて、車両のピッチング運動に起因する車両振動を効果的に抑制することができる。
図1は、一実施の形態における電動車両の制振制御装置を備えた電気自動車の主要構成を示すブロック図である。 図2は、電動モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。 図3は、アクセル開度−トルクテーブルの一例を示す図である。 図4は、特開2003−9566号公報に記載の方法により、第2のトルク指令値Tm2、およびモータ回転速度ωmに基づいて、第3のトルク指令値Tm3を算出する処理を行うための制御ブロック図である。 図5は、ピッチング運動に起因する車両振動を抑制するためのフィルタ処理の詳細について説明するための図である。 図6は、一実施の形態における電動車両の制振制御装置による制御結果の一例を示す図である。 図7は、特開2003−9566号公報に記載の制御装置による制御結果の一例を示す図である。 図8は、第2の実施形態における電動車両の制振制御装置において、電動モータコントローラによって行われるモータ電流制御の処理の流れを示すフローチャートである。 図9は、車両振動抑制フィルタHλのゲイン線図である。 図10は、第1〜第3の実施形態における電動車両の制振制御装置による制御結果について説明するための図である。
<第1の実施形態>
図1は、第1の実施形態における電動車両の制振制御装置を備えた電気自動車の主要構成を示すブロック図である。本発明の電動車両の制振制御装置は、車両の駆動源の一部または全部として電動モータを備え、電動モータの駆動力により走行可能な電動車両に適用可能であり、電気自動車だけでなく、ハイブリッド自動車や燃料電池自動車にも適用可能である。
電動モータコントローラ2は、車速V、アクセル開度θ、電動モータ(三相交流モータ)4の回転子位相α、電動モータ4の電流iu、iv、iw等の車両状態を示す信号をデジタル信号として入力し、入力された信号に基づいて、電動モータ4を制御するためのPWM信号を生成する。また、生成したPWM信号に応じてインバータ3の駆動信号を生成する。
インバータ3は、例えば、各相ごとに2個のスイッチング素子(例えば、IGBTやMOS−FET等のパワー半導体素子)を備え、駆動信号に応じてスイッチング素子をオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換し、電動モータ4に所望の電流を流す。
電動モータ4は、インバータ3から供給される交流電流により駆動力を発生し、減速機5および駆動軸8を介して、左右の駆動輪9a、9bに駆動力を伝達する。また、車両の走行時に駆動輪9a、9bに連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、電動モータ4の回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。
電流センサ7は、電動モータ4に流れる3相交流電流iu、iv、iwを検出する。ただし、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。
回転センサ6は、例えば、レゾルバやエンコーダであり、電動モータ4の回転子位相αを検出する。
距離センサ10は、後述する距離Hsを検出する。
図2は、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。
ステップS201では、車両状態を示す信号を入力する。ここでは、車速V(km/h)、アクセル開度θ(%)、電動モータ4の回転子位相α(rad)、電動モータ4の回転数Nm(rpm)、電動モータ4に流れる三相交流電流iu、iv、iw、バッテリ1とインバータ3間の直流電圧値Vdc(V)、ピッチセンターからG変動を打ち消したい乗員の身体の一部のポイントまでの距離Hsを入力する。ピッチセンターとは、車両が前後に振動する(揺れる)ピッチング運動の中央位置(車両重心)である。
車速V(km/h)は、図示しない車速センサや、図示しないブレーキコントローラ等の他のコントローラより通信にて取得する。または、モータ回転速度ωmにタイヤ動半径Rを乗算し、ファイナルギアのギア比で除算することにより車速v(m/s)を求め、3600/1000を乗算することにより単位変換して、車速V(km/h)を求める。
アクセル開度θ(%)は、図示しないアクセル開度センサから取得するか、図示しない車両コントローラ等の他のコントローラから通信にて取得する。
電動モータ4の回転子位相α(rad)は、回転センサ6から取得する。電動モータ4の回転数Nm(rpm)は、回転子の角速度ω(電気角)を電動モータ4の極対数で除算して、電動モータ4の機械的な角速度であるモータ回転速度ωm(rad/s)を求め、求めたモータ回転速度ωmに60/(2π)を乗算することによって求める。回転子の角速度ωは、回転子位相αを微分することによって求める。
電動モータ4に流れる電流iu、iv、iw(A)は、電流センサ7から取得する。
直流電圧値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)、または、図示しないバッテリコントローラから送信される電源電圧値から求める。
ピッチセンターからG変動を打ち消したい乗員の身体の一部のポイントまでの距離Hsは、例えば、ピッチセンターから人が振動を最も感じやすい(振動を不快と感じる)とされる三半規管までの距離であり、距離センサ10により検出する。距離センサ10は、例えば、車室内に設置したカメラおよび画像処理装置により構成される。すなわち、車室内に設置したカメラにより撮像された画像に基づいて、画像処理装置が画像処理を行うことにより、距離Hsを検出する。
また、距離センサ10をルームミラーの角度を検出するセンサとすることもできる。すなわち、乗員は、自分の体格に応じてルームミラーを調整するため、距離センサ10によって、ルームミラーの角度を検知して距離Hsを推定する。さらに、距離センサ10をシートポジションを検出するセンサとすることもできる。すなわち、乗員は、自分の体格に応じてシートポジションを調整するため、距離センサ10によって、シートポジションの設定位置を検出して距離Hsを算出するようにしてもよい。
ステップS202では、基本目標トルク指令値である第1のトルク指令値Tm1を設定する。具体的には、ステップS201で入力されたアクセル開度θおよび車速Vに基づいて、図3に示すアクセル開度−トルクテーブルを参照することにより、第1のトルク指令値Tm1を設定する。
ステップS203では、ステップS202で設定された第1のトルク指令値Tm1に対して、ピッチング運動に起因する車両振動を抑制するためのフィルタ処理を行うことによって、第2のトルク指令値Tm2を設定する。第2のトルク指令値Tm2を設定する方法の詳細については、後述する。
ステップS204では、特開2003−9566号公報に記載の方法により、ステップS203で設定した第2のトルク指令値Tm2、およびモータ回転速度ωmに基づいて、駆動軸トルクの応答を犠牲にすることなく、駆動力伝達系の振動(駆動軸8のねじり振動)を抑制する第3のトルク指令値Tm3を算出する。より具体的には、特開2003−9566号公報の制振制御装置において、制振制御部4が第1のトルク指令値Tm1、およびモータ回転速度ωmに基づいて、モータトルク指令値T’を算出する方法を用いる。
図4は、特開2003−9566号公報に記載の方法により、第2のトルク指令値Tm2、およびモータ回転速度ωmに基づいて、第3のトルク指令値Tm3を算出する処理を行うための制御ブロック図である。
Gm(s)/Gp(s)なる伝達特性を有する制御ブロック400は、駆動力伝達系の振動を抑制するためのフィードフォワード制御を行う。すなわち、第2のトルク指令値Tm2をGm(s)/Gp(s)なるフィルタに通すことにより、制振効果の高いトルク指令値を出力する。Gp(s)は、車両へのトルク入力とモータ回転速度との間の伝達特性を示すモデルであり、Gm(s)は、車両へのトルク入力とモータ回転速度の応答目標との間の伝達特性を示すモデル(理想モデル)である。
Gp(s)なる伝達特性を有する制御ブロック401は、第3のトルク指令値Tm3を入力して、モータ回転速度推定値を出力する。
減算器403は、制御ブロック401から出力されるモータ回転速度推定値と、モータ回転速度検出値との偏差を算出する。
制御ブロック402は、車両の伝達特性Gp(s)の逆特性とバンドパスフィルタH(s)からなるフィルタH(s)/Gp(s)なる伝達特性を有し、モータ回転速度推定値とモータ回転速度検出値との偏差に基づいて、ねじり振動を抑制するためのフィードバック成分を算出する。H(s)は、中心周波数が車両の駆動系のねじり共振周波数と一致しているバンドパスフィルタの特性を有する。
加算器404は、制御ブロック400から出力されるトルク指令値と、制御ブロック402の出力値とを加算して、第3のトルク指令値Tm3を算出する。
ステップS205では、ステップS204で算出した第3のトルク指令値Tm3、モータ回転速度ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id、q軸電流目標値iqを求める。
ステップS206では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS205で求めたd軸電流目標値idおよびq軸電流目標値iqと一致させるための電流制御を行う。このため、まず初めに、ステップS201で入力された三相交流電流値iu、iv、iwと、電動モータ4の回転子位相αとに基づいて、d軸電流idおよびq軸電流iqを求める。続いて、d軸、q軸電流指令値id、iqと、d軸、q軸電流id、iqとの偏差から、d軸、q軸電圧指令値vd、vqを算出する。
次に、d軸、q軸電圧指令値vd、vqと、電動モータ4の回転子位相αから、三相交流電圧指令値vu、vv、vwを求める。そして、求めた三相交流電圧指令値vu、vv、vwと直流電圧値Vdcから、PWM信号tu(%)、tv(%)、tw(%)を求める。このようにして求めたPWM信号tu、tv、twにより、インバータ3のスイッチング素子を開閉することによって、電動モータ4をトルク指令値で指示された所望のトルクで駆動することができる。
図2のステップS203で行う、ピッチング運動に起因する車両振動を抑制するためのフィルタ処理の詳細について、図5を参照しながら説明する。
図5に示すG変動を打ち消したいポイント51について、次式(1)が成り立つ。上述したように、G変動を打ち消したいポイント51とは、例えば、乗員(ドライバ)の三半規管の位置である。
Figure 2013240258
ただし、αはピッチセンター52からHs離れたポイントの加速度、αはピッチング運動を含まない車両前後加速度、Gは重力加速度、λはピッチング運動のピッチ角を表している。
ここで、λを微少とすると、次式(2)が成り立つ。
Figure 2013240258
従って、ピッチセンターからHs離れたポイントの加速度モデルは、次式(3)で表される。
Figure 2013240258
図5より、車体がフロントサスペンションから受ける力F、および、リアサスペンションから受ける力Fはそれぞれ、次式(4)、(5)で表される。
Figure 2013240258
Figure 2013240258
ただし、L(L)は、ピッチセンター52からフロント(リア)サスペンションまでの距離を、K(K)は、フロント(リア)サスペンションのばね係数を、C(C)は、フロント(リア)サスペンションのダンパ係数を、xはピッチング運動が無い状態におけるサスペンションの変位を表しており、次式(6)が成り立つ。
Figure 2013240258
ここで、ピッチセンター周りのモーメントの関係より、次式(7)が成り立つ。
Figure 2013240258
ただし、Iλはピッチング慣性、Fは駆動力、Hはピッチセンター52の地上からの高さを表している。
式(6)を式(7)に代入すると、ピッチング運動のモデルは、次式(8)で表される。
Figure 2013240258
ただし、Cλ、Kλは、次式(9)にて表される。
Figure 2013240258
式(8)の両辺をラプラス変換し、ピッチ角λから駆動力Fまでの伝達特性を求めると、次式(10)となる。
Figure 2013240258
式(3)の両辺をラプラス変換し車両質量Mを乗算すると、次式(11)となる。
Figure 2013240258
ここで、Mα=Fが成り立つので、式(10)、(11)より、次式(12)が成り立つ。
Figure 2013240258
式(12)は、駆動力Fから、ピッチセンター52から距離Hs離れたポイント51の加速度αへの伝達特性を表している。また、式(12)は、1〜2Hzの共振特性を有するため、次式(13)で表されるフィルタHλを追加し、共振特性を除去する。
Figure 2013240258
ピッチング運動に起因する車両振動を抑制するためのフィルタHλを示す式(13)は、ステップ指令に対して、定常偏差が生じる。そこで、式(13)で表される、ピッチング運動に起因する車両振動を抑制するためのフィルタHλの数式モデルから定常項であるMGHを0とする(定常状態におけるフィルタゲインを1にする)。すなわち、ピッチング運動に起因する車両振動を抑制するための振動抑制フィルタを次式(14)のように設計することにより、定常偏差を0にする。
Figure 2013240258
図2のステップS203では、ステップS202で設定された第1のトルク指令値Tm1に対して、式(14)で表される振動抑制フィルタHλを通すことによって、第2のトルク指令値Tm2を設定する。
図6は、第1の実施形態における電動車両の制振制御装置による制御結果の一例を示す図である。図6では、上から順に、トルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、ピッチング角の時間変化、駆動軸トルクの時間変化、モータ回転数の時間変化を示している。
停車状態から、時刻t1でアクセルをステップ的に踏み込み、第1のトルク指令値Tm1が急激に立ち上がった場合、ピッチング運動に起因する車両振動を抑制するためのフィルタ処理により、G変動を打ち消したいポイントの加速度は理想挙動通りに立ち上がる。さらに、図7を用いて説明する特開2003−9566号公報に記載の制御装置では発生する1〜2Hz程度の振動が抑制され、滑らかな立ち上がりとなり、時刻t2にはほぼ定常値に収束する。
図7は、特開2003−9566号公報に記載の制御装置による制御結果の一例を示す図である。図6と同様、上から順に、トルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、ピッチング角の時間変化、駆動軸トルクの時間変化、モータ回転数の時間変化を示している。
図7では、図6と同様、停車状態から、時刻t1でアクセルをステップ的に踏み込み、基本目標トルク指令値が急激に立ち上がった場合の制御結果を示している。この場合、駆動力伝達系の振動を抑制するための制振制御により、基本目標トルク指令値に対して駆動力伝達系の振動周波数成分を抑制したトルク指令値にてモータを駆動することになり、駆動軸トルクがステップ的に振動無く立ち上がり、時刻t2に至るまでに定常値にほぼ収束する。これに対し、G変動を打ち消したいポイントの加速度は、立ち上がり直後から時刻t3にかけて、1〜2Hz程度の振動が残っている。
以上、第1の実施形態における電動車両の制振制御装置によれば、モータトルク指令値に対して、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理を施し、車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に従って、モータトルクを制御する。フィルタリング処理では、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタを用いる。これにより、乗員の身体の一部の位置において、車両のピッチング運動に起因する車両振動を効果的に抑制することができる。つまり、乗員が感じるショックや不快な振動を抑えることができ、急加速時にも滑らかな加速を実現することができる。
ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタは、乗員の身体の一部の位置において、車両のピッチング運動に起因する車両振動をモデル化したフィルタとしたので、加速特性に過度な遅れをきたすことなく、ピッチング運動に起因する車両振動を抑制することができる。また、アクセル踏み込み時の振動を低減することができ、スムーズな加速を実現することができる。
また、車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に対して、駆動軸のねじり振動を抑制するためのフィルタリング処理を施し、駆動軸のねじり振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に従って、モータトルクを制御する。ピッチング運動に起因する車両振動を抑制するためのフィルタリング処理を駆動軸のねじり振動を抑制するためのフィルタリング処理の後に行った場合、ねじり振動抑制制御で考慮している制御対象モデルと異なる応答となってしまう上、想定しているモータ回転数の応答と検出遅れ等の適合にズレが生じ、ねじり振動の抑制制御の性能が悪化する可能性がある。しかしながら、本実施形態のように、ピッチング運動を抑制するためのフィルタリング処理を、ねじり振動を抑制するためのフィルタリング処理の前に行うことにより、ねじり振動抑制制御の効果を残しつつ、ピッチング運動に起因する車両振動を抑制することができる。
また、車両のピッチング運動に起因する車両振動をモデル化したフィルタの数式モデルから定常項を除去することにより、モータトルク指令値と車両振動を抑制するフィルタリング処理後のトルク指令値に定常偏差を無くすことができる。例えば、車両振動抑制フィルタをオフからオンにする際に、乗員がトルクの目減りを感じることがある。しかし、車両振動抑制フィルタの定常項を意図的に除去することにより、上述したトルクの目減りを除去し、違和感の無い走行を実現することができる。また、定常項を除去することで、トルク指令値を所定の最大値まで指令できるようになり、モータ・インバータの最大定格出力を確実に出力することができる。
また、乗員の体格に応じて、ピッチング運動の中央位置から乗員の身体の一部までの距離を設定する。特に、ピッチング運動の中央位置から乗員の身体の一部までの距離をセンサによって検出するので、乗員ごとに適切な車両振動抑制制御を行うことができる。
さらに、ピッチング運動の中央位置からの距離を設定する乗員の身体の一部は、三半規管とすることにより、乗員が振動を最も感じやすいとされる位置において、車両のピッチング運動に起因する車両振動を抑制することができる。
<第2の実施形態>
図8は、第2の実施形態における電動車両の制振制御装置において、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートである。図2に示すフローチャートの処理と同じ処理を行うステップについては、同一の符号を付して詳しい説明は省略する。
ステップS203に続くステップS301では、ピッチング運動に起因する車両振動を抑制するためのフィルタHλの高周波ゲインを低減する処理を行う。車両振動抑制フィルタHλの高周波ゲインとは、ピッチセンター52から距離Hs離れたポイント51におけるバネ上振動の周波数よりも高い周波数帯域のゲインのことである。バネ上振動とは、車両の走行時に車輪に外力やトルクが作用して、その外力やトルクが車輪およびサスペンションを介して車体に伝わって車体に発生する固有振動数1〜2Hz程度の振動のことである。ステップS301では、具体的には、ステップS203で求めた第2のトルク指令値Tm2に対して、車両振動抑制フィルタHλの高周波ゲインを低減するための高周波ゲイン補償フィルタ処理を行うことによって、第4のトルク指令値Tm4を算出する。高周波ゲイン補償フィルタ処理の詳細については後述する。
ステップS302では、特開2003−9566号公報に記載の方法により、ステップS301で設定した第4のトルク指令値Tm4、およびモータ回転速度ωmに基づいて、駆動軸トルクの応答を犠牲にすることなく、駆動力伝達系の振動(駆動軸8のねじり振動)を抑制する第5のトルク指令値Tm5を算出する。より具体的には、特開2003−9566号公報の制振制御装置において、制振制御部4が第1のトルク指令値Tm1、およびモータ回転速度ωmに基づいて、モータトルク指令値T’を算出する方法を用いる。
ステップS303では、ステップS302で算出した第5のトルク指令値Tm5、モータ回転速度ωmおよび直流電圧値Vdcに基づいて、d軸電流目標値id、q軸電流目標値iqを求める。
ステップS206では、d軸電流idおよびq軸電流iqをそれぞれ、ステップS303で求めたd軸電流目標値idおよびq軸電流目標値iqと一致させるための電流制御を行う。
以下では、ステップS301で行う高周波ゲイン補償フィルタ処理について説明する。
図5に示す車両モデルについて、ピッチセンター52から距離Hs離れたポイント51のバネ上振動を抑制する車両振動抑制フィルタHλは、上式(14)にて表される。式(14)で表される車両振動抑制フィルタHλのゲイン線図を図9に示す。
ここで、式(14)の高周波帯域のノルムは、次式(15)で表される。
Figure 2013240258
従って、式(14)の高周波帯域のゲインは、次式(16)で表される。
Figure 2013240258
次に、次式(17)で表されるフィルタHλ’について考える。ただし、τ>τとする。
Figure 2013240258
ここで、式(17)で表されるフィルタHλ’の逆系の高周波帯域のゲインが式(16)で表される高周波帯域のゲインと等しくなるようにτ、τを設定すると(次式(18)参照)、式(17)で表される線形フィルタHλ’は、式(14)で表される車両振動抑制フィルタHλの高周波帯域のゲインを0[dB]に補正する高周波ゲイン補償フィルタとなる。すなわち、高周波ゲイン補償フィルタHλ’のフィルタ特性は、式(14)で表される車両振動抑制フィルタHλの高周波ゲインに基づいて決定される。
Figure 2013240258
バネ上振動の固有振動数ωλは、次式(19)で表される。
Figure 2013240258
式(17)中のτについては、1/ωλを基準として、シミュレーションや実験等を行うことにより、適切な値を設定する。τについては、設定したτと式(18)とにより、一意的に定まる。すなわち、線形フィルタHλ’のフィルタ特性は、ピッチセンター52から乗員の身体の一部までの距離Hsに基づいて決定されることになる。
高周波ゲイン補償フィルタ処理では、第2のトルク指令値Tm2に対して、式(17)で表されるフィルタHλ’を用いたフィルタリング処理を行う。
以上、第2の実施形態における電動車両の制振制御装置によれば、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理で用いるフィルタに対して、乗員の身体の一部の位置におけるバネ上振動の周波数よりも高い周波数帯域のゲインを低減する処理を行う。これにより、乗員下腹部周辺に発生する振動・ショックを低減することができ、また、第1の実施形態と同様に、乗員の身体の一部の位置において、車両のピッチング運動に起因する車両振動を効果的に抑制することができる。すなわち、乗員が感じるショックや不快な振動を抑えることができ、急加速時にも滑らかな加速を実現することができる。
特に、車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に対して、線形フィルタを用いたフィルタリング処理を行うことによって、乗員の身体の一部の位置におけるバネ上振動の周波数よりも高い周波数帯域のゲインを低減する処理を行うので、アクセル操作、トルク変化等に応じて複雑な演算(初期化、条件判定、切替など)をする必要がない。
また、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいて、線形フィルタのフィルタ特性を決定するので、乗員ごとに適切な車両振動抑制制御を行うことができる。特に、線形フィルタのフィルタ特性は、ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタの高周波ゲインに基づいて決定するので、乗員ごとに適切な車両振動抑制制御を行うことができる。
<第3の実施形態>
第3の実施形態における電動車両の制振制御装置では、上述した車両振動抑制フィルタHλに対して、ピッチセンター52から距離Hs離れたポイント51のバネ上振動の周波数よりも高い周波数帯域のゲインを0[dB]以下にする処理を行う。
第3の実施形態における電動車両の制振制御装置において、電動モータコントローラ2によって行われるモータ電流制御の処理の流れを示すフローチャートは、図8に示すフローチャートと同じである。ただし、図8に示すフローチャートのステップS203において、第2のトルク指令値Tm2を設定した後、設定した第2のトルク指令値Tm2に対して、基本目標トルク指令値である第1のトルク指令値Tm1をリミット値とするリミット処理を施す。例えば、アクセル開度、基本目標トルク指令値の変化率が正であれば、第2のトルク指令値Tm2に対して、第1のトルク指令値Tm1を上限値とするリミット処理を施す。また、アクセル開度、基本目標トルク指令値の変化率が負であれば、第2のトルク指令値Tm2に対して、第1のトルク指令値Tm1を下限値とするリミット処理を施す。
以上、第3の実施形態における電動車両の制振制御装置によれば、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理で用いるフィルタHλに対して、乗員の身体の一部の位置におけるバネ上振動の周波数よりも高い周波数帯域のゲインを0以下にする処理を行う。これにより、乗員下腹部周辺に発生する振動・ショックを低減することができ、また、第1の実施形態と同様に、乗員の身体の一部の位置において、車両のピッチング運動に起因する車両振動を効果的に抑制することができる。すなわち、乗員が感じるショックや不快な振動を抑えることができ、急加速時にも滑らかな加速を実現することができる。
第1〜第3の実施形態における電動車両の制振制御装置による制御結果について説明する。以下では、停車状態からの発進急加速において、トルク指令値をステップ的に増加させた場合の加速度の応答について、図10を用いて説明する。
まず始めに、特開2001−45613号公報に記載の制御装置および特開2003−9566号公報に記載の制御装置による制御結果の一例を図10(a)に示す。図10(a)では、上から順に、制振制御を行う前のトルク指令値の時間変化、制振制御を行った後のトルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、乗員下腹部周辺の加速度の時間変化をそれぞれ示している。
停車状態から、時刻t1でアクセルをステップ的に踏み込み、基本目標トルク指令値が急激に立ち上がった場合、駆動力伝達系の振動を抑制するための制振制御により、制振制御後のトルク指令値は、基本目標トルク指令値に対して駆動力伝達系の振動周波数成分を抑制したトルク指令値でモータを制御することになる。このとき、G変動を打ち消したいポイントの加速度は立ち上がり直後から時刻t4にかけて1〜2Hz程度のバネ上振動が残っている。
続いて、第1の実施形態における電動車両の制振制御装置による制御結果の一例を図10(b)に示す。図10(a)と同様に、上から順に、制振制御を行う前のトルク指令値の時間変化、制振制御を行った後のトルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、乗員下腹部周辺の加速度の時間変化をそれぞれ示している。
図10(b)では、図10(a)と同様に、停車状態から時刻t1でアクセルをステップ的に踏み込み、基本目標トルク指令値が急激に立ち上がった場合の制御結果を示している。第1の実施形態における電動車両の制振制御装置では、ピッチング運動に起因する車両振動を抑制するためのフィルタ処理を行うことにより、従来例(図10(a)参照)で見られていた1〜2Hz程度のバネ上振動は抑制される。
しかし、式(14)で表される車両振動抑制フィルタHλは、高周波帯域のゲイン特性が大きいため、時刻t1で基本目標トルク指令値が急激に立ち上がった直後に、基本目標トルク指令値以上のトルク指令値が算出される。このとき、乗員下腹部周辺の加速度は、従来例と比較して応答性が速くなる反面、高周波成分によりオーバーシュートが発生する場合がある。このオーバーシュートが発生した場合、乗員は不快な振動・ショックを感じることになる。
図10(c)は、第2の実施形態における電動車両の制振制御装置による制御結果の一例を示す図である。図10(a)と同様に、上から順に、制振制御を行う前のトルク指令値の時間変化、制振制御を行った後のトルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、乗員下腹部周辺の加速度の時間変化をそれぞれ示している。
停車状態から時刻t1でアクセルをステップ的に踏み込み、基本目標トルク指令値が急激に立ち上がった場合に、車両振動抑制フィルタ処理を行うことによって算出された第2のトルク指令値Tm2に対して、上述した高周波ゲイン補償フィルタ処理を施す。これにより、第1の実施形態における電動車両の制振制御装置では発生する可能性があった乗員下腹部周辺のショックは低減し、さらに、従来例で見られていた1〜2Hz程度の振動も抑制されて、時刻t2にはほぼ収束している。
図10(d)は、第3の実施形態における電動車両の制振制御装置による制御結果の一例を示す図である。図10(a)と同様に、上から順に、制振制御を行う前のトルク指令値の時間変化、制振制御を行った後のトルク指令値の時間変化、G変動を打ち消したいポイントの加速度の時間変化、乗員下腹部周辺の加速度の時間変化をそれぞれ示している。
第3の実施形態における電動車両の制振制御装置では、第2のトルク指令値Tm2に対して、基本目標トルク指令値である第1のトルク指令値Tm1をリミット値とするリミット処理を施す。これにより、第2の実施形態における電動車両の制振制御装置と同様の効果を得ることができる。
本発明は、上述した各実施形態に限定されることはない。
2…電動モータコントローラ(車両振動抑制手段、モータトルク制御手段)
4…電動モータ
10…距離センサ(距離検出手段)

Claims (12)

  1. 車両情報に基づいてモータトルク指令値を設定し、駆動輪につながるモータのトルクを制御する機能を有する電動車両の制振制御装置において、
    モータトルク指令値に対して、車両のピッチング運動に起因する車両振動を抑制するためのフィルタリング処理を施す車両振動抑制手段と、
    前記車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に従って、モータトルクを制御するモータトルク制御手段と、
    を備え、
    前記車両振動抑制手段は、前記ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタを用いて、前記フィルタリング処理を行う、
    ことを特徴とする電動車両の制振制御装置。
  2. 請求項1に記載の電動車両の制振制御装置において、
    前記ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタは、前記乗員の身体の一部の位置において、前記車両のピッチング運動に起因する車両振動をモデル化したフィルタである、
    ことを特徴とする電動車両の制振制御装置。
  3. 請求項1または請求項2に記載の電動車両の制振制御装置において、
    前記車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に対して、駆動軸のねじり振動を抑制するためのフィルタリング処理を施すねじり振動抑制手段をさらに備え、
    前記モータトルク制御手段は、前記駆動軸のねじり振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に従って、モータトルクを制御する、
    ことを特徴とする電動車両の制振制御装置。
  4. 請求項2に記載の電動車両の制振制御装置において、
    前記車両のピッチング運動に起因する車両振動をモデル化したフィルタの数式モデルから定常項を除去した、
    ことを特徴とする電動車両の制振制御装置。
  5. 請求項1に記載の電動車両の制振制御装置において、
    前記車両振動抑制手段は、前記フィルタリング処理で用いるフィルタに対して、前記乗員の身体の一部の位置におけるバネ上振動の周波数よりも高い周波数帯域のゲインを低減する処理を行う、
    ことを特徴とする電動車両の制振制御装置。
  6. 請求項5に記載の電動車両の制振制御装置において、
    前記車両振動抑制手段は、前記車両振動を抑制するためのフィルタリング処理が施されたモータトルク指令値に対して、線形フィルタを用いたフィルタリング処理を行うことによって、前記バネ上振動の周波数よりも高い周波数帯域のゲインを低減する処理を行う、
    ことを特徴とする電動車両の制振制御装置。
  7. 請求項6に記載の電動車両の制振制御装置において、
    前記ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいて、前記線形フィルタのフィルタ特性を決定する、
    ことを特徴とする電動車両の制振制御装置。
  8. 請求項7に記載の電動車両の制振制御装置において、
    前記線形フィルタのフィルタ特性は、前記ピッチング運動の中央位置から乗員の身体の一部までの距離に基づいたフィルタの高周波ゲインに基づいて決定する、
    ことを特徴とする電動車両の制振制御装置。
  9. 請求項5に記載の電動車両の制振制御装置において、
    前記車両振動抑制手段は、前記フィルタリング処理で用いるフィルタに対して、前記乗員の身体の一部の位置におけるバネ上振動の周波数よりも高い周波数帯域のゲインを0以下にする処理を行う、
    ことを特徴とする電動車両の制振制御装置。
  10. 請求項1から請求項9のいずれか一項に記載の電動車両の制振制御装置において、
    前記車両振動抑制手段は、乗員の体格に応じて、前記ピッチング運動の中央位置から乗員の身体の一部までの距離を設定する、
    ことを特徴とする電動車両の制振制御装置。
  11. 請求項10に記載の電動車両の制振制御装置において、
    前記ピッチング運動の中央位置から乗員の身体の一部までの距離を検出する距離検出手段をさらに備える、
    ことを特徴とする電動車両の制振制御装置。
  12. 請求項1から請求項11のいずれか一項に記載の電動車両の制振制御装置において、
    前記乗員の身体の一部は、三半規管である、
    ことを特徴とする電動車両の制振制御装置。
JP2012204629A 2012-04-18 2012-09-18 電動車両の制振制御装置 Pending JP2013240258A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204629A JP2013240258A (ja) 2012-04-18 2012-09-18 電動車両の制振制御装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012094712 2012-04-18
JP2012094712 2012-04-18
JP2012204629A JP2013240258A (ja) 2012-04-18 2012-09-18 電動車両の制振制御装置

Publications (1)

Publication Number Publication Date
JP2013240258A true JP2013240258A (ja) 2013-11-28

Family

ID=49764808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204629A Pending JP2013240258A (ja) 2012-04-18 2012-09-18 電動車両の制振制御装置

Country Status (1)

Country Link
JP (1) JP2013240258A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106165A1 (ja) * 2021-12-09 2023-06-15 日立Astemo株式会社 車両制御装置、車両制御方法、及び車両制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106165A1 (ja) * 2021-12-09 2023-06-15 日立Astemo株式会社 車両制御装置、車両制御方法、及び車両制御システム

Similar Documents

Publication Publication Date Title
JP6233420B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6787410B2 (ja) 電動車両の制御方法、及び、制御装置
JP6135775B2 (ja) 電動車両の制御装置および電動車両の制御方法
RU2737640C1 (ru) Способ и устройство управления электродвигателем электрического транспортного средства
JP5862436B2 (ja) 電動車両の制御装置
JP6492399B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP6760401B2 (ja) 電動車両の制御方法、及び、制御装置
CN109689422B (zh) 车辆的控制方法和控制装置
WO2018139375A1 (ja) 電動車両の制御方法、および、電動車両の制御装置
JP6711064B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
US20230249558A1 (en) Electric vehicle control method and electric vehicle control device
CN114599544A (zh) 电动车辆的控制方法及电动车辆的控制装置
JP5850171B2 (ja) 電動車両の制御装置および電動車両の制御方法
JP2019146450A (ja) 電動車両の制御方法および電動車両の制御装置
JP6720714B2 (ja) 電動車両の制御方法、及び電動車両の制御装置
JP6597174B2 (ja) 電動車両の制御装置、及び、電動車両の制御方法
JPWO2014057910A1 (ja) 電動車両のモータ制御装置および電動車両のモータ制御方法
JP2017046367A (ja) 電動車両の制御方法、及び、制御装置
JP6880674B2 (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP5915349B2 (ja) 電動車両の制振制御装置
JP2019022339A (ja) 電動車両の制御装置及び電動車両の制御方法
JP2013240258A (ja) 電動車両の制振制御装置
JP2015023623A (ja) 電動車両の制御装置および電動車両の制御方法
JP2021175279A (ja) 電動車両の制御方法、及び、電動車両の制御装置
JP2022098341A (ja) 電動車両の制御方法及び制御装置