JP2016072464A - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
JP2016072464A
JP2016072464A JP2014201219A JP2014201219A JP2016072464A JP 2016072464 A JP2016072464 A JP 2016072464A JP 2014201219 A JP2014201219 A JP 2014201219A JP 2014201219 A JP2014201219 A JP 2014201219A JP 2016072464 A JP2016072464 A JP 2016072464A
Authority
JP
Japan
Prior art keywords
optical
wavelength
semiconductor laser
light
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014201219A
Other languages
English (en)
Inventor
務 石川
Tsutomu Ishikawa
務 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014201219A priority Critical patent/JP2016072464A/ja
Publication of JP2016072464A publication Critical patent/JP2016072464A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】半導体レーザ素子の発熱量変動が波長モニタ素子に及ぼす影響を低減できる光伝送装置を提供する。【解決手段】光伝送装置1は、波長可変のためのヒータ13a〜13eを有する半導体レーザ素子11と、半導体レーザ素子11からのレーザ光L1の第一光処理を行って、出力する第一光機能素子と、半導体レーザ素子11の発振波長をモニタするための波長モニタ信号を生成する波長モニタ素子22とを含む集積素子20と、半導体レーザ素子11及び集積素子20を搭載する第一温度制御素子3と、半導体レーザ素子11の発振波長を制御する制御装置30とを備え、半導体レーザ素子11の一の端面11eは、第一光機能素子及び波長モニタ素子22に光学的に結合され、制御装置30は、半導体レーザ素子11の発振波長を目標発振波長に近づけるようにヒータ13a〜13eを制御する。【選択図】図1

Description

本発明は、光伝送装置に関する。
特許文献1及び2は、光伝送装置について開示する。特許文献1及び2では、半導体レーザ素子の波長ロックを行うための波長モニタ素子が、半導体レーザ素子にモノリシック集積されている。
特開2011−3591号公報 特開2011−49317号公報
半導体レーザ素子の発熱量は大きく、その半導体レーザ素子の大きな発熱量が、半導体レーザ素子の経年変化に伴って変動する。一方、波長モニタ素子が半導体レーザ素子とモノリシックに集積されるモノリシック集積素子では、波長モニタ素子が半導体レーザ素子の近くに配置される。このため、半導体レーザ素子の経年変化により、モノリシック集積素子内の波長モニタ素子は、半導体レーザ素子の発熱量変動の影響を受けるようになる。
本発明は、半導体レーザ素子の発熱量変動が波長モニタ素子に及ぼす影響を低減できる光伝送装置を提供することを目的とする。
本発明に係る光伝送装置は、波長可変のためのヒータを有する半導体レーザ素子と、半導体レーザ素子からのレーザ光に第一光処理を行って出力する第一光機能素子と、半導体レーザ素子の発振波長をモニタするための波長モニタ信号を生成する波長モニタ素子とを含む集積素子と、半導体レーザ素子及び集積素子を搭載する第一温度制御素子と、半導体レーザ素子の発振波長を制御する制御装置と、を備え、半導体レーザ素子の一端面は、第一光機能素子及び波長モニタ素子に光学的に結合され、制御装置は、波長モニタ信号を受けると共に、半導体レーザ素子の発振波長と目標発振波長との差分情報を生成し、制御装置は、半導体レーザ素子の発振波長を目標発振波長に近づけるように、差分情報に応じてヒータを制御する。
本発明によれば、半導体レーザ素子の発熱量変動が波長モニタ素子に及ぼす影響を低減できる光伝送装置を提供することができる。
第1の実施形態における光伝送装置の概略図である。 第1の実施形態における光源を示す図である。 第1の実施形態における集積素子の構成を示す図である。 (a)部は、図3のA−A線に沿ってとられたマッハツェンダ型変調器の位相変調部の断面を示す図である。(b)部は、図3のB−B線に沿ってとられた波長モニタ素子のリング共振器の導波路の断面を示す図である。(c)部は、図3のC−C線に沿ってとられたフォトダイオードの断面を示す図である。 第1の実施形態における光源と集積素子とを含む処理装置の構成を示す図である。 第2の実施形態における光伝送装置の概略図である。 第2の実施形態における集積素子の構成を示す図である。 (a)部は、図7のD−D線に沿ってとられたフォトダイオードの断面を示す図である。(b)部は、図7のE−E線に沿ってとられた半導体コヒーレント光受信器の導波路の断面を示す図である。 第2の実施形態における光源と集積素子とを含む処理装置の構成を示す図である。 第3の実施形態における光伝送装置の概略図である。 第4の実施形態における光伝送装置の概略図である。
本発明の実施形態の内容を説明する。本発明の一形態に係る光伝送装置は、(a)波長可変のためのヒータを有する半導体レーザ素子と、(b)半導体レーザ素子からのレーザ光に第一光処理を行って出力する第一光機能素子と、(c)半導体レーザ素子の発振波長をモニタするための波長モニタ信号を生成する波長モニタ素子とを含む集積素子と、(d)半導体レーザ素子及び集積素子を搭載する第一温度制御素子と、(e)半導体レーザ素子の発振波長を制御する制御装置と、を備え、半導体レーザ素子の一端面は、第一光機能素子及び波長モニタ素子に光学的に結合され、制御装置は、波長モニタ信号を受けると共に、半導体レーザ素子の発振波長と目標発振波長との差分情報を生成し、制御装置は、半導体レーザ素子の発振波長を目標発振波長に近づけるように、差分情報に応じてヒータを制御する。
この光伝送装置では、半導体レーザ素子の発振波長をモニタする波長モニタ素子は、半導体レーザ素子ではなく、第一光機能素子と集積されている。この集積によれば、半導体レーザ素子が経年変化を起こした際、その経年変化に伴う半導体レーザ素子の発熱量の変動が波長モニタ素子の温度に影響することが抑えられる。波長モニタ素子は、半導体レーザ素子の発熱量変動の影響を受けることなく、半導体レーザ素子の発振波長をモニタできる。また、この光伝送装置では、制御装置が、波長モニタ信号に応じて半導体レーザ素子のヒータを制御することによって、半導体レーザ素子の発振波長を目標発振波長に近づけることができる。
上記の光伝送装置では、第一光機能素子は、第一光処理として、変調又はコヒーレント復調のいずれか一方を行うことが好ましい。この光伝送装置によれば、変調又はコヒーレント復調のいずれかの第一光処理が行われる。変調又はコヒーレント復調は、それぞれ半導体光変調器又は半導体コヒーレント光受信器によって行われる。第一光機能素子の発熱の大きさ及び発熱量の変動は、それぞれ半導体レーザ素子の発熱の大きさ及び発熱量の変動に比べて小さい。このため、この光伝送装置は、波長モニタ素子と半導体レーザ素子とのモノリシック集積素子に比べて、波長モニタ素子への発熱量変動の影響を低減できる。
上記の光伝送装置では、半導体レーザ素子からのレーザ光の第二光処理を行って出力する第二光機能素子と、第二光機能素子を搭載する第二温度制御素子と、を更に備え、半導体レーザ素子の一端面は、第二光機能素子に更に光学的に結合されることが好ましい。この光伝送装置では、第二光機能素子は、半導体レーザ素子及び集積素子が搭載される第一温度制御素子ではなくて、第二温度制御素子に搭載される。この光伝送装置では、第一光機能素子による第一光処理に加えて、第二光機能素子が、第二温度制御素子の温度制御の下に、半導体レーザ素子からのレーザ光に対して第二光処理を提供する。
上記の光伝送装置では、第二光機能素子は、第二光処理として、変調又はコヒーレント復調のいずれか他方を行うことが好ましい。この光伝送装置では、第一光機能素子及び第二光機能素子が、それぞれ、第一光処理としての変調及び第二光処理としてのコヒーレント復調を行うことができる。また、第一光機能素子及び第二光機能素子が、それぞれ、第一光処理としてのコヒーレント復調及び第二光処理としての変調を行うことができる。更に、第一光機能素子及び第二光機能素子が、それぞれ、第一光処理としての変調及び第二光処理としての変調を行うことができる。或いは、第一光機能素子及び第二光機能素子が、それぞれ、第一光処理としてのコヒーレント復調及び第二光処理としてのコヒーレント復調を行うことができる。
上記の光伝送装置では、半導体レーザ素子からのレーザ光の第三光処理を行って出力する第三光機能素子を更に備え、第一温度制御素子は、第三光機能素子を更に搭載し、半導体レーザ素子の一端面は、第三光機能素子に更に光学的に結合されることが好ましい。この光伝送装置は、第三光機能素子を更に備えるので、第一光処理に加えて第三光処理が、半導体レーザ素子からのレーザ光に対して提供される。
上記の光伝送装置では、第三光機能素子は、第三光処理として、変調又はコヒーレント復調のいずれか他方を行うことが好ましい。この光伝送装置では、第一光機能素子及び第三光機能素子が、それぞれ、第一光処理としての変調及び第三光処理としてのコヒーレント復調を行うことができる。また、第一光機能素子及び第三光機能素子が、それぞれ、第一光処理としてのコヒーレント復調及び第三光処理としての変調を行うことができる。更に、第一光機能素子及び第三光機能素子が、それぞれ、第一光処理としての変調及び第三光処理としての変調を行うことができる。或いは、第一光機能素子及び第三光機能素子が、それぞれ、第一光処理としてのコヒーレント復調及び第三光処理としてのコヒーレント復調を行うことができる。
いくつかの実施形態に係る光伝送装置を、以下に図面を参照しつつ説明する。以下の説明では、図面の説明において同一の要素には同一の符号を付する。
(第1の実施の形態)
図1は、第1の実施形態における光伝送装置の概略図である。光伝送装置1は、処理装置2及び制御装置30を備える。処理装置2は、光源10及び集積素子20を有する。光源10は、集積素子20に光学的に結合している。光伝送装置1は、処理装置2の光源10及び集積素子20と、制御装置30とを用いて、光通信に使用されるレーザ光の波長を維持する波長へのロックを行う。光源10は、レーザ光L1を出射する半導体レーザ素子11を備える。半導体レーザ素子11は、レーザ光L1の波長を可変にするために、一又は複数のヒータ13a〜13eを有する。
本実施形態では、第一光機能素子として半導体光変調器21が用いられ、集積素子20は、半導体光変調器21と波長モニタ素子22とを含む。半導体光変調器21と波長モニタ素子22とはモノリシックに集積されて、集積素子20を構成する。半導体レーザ素子11は、一の端面11eを有し、この端面11eは、半導体光変調器21及び波長モニタ素子22に光学的に結合される。半導体光変調器21及び波長モニタ素子22は、半導体レーザ素子11からのレーザ光L1を受ける。半導体光変調器21は、第一光処理として半導体レーザ素子11からのレーザ光L1を変調して変調光を生成し、この変調光を出力する。波長モニタ素子22は、半導体レーザ素子11からのレーザ光L1の波長、すなわち半導体レーザ素子11の発振波長をモニタするために設けられる。波長モニタ素子22は半導体レーザ素子11からのレーザ光L1を受けて、波長モニタ信号SMONを生成する。波長モニタ信号SMONは、半導体レーザ素子11の発振波長に応じた大きさを有する電気的な信号である。
処理装置2は、第一温度制御素子3を更に備える。第一温度制御素子3は、光源10及び集積素子20を搭載する。処理装置2内には第一温度制御素子3の温度を検出するためのサーミスタ43が設けられ、第一温度制御素子3は、サーミスタ43を搭載する。サーミスタ43は、第一温度制御素子3についての温度信号Sを生成し、この温度信号Sは制御装置30に送られる。第一温度制御素子3は、光源10及び集積素子20の各温度を調整するために設けられる。本実施形態では、第一温度制御素子3は、例えば、ペルチェ素子、ヒータ素子又は水冷装置などを含む。処理装置2は、筐体4を更に備え、筐体4は、光源10、集積素子20、サーミスタ43、及び第一温度制御素子3を収容する。
制御装置30は、駆動装置31及び駆動装置32を備える。駆動装置31は、半導体レーザ素子11を制御し、駆動装置32は、集積素子20及び第一温度制御素子3を制御する。駆動装置31は、半導体レーザ素子11を制御するためのデータを格納する装置、例えばルックアップテーブル31Bといったメモリと、駆動回路31Aとを有する。駆動装置32は、集積素子20及び第一温度制御素子3の両方を制御するためのデータを格納した装置、例えばルックアップテーブル32Bといったメモリと、駆動回路32Aとを有する。駆動回路31Aは、半導体レーザ素子11を制御する。駆動回路32Aは、波長モニタ素子22及び半導体光変調器21を動作させ、また、第一温度制御素子3の温度を制御する。制御信号Jmonは、温度信号Sを受けて、波長モニタ素子22のための設定温度を第一温度制御素子3に示す信号である。制御装置30は、処理装置(例えばCPUなど)と、記憶装置(例えばRAM及びROMなど)とを含むことができる。これらの処理装置及び記憶装置は、電気回路基板上に搭載される。
制御装置30では、駆動装置31の駆動回路31Aは、制御信号ILDを生成する。制御信号ILDは、半導体レーザ素子11に提供されて、半導体レーザ素子11がレーザ光L1を発生するための制御信号である。本実施例では、駆動回路31Aは、ルックアップテーブル31Bを参照して制御信号ILDを生成する。半導体レーザ素子11は、制御信号ILDの電流量に応じた光強度を有するレーザ光L1を出力する。一例を示せば、制御信号ILDの供給は、処理装置2と制御装置30とを互いに接続する導電体及び電気回路基板上の配線を介して行われる。
図2は、第1の実施形態における光源を示す図である。本実施例では、光源10は波長可変型の半導体レーザ素子11を含む。半導体レーザ素子11は、第一領域11Aと、波長可変のための第二領域11B及び第三領域11Cと、第四領域11Dとを含む。半導体レーザ素子11では、第一領域11A、第二領域11B、第三領域11C及び第四領域11Dは、レーザ素子のレーザ光の導波軸に沿って配置されている。本実施例では、第一領域11Aが半導体レーザ素子11の端面11eを含むように構成され、第四領域11Dが半導体レーザ素子11の端面11fを含むように構成される。第一領域11Aと第四領域11Dとの間に、第二領域11B及び第三領域11Cがこの順に配置される。具体的には、第一領域11Aが第二領域11Bに接しており、第二領域11Bが第三領域11Cに接しており、第三領域11Cが第四領域11Dに接する。第一領域11Aは増幅デバイス(Semiconductor Optical Amplifier device:SOAデバイス)を含み、第二領域11Bは発光デバイス(Sampled-GratingDistributed Feedback device:SG−DFBデバイス)を含み、第三領域11Cは回折格子デバイス(Chirped Sampled Grating Distributed Bragg Reflector device:CSG−DBRデバイス)を含み、第四領域11Dは、必要な場合には、光吸収デバイスを含む。上記の四つの領域を含む波長可変型の半導体レーザ素子11は、第一温度制御素子3に搭載されている。
SG−DFB領域(第二領域11B)は、例えば、第1クラッド層18a、回折格子層18b、第2クラッド層18c、コア層18d、及び活性層18eを備える。SG−DFB領域(第二領域11B)の回折格子層18bは、部分回折格子19d、19eを有し、部分回折格子19d、19eは、異なる波長において複数の利得ピークを備えるスペクトルを有する回折格子(Sampled Grating:SG)からなる。活性層18eは、例えば量子井戸構造を有し、制御信号ILDの注入に応答してレーザ光L1を発生する。SG−DFB領域(第二領域11B)は、その上面に、例えば、活性層18eに制御信号ILDを注入するための3つの電極13f〜13h、及び、一又は複数のヒータ13d、13eを備える。一方、CSG−DBR領域(第三領域11C)は、例えば、第1クラッド層18a、回折格子層18b、第2クラッド層18c、及びコア層18dを備える。CSG−DBR領域(第三領域11C)の回折格子層18bは、部分回折格子19a〜19cを有し、部分回折格子19a〜19cは、異なる波長において複数の反射ピークを備えるスペクトルを有する回折格子(Chirped Sampled Grating:CSG)からなる。CSG−DBR領域(第三領域11C)は、例えば、一又は複数のヒータ13a〜13cを備える。以下に、一例の半導体積層を示す。
第1クラッド層18a:InP基板。
回折格子層18b:GaInAsP。
第2クラッド層18c:InP。
コア層18d:GaInAsP。
活性層18e:GaInAsP量子井戸。
SG−DFB領域(第二領域11B)は、利得スペクトルを有し、この利得スペクトルは第一の波長間隔で配列された複数の利得ピーク波形を含む。CSG−DBR領域(第三領域11C)は、第二の波長間隔で配列された複数の反射ピーク波形を含むスペクトルを有する。SG−DFB領域(第二領域11B)の部分回折格子19d、19eの波長周期は、CSG−DBR領域(第三領域11C)の部分回折格子19a〜19cの波長周期と異なる。よって、SG−DFB領域(第二領域11B)における複数の利得ピークのうちの1つが、CSG−DBR領域(第三領域11C)における複数の反射ピークのうちの1つの波長に一致したとき、両者は共振器を形成する。その一致点に対応する波長で半導体レーザ素子11がレーザ発振する。
SG−DFB領域(第二領域11B)のヒータ13d、13eには、駆動装置31の駆動回路31Aから、それぞれ、電流IHd、IHeが注入され、ヒータ13d、13eは、注入電流の量に応じて発熱する。個々のヒータへの注入電流の量に応じて、SG−DFB領域(第二領域11B)内に温度の分布が形成され、この温度プロファイルに応じて、SG−DFB領域(第二領域11B)において部分回折格子19d、19eの利得ピーク波長が制御される。一方、CSG−DBR領域(第三領域11C)のヒータ13a〜13cには、駆動装置31の駆動回路31Aから、それぞれ、電流IHa〜IHcが注入されて、ヒータ13a〜13cは、注入電流の量に応じて発熱する。個々のヒータへの注入電流の量に応じて、CSG−DBR領域(第三領域11C)内に温度の分布が形成され、この温度プロファイルは、CSG−DBR領域(第三領域11C)において部分回折格子19a〜19cの反射ピーク波長を制御するために利用される。このスペクトル制御を回折格子(例えば、部分回折格子19a〜19c)に行うことによって、レーザ光L1の波長を可変できる。
本実施形態では、制御装置30は、波長モニタ信号SMONを受けて、半導体レーザ素子11の発振波長と目標発振波長λ1(半導体レーザ素子11が発振すべき光の発振波長であり、目標発振波長情報F1に基づいている)との差分情報を生成する。制御装置30は、半導体レーザ素子11の発振波長を目標発振波長λ1に近づけるように、差分情報に応じてヒータ電流IHa〜IHeを制御する。具体的には、駆動回路31Aは、ルックアップテーブル31Bから、半導体レーザ素子11が目標発振波長λ1の光を生成するためのヒータ電流IHa〜IHeの設定値を取得する。設定されたヒータ電流IHa〜IHeが、それぞれ、半導体レーザ素子11のヒータ13a〜13eに供給される。制御の一例を示せば、発振波長λが目標発振波長λ1よりも長波長である場合、制御装置30は、ヒータ電流IHa〜IHeを減少させる。発熱量が小さくなるので、部分回折格子19a〜19eの温度が下がり、この結果、発振波長が短くなる。一方、例えば、発振波長λが目標発振波長λ1よりも短波長である場合、制御装置30は、ヒータ電流IHa〜IHeを増加させる。発熱量が大きくなるので、部分回折格子層19a〜19eの温度が上がり、この結果、発振波長が長くなる。目標発振波長λ1を得るための設定温度プロファイルTLDに部分回折格子19a〜19eの温度プロファイルが近づく結果として、この温度制御を受けた半導体レーザ素子11は、目標発振波長λ1に近い波長のレーザ光L1を発振することができる。
駆動装置31の駆動回路31Aは、光源10に提供する制御信号として、制御信号ISOA、及び制御信号VBAを更に生成する。制御信号ISOAは、レーザ光L1の光強度を予め設定した値にまで増幅するための電流信号を示す。制御信号VBAは、レーザ光L1を吸収するための逆バイアス電圧を示す。
図2に示されるように、SOA領域(第一領域11A)は、制御信号ISOAの注入に応じてSG−DFB領域(第二領域11B)からのレーザ光L1を増幅する。増幅されたレーザ光L1は、端面11eから出射される。光吸収領域(第四領域11D)は、レーザ光L1を吸収するデバイスであって、制御信号VBAの印加に応答してレーザ光L1を吸収する。そのため、本実施形態では、光吸収領域(第四領域11D)に入ったレーザ光L1は吸収される。
図3は、第1の実施形態における集積素子の構成を示す図である。図1及び図3を参照しながら、半導体光変調器21及び波長モニタ素子22を説明する。半導体光変調器21は、光通信を介して伝送されるべき送信信号F2に応じて、半導体レーザ素子11からのレーザ光L1を変調する。この変調は、例えば、レーザ光L1の強度もしくは位相、またはその両方の変更を伴うことができる。
図3に示されるように、集積素子20は、入力ポート23a、出力ポート23b、23c、光分波器27、及び導波路46、47a、47bを有する。光分波器27は、入力ポート23aから入力され導波路46を導波したレーザ光L1を分岐させ、レーザ光L2、L3を生成する。光分波器27は、例えば多モード干渉器(Multi Mode Interference:MMI)、Y分岐導波路又は結合導波路などを包含する。光分波器27は、導波路47aを介して半導体光変調器21に光学的に結合される。光分波器27は、導波路47bを介して波長モニタ素子22に光学的に結合される。レーザ光L2は、導波路47aを介して半導体光変調器21に導かれる。半導体光変調器21は、レーザ光L2を変調して、変調光を出力ポート23b、23cに出力する。レーザ光L3は、導波路47bを導波して波長モニタ素子22に導かれる。
半導体光変調器21は、多値変調器を備えることができる。本実施例では、この多値変調器は、例えば複数のマッハツェンダ型変調器53〜56を含む。マッハツェンダ型変調器53〜56に光を分配するために、半導体光変調器21は、光分波器51a〜51c、光合分波器51d、51e、導波路52a〜52j、及び導波路52p〜52sを有する。マッハツェンダ型変調器53は、光分波器53a、光合波器53b、アーム導波路53c、53d、及び位相変調部53Hを備える。位相変調部53Hは、電極53e、53f、及び53gを備え、変調用の電気信号に応じた位相変調を施す。マッハツェンダ型変調器53と同様に、マッハツェンダ型変調器54は、光分波器54a、光合波器54b、アーム導波路54c、54d、及び位相変調部54Hを備え、マッハツェンダ型変調器55は、光分波器55a、光合波器55b、アーム導波路55c、55d、及び位相変調部55Hを備え、マッハツェンダ型変調器56は、光分波器56a、光合波器56b、アーム導波路56c、56d、及び位相変調部56Hを備える。位相変調部53H〜56Hでは、変調されるべきレーザ光の波長に応じた逆バイアス電圧信号VDCの印加と、高速の信号処理用電圧信号Vppの印加とが行われる。逆バイアス電圧信号VDC及び高速の信号処理用電圧信号Vppは、制御装置30の駆動回路32Aによって生成される。変調されるべきレーザ光の波長に応じて、例えば以下のように逆バイアス電圧信号VDCを変更することが好ましい。
レーザ光波長、逆バイアス電圧信号VDC
1.53μm:3V。
1.57μm:8V。
信号処理用電圧信号Vppは、例えば20Gbpsの伝送レートの信号を含む。
半導体光変調器21では、光分波器51aは、マッハツェンダ型変調器53〜56に光を供給する。光分波器51aは、導波路47aを導波したレーザ光L2をレーザ光L2a、L2bに分波して、それぞれ導波路52a、52bを介して光分波器51b、51cに提供する。レーザ光L2aは、光分波器51bによって、レーザ光L2c、L2dに分波される。レーザ光L2c〜L2fは、それぞれ、マッハツェンダ型変調器53〜56に供給される。レーザ光L2cは、光分波器51b及び導波路52cを介してマッハツェンダ型変調器53に入力される。マッハツェンダ型変調器53では、光分波器53aは、入力光をレーザ光L4c、L4dに分波して、それぞれアーム導波路53c、53dに提供する。レーザ光L4c、L4dは、位相変調部53Hによって位相変調を受ける。位相変調の後に、光合波器53bは、レーザ光L4c、L4dを合波して変調光M1aを生成する。マッハツェンダ型変調器53と同様に、マッハツェンダ型変調器54〜56は、それぞれ変調光M1b〜M1dを生成する。光合分波器51dは、変調光M1a、M1bを合波して、変調光M2a、M2bを生成する。変調光M2a、M2bは、それぞれ導波路52p及び52qを導波する。同様に、光合分波器51eは、変調光M1c、M1dから、変調光M2c、M2dを生成する。変調光M2c、M2dは、それぞれ導波路52r、52sを導波する。導波路52qは集積素子20の出力ポート23bに光学的に結合され、変調光M2bは出力ポート23bから出力される。また、導波路52rは集積素子20の出力ポート23cに光学的に結合され、変調光M2cは出力ポート23cから出力される。
波長モニタ素子22は、例えば、光分波器61a、導波路62a〜62c、光回路63、及び受光素子64を備える。受光素子64は、光回路63からのフィルタ出力光の光強度を電気信号に変換するフォトダイオード64b、光回路63のフィルタを介することがないモニタ光の光強度を電気信号に変換するフォトダイオード64a、及び電極64cを有する、光分波器61aが、光分波器27からのレーザ光L3を分波してレーザ光L3a、L3bを生成する。レーザ光L3aは、導波路62aを介してモニタ光としてフォトダイオード64aに入力する。一方、レーザ光L3bは、導波路62b、光回路63及び導波路62cを介してフィルタ出力光としてフォトダイオード64bに入力する。レーザ光L3bは、導波路62bによって光回路63に入力される。光回路63は、例えばリング共振器、マッハツェンダ(MZ)干渉器、又はMMIなどを包含する。
フォトダイオード64a、64bは、制御装置30の駆動回路32Aからの逆バイアス電圧信号VPDを受けており、受光した光の強度に応じた光電流を生成する。フォトダイオード64a、64bは、それぞれ、波長モニタ信号SMONとして、波長モニタ信号IPD1、IPD2を生成する。光分波器61aの一ポートは、導波路62aを介してフォトダイオード64aに光学的に結合される。光分波器61aは、例えばMMIカプラ、Y分岐導波路又は結合導波路などを包含する。光分波器61aの他ポートは、導波路62bを介して光回路63の入力ポートに光学的に結合される。光回路63は、導波路62cを介してフォトダイオード64bに光学的に結合される。光回路63は、光合分波器61b及びリング共振器63aを有する。リング共振器63aは、レーザ光L3bの波長に応じて光の透過率が周期的に変化するフィルタ特性(例えば光透過率特性)を備えている。リング共振器63aは、波長依存性を有する透過率又は反射率のスペクトルを備える一方で、導波路62a〜62cは、透過率もしくは反射率の波長依存性を実質的に有さない。このため、半導体レーザ素子11の発振波長が、所与の波長からシフトしたとき、リング共振器63aからのフィルタされたレーザ光L3bの強度は、フィルタ特性及び波長がシフトした量に応じて変化する。波長モニタ素子22では、光回路63に入る前に、又は光回路63のフィルタを介さずに、レーザ光L1の光強度を検出して、規格化されたモニタ信号を波長モニタ信号SMONとして生成できるようにしてもよい。これにより、レーザ光L1の光強度変化の影響が、波長モニタ信号SMONから除かれる。波長モニタ素子22では、第一温度制御素子3は、リング共振器63aの温度を一定温度Tmonに保つために有用である。
本実施形態では、波長モニタ素子22は、レーザ光L3bの波長(レーザ光L1の波長)をモニタして、レーザ光L3bの光強度の変化を示す波長モニタ信号SMONを生成する。駆動回路32Aは、波長モニタ素子22から波長モニタ信号IPD1、IPD2を受けて、両者の比D0(=IPD1/IPD2)に対応する信号を生成する。この信号生成は、制御装置30内に設けられた回路によって行われることができる。波長モニタ信号IPD1、IPD2は、それぞれ、フォトダイオード64a、64bからの電流値によって表される。比D0は、規格化されているので、波長モニタ素子22に入るレーザ光L3の強度に依存せずレーザ光L3の波長に依存する値である。駆動回路31Aは、駆動回路32Aから比D0を取得し、また、ルックアップテーブル31Bから目標発振波長λ1に対応する比D1を取得する。これにより、駆動回路31Aは、比D0と比D1との差に応じて,半導体レーザ素子11のヒータ電流IHa〜IHeを制御する。光伝送装置1が動作している期間中に、駆動回路31A、32Aは、波長モニタ信号IPD1、IPD2に基づいて、半導体レーザ素子11のヒータ電流IHa〜IHeのフィードバック制御を行う。このフィードバック制御によって、比D0が比D1に近づくように半導体レーザ素子11のヒータ電流IHa〜IHeの調整が継続して行われて、半導体レーザ素子11は、目標発振波長λ1のレーザ光L1を発生できる。光伝送装置1では、レーザ光L1の波長が一定値に保たれてロックされるので、多くの場合、半導体レーザ素子11の部分回折格子層19a〜19cの温度は調整されて一定値を維持しない。
光伝送装置1では、波長モニタ素子22は、半導体レーザ素子11ではなく、第一光機能素子である半導体光変調器21と集積されている。この集積によれば、半導体レーザ素子11が経年変化を起こした際、その経年変化に伴う半導体レーザ素子11の発熱量の変動が波長モニタ素子22の温度に影響することが抑えられる。波長モニタ素子22は、半導体レーザ素子11の発熱量変動の影響を受けることなく、半導体レーザ素子11の発振波長をモニタできる。
図4の(a)部は、図2のA−A線に沿ってとられたマッハツェンダ型変調器53の位相変調部53Hの断面を示す図である。位相変調部53Hは、集積素子20の導波路と同様にInP基板上に作製されている。マッハツェンダ型変調器54の位相変調部54H、マッハツェンダ型変調器55の位相変調部55H、マッハツェンダ型変調器56の位相変調部56HもInP基板上に作製されている。位相変調部53Hは半導体積層53Lを備え、半導体積層53Lは、上部コンタクト層53p、上部クラッド層53q、コア層53r及び下部クラッド層53sを備える。上部コンタクト層53p、上部クラッド層53q、コア層53r及び下部クラッド層53sは、InP基板の主面上に順に配列される。この半導体積層53L上には、上部コンタクト層53pに接触する電極53eが設けられている。上部コンタクト層53p、上部クラッド層53q、コア層53r及び下部クラッド層53sは、半導体メサを構成する。この半導体メサの脇には、下部クラッド層53sに接触する電極53gが設けられている。位相変調部53H内のコア層53rは、MQWを備え、電極53e、53gは、レーザ光L2cを変調するための電界をコア層53rに印加する。位相変調部54H〜56Hは、位相変調部53Hと同様の半導体積層を有しており、この半導体積層はコア層53rと同じMQWを含む。以下に、一例の半導体積層を示す。
上部コンタクト層53p:p型GaInAs。
上部クラッド層53q:p型InP。
コア層53r:i型AlGaInAs。
下部クラッド層53s:n型InP。
図4の(b)部は、図2のB−B線に沿ってとられた波長モニタ素子のリング共振器の導波路の断面を示す図である。リング共振器63aは、半導体光変調器21と同一のInP基板上に作製される。本実施例では、リング共振器63aは、上部クラッド層63q、コア層63r、下部クラッド層63sを含む導波路構造を有する。本実施例では、リング共振器63aは、例えばマッハツェンダ型変調器53の導波路構造と同じ導波路構造を有することができる。以下に、一例の導波路構造を示す。
上部クラッド層63q:p型InP。
コア層63r:i型AlGaInAs。
下部クラッド層63s:n型InP。
図4の(c)部は、図3のC−C線に沿ってとられたフォトダイオードの断面を示す図である。波長モニタ素子22のフォトダイオード64a及び電極64cが示されている。また、フォトダイオード64a、64bは、InP基板上に作製される。フォトダイオード64a、64bは、半導体光変調器21と同様に端面11e(半導体レーザ素子11の一端面)からの光を受ける。端面11eから提供されたレーザ光L1が、モノリシックに集積された光分波器27により分岐されて、半導体光変調器21及び波長モニタ素子22に供されるので、波長モニタ素子22にレーザ光L1を光結合させるための光の損失が低く、光の利用効率が良好である。フォトダイオード64a、64b、リング共振器63a及びマッハツェンダ型変調器53〜56が、同じ導波路構造(例えば、導波路46)を備えるので、波長モニタ素子22用のフォトダイオード構造のための新たなエピ成長は不要である。図4の(c)部に示されるように、フォトダイオード64a、64bの各々は、上部コンタクト層64p、上部クラッド層64q、コア層64r及び下部クラッド層64sを含む導波路構造を有する。本実施例では、コア層64rは、光吸収層として働く。
フォトダイオード64a、64bの各々におけるアノード電極(64e)及びカソード電極(64c)間には、逆バイアス電圧信号VPDが印加される。駆動回路32Aは、フォトダイオード64a、64bのための逆バイアス電圧信号VPDを生成する。フォトダイオード64a、64bでは、この逆バイアス電圧信号VPDの大きさを、検出すべきレーザ光の波長によって変更するようにしても良い。逆バイアス電圧信号VPD印加の下で、レーザ光をフォトダイオード64a、64bに与えて、レーザ光の波長と光電流の大きさとの関係を調べると、フォトダイオード64a、64bで発生される光電流は、レーザ光の波長によって異なる大きさを示す。好適な実施例では、フォトダイオード64a、64bが、同じ光強度のレーザ光の入射において同じ電流値を出力するようにして、光電流の波長依存性を小さくするためには、レーザ光の波長に応じた逆バイアス電圧信号VPDを用いることが好ましい。以下に逆バイアス電圧信号VPDを例示する。
レーザ光の波長、逆バイアス電圧信号VPD
1.53μm:3V。
1.57μm:8V。
例示された1.53μm及び1.57μm以外の波長についても、レーザ光の波長に応じた逆バイアス電圧信号VPDを設定できる。これによって、フォトダイオード64a、64bは、同じ光強度のレーザ光の入射に対して実質的に同じ電流値を生成する。逆バイアス電圧信号VPDの大きさを得るためには、光伝送装置1が使用される前に、受信する予定の波長(すなわち目標発振波長λ1)用のVPD値が決定されていることが好ましい。各VPD値は、例えば駆動装置32のルックアップテーブル32Bに記憶させておく。
レーザ光L1の波長が目標発振波長λ1に設定されるとき(ロックしようとする波長が目標発振波長λ1であるとき)、駆動回路32Aは、光通信を介して伝送されるべき送信信号F2を外部から受けて、この送信信号F2に応じた信号処理用電圧信号Vppを生成し、半導体光変調器21に提供する。半導体光変調器21は、提供された信号処理用電圧信号Vppを半導体レーザ素子11からの光に印加する。これにより、光伝送装置1では、光伝送用の光信号の生成が可能になる。
本実施形態では、リング共振器63aは、例えばIII−V族化合物半導体から成り、この半導体の屈折率は比較的大きな温度依存性を有する。これ故に、リング共振器63aの温度をモニタするためのサーミスタ43は、リング共振器63aの近傍に置かれることがよい。例示すれば、図3に示されるように、リング共振器63aを含む集積素子20は、縁23Q、23Rを備え、縁23Qは、縁23Rの反対側にある。半導体光変調器21及び波長モニタ素子22は、集積素子20における一方の縁23Qから他方の縁23Rへの方向に沿って順に配列される。波長モニタ素子22のリング共振器63a及びフォトダイオード64a、64bは、縁23Rに沿って配置される。集積素子20は、縁23S、23Tを更に備え、縁23Sは、縁23Tの反対側にある。入力ポート23aは、縁23Q又は縁23Rのいずれかに位置する。本実施例では、入力ポート23aは、縁23Qに位置し、出力ポート23b、23cが縁23Tに位置する。サーミスタ43は、集積素子20の縁23Rに沿って設けられることがよい。リング共振器63aのフィルタ特性における透過ピーク波長は、例えば0.1nm/℃程度の温度依存性を有する。この値は、水晶製のエタロンによる波長モニタ素子に比べて、20倍以上も大きい。
光伝送装置1では、第一光機能素子は、光の発生・増幅を伴わない光処理を行うので、半導体光変調器21といった第一光機能素子の発熱量の大きさ及び発熱量の変動は、半導体レーザ素子11の発熱量の大きさ及び発熱量の変動に比べて小さい。このため、この光伝送装置1は、波長モニタ素子22と半導体レーザ素子11とのモノリシック集積素子に比べて、波長モニタ素子22への発熱量変動の影響を低減することができる。
図1を再び参照すると、処理装置2は、外部に出力光を提供するための出力ポート5及び外部導波路6を備え、この外部導波路6は、出力ポート5に光学的に結合される。光分波器27はレーザ光L2、L3を生成し、これらのレーザ光L2、L3は、それぞれ、半導体光変調器21及び波長モニタ素子22に提供される。半導体光変調器21はレーザ光L2を変調して変調光M2b及びM2cを生成し、これらの変調光M2b及びM2cは、処理装置2の出力ポート5を介して外部に出力される。処理装置2は、電気回路基板9上に搭載されることができる。
図5は、第1の実施形態における光源と集積素子とを含む処理装置の構成を示す図である。図5の(a)部は、処理装置2の平面図であり、図5の(b)部は、処理装置2の側面図である。図5の(a)及び(b)部では、筐体4の内部を示すために、筐体4は部分的に破断されている。図5に示されるように、処理装置2は、光源10、前方光学系41、集積素子20、及び後方光学系42を備える。前方光学系41は、光源10からのレーザ光L1を集積素子20に導入する。このレーザ光L1は、集積素子20内において変調を受け、また、波長モニタに使用される。変調されたレーザ光は、後方光学系42、出力ポート5及び外部導波路6を介して処理装置2の外部に出力される。
一実施例では、前方光学系41は、レーザ光L1用のレンズ41a、41b及びミラー41cを有する。後方光学系42は、偏波回転子42b、ミラー42c、及び偏波合波器42eを有する。必要な場合には、後方光学系42では、レンズ42aが変調光M2b用に設けられ、レンズ42dが変調光M2c用に設けられる。偏波合波器42eは、変調光M2b及び変調光M2cを偏波合成する。後方光学系42では、レンズ42aは出力ポート23bに光学的に結合され、レンズ42dは出力ポート23cに光学的に結合される。
処理装置2では、光源10からのレーザ光L1は、レンズ41aによって集光された後に、ミラー41cによって光路を変える。その後、レーザ光L1は、レンズ41bによって集光された後に、入力ポート23aを介して集積素子20内の導波路46に入力される。後方光学系42では、レンズ42aは、集積素子20からの変調光M2bを平行光に変換して第一出力光(変調光M2b)を提供する。この第一出力光は、偏波回転子42bによって偏波方向を回転させられた後にミラー42cによって光路を変更される。一方、レンズ42dは、集積素子20からの変調光M2cを平行光に変換して第二出力光(変調光M2c)を提供する。この第二出力光は、偏波合波器42eに入力する。偏波合波器42eは、このように集積素子20からの第一出力光(変調光M2b)と第二出力光(変調光M2c)とを偏波合成して、偏波合成光(変調光M3)を生成する。変調光M3は、出力ポート5を介して外部導波路6に提供されて、光伝送装置1の外部に出力される。
図5に示されるように、処理装置2は、逆バイアス印加用電気回路44、及び実装部材45を更に備える。逆バイアス印加用電気回路44は、駆動回路32Aからフォトダイオード64a、64bに逆バイアス電圧信号VPDを印加するための回路である。実装部材45は、光源10、前方光学系41、集積素子20、後方光学系42、サーミスタ43、及び逆バイアス印加用電気回路44を搭載する。処理装置2では、筐体4の端子20eは、光源10、集積素子20、サーミスタ43及び第一温度制御素子3といった筐体内の各素子と電気的に接続されており、導電線を介して制御装置30に電気的に接続される。
光伝送装置1では、光源10及び集積素子20が単一の第一温度制御素子3上に搭載される。第一温度制御素子3は、光源10の底面の温度を一定に保ち、第一温度制御素子3は、光源10における波長可変のヒータ13a〜13e制御のための基準温度を提供している。ヒータ13a〜13eは光源10の半導体レーザ素子11の上面に設けられている。半導体レーザ素子11の回折格子層は上面近傍に位置するので、回折格子層の温度はヒータ13a〜13eによって可変となり、これにより光源10の発振波長が可変となる。光源10の底面の温度は第一温度制御素子3によって一定の基準温度に保たれる。この基準温度を規定する第一温度制御素子3上に設置された単一の実装部材45に、光源10と集積素子20内の波長モニタ素子22との両方を搭載できる。光源10の発熱が波長モニタ素子22に干渉することを防ぎながら、波長モニタと発振波長制御とを単一の第一温度制御素子3を利用して行うことができる。
(第2の実施の形態)
図6は、第2の実施形態における光伝送装置の概略図である。光伝送装置1Pは、処理装置2P及び制御装置30Pを備える。処理装置2Pは、光源10P及び集積素子20Pを備える。光伝送装置1Pでは、光源10Pは、一実施例では、第一の実施形態の光源10と同様の構成を備えることができるが、本実施形態は、これに限定されない。本実施形態では、第一光機能素子として半導体コヒーレント光受信器21Pが用いられる。集積素子20Pは、第一光処理を行うための半導体コヒーレント光受信器21Pと波長モニタ素子22Pとを含む。半導体コヒーレント光受信器21Pと波長モニタ素子22Pとはモノリシックに集積されている。半導体コヒーレント光受信器21P及び波長モニタ素子22Pは、半導体レーザ素子11からのレーザ光L1を受ける。半導体レーザ素子11の一の端面11eは、集積素子20P内の半導体コヒーレント光受信器21P及び波長モニタ素子22Pに光学的に結合される。半導体コヒーレント光受信器21Pは、第一光処理として、コヒーレント復調を行う。具体的には、半導体コヒーレント光受信器21Pは、半導体レーザ素子11からのレーザ光L1をローカル光として用いて、位相変調された外部変調光L10をコヒーレント復調して、復調光を生成する。処理装置2Pは、入力ポート7及び外部導波路8を更に備え、入力ポート7及び外部導波路8を介して、外部から外部変調光L10を集積素子20Pに提供している。半導体コヒーレント光受信器21Pでは復調光は、受光素子によって電気信号に変換される。この電気信号は、受信信号F3として(電流として)半導体コヒーレント光受信器21Pの外部に出力される。
処理装置2Pは、筐体4Pと第一温度制御素子3Pとを更に備える。第一温度制御素子3Pは、光源10P及び集積素子20Pを搭載する。第一温度制御素子3Pは、光源10P及び集積素子20Pの各温度を調整するために設けられる。本実施形態では、第一温度制御素子3Pは、例えば、ペルチェ素子、ヒータ素子又は水冷装置などを包含することができる。処理装置2Pでは、光源10P及び集積素子20Pは、電気回路基板9P上に搭載されることができる。
第2の実施形態では、波長モニタ素子22Pは半導体レーザ素子11からの光を受けて波長モニタ信号SMONを生成する。波長モニタ信号SMONは、半導体レーザ素子11の発振波長に応じた大きさを有する電気的な信号である。制御装置30Pは、波長モニタ信号SMONを受けて、半導体レーザ素子11の発振波長と目標発振波長λ1との差分情報を生成する。制御装置30Pは、この差分情報に基づいて、半導体レーザ素子11の発振波長を目標発振波長λ1に近づけるように半導体レーザ素子11のヒータ13a〜13eを制御する。これにより、目標発振波長λ1を得るための設定温度プロファイルTLDに半導体レーザ素子11の部分回折格子層19a〜19cの温度が近づく結果として、この温度制御を受けた半導体レーザ素子11は、目標発振波長λ1に近い波長又は目的発振波長のレーザ光L1を発振することができる。
光伝送装置1Pでは、波長モニタ素子22Pは、半導体レーザ素子11ではなく、第一光機能素子である半導体コヒーレント光受信器21Pと集積されている。この集積によれば、発熱量の大きな半導体レーザ素子11が経年変化を起こした際、その経年変化に伴う半導体レーザ素子11の発熱量の変動が波長モニタ素子22Pの温度に影響することが抑えられる。波長モニタ素子22Pは、半導体レーザ素子11の発熱量変動の影響を受けることなく、半導体レーザ素子11の発振波長をモニタできる。
制御装置30Pは、駆動装置31Pと駆動装置32Pとを備える。駆動装置31Pは、半導体レーザ素子11を制御するためのデータを格納した装置、例えばルックアップテーブル31Dと、駆動回路31Cとを有することができる。駆動装置32Pは、集積素子20P及び第一温度制御素子3Pの双方を制御するためのデータを格納した装置、例えばルックアップテーブル32Dと、駆動回路32Cとを有する。駆動回路32Cは、集積素子20Pに制御信号JTIAを提供する。制御信号JTIAは、集積素子20P内の増幅器(例えばTrans-impedance Amplifier:TIA)73、74を制御するための信号である。制御装置30Pは、処理装置(例えばCPUなど)と、記憶装置(例えばRAM及びROMなど)とを備えることができる。処理装置及び記憶装置は、電気回路基板上に搭載される。
図7は、第2の実施形態における集積素子の構成を示す図である。図7を参照しながら、半導体コヒーレント光受信器21P及び波長モニタ素子22Pを説明する。集積素子20Pは、入力ポート23p、23q、光分波器27P、導波路81、81a、81b及び82を有する。光分波器27Pは、入力ポート23p及び導波路81を介して集積素子20P内に導入されたレーザ光L1aを分岐させ、レーザ光L20、L30を生成させる。光分波器27Pは、例えばMMI、Y分岐導波路又は結合導波路などを包含する。レーザ光L20は、導波路81aによって、ローカル光として半導体コヒーレント光受信器21Pに導かれる。これに加えて、入力ポート23q及び導波路82を介して集積素子20P内に導入された外部変調光L10aも、半導体コヒーレント光受信器21Pに導かれる。レーザ光L30は、導波路81bを介して波長モニタ素子22Pに導かれる。
図7に示されるように、半導体コヒーレント光受信器21Pは、90度ハイブリッド83と受光素子84とを備える。受光素子84は、フォトダイオード84a〜84dを含む。90度ハイブリッド83は、2×4MMIカプラ83L、2×2MMIカプラ83M、及び導波路82a〜82fを有する。MMIカプラ83Lは、入力ポート83a、83b、出力ポート83c〜83fを有する。MMIカプラ83Lの入力ポート83a、83bは、それぞれ、導波路82及び81aに光学的に結合され、出力ポート83c〜83fは、それぞれ、導波路82a〜82dに光学的に結合される。MMIカプラ83Mは、入力ポート83p、83q、出力ポート83r、83sを有する。MMIカプラ83Mの入力ポート83p、83qは、それぞれ、導波路82c、82dに光学的に結合されると共に、出力ポート83r、83sは、それぞれ、導波路82e、82fに光学的に結合される。90度ハイブリッド83の4つの出力ポート83c〜83fは、導波路82a、82b、82e及び82fを介して、フォトダイオード84a〜84dに光学的に結合される。
半導体コヒーレント光受信器21Pは、入力ポート23q及び導波路82を介して、位相変調された外部変調光L10aを受ける。外部変調光L10aは、入力ポート83aを介して90度ハイブリッド83に入力される。レーザ光L20は、導波路81a及び入力ポート83bを介して、ローカル光として90度ハイブリッド83に入力される。90度ハイブリッド83では、外部変調光L10a(伝送光)及びレーザ光L20(ローカル光)が互いに干渉して、干渉光M10a〜M10dが生成される。干渉光M10a〜M10dは、外部変調光L10aとレーザ光L20との位相差に応じて、フォトダイオード84a〜84dに入力されて電気信号に変換される。フォトダイオード84a〜84dには、逆バイアス電圧信号VPDが印加される。逆バイアス電圧信号VPDは、例えば3.3Vである。
集積素子20Pでは、増幅器73a、73bが設けられている。フォトダイオード84a、84bからの2つの光電流は、増幅器73aに提供され、フォトダイオード84c、84dからの2つの光電流は、増幅器73bに提供される。増幅器73a、73bは、これらの光電流に応じた電気信号を外部に出力する。具体的には、フォトダイオード84a、84bからの光電流は、増幅器73aによって電圧信号IPDa、IPDbに変換され、更に増幅器73aによって電圧差信号ΔV1が求められる。電圧差信号ΔV1は、ΔV1=IPDa−IPDbとして表される。フォトダイオード84c、84dからの光電流は、増幅器73bによって電圧信号IPDc、IPDdに変換され、更に増幅器73bによって電圧差信号ΔV2に変換される。電圧差信号ΔV2は、ΔV2=IPDc−IPDdとして表される。
波長モニタ素子22Pは、例えばMMIカプラを含む光分波器85、86と、90度ハイブリッド素子87と、フォトダイオード88a〜88cと、導波路81c〜81hとを備える。光分波器85は、導波路81cを介して光分波器86に光学的に結合され、光分波器86は、導波路81e、81fを介して90度ハイブリッド素子87に光学的に結合される。導波路81eの光路長は、導波路81fの光路長と異なる。光路長が異なる理由は、導波路81eを導波した光と導波路81fを導波した光とを90度ハイブリッド素子87内で干渉させて、導波路81g、81hに出力される光の強度に波長依存性を持たせるためである。フォトダイオード88a、88bは、それぞれ、導波路81g、81hを介して90度ハイブリッド素子87からの光信号を受ける。フォトダイオード88cは、導波路81dを介して光分波器85からの光信号を受ける。
光分波器85は、レーザ光L30を分岐して、レーザ光L30a、L30bを生成する。レーザ光L30aは、導波路81dを介してフォトダイオード88cに入力され、光電流C3を生成する。レーザ光L30bは、導波路81cを介して光分波器86に入力され、光分波器86は、レーザ光L30c、L30dを生成する。レーザ光L30c、L30dは、90度ハイブリッド素子87に入力され、90度ハイブリッド素子87内で干渉する。90度ハイブリッド素子87は干渉光L30e、L30fを生成し、干渉光L30e、L30fはそれぞれフォトダイオード88a、88bに入力され、フォトダイオード88a、88bは、光電流C1、C2を生成する。光電流C1、C2、C3は、波長モニタ動作のために利用される。
図7を参照して、フォトダイオード88a、88bからの光電流C1、C2が外部に提供される様子について説明する。集積素子20Pでは、増幅器74a及び電気処理回路74cが更に設けられている。本実施例では、光電流C1、C2は、増幅器74aに入力される。増幅器74aは、光電流C1、C2をそれぞれの電圧値に変換すると共に、これら二つの電圧値の差分を示す波長モニタ信号ΔI12を生成する。半導体コヒーレント光受信器21Pにおいて、増幅器74aと同じ構造を有する増幅器73a、73bが用いられているので。波長モニタ素子22Pにおいて増幅器74aを用いることが好適である。同じ構造の増幅器が配列されると、モジュールの構造が簡略化される。光電流C3は、電気処理回路74cに入力される。電気処理回路74cは、電流値を電圧値の波長モニタ信号IPD3に変換する機能を有する。
図6を再び参照して、制御装置30Pにおける波長モニタ信号の処理について説明する。本実施形態では、駆動装置32Pの駆動回路32Cは、波長モニタ素子22Pから波長モニタ信号ΔI12、IPD3を受けて、両者の比P0=ΔI12/IPD3に対応する信号を生成する。波長モニタ信号ΔI12及びIPD3は、それぞれ、増幅器74a及び74cから得られる。これらの信号生成は、制御装置30P内に設けられた回路によって行われる。比P0は、波長モニタ素子22Pに入るレーザ光L20の強度に依存せず、レーザ光L20の波長の変化分に応じて変化する値を有する。駆動回路31Cは、駆動回路32Cからの比P0と、ルックアップテーブル31Dから目標発振波長λ1に対応する比P1とを取得する。駆動回路31Cは、比P0と比P1との差に対応して半導体レーザ素子11のヒータ電流IHa〜IHeを制御する。半導体レーザ素子11では、そのヒータ電流IHa〜IHeに応じた温度変化が引き起こされる。駆動回路31C及び32Cでは、半導体レーザ素子11からのレーザ光L1のモニタによる波長モニタ信号ΔI12及びIPD3に基づき、半導体レーザ素子11の制御のための制御信号IHa〜IHeを生成するというフィードバック制御が行われる。このフィードバック制御によって、比P0が比P1に近づくように半導体レーザ素子11のヒータ電流IHa〜IHeの調整が継続して行われるので、半導体レーザ素子11は、目標発振波長λ1に近い波長又は目標発振波長のレーザ光L1を発生できる。
本実施形態では、上記の制御の代わりに、以下のような信号生成を行うことができる。例えば、電圧値の差分である波長モニタ信号ΔI12を用いることなく、光電流C1、C2の一方を、フォトダイオード88a、88bの電圧に変換すると共に、この変換された電圧信号を駆動回路32Cにおける処理に用いてもよい。あるいは、光電流C1、C2の双方が電圧に変換されて、これらの変換された電圧信号が駆動回路32Cに送られてもよい。この場合、フォトダイオード88aの電圧値V1とフォトダイオード88cの電圧値V3の比、及びフォトダイオード88bの電圧値V2とフォトダイオード88cの電圧値V3の比の両方が、駆動回路32Cにおいて利用される。
光伝送装置1Pの動作中においても、駆動回路31C及び駆動回路32Cは、波長モニタ素子22Pからの波長モニタ信号ΔI12、IPD3に応じて、半導体レーザ素子11にフィードバック制御を行う。ヒータ電流IHa〜IHeの調整による半導体レーザ素子11の回折格子層の温度調整が継続して行われて、半導体レーザ素子11の発振波長が一定に保たれる。光伝送装置1Pでは、レーザ光L1の波長を一定値に保つために、多くの場合、半導体レーザ素子11の部分回折格子層19a〜19cの温度は一定値を維持しない。光伝送装置1Pの動作開始の際には、レーザ光L1の発振波長が目標発振波長λ1に設定されるとき(ロックしようとする波長が目標発振波長λ1であるとき)、駆動回路32Cは、半導体コヒーレント光受信器21Pの増幅器等を駆動する。これにより、光伝送装置1Pでは、信号として送られてくる外部変調光L10の受信が開始される。
図8の(a)部は、図7のD−D線に沿ってとられたフォトダイオードの断面を示す図である。フォトダイオード84a〜84dは、InP基板上に作製される。フォトダイオード84a〜84dは、上部コンタクト層84p、上部クラッド層84q、光吸収層84r及び下部クラッド層84sを含む導波路構造を有する。上部コンタクト層84pに接して電極84fが設けられている。下部クラッド層84sに接して電極84eが設けられている。電極84f、84eを介して光吸収層84rに逆バイアス電圧が印加される。また、電極84f、84eを介して光電流が増幅器または電気処理回路に出力される。半導体コヒーレント光受信器21Pの素子構造は、波長モニタ素子22Pのフォトダイオードと同じ素子構造を備えるので、各フォトダイオードに対して同一のバイアス印加及び信号処理を行うことが可能である。以下に、一例の半導体積層を示す。
上部コンタクト層84p:p型GaInAs。
上部クラッド層84q:p型InP。
光吸収層84r:i型GaInAs。
下部クラッド層84s:n型InP。
図8の(b)部は、図7のE−E線に沿ってとられた半導体コヒーレント光受信器の導波路の断面を示す図である。半導体コヒーレント光受信器21Pは、波長モニタ素子22Pと同一のInP基板上に作製される。本実施例では、半導体コヒーレント光受信器21Pの導波路82fは、上部クラッド層82q、コア層82r、下部クラッド層82sを含む導波路構造を有する。以下に、一例の半導体積層を示す。
上部クラッド層82q:p型InP。
コア層82r:i型GaInAsP。
下部クラッド層82s:n型InP。
図7を再び参照して、集積素子20Pにおける光処理について説明する。集積素子20P内の90度ハイブリッド素子87は半導体によって作製され、この半導体の屈折率の温度依存性は大きい。90度ハイブリッド素子87のわずかな温度変化を適切に検出するために、サーミスタ43Pは、90度ハイブリッド素子87の近傍に置かれることがよい。例示すれば、図7に示されるように、90度ハイブリッド素子87を含む集積素子20Pは一対の縁23E、23Fを備えている。半導体コヒーレント光受信器21P及び波長モニタ素子22Pは、一方の縁23Eから他方の縁23Fへの方向に配列されており、90度ハイブリッド素子87及びフォトダイオード88は縁23Fに沿って配列される。サーミスタ43Pは、縁23Fに沿って設けられることがよい。波長モニタ素子22Pの90度ハイブリッド素子87は、半導体で作製されている。半導体の屈折率は、例えば水晶製のエタロンに比べて大きな屈折率の温度依存性(例えば約20倍程度以上)を有する。波長モニタ素子22Pでは、第一温度制御素子3Pは、90度ハイブリッド素子87の温度を一定温度Tmonに保つために有用である。
本実施形態では、第一光機能素子は、光の発生・増幅を伴わない光処理を行うので、半導体コヒーレント光受信器21Pといった第一光機能素子の発熱量は、いずれも半導体レーザ素子11の発熱量に比べて小さく、また、半導体コヒーレント光受信器21Pの発熱量の変化分も、半導体レーザ素子11に比べて小さい。この光伝送装置1P内のモノリシック集積素子は、半導体レーザ素子11の特性変動からの影響から解放される。
光伝送装置1Pでは、光源10P及び集積素子20Pが単一の第一温度制御素子3P上に搭載される。第一温度制御素子3Pは、光源10Pの底面の温度を一定に保ち、第一温度制御素子3は、光源10Pにおける波長可変のヒータ13a〜13e制御のための基準温度を提供している。ヒータ13a〜13eは光源10Pの半導体レーザ素子11の上面に設けられている。半導体レーザ素子11の回折格子層は上面近傍に位置するので、回折格子層の温度はヒータ13a〜13eによって可変となり、これにより光源10Pの発振波長が可変となる。光源10Pの底面の温度は第一温度制御素子3Pによって一定の基準温度に保たれる。この基準温度を規定する第一温度制御素子3P上に設置された単一の実装部材45Pに、光源10Pと集積素子20P内の波長モニタ素子22Pとの両方を搭載できる。光源10Pの発熱が波長モニタ素子22Pに干渉することを防ぎながら、波長モニタと発振波長制御とを単一の第一温度制御素子3Pを利用して行うことができる。
本実施形態では、90度ハイブリッド素子87を含む波長モニタ素子22Pに替えて、例えば、第1の実施形態の光回路63を含む波長モニタ素子22が用いられてもよい。また、第1の実施形態では、波長モニタ素子として、光回路63を含む波長モニタ素子22Pが用いられたが、この波長モニタ素子22に替えて、本実施形態の90度ハイブリッド素子87を含む波長モニタ素子22Pが用いられてもよい。
図9は、第2の実施形態における光源と集積素子とを含む処理装置の構成を示す図である。処理装置2Pは、筐体4Pに収容されている。図9の(a)部は、処理装置2Pの平面図であり、図9の(b)部は、処理装置2Pの側面図である。図9の(a)及び(b)部では、筐体4Pは、筐体4Pの内部を示すために部分的に破断されている。図9に示されるように、処理装置2Pは、光源10P、ローカル光学系71、外部信号光学系72、集積素子20P、20Q、増幅器73a〜73d、及び増幅器74a、74b、電気処理回路74c、74dを備える。処理装置2Pは、第一温度制御素子3P上に実装部材45Pを更に備え、光源10P及び集積素子20Pは、共に実装部材45Pに搭載される。ローカル光学系71は、レーザ光L1のための光学系であり、光源10Pと集積素子20P、20Qとを光学的に結合させる。外部信号光学系72は、外部変調光L10のための光学系であり、入力ポート7と集積素子20P、20Qとを光学的に結合させる。増幅器73a、73b、74a、電気処理回路74cは、集積素子20Pに結合される。増幅器73c、73d、74b、電気処理回路74dは、集積素子20Qに結合される。ローカル光学系71は、レンズ71a、ビームスプリッタ71b、レンズ71c、ミラー71d、レンズ71eを有する。外部信号光学系72は、偏波ビームスプリッタ72a、ミラー72b、レンズ72c、偏波回転子72d、及びレンズ72eを有する。
レーザ光L1は、レンズ71aによって集光された後、ビームスプリッタ71bによってレーザ光L1a、L1bに分波される。レーザ光L1aは、レンズ71cによって再び集光された後、集積素子20Pに入力される。一方、レーザ光L1bは、ミラー71dによって反射されて光路を変え、レンズ71eによって再び集光された後、集積素子20Qに入力される。外部変調光L10は、その偏波に応じて、偏波ビームスプリッタ72aによって反射され、又は、偏波ビームスプリッタ72aを直進する。反射された外部変調光L10aは、ミラー72bによって光路を変えた後、レンズ72cによって集光される。集光された外部変調光L10aは、集積素子20Pに入力される。直進した外部変調光L10bは、偏波回転子72dを通過後、レンズ72eによって集光される。集光された外部変調光L10bは、集積素子20Qに入力される。
(第3の実施の形態)
図10は、第3の実施形態における光伝送装置の概略図である。光伝送装置1Rは、処理装置2R及び制御装置30Rを備える。また、光伝送装置1Rは、第1及び第2の実施形態と異なり、第二光機能素子としての変調素子90Rを更に備える。
処理装置2Rは、筐体4R及び筐体97Rを備える。筐体4Rは出力ポート16を有し、筐体97Rは入力ポート98を有する。出力ポート16と入力ポート98との間に、導波路17が設けられる。出力ポート16は、導波路17を介して、入力ポート98に光学的に結合される。筐体4Rは、入力ポート7及び外部導波路8を更に備える。筐体97Rは、出力ポート95及び外部導波路96を更に備える。光伝送装置1Rでは、処理装置2R及び変調素子90Rは、電気回路基板9R上に搭載されることができる。
処理装置2Rは、光源10、集積素子20R及び光分波器15Rを備え、この光分波器15Rは、光源10に含まれる半導体レーザ素子11からのレーザ光L1を、レーザ光L40とレーザ光L50とに分波する。レーザ光L40は集積素子20Rに提供され、レーザ光L50は、出力ポート16、導波路17及び入力ポート98を介して、変調素子90Rに提供される。
光伝送装置1Rでは、光源10は、一実施例では、第一の実施形態と同様であることができる。集積素子20Rは、一実施例では、第2の実施形態の集積素子20Pと同様であり、波長モニタ素子22Rと、第一光機能素子としての半導体コヒーレント光受信器21Rとを有する。このため、集積素子20Rは、レーザ光L40を使った波長モニタと、レーザ光L40と外部変調光L10を使った第一光処理としてのコヒーレント復調とを行う。外部変調光L10は、外部導波路8及び入力ポート7を介して、半導体コヒーレント光受信器21Rに光学的に結合される。コヒーレント復調は、受信信号F3として外部に出力される。波長モニタ素子22Rは、例えば、第1の実施形態の光回路63または第2の実施形態の90度ハイブリッド素子87を含むことができる。変調素子90Rは、一実施例では、半導体光変調器91Rを含む。半導体光変調器91Rは、送信信号F2に応じて、第二光処理として、半導体レーザ素子11からのレーザ光L50を変調する。変調光は、出力ポート95及び外部導波路96を介して、変調光M3として外部に出力される。
処理装置2Rは、第一温度制御素子3R及び第二温度制御素子93Rを備える。第一温度制御素子3Rは、光源10及び集積素子20Rを搭載する。第一温度制御素子3Rは、光源10及び集積素子20Rの温度を調整するために設けられる。第二温度制御素子93Rは、変調素子90Rを搭載する。第二温度制御素子93Rは、半導体光変調器91Rの温度を調整するために設けられる。筐体4Rは、光源10、集積素子20R及び第一温度制御素子3Rを収容する。筐体97Rは、変調素子90R及び第二温度制御素子93Rを収容する。第一温度制御素子3R及び第二温度制御素子93Rは、例えば、ペルチェ素子、ヒータ素子又は水冷装置などを包含することができる。
本実施形態では、同一の半導体レーザ素子11からのレーザ光L1(レーザ光L40、L50)によって、波長モニタ動作、変調、及びコヒーレント復調が行われる。このため、波長モニタ素子22Rによって、目標発振波長λ1を有するようになったレーザ光L1を用いて、光伝送装置1Rは、変調及びコヒーレント復調を行うことができる。本実施形態の半導体コヒーレント光受信器21R及び半導体光変調器91Rは、同一波長での素子特性を発揮することができる。
本実施形態では、半導体コヒーレント光受信器21Rが第一光機能素子として用いられ、半導体光変調器91Rが第二光機能素子として用いられたが、この他に、半導体光変調器91Rが第一光機能素子として用いられ、半導体コヒーレント光受信器21Rが第二光機能素子として用いられてもよい。この場合、半導体光変調器91Rが波長モニタ素子22Rとモノリシックに集積されて第一温度制御素子3Rに搭載され、半導体コヒーレント光受信器21Rが第二温度制御素子93Rに搭載される。また、半導体光変調器91Rが第一及び第二光機能素子として用いられ、半導体コヒーレント光受信器21Rが第一及び第二光機能素子として用いられてもよい。いずれの場合も、半導体コヒーレント光受信器21R及び半導体光変調器91Rは、光の発生・増幅を伴わない光処理を行う。半導体コヒーレント光受信器21Rや半導体光変調器91Rといった第一光機能素子の発熱量の大きさ及び発熱量の変動は、いずれも半導体レーザ素子11の発熱量の大きさ及び発熱量の変動に比べて小さい。このため、この光伝送装置は、波長モニタ素子22Rと半導体レーザ素子11とのモノリシック集積素子に比べて、波長モニタ素子22Rへの発熱量変動の影響を低減することができる。本実施形態では、更に、半導体光変調器91Rの温度は、第一温度制御素子3Rと別の第二温度制御素子93Rによって調整される。このため、いずれも半導体レーザ素子11との発熱量の変動の影響を受けないで、温度制御を受けることができる。
光伝送装置1Rでは、制御装置30Rは、駆動装置31R、32Rを備える。駆動装置31Rは、駆動回路31E、31Fを有し、光源10及び集積素子20Rの双方を制御するためのデータを格納した装置、例えばルックアップテーブル31Gを更に有することができる。駆動装置32Rは、駆動回路32Eを有し、変調素子90Rを制御するためのデータを格納した装置、例えばルックアップテーブル32Gを更に有することができる。駆動装置31Rは、光源10及び集積素子20Rの双方に対して、第2の実施形態の制御装置30Pと同様の制御を行う。駆動装置31Rは、目標発振波長情報F1に基づいて、半導体レーザ素子11の発振波長を制御する。一方、駆動装置32Rは、変調素子90Rに対して、波長モニタ素子22への制御を除いて、第1の実施形態の制御装置30と同様の制御を行う。
(第4の実施の形態)
図11は、第4の実施形態における光伝送装置の概略図である。光伝送装置1Sは、処理装置2S及び制御装置30Sを備える。第1及び第2の実施形態と異なり、処理装置2Sは、光源10S及び集積素子20Sに加えて、第三光機能素子としての変調素子90Sを更に備える。
処理装置2Sは、筐体4Sを備える。筐体4Sは、光源10S、集積素子20S及び変調素子90Sを収容する。また、筐体4Sは、入力ポート7及び外部導波路8を備え、出力ポート95及び外部導波路96を備える。光伝送装置1Sでは、処理装置2Sは、電気回路基板9S上に搭載されることができる。処理装置2Sは、光分波器15Sを備え、この光分波器15Sは、半導体レーザ素子11からのレーザ光L1を、レーザ光L40とレーザ光L50とに分波する。レーザ光L40は集積素子20Sに提供され、レーザ光L50は、変調素子90Sに提供される。
光伝送装置1Sの光源10Sは、一実施例では、第一の実施形態と同様であることができる。集積素子20Sは、一実施例では、第2の実施形態の集積素子20Pと同様であり、半導体コヒーレント光受信器21S及び波長モニタ素子22Sを有する。このため、集積素子20Sは、レーザ光L40と外部変調光L10を使ったコヒーレント復調と、レーザ光L40を使った波長モニタとを行う。外部変調光L10は、外部導波路8及び入力ポート7を介して、半導体コヒーレント光受信器21Sに光学的に結合される。コヒーレント復調は、受信信号F3として外部に出力される。波長モニタ素子22Sは、例えば、第1の実施形態の光回路63または第2の実施形態の90度ハイブリッド素子87を含むことができる。
変調素子90Sは、一実施例では、半導体光変調器91Sを含む。半導体光変調器91Sは、送信信号F2に応じて、第三光処理として半導体レーザ素子11からのレーザ光L50を変調する。変調光は、出力ポート95及び外部導波路96を介して、変調光M3として外部に出力される。
処理装置2Sは、第一温度制御素子3Sを備える。第一温度制御素子3Sは、光源10S、集積素子20S及び変調素子90Sを搭載する。第一温度制御素子3Sは、光源10S、集積素子20S及び変調素子90Sの各温度を調整するために設けられる。第一温度制御素子3Sは筐体4Sに収容される。第一温度制御素子3Sは、例えば、ペルチェ素子、ヒータ素子又は水冷装置などを包含することができる。
本実施形態では、同一の半導体レーザ素子11からのレーザ光L1(レーザ光L40、L50)によって、波長モニタ動作、変調、及びコヒーレント復調が行われる。このため、波長モニタ素子22Sによって、目標発振波長λ1を有するようになったレーザ光L1を用いて、光伝送装置1Sは、変調及びコヒーレント復調を行うことができる。本実施形態の半導体コヒーレント光受信器21S及び半導体光変調器91Sは、同一波長での素子特性を発揮することができる。
本実施形態では、半導体コヒーレント光受信器21Sが第一光機能素子として用いられ、半導体光変調器91Sが第三光機能素子として用いられたが、この他に、半導体光変調器91Sが第一光機能素子として用いられ、半導体コヒーレント光受信器21Sが第三光機能素子として用いられてもよい。この場合には、半導体光変調器91Sが波長モニタ素子22Sとモノリシックに集積される。また、半導体光変調器91Sが第一及び第三光機能素子として用いられ、半導体コヒーレント光受信器21Sが第一及び第三光機能素子として用いられてもよい。いずれの場合も、半導体コヒーレント光受信器21S及び半導体光変調器91Sは、光の発生・増幅を伴わない光処理を行う。半導体コヒーレント光受信器21Sといった第一光機能素子の発熱量の大きさ及び発熱量の変動は、いずれも半導体レーザ素子11の発熱量の大きさ及び発熱量の変動に比べて小さい。このため、この光伝送装置は、波長モニタ素子22Sと半導体レーザ素子11とのモノリシック集積素子に比べて、波長モニタ素子22Sへの発熱量変動の影響を低減することができる。更に、光伝送装置1Sでは、光源10S、集積素子20S及び変調素子90Sが単一の第一温度制御素子3S上に搭載されるので、第一温度制御素子3Sは、光源10における波長可変のヒータ13a〜13e制御のための温度基準を提供している。この基準温度を規定する第一温度制御素子3S上に設置された単一の実装部材に、光源10Sと集積素子20S内の波長モニタ素子22Sとの両方を搭載できる。光源10Sの発熱が波長モニタ素子22Sに干渉することを防ぎながら、波長モニタと発振波長制御とを単一の第一温度制御素子3Sを利用して行うことができる。
制御装置30Sは、駆動装置31S、32Sを備える。駆動装置31Sは、駆動回路31H、31Kを有し、光源10及び集積素子20Sの双方を制御するためのデータを格納した装置、例えばルックアップテーブル31Lを更に有することができる。駆動装置32Sは、駆動回路32Hを有し、変調素子90Sを制御するためのデータを格納した装置、例えばルックアップテーブル32Lを更に有することができる。駆動装置31Sは、光源10及び集積素子20Sの双方に対して、第2の実施形態の制御装置30Pと同様の制御を行う。駆動装置31Sは、目標発振波長情報F1に基づいて、半導体レーザ素子11の発振波長を制御する。一方、駆動装置32Sは、変調素子90Sに対して、波長モニタ素子22への制御を除いて、第1の実施形態の制御装置30と同様の制御を行う。
以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置及び詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲及びその精神の範囲から来る全ての修正及び変更に権利を請求する。
1、1P、1R、1S…光伝送装置、3、3P、3R、3S…第一温度制御素子、10、10P、10S…光源、11…半導体レーザ素子、13a〜13e…ヒータ、20、20P、20Q、20R、20S…集積素子、21…半導体光変調器、21P、21R、21S…半導体コヒーレント光受信器、22、22P、22R、22S…波長モニタ素子、93R…第二温度制御素子、30、30P、30R、30S…制御装置、90R、90S…変調素子、L1、L2、L3、L20、L30、L40、L50…レーザ光、L10…外部変調光、M2b、M2c、M3…変調光。

Claims (6)

  1. 波長可変のためのヒータを有する半導体レーザ素子と、
    前記半導体レーザ素子からのレーザ光に第一光処理を行って出力する第一光機能素子と、前記半導体レーザ素子の発振波長をモニタするための波長モニタ信号を生成する波長モニタ素子とを含む集積素子と、
    前記半導体レーザ素子及び前記集積素子を搭載する第一温度制御素子と、
    前記半導体レーザ素子の前記発振波長を制御する制御装置と、
    を備え、
    前記半導体レーザ素子の一端面は、前記第一光機能素子及び前記波長モニタ素子に光学的に結合され、
    前記制御装置は、前記波長モニタ信号を受けると共に、前記半導体レーザ素子の前記発振波長と目標発振波長との差分情報を生成し、
    前記制御装置は、前記半導体レーザ素子の前記発振波長を前記目標発振波長に近づけるように、前記差分情報に応じて前記ヒータを制御する、光伝送装置。
  2. 前記第一光機能素子は、前記第一光処理として、変調及びコヒーレント復調のいずれか一方を行う、請求項1に記載の光伝送装置。
  3. 前記半導体レーザ素子からの前記レーザ光の第二光処理を行って出力する第二光機能素子と、
    前記第二光機能素子を搭載する第二温度制御素子と、
    を更に備え、
    前記半導体レーザ素子の前記一端面は、前記第二光機能素子に光学的に結合される、請求項1又は請求項2に記載の光伝送装置。
  4. 前記第二光機能素子は、前記第二光処理として、変調及びコヒーレント復調のいずれか他方を行う、請求項3に記載の光伝送装置。
  5. 前記半導体レーザ素子からの前記レーザ光の第三光処理を行って出力する第三光機能素子を更に備え、
    前記第一温度制御素子は、前記第三光機能素子を更に搭載し、
    前記半導体レーザ素子の前記一端面は、前記第三光機能素子に光学的に結合される、請求項1又は請求項2に記載の光伝送装置。
  6. 前記第三光機能素子は、前記第三光処理として、変調及びコヒーレント復調のいずれか他方を行う、請求項5に記載の光伝送装置。
JP2014201219A 2014-09-30 2014-09-30 光伝送装置 Pending JP2016072464A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201219A JP2016072464A (ja) 2014-09-30 2014-09-30 光伝送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201219A JP2016072464A (ja) 2014-09-30 2014-09-30 光伝送装置

Publications (1)

Publication Number Publication Date
JP2016072464A true JP2016072464A (ja) 2016-05-09

Family

ID=55864927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201219A Pending JP2016072464A (ja) 2014-09-30 2014-09-30 光伝送装置

Country Status (1)

Country Link
JP (1) JP2016072464A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110158A (ja) * 2016-12-28 2018-07-12 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及びこれを用いた光トランシーバ
JP2018129338A (ja) * 2017-02-06 2018-08-16 富士通株式会社 波長可変レーザ装置
JP2018139266A (ja) * 2017-02-24 2018-09-06 富士通オプティカルコンポーネンツ株式会社 波長可変光源、光源モジュール、及び波長制御方法
JP2020136359A (ja) * 2019-02-14 2020-08-31 古河電気工業株式会社 波長可変レーザ装置およびその波長制御方法
JP2020167359A (ja) * 2018-07-19 2020-10-08 住友電気工業株式会社 波長可変光源及びその波長制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064915A (ja) * 2006-09-06 2008-03-21 Furukawa Electric Co Ltd:The 光集積回路
JP2010283644A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 光アクセス網、光通信方法および光加入者装置
JP2012119482A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 波長可変レーザ装置およびその制御方法
JP2012518202A (ja) * 2009-02-17 2012-08-09 オクラロ テクノロジー リミテッド 光通信用の光チップおよび光デバイス
JP2012252290A (ja) * 2011-06-07 2012-12-20 Japan Oclaro Inc 光素子、光素子を含む変調器モジュール、光素子を含むレーザ集積変調器モジュール、及び、光素子の製造方法
US20130209020A1 (en) * 2012-01-01 2013-08-15 Acacia Communications Inc. Three port transceiver
JP2013258398A (ja) * 2012-05-18 2013-12-26 Sumitomo Electric Ind Ltd 半導体レーザ
JP2014174332A (ja) * 2013-03-08 2014-09-22 Mitsubishi Electric Corp 光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064915A (ja) * 2006-09-06 2008-03-21 Furukawa Electric Co Ltd:The 光集積回路
JP2012518202A (ja) * 2009-02-17 2012-08-09 オクラロ テクノロジー リミテッド 光通信用の光チップおよび光デバイス
JP2010283644A (ja) * 2009-06-05 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 光アクセス網、光通信方法および光加入者装置
JP2012119482A (ja) * 2010-11-30 2012-06-21 Sumitomo Electric Ind Ltd 波長可変レーザ装置およびその制御方法
JP2012252290A (ja) * 2011-06-07 2012-12-20 Japan Oclaro Inc 光素子、光素子を含む変調器モジュール、光素子を含むレーザ集積変調器モジュール、及び、光素子の製造方法
US20130209020A1 (en) * 2012-01-01 2013-08-15 Acacia Communications Inc. Three port transceiver
JP2013258398A (ja) * 2012-05-18 2013-12-26 Sumitomo Electric Ind Ltd 半導体レーザ
JP2014174332A (ja) * 2013-03-08 2014-09-22 Mitsubishi Electric Corp 光モジュール

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110158A (ja) * 2016-12-28 2018-07-12 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及びこれを用いた光トランシーバ
JP7077525B2 (ja) 2016-12-28 2022-05-31 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及びこれを用いた光トランシーバ
JP2018129338A (ja) * 2017-02-06 2018-08-16 富士通株式会社 波長可変レーザ装置
JP2018139266A (ja) * 2017-02-24 2018-09-06 富士通オプティカルコンポーネンツ株式会社 波長可変光源、光源モジュール、及び波長制御方法
JP7077527B2 (ja) 2017-02-24 2022-05-31 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及び波長制御方法
JP2020167359A (ja) * 2018-07-19 2020-10-08 住友電気工業株式会社 波長可変光源及びその波長制御方法
JP7259562B2 (ja) 2018-07-19 2023-04-18 住友電気工業株式会社 波長可変光源及びその波長制御方法
JP2020136359A (ja) * 2019-02-14 2020-08-31 古河電気工業株式会社 波長可変レーザ装置およびその波長制御方法

Similar Documents

Publication Publication Date Title
Li et al. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives
US7636522B2 (en) Coolerless photonic integrated circuits (PICs) for WDM transmission networks and PICs operable with a floating signal channel grid changing with temperature but with fixed channel spacing in the floating grid
KR102162833B1 (ko) 집적된 마하젠더 변조기를 구비한 튜너블 u-레이저 전송기
JP5877727B2 (ja) 半導体光変調素子及び光モジュール
US8299417B2 (en) Variable optical attentuator (VOA) having an absorber for receiving residual light outputfrom the VOA
JP6266311B2 (ja) 光共振装置、光送信機及び光共振器の制御方法
JP5835359B2 (ja) 光送信器および光送信器の制御方法
US11329452B2 (en) Silicon photonics based tunable laser
JP2016072464A (ja) 光伝送装置
JP3745097B2 (ja) 波長のモニタリング及び波長制御のための光デバイス
JP2015159191A (ja) 光伝送装置
JP2013089961A (ja) 波長モニタ、波長固定レーザ及び波長固定レーザの出射光波長の調整方法
WO2015193997A1 (ja) レーザ装置
JP7279518B2 (ja) 光分波器、光伝送装置及び光分波制御方法
JP2019087572A (ja) 波長可変光源、及び光半導体装置
WO2021257226A1 (en) Optical coherent receiver on a chip
JP2014092725A (ja) 変調機能を持つ光源
JP2010034114A (ja) レーザ装置、レーザモジュールおよび波長多重光通信システム
Ueda et al. 2-µm Band Monolithic Tunable Laser for CO2 TDLAS Covering> 100-nm Wavelength Range with< 10-mW Filter-Tuning Power Consumption
CN116345298A (zh) 外腔半导体激光器及反射式半导体光学放大器的芯片集成
JP2001215541A (ja) 光スイッチ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219