JP2016070683A - 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法 - Google Patents

画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法 Download PDF

Info

Publication number
JP2016070683A
JP2016070683A JP2014196659A JP2014196659A JP2016070683A JP 2016070683 A JP2016070683 A JP 2016070683A JP 2014196659 A JP2014196659 A JP 2014196659A JP 2014196659 A JP2014196659 A JP 2014196659A JP 2016070683 A JP2016070683 A JP 2016070683A
Authority
JP
Japan
Prior art keywords
distribution
image processing
edge detection
unit
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014196659A
Other languages
English (en)
Inventor
伸吾 門元
Shingo Kadomoto
伸吾 門元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014196659A priority Critical patent/JP2016070683A/ja
Publication of JP2016070683A publication Critical patent/JP2016070683A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】被測定物の形状を測定する場合に、被測定物を撮像して得られた撮像画像内から端部を測定する際の測定不良を抑制する。【解決手段】画像処理装置は、被測定物を撮像して得られる撮像画像内において、被測定物の端部を指定する端部指定部と、端部指定部により指定される端部を含む撮像画像内の一部の領域を端部検出領域として設定する端部検出領域設定部と、端部検出領域内の所定方向での画素値の分布を取得する分布取得部と、分布取得部で取得される分布の形状を用いて、端部検出領域内に含まれる複数の端部のうち端部指定部により指定される端部に対する検出方向を設定する方向設定部と、を備える。【選択図】図1

Description

本発明は、画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法に関する。
被測定物を撮像して得られた撮像画像を用いて被測定物の形状を測定する画像測定装置が知られている(特許文献1参照)。特許文献1に記載の画像測定装置では、撮像画像内に被測定物の端部を検出するために、撮像画像に端部検出領域を設定して、検出領域内から被測定物の端部を検出し、被測定物の形状を測定している。
特許第3887807号公報
被測定物の形状を測定するために、被測定物を撮像して得られた撮像画像内から端部を測定する際に、測定不良を抑制することが望まれている。
本発明の第1の態様によると、画像処理装置は、被測定物を撮像して得られる撮像画像内において、被測定物の端部を指定する端部指定部と、端部指定部により指定される端部を含む撮像画像内の一部の領域を端部検出領域として設定する端部検出領域設定部と、端部検出領域内の所定方向での画素値の分布を取得する分布取得部と、分布取得部で取得される分布の形状を用いて、端部検出領域内に含まれる複数の端部のうち端部指定部により指定される端部に対する検出方向を設定する方向設定部と、を備える。
本発明の第2の態様によると、画像測定装置は、第1の態様の画像処理装置と、被測定物を撮像して得られる撮像画像を取得する撮像部と、を備える。
本発明の第3の態様によると、画像処理方法は、被測定物を撮像して得られる撮像画像内において、被測定物の端部を指定することと、指定される端部を含む撮像画像内の一部の領域を端部検出領域として指定することと、端部検出領域内の所定方向での画素値の分布を取得することと、取得される分布の形状を用いて、端部検出領域内に含まれる複数の端部のうち指定される端部に対する検出方向を設定することと、を含む。
本発明の第4の態様によると、画像処理プログラムは、被測定物を撮像して得られる撮像画像内において、被測定物の端部を指定する処理と、指定される端部を含む撮像画像内の一部の領域を端部検出領域として指定する処理と、端部検出領域内の所定方向での画素値の分布を取得する処理と、取得される分布の形状を用いて、端部検出領域内に含まれる複数の端部のうち指定される端部に対する検出方向を設定する処理と、をコンピュータに実行させる。
本発明の第5の態様によると、画像処理装置は、被測定物を撮像して得られる撮像画像内において、被測定物の端部を指定する端部指定部と、撮像画像内に、端部指定部により指定される端部を含み延在方向がそれぞれ異なる複数の領域を候補領域として設定する候補領域設定部と、複数の候補領域内の各々において、延在方向での画素値の分布を取得する延在分布取得部と、複数の候補領域の各々における分布の端部指定部により指定される端部に対応する値に基づいて、複数の候補領域のうちの一つを端部検出領域として選択する領域選択部と、を備える。
本発明の第6の態様によると、構造物の製造方法は、構造物の形状に関する設計情報を作成し、設計情報に基づいて構造物を作成し、作成された構造物の形状を、第2の態様の画像測定装置を用いて計測して形状情報を取得し、取得された形状情報と設計情報とを比較する。
本発明によれば、被測定物の形状を検出する際の検出不良を抑制することができる。
第1の実施の形態による画像測定装置の全体構成を示す図 制御装置の機能構成を示す図 検出領域を示す図 (a)は検出領域内の輝度の分布を示す図、(b)は検出領域内の画素の輝度を一次微分した一次微分値の分布を示す図 端部検出パラメータの設定処理の流れを説明するフローチャート 検出領域設定処理の流れを説明するフローチャート (a)〜(d)はそれぞれ候補領域の一例を示す図、(e)〜(h)はそれぞれ(a)〜(d)に示す候補領域内の画素の輝度を一次微分した一次微分値の分布を示す図 エッジ検出閾値の設定を説明する図 エッジ検出閾値を超える他のピークがない場合における一次微分値の分布の一例を示す図 エッジ検出閾値を超える他のピークが目標エッジ対応ピークの一方側にのみある場合における一次微分値の分布の一例を示す図 エッジ検出閾値を超える他のピークが目標エッジ対応ピークの両側にある場合における一次微分値の分布の一例を示す図 目標エッジ対応ピークを超える他のピークが目標エッジ対応ピークの両側にある場合における一次微分値の分布の一例を示す図 第2の実施の形態による構造物製造システムの構成を示すブロック図 第2の実施の形態による構造物製造システムの動作を説明するフローチャート プログラムを提供する様子を示す図
−第1の実施の形態−
図面を参照しながら、本発明の一実施の形態による画像測定装置について説明する。画像測定装置は、被測定物(例えば、機械部品や半導体チップ、液晶ディスプレイパネル、生物・生体試料など)を撮像して得られた撮像画像を用いて被測定物の形状等を測定する装置である。なお、本実施の形態は、発明の趣旨の理解のために具体的に説明するためのものであり、特に指定の無い限り、本発明を限定するものではない。
図1は、本実施の形態による画像測定装置100の全体構成の一例を示す図である。画像測定装置100は、撮像ユニット1と、光源ユニット2と、インターフェイスユニット3と、ホストコンピュータ4とを備える。なお、説明の都合上、撮像ユニット1について、X軸、Y軸および鉛直方向に沿ったZ軸からなる座標系を図示の通りに設定する。
撮像ユニット1は、ベース10と、XYステージ11と、支柱12と、光学系ユニット13とを備える。XYステージ11は、測定の対象物である被測定物Sを載置するためのベース10上を2次元移動可能である。XYステージ11の上方には、ベース10と一体に設けられた支柱12に、光学系ユニット13が固定される。
XYステージ11は、ベース10上をY軸方向に移動可能なYステージ11Yと、Yステージ11Y上をX軸方向に移動可能なXステージ11Xとを備える。Xステージ11X上に被測定物Sが載置される。Xステージ11XおよびYステージ11Yは、不図示のリニアアクチュエータを含む駆動系により駆動される。この駆動系は、後述するインターフェイスユニット3内の制御部30によって制御される。また、Xステージ11XおよびYステージ11Yの位置は、不図示のレーザ干渉計またはエンコーダ等の位置検出装置によって計測される。この位置検出装置の出力信号は、制御部30を介してホストコンピュータ4内に送出される。
光学系ユニット13内には、被測定物Sの像を結像面に結像させる対物レンズ等の結像光学系14と、撮像装置15と、落射照明用光学系16とが収容されている。撮像装置15は、CCDやCMOS等の撮像素子が結像光学系14の結像面に配置され、撮像素子は結像光学系14によって結像面に結像された被測定物Sの像を撮像して撮像信号を後述するインターフェイスユニット3内の撮像制御部31に出力する。撮像装置15は、ホストコンピュータ4からの制御信号に基づき後述するインターフェイスユニット3内の撮像制御部31によって撮像可能状態、撮像停止状態などが制御される。なお、被測定物Sの撮像装置15としては、上記の例に限定されず撮像管を用いてもよく、あるいは非常に大きな画素数の撮像をする場合は1次元撮像素子(いわゆるラインセンサ)を用いることも可能である。後者のラインセンサを用いる場合には、XYステージ11を移動させ、被測定物とラインセンサとを相対移動させながら順次対象物の画像を1ラインずつ読み取るようにして撮像を行う必要がある。
また、撮像ユニット1において、ベース10の内部には透過照明用光学系17が設けられている。後述する光源ユニット2内の不図示の光源からの光によって被測定物Sが落射照明用光学系16を介して図1の上方から落射照明で照明される。または、後述する光源ユニット2内の不図示の光源からの光によって被測定物Sが透過照明用光学系17を介して図1の下方から透過照明で照明される。そして、光学系ユニット13内の結像光学系14によって結像面に被測定物Sの像が結像される。
なお、落射照明用光学系16の他に、被測定物Sに対して照明光を照射する照明光源を設けても構わない。また、この場合に、複数の照明光源を設けても構わない。この場合に、複数の照明光源を輪状に設けても構わない。複数の照明光源を設ける場合に、全ての照明光源からの照明光を被測定物Sに向けて照射しても構わないし、その一部の照明光源からの照明光のみを照射しても構わない。
光源ユニット2は、光ファイバなどを介して撮像ユニット1に落射又は透過の照明光を出力する。光源ユニット2は、光源を含み光量が調節可能な調光装置とこの調光装置からの光を前記光ファイバに導くための光学系とを有する。また、落射照明、透過照明の選択及びこれらの光の光量の調整は、後述するインターフェイスユニット3内部の制御部30によって制御される。
インターフェイスユニット3は、制御部30と撮像制御部31とを有する。制御部30は、マイクロプロセッサとそのファームウェアとで構成される。制御部30は、ホストコンピュータ4からの制御信号を受けてXYステージ11のリニアアクチュエータを制御してXYステージ11を移動させたり、落射照明、透過照明を選択したり、光源ユニット2から出力される光の光量を制御したりする。撮像制御部31は、ホストコンピュータ4からの制御信号に基づき撮像装置15の撮像可能状態、撮像停止状態を制御したり、撮像装置15からの撮像信号を、A/D変換して画像データとしてホストコンピュータ4に出力したりする。
ホストコンピュータ4は、マウスなどのポインティングデバイスによる操作が可能な所定のオペレーティングシステムで動作するパーソナルコンピュータを用いて構成される。ホストコンピュータ4は、コンピュータ本体40に入力デバイスであるキーボード41およびマウス42と、表示部としてのディスプレイ43とを接続した構成になっている。
コンピュータ本体40は、マイクロプロセッサから構成される制御装置44と、メモリ45と、キーボード41およびマウス42を接続するためのキーボードインターフェイス(キーボードコントローラ)46と、ディスプレイ43を接続するためのビデオインターフェイス47と、シリアルインターフェイス48と、ハードディスク49と、画像入力ボード50とを有している。
制御装置44は、画像測定装置100全体を制御すると共に、撮像装置15により被測定物Sを撮像して得られる撮像画像を用いて被測定物Sの形状を測定する。具体的に、制御装置44は、ハードディスク49に格納された制御プログラムをメモリ45にロードしてプログラムを起動させることによって、シリアルインターフェイス48を介してインターフェイスユニット3の制御部30に制御信号を送ってXYステージ11のリニアアクチュエータの制御、結像光学系14の倍率制御、光量制御等を行う。また、制御装置44は、画像入力ボード50及び撮像制御部31を介して撮像装置15の撮像制御を行うと共に、撮像装置15からの撮像信号が撮像制御部31によりA/D変換されて得られる撮像画像データをメモリ45に転送し記憶させる。
ハードディスク49には、端部検出、ピッチ測定など被測定物Sの撮像画像データに対して様々な測定処理を行う様々なプログラムが格納されている。制御装置44は、これらのプログラムをメモリ45にロードしてプログラムを起動させることによって様々な測定処理を行う。
また、制御装置44は、ビデオインターフェイス47に制御コマンドを送るとともに、メモリ45内の撮像画像データや測定処理の結果の情報をビデオインターフェイス47を介してディスプレイ43に転送して、被測定物Sの撮像画像や測定処理の結果をディスプレイ43に表示させる。
また、制御装置44は、予め被測定物Sを測定するための測定手順を定めるティーチングを行う。ティーチングで定められた測定手順の情報は、ティーチングファイルとしてハードディスク49に記憶される。制御装置44は、ハードディスク49に記憶されたティーチングファイルに従って測定処理を実行する。画像測定装置100では、予めティーチングを行っておくことで、同じ形状の被測定物Sに対してティーチングの結果を用いて自動で測定処理を実行することができるので、同じ形状の多数の被測定物Sを測定する際に便利である。
図2は、本実施形態に係る制御装置44の機能構成を示す図である。制御装置44は、画像処理装置60を機能的に有する。なお、上述したように制御装置44は、画像測定装置100の各部を制御する機能も有するが、図2では図示を省略している。画像処理装置60は、端部指定部51と、検出領域設定部52と、分布取得部53と、方向設定部54と、閾値設定部55と、表示制御部56と、を機能的に有する。また、検出領域設定部52は、候補領域設定部521と、延在分布取得部522と、領域選択部523と、を機能的に有する。ハードディスク49(図1)には、画像処理装置60の各機能を実現するための画像処理プログラムが格納されている。画像処理装置60の各機能は、制御装置44がハードディスク49に格納されている上記画像処理プログラムをメモリ45(図1)にロードして実行することにより実現される。なお、上記各部の機能について、詳しくは後述する。
なお、本実施の形態においては、例えば被測定物Sの高さ位置を検出する焦点検出装置が設けられていても構わない。この場合に、被測定物Sの高さ位置の検出結果を用いて、被測定物Sの撮像画像を撮像しても構わない。
なお、本実施の形態においては、被測定物Sに対して+Z方向に光学系を配置したが、配置する場合はこの例に限られない。−Z方向に光学系を配置しても構わない。
また、本実施の形態においては、被測定物SをX方向とY方向との互いに直交する方向に移動可能なステージに載置するものとしているが、互いの移動方向は直交、すなわち90°に限られず、80°、70°、60°、50°、40°、30°、20°、10°、5°でも構わない。また、被測定物Sを移動可能なステージは、2軸方向に限られず、X方向、Y方向、Z方向の3軸方向に移動可能であっても構わない。また、X方向を中心にθX方向に回転するステージを用いても構わない。勿論、X方向に限られず、Y方向、Z方向を中心に回転するステージを用いても良い。なお、本実施の形態においては、被測定物Sが載置されたXYステージを駆動させて被測定物Sと光学系ユニット13とを相対移動させたが、光学系ユニット13を駆動させてステージに載置された被測定物Sと光学系ユニット13とを相対移動させても良い。
<端部検出パラメータの設定>
次に、被測定物Sの端部を検出する端部検出処理に関する端部検出パラメータの設定について説明する。
図3を用いて、被測定物Sの例について説明する。図3(a)は、被測定物SをZ軸方向から観察した図であり、XY平面における被測定物Sを示す。図3(c)は、図3(a)に示すaとbとを結ぶ直線における断面図を示している。図3(c)において、被測定物SはZ軸方向に沿った2つの位置において、平坦部Scと平坦部Sbとを有している。被測定物Sが平坦部を有する場合には、それぞれの平坦部Scと平坦部Sbとの端において端部が存在する。図3(c)では、Z軸方向での同じ位置の平面Sbにおいて、その−X方向の端部の位置をPとする。また、端部の位置を繋ぎ合わせることにより、輪郭が存在する。また、Z軸方向での位置Pと同じ位置の平面に対して、Z軸方向の位置が異なる平面との間には境界が存在する。例えば、被測定物Sを所定物に載置させた場合、すなわち図3(c)における−Z方向の平面Saと所定物の載置面とが接触するように載置させた場合、平面Saと載置面とでZ軸方向の位置が異なるので、境界部分が存在する。なお、本実施の形態においては、平坦部の端を端部としているが、平坦でなくても構わない。傾斜平面と傾斜平面とが交差する部分を端部としても構わない。また、同一平面において、被測定物Sを構成する部材が異なる部分を端部としても構わない。勿論、同じ構成部材でも表面形状が異なる部分の境目を端部としても構わない。
端部検出パラメータの設定は、端部検出処理に関するティーチングの際に行われる。具体的に、端部検出パラメータとして、端部を検出するための領域である端部検出領域(以下、検出領域)と端部を検出するための閾値(以下、エッジ検出閾値)と端部に対する検出方向(以下、端部検出方向)とが設定される。端部検出パラメータツールは、たとえばキャリパーツールと呼ばれている。
まず、図1〜図3を参照して、検出領域Caについて説明する。撮像装置15は、被測定物Sを撮像して、ティーチングに用いるティーチング用撮像画像を取得する。ティーチングは、被測定物Sを撮像して、被測定物Sの検出しその形状を検出する測定において、自動的に被測定物Sの形状を測定するための自動測定手順を設定することである。画像処理装置60は、撮像装置15からティーチング用撮像画像を取得し、ディスプレイ43に表示させる。図3(a)は、ティーチング用撮像画像の一例を示す図である。ユーザは、ディスプレイ43に表示されたティーチング用撮像画像内で、被測定物Sにおいて検出したい端部(目標端部)の位置Pにカーソルを合わせてマウス42でクリックする。端部指定部51は、ユーザによりマウス42がクリックされた際のカーソルの位置Pを目標端部位置Pとして指定する。なお、ユーザによりマウス42でクリックされた際のカーソルの位置は目標端部の位置と厳密に一致するとは限らないため、当該カーソルの位置に最も近い端部の位置が目標端部位置Pとなる。
検出領域設定部52は、ティーチング用撮像画像内において、目標端部位置Pを中心とする所定サイズの矩形状の領域を、端部検出領域(以下、検出領域とも表記する)Caとして設定する。なお、検出領域Caは、ティーチング用撮像画像内の一部の領域であり、検出領域Ca内から端部が検出される。図3(a)では、目標端部に対して略垂直方向が検出領域Caの長辺方向となるように検出領域Caが設定されている。
図3(b)は、ティーチング用撮像画像の検出領域Ca近傍の領域を拡大した図である。なお、説明の都合上、検出領域Caの長辺方向(すなわち延在方向)をx軸方向、短辺方向をy軸方向とする座標系を図示の通りに設定する。図3(b)では、検出領域Ca内に略y軸方向に延びる4つの端部eg1〜eg4の一部が含まれている。ここでは、目標端部は、目標端部位置Pがある端部eg1である。
図4(a)は、検出領域Ca内の画素のx軸方向における輝度の分布を表すグラフであり、縦軸が輝度、横軸がx軸方向の位置を表している。検出領域では、設定された領域内において所定方向にそれぞれの画素の輝度の分布を算出することができる。なお、このグラフにおける各x軸方向の位置の輝度は、各x軸方向の位置で、検出領域Ca内のy軸方向における複数の画素の輝度を平均した値である。また、図4(b)は、図4(a)に示す輝度をx軸正方向に一次微分した一次微分値の分布を表すグラフであり、縦軸が一次微分値、横軸がx軸方向の位置を表している。
本実施形態では、このような検出領域Ca内の輝度の一次微分値の分布を用いて端部を検出する。本実施の形態においては、検出領域内の所定方向での輝度の分布を検出することができるので、検出領域内の所定方向で、輝度の変化を検出することができる。検出領域内の輝度の変化を検出することにより、輝度がその周辺の輝度に対して変化する位置を検出することができる。すなわち、輝度の変化する位置をエッジとして特定することができる。図4(b)では、一次微分値の分布における4つのピークpk1〜pk4が、輝度の変化が大きい箇所、すなわち、エッジであることが推定される。ここでは、図3(b)に示したように、検出領域Ca内には4つの端部eg1〜eg4があり、図4(b)には、端部eg1に対応するエッジである負のピークpk1と端部eg2に対応するエッジである正のピークpk2と端部eg3に対応するエッジである負のピークpk3と端部eg4に対応するエッジである正のピークpk4とが表れている。
目標端部である端部eg1を検出するには、端部eg1に対応するエッジである負のピークpk1を検出できるように、エッジ検出閾値Thを設定する必要がある。たとえば、負のピークpk1の高さの50%程度にエッジ検出閾値Thを設定する。また、ここでは、負のピークpk1に対して、図中右側にはエッジ検出閾値Thを超えるピーク(すなわちエッジ検出閾値Thより小さいピーク)として負のピークpk3があり、図中左側にはエッジ検出閾値Thを超えるピークはない。そのため端部eg1を検出するには、端部eg1に対応するエッジである負のピークpk1が検出できるように(他のエッジが先に検出されないように)、図中左側から右側へ向かう方向(すなわちx軸正方向)をエッジ検出方向Awとして設定する必要がある。
このようにして端部検出処理に関するティーチングでは、端部検出パラメータとして検出領域Caとエッジ検出閾値Thとエッジ検出方向Awとが設定され、これらの情報がハードディスク49に記憶されるティーチングファイル内に格納される。制御装置44は、このティーチングファイルに従って測定処理を実行する際、エッジ検出処理に関してティーチングファイル内に格納された検出領域Ca、エッジ検出閾値Thおよびエッジ検出方向Awの情報を参照して、端部検出処理を行う。
上記端部検出処理に関して具体的に説明する。まず、制御装置44は、撮像装置15から被測定物Sを撮像して得られる測定用撮像画像を取得する。制御装置44は、測定用撮像画像に対して上記設定された検出領域Caを適用し、検出領域Ca内の画素のx軸方向の輝度の分布を取得する。ここで、各x軸方向の位置の輝度は、各x軸方向の位置で、検出領域Ca内のy軸方向における複数の画素の輝度を平均した値とする。そして、制御装置44は、このx軸方向の輝度の分布に対して一次微分フィルタを適用して、検出領域Ca内の画素の輝度をx軸正方向に一次微分した一次微分値の分布を取得する。制御装置44は、この一次微分値の分布を上記設定したエッジ検出方向Awに沿って走査し、最初に上記設定したエッジ検出閾値Thを超えるピークの位置を、端部の位置として検出する。なお、本実施の形態においては、検出領域Ca内のy軸方向における複数の画素の輝度を平均した値を用いているが、これに限定されず、所定位置の輝度を用いても構わないし、y軸方向での輝度の最も高い値を代表値として用いても構わない。
測定用撮像画像において目標端部を精度よく検出するためには、ティーチングにおいて、端部検出パラメータ(検出領域、エッジ検出閾値、エッジ検出方向)を適切に設定する必要がある。しかしながら、目標端部の近傍に他のエッジが存在する場合、ユーザが手動で上記端部検出パラメータを適切に設定することは難しい。上記端部検出パラメータを適切に設定するには、ユーザが上述した端部検出のアルゴリズムを正しく理解している必要がある。しかし、上述した端部検出のアルゴリズムに対するユーザの理解度にはバラツキがある。そこで、本実施形態では、画像測定装置100が自動で上述した端部検出パラメータを設定するようにした。これにより、端部検出パラメータを適切に設定することが可能となる。したがって、端部検出パラメータの設定による検出不良を抑制することができる。
<端部検出パラメータを設定する処理の詳細>
図5は、画像測定装置100において上記端部検出パラメータを設定する処理の流れを説明するフローチャートである。このフローチャートで示す画像処理プログラムは、ハードディスク49に記憶され、この画像処理プログラムは、制御装置44の画像処理装置60により実行される。
ステップS1において、画像処理装置60は、上述したように、撮像装置15により被測定物Sを撮像して得られたティーチング用撮像画像を取得し、ディスプレイ43に表示させる。
ステップS2において、端部指定部51は、上述したように、ティーチング用撮像画像内において、ユーザによりマウス42がクリックされた際のカーソルの位置Pを目標端部位置Pとして指定する。
ステップS3において、検出領域設定部52は、ティーチング用撮像画像内において検出領域Caを設定する検出領域設定処理を行う。図6は、この検出領域設定処理の流れを説明するフローチャートである。図6のステップS31において、候補領域設定部521は、ティーチング用撮像画像内において、検出領域Caの候補である候補領域を複数設定する。図7(a)〜(d)は、複数の候補領域Ckの一例である。なお、図7では、被測定物Sについて、図3で示した例とは異なる例を示している。候補領域設定部521は、目標端部位置Pを中心とする所定サイズの矩形状の領域Ckを、目標端部位置Pを中心として所定角度(たとえば10度)ずつ回転させることにより、延在方向(長辺方向)がそれぞれ異なる複数(たとえば36個)の候補領域Ckを設定する。なお、図7では、図示の都合上、それぞれ延在方向が異なる4つの候補領域Ckを示している。また、説明の都合上、各候補領域Ckにおいて、長辺方向(すなわち延在方向)をx軸方向、短辺方向をy軸方向とする座標系を設定する。図7に示す候補領域Ck内の矢印は、x軸正方向(後述する一次微分の方向)を示している。
図6のステップS32において、延在分布取得部522は、ステップS31で設定された複数の候補領域Ckの各々において、候補領域Ck内の画素の延在方向(x軸方向)における輝度の分布を取得する。ここで、各x軸方向の位置の輝度は、各x軸方向の位置で、候補領域Ck内のy軸方向における複数の画素の輝度を平均した値とする。次にステップS33において、延在分布取得部522は、複数の候補領域Ckの各々におけるこのx軸方向の輝度の分布に対して一次微分フィルタを適用して、候補領域Ck内の画素の輝度をx軸正方向に一次微分した一次微分値の分布を取得する。
ステップS34において、領域選択部523は、ステップS33で取得した各候補領域Ckの上記一次微分値の分布に基づいて、複数の候補領域Ckのうちの一つを検出領域Caとして選択する。この選択方法について、図7に示す一例を用いて説明する。
上述したように図7(a)〜(d)は、それぞれ延在方向が異なる4つの候補領域Ckの一例である。また、図7(e)は図7(a)に示す候補領域Ckの上記一次微分値の分布を示す。図7(f)は図7(b)に示す候補領域Ckの上記一次微分値の分布を示す。図7(g)は図7(c)に示す候補領域Ckの上記一次微分値の分布を示す。図7(h)は図7(d)に示す候補領域Ckの上記一次微分値の分布を示す。なお、図7(e)〜(h)は、上記一次微分値の分布の一部を簡略化して示している。図7(e)〜(h)ではそれぞれ、目標端部位置Pにおいて正のピークが表れているが、ピークの高さはそれぞれ異なっている。
領域選択部523は、複数の候補領域Ckのうち、上記一次微分値の分布において目標端部位置Pに対応するピークの高さ(すなわち一次微分値の絶対値)が最も高い(すなわち輝度の変化(コントラスト)が最も大きい)候補領域Ckを、検出領域Caとして選択(設定)する。図7に示す例では、図7(e)〜(h)のうち、図7(f)において目標端部位置Pに対応するピークの高さが最も高いため、図7(b)に示す候補領域CkがキャリパーCaとして選択される。画像測定装置100では、このようにして検出領域Caを設定することにより、目標端部を検出するために最適な延在方向の検出領域Caを設定することができる。なお、目標端部位置Pはユーザが手動で指定する位置であるため、ピークの位置と厳密に一致するとは限らない。そのため、この場合、領域選択部523は、目標端部位置Pに最も近いピークを目標端部位置Pに対応するピークとして認識する。
複数の候補領域Ckのうち、上記一次微分値の分布において最も高いピークを検出した候補領域Ckを、検出領域Caとして選択する。しかしながら、図7に示すように候補領域Ck内に目標端部位置P以外の他の端部位置Qがある場合、図7(c)に示すような向きに設定された候補領域Ckに対応する一次微分値の分布(図7(g))には、目標端部位置P以外のピークが表れることが考えられる。この場合、図7(f)における目標端部位置Pのピークよりも図7(g)における他の端部位置Qのピークの方が高いと、図7(g)に対応する図7(c)の候補領域Ckが検出領域Caとして選択されてしまう。このように、目標端部を検出するために最適な延在方向の検出領域Caを設定できない場合があった。これに対して、本実施の形態の画像測定装置100では、複数の候補領域Ckのうち、上記一次微分値の分布において目標端部位置Pに対応するピークの高さが最も高い候補領域Ckを検出領域Caとして選択するので、目標端部を検出するために最適な延在方向の検出領域Caを設定することができる。検出領域設定部52は、以上のようにして検出領域Caを設定すると、ステップS3(図5)の検出領域設定処理を終了する。
ステップS4(図5)において、分布取得部53は、ステップS3で設定された検出領域Ca内の画素の輝度をx軸正方向(延在方向)に一次微分した一次微分値の分布を取得する。なお、この一次微分値の分布は、ステップS33(図6)で取得されたものを流用すればよい。
ステップS5(図5)において、閾値設定部55は、エッジ検出閾値Thを設定する。このエッジ検出閾値Thの設定方法を図8を用いて説明する。図8は、ステップS4で取得された検出領域Caの上記一次微分値の分布の一例である。閾値設定部55は、上記一次微分値の分布における目標端部位置Pに対応するピーク(以下、目標エッジ対応ピーク)pkmの高さ(一次微分値)に基づいて、エッジ検出閾値Thを設定する。具体的に閾値設定部55は、目標エッジ対応ピークpkmが検出できるように、目標エッジ対応ピークpkmの高さ以下(たとえば目標エッジ対応ピークpkmの高さ(一次微分値)の50%程度)の値にエッジ検出閾値Thを設定する。なお、目標エッジ対応ピークpkmが正のピークである場合はエッジ検出閾値Thは正の値となり、端部検出処理の際には、エッジ検出閾値Thを超える、すなわちエッジ検出閾値Thよりも正方向に大きいピークが端部として検出される。一方、目標エッジ対応ピークpkmが負のピークである場合はエッジ検出閾値Thは負の値となり、端部検出処理の際には、エッジ検出閾値Thを超える、すなわちエッジ検出閾値Thよりも負方向に大きいピークが端部として検出される。
以下は、上記一次微分値の分布における種々の形状に対応して、エッジ検出方向を設定する処理である。ステップS6(図5)において、画像処理装置60は、ステップS4で取得された検出領域Caの上記一次微分値の分布において、目標エッジ対応ピークpkm以外の他のピークであってエッジ検出閾値Thを超えるピークがあるか否かを判定する。
画像処理装置60は、目標エッジ対応ピークpkm以外の箇所で一次微分値がエッジ検出閾値Thを超える箇所がない場合にはエッジ検出閾値Thを超える上記他のピークがないと判定し、ステップS6を否定判定してステップS7に進む。図9は、この場合(すなわちエッジ検出閾値Thを超える上記他のピークがない場合)における上記一次微分値の分布の一例を示すグラフである。この場合は、x軸正方向(図中左側から右側)およびx軸負方向(図中右側から左側)のいずれをエッジ検出方向としても、目標エッジ対応ピークpkmを検出することができる。したがって、ステップS7(図5)において、方向設定部54は、x軸正方向およびx軸負方向のいずれかをエッジ検出方向として設定して、図5の処理を終了する。なお、ステップS7において、所定方向(たとえばx軸正方向)をエッジ検出方向として設定してもよい。
一方、画像処理装置60は、目標エッジ対応ピークpkm以外の箇所で一次微分値がエッジ検出閾値Thを超える箇所がある場合にはエッジ検出閾値Thを超える上記他のピークがあると判定し、ステップS6を肯定判定してステップS8に進む。
ステップS8において、画像処理装置60は、ステップS4で取得された検出領域Caの上記一次微分値の分布において、エッジ検出閾値Thを超える上記他のピークが目標エッジ対応ピークpkmの両側(すなわち目標エッジ対応ピークpkmの位置よりもx軸正方向側およびx軸負方向側)のうちの一方側にのみあるか否かを判定する。
画像処理装置60は、目標エッジ対応ピークpkmの両側のうち一方側には一次微分値がエッジ検出閾値Thを超える箇所があるが、他方側には一次微分値がエッジ検出閾値Thを超える箇所がない場合には、エッジ検出閾値Thを超える上記他のピークが目標エッジ対応ピークpkmの両側のうちの一方側にのみあると判定し、ステップS8を肯定判定してステップS9に進む。図10は、この場合(すなわちエッジ検出閾値Thを超える上記他のピークpktが目標エッジ対応ピークpkmの一方側にのみある場合)における上記一次微分値の分布の一例を示すグラフである。図10では、目標エッジ対応ピークpkmに対して、x軸負方向側(図中左側)にはエッジ検出閾値Thを超える他のピークはないが、x軸正方向側(図中右側)にはエッジ検出閾値Thを超える他のピークpktがある。そのため、そのため目標エッジ対応ピークpkmが検出できるように(他のピークpktが先に検出されないように)、図中左側から右側へ向かう方向(すなわちx軸正方向)をエッジ検出方向Awとして設定する必要がある。ステップS9(図5)において、方向設定部54は、エッジ検出閾値Thを超える他のピークがない側から当該他のピークがある側へ向かう方向をエッジ検出方向として設定して、図5の処理を終了する。
一方、画像処理装置60は、目標エッジ対応ピークpkmの両側に一次微分値がエッジ検出閾値Thを超える箇所がある場合には、エッジ検出閾値Thを超える上記他のピークが目標エッジ対応ピークpkmの両側にあると判定し、ステップS8を否定判定してステップS10に進む。図11は、この場合(すなわちエッジ検出閾値Thを超える上記他のピークpktが目標エッジ対応ピークpkmの両側にある場合)における上記一次微分値の分布の一例を示すグラフである。この場合は、現在のエッジ検出閾値Thの設定では、エッジ検出方向をx軸正方向およびx軸負方向のどちらに設定しても、他のピークpktが先に検出されてしまうため、目標エッジ対応ピークpkmを検出することができない。
そこで、ステップS10(図5)において、閾値設定部55は、エッジ検出閾値Thを再設定する。具体的に閾値設定部55は、目標エッジ対応ピークpkmの高さ方向(すなわち、正のピークの場合は正方向、負のピークの場合は負方向)に所定値分エッジ検出閾値Thを変更する。たとえば、現在のエッジ検出閾値Thが目標エッジ対応ピークpkmの高さの50%だった場合、さらに目標エッジ対応ピークpkmの高さの5%分増加した55%にエッジ検出閾値Thを再設定する。
ステップS11において、画像処理装置60は、ステップS10で再設定したエッジ検出閾値Th´が目標エッジ対応ピークpkmの高さを超えたか否かを判定する。制御装置44は、エッジ検出閾値Th´が目標エッジ対応ピークpkmの高さを超えた場合は、ステップS11を肯定判定してステップS14へ進み、超えていない場合は、ステップS11を否定判定してステップS12へ進む。
ステップS12において、画像処理装置60は、ステップS4で取得された検出領域Caの上記一次微分値の分布において、ステップS10で再設定したエッジ検出閾値Th´を超える上記他のピークが目標エッジ対応ピークpkmの両側のうちの一方側にのみあるか否かを判定する。
画像処理装置60は、目標エッジ対応ピークpkmの両側のうち一方側には一次微分値がエッジ検出閾値Th´を超える箇所があるが、他方側には一次微分値がエッジ検出閾値Th´を超える箇所がない場合には、エッジ検出閾値Th´を超える上記他のピークが目標エッジ対応ピークpkmの両側のうちの一方側にのみあると判定し、ステップS12を肯定判定してステップS13に進む。ステップS13において、方向設定部54は、ステップS10で再設定したエッジ検出閾値Th´を超える他のピークがない側から当該他のピークがある側へ向かう方向をエッジ検出方向として設定して、図5の処理を終了する。図11に示す例では、再設定したエッジ検出閾値Th´を超える他のピークpktが目標エッジ対応ピークpkmに対してx軸負方向側(図中左側)のみとなっている。この場合、図中右側から左側へ向かう方向(すなわちx軸負方向)をエッジ検出方向Awとして設定すればよい。
一方、画像処理装置60は、目標エッジ対応ピークpkmの両側に一次微分値がエッジ検出閾値Th´を超える箇所がある場合には、エッジ検出閾値Th´を超える上記他のピークが目標エッジ対応ピークpkmの両側にあると判定し、ステップS12を否定判定してステップS10に戻り、ステップS10以降の処理を再度行う。すなわち、閾値設定部55は、エッジ検出閾値Th´を超える他のピークが目標エッジ対応ピークpkmの両側のうちの一方側のみとなるまで、エッジ検出閾値Th´を段階的に変更していく。つまり、閾値設定部55は、エッジ検出閾値Th´を超える他のピークが目標エッジ対応ピークpkmの両側のうちの一方側のみとなるようにエッジ検出閾値Th´を再設定する。
しかしながら、目標エッジ対応ピークpkmの高さを超える他のピークpktが目標エッジ対応ピークpkmの両側にある場合、エッジ検出閾値Th´を段階的に変更していくと、エッジ検出閾値Th´を超える他のピークが目標エッジ対応ピークpkmの両側に存在したまま、エッジ検出閾値Th´が目標エッジ対応ピークpkmの高さを超えてしまう。エッジ検出閾値Th´が目標エッジ対応ピークpkmの高さを超えると、目標エッジ対応ピークpkmを検出できなくなるので、エッジ検出閾値Th´は目標エッジ対応ピークpkmの高さよりも低い必要がある。
図12は、目標エッジ対応ピークpkmの高さTgを超える他のピークpktが目標エッジ対応ピークpkmの両側にある場合における一次微分値の分布の一例を示す図である。この場合は、エッジ検出方向をx軸正方向およびx軸負方向のどちらに設定しても、他のピークpktが先に検出されてしまうため、目標エッジ対応ピークpkmを検出することができない。したがって、この場合、方向設定部54は、エッジ検出方向の設定を行わない。この場合に進むステップS14において、表示制御部56は、エッジ検出方向の設定を行わない旨を示すメッセージ等をエラー表示としてディスプレイ43に表示させ、図5の処理を終了する。
上記エラー表示が表示された場合は、現状のままでは端部検出パラメータを設定することができないため、ユーザが種々の条件を手動で変更した後、画像測定装置100において図5の端部検出パラメータの設定処理をやり直す必要がある。たとえば、検出領域Ca内に目標エッジ対応ピークpkmを超える他のピークpktが入らないように、ユーザは検出領域Caの延在方向(x軸方向)の長さを手動で現状よりも短く設定して、端部検出パラメータの設定処理をやり直すことが考えられる。また、たとえば、被測定物Sを照明する照明の条件を変更することで、検出領域Ca内の画素の輝度の分布が変わるため、ユーザは上記照明の条件を手動で変更して、端部検出パラメータの設定処理をやり直すことが考えられる。変更する照明の条件としては、たとえば、画像測定装置100において、被測定物Sに対して斜め方向から光を照射する照明が備えられている場合には、被測定物Sに対する照射角度を変更することなどが考えられる。
上述した実施の形態によれば、次の作用効果が得られる。
(1)端部指定部51は、被測定物Sを撮像して得られる撮像画像内において目標端部の位置を指定する。検出領域設定部52は、目標端部の位置を含む撮像画像内の一部の領域を検出領域として設定する。分布取得部53は、検出領域内の画素値(輝度)を検出領域の延在方向に一次微分した一次微分値の分布を取得する。方向設定部54は、分布取得部53で取得される分布の形状(一次微分値のピークの高さ)を用いて、検出領域内に含まれる複数の端部のうち目標端部に対する検出方向(エッジ検出方向)を設定する。このような構成により、エッジ検出方向を自動で適切に設定することができ、目標端部を精度よく検出することができる。
(2)閾値設定部55は、目標端部に対応する目標端部ピークの高さに基づいて、エッジ検出閾値を設定する。このような構成により、エッジ検出閾値を自動で適切に設定することができ、目標端部を精度よく検出することができる。
(3)方向設定部54は、上記一次微分値の分布における目標エッジ対応ピーク以外の他のピークであってエッジ検出閾値を超えるピークが目標端部の両側のうちの一方側のみにある場合は、当該両側のうちの他方側から一方側へ向かう方向をエッジ検出方向として設定する。このような構成により、エッジ検出方向を自動で適切に設定することができる。
(4)閾値設定部55は、上記一次微分値の分布における目標エッジ対応ピーク以外の他のピークであってエッジ検出閾値を超えるピークが目標端部の両側にある場合は、エッジ検出閾値を超える上記他のピークが上記両側のうちの一方側のみとなるようにエッジ検出閾値を再設定する。方向設定部54は、上記両側のうちの他方側から一方側へ向かう方向をエッジ検出方向として設定する。このような構成により、エッジ検出閾値とエッジ検出方向とを自動で適切に設定することができる。
(5)表示制御部56は、上記一次微分値の分布における目標エッジ対応ピーク以外の他のピークであって目標エッジ対応ピークを超えるピークが目標端部の両側にある場合は、方向設定部54によるエッジ検出方向の設定を行わない旨をディスプレイ43に表示させる。このような構成により、ユーザに、現状ではエッジ検出方向の設定を行えない旨を認識させることができ、種々の条件(たとえば、検出領域の長さや照明条件など)の変更を促すことができる。
(6)候補領域設定部521は、撮像画像内に、端部指定部51により指定される目標端部の位置を含み延在方向がそれぞれ異なる複数の領域を候補領域として設定する。延在分布取得部522は、複数の候補領域の各々において、候補領域内の画素値(輝度)を上記延在方向に一次微分した一次微分値の分布を取得する。領域選択部523は、複数の候補領域の上記一次微分値の分布における目標端部に対応するピークの高さに基づいて、複数の候補領域のうちの一つを検出領域として選択する。このような構成により、検出領域を適切に設定することができ、目標端部を精度よく検出することができる。
−第2の実施の形態−
図面を参照して、本発明の実施の形態による構造物製造システムを説明する。本実施の形態の構造物製造システムは、たとえば自動車のドア部分、エンジン部分、ギア部分および回路基板を備える電子部品等の成型品を作成する。
図13は、本実施の形態による構造物製造システム400の構成の一例を示すブロック図である。構造物製造システム400は、第1の実施の形態にて説明した画像測定装置100と、設計装置410と、成形装置420と、制御システム430と、リペア装置440とを備える。
設計装置410は、構造物の形状に関する設計情報を作成する際にユーザが用いる装置であって、設計情報を作成して記憶する設計処理を行う。設計情報は、構造物の各位置の座標を示す情報である。設計情報は成形装置420および後述する制御システム430に出力される。成形装置420は設計装置410により作成された設計情報を用いて構造物を作成、成形する成形処理を行う。この場合、成形装置420は、3Dプリンター技術で代表される積層加工、鋳造加工、鍛造加工および切削加工のうち少なくとも1つを行うものについても本発明の一態様に含まれる。
画像測定装置100は、成形装置420により成形された構造物の形状を測定する測定処理を行う。画像測定装置100は、構造物を測定した測定結果である構造物の座標を示す情報(以後、形状情報と呼ぶ)を制御システム430に出力する。制御システム430は、座標記憶部431と、検査部432とを備える。座標記憶部431は、上述した設計装置410により作成された設計情報を記憶する。
検査部432は、成形装置420により成形された構造物が設計装置410により作成された設計情報に従って成形されたか否かを判定する。換言すると、検査部432は、成形された構造物が良品か否かを判定する。この場合、検査部432は、座標記憶部431に記憶された設計情報を読み出して、設計情報と画像測定装置100から入力した形状情報とを比較する検査処理を行う。検査部432は、検査処理としてたとえば設計情報が示す座標と対応する形状情報が示す座標とを比較し、検査処理の結果、設計情報の座標と形状情報の座標とが一致している場合には設計情報に従って成形された良品であると判定する。設計情報の座標と対応する形状情報の座標とが一致していない場合には、検査部432は、座標の差分が所定範囲内であるか否かを判定し、所定範囲内であれば修復可能な不良品と判定する。
修復可能な不良品と判定した場合には、検査部432は、不良部位と修復量とを示すリペア情報をリペア装置440へ出力する。不良部位は設計情報の座標と一致していない形状情報の座標であり、修復量は不良部位における設計情報の座標と形状情報の座標との差分である。リペア装置440は、入力したリペア情報に基づいて、構造物の不良部位を再加工するリペア処理を行う。リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
図14に示すフローチャートを参照しながら、構造物製造システム400が行う処理について説明する。
ステップS111では、設計装置410はユーザによって構造物の設計を行う際に用いられ、設計処理により構造物の形状に関する設計情報を作成し記憶してステップS112へ進む。なお、設計装置410で作成された設計情報のみに限定されず、既に設計情報がある場合には、その設計情報を入力することで、設計情報を取得するものについても本発明の一態様に含まれる。ステップS112では、成形装置420は成形処理により、設計情報に基づいて構造物を作成、成形してステップS113へ進む。ステップS113においては、画像測定装置100は測定処理を行って、構造物の形状を計測し、形状情報を出力してステップS114へ進む。
ステップS114では、検査部432は、設計装置410により作成された設計情報と画像測定装置100により測定され、出力された形状情報とを比較する検査処理を行って、ステップS115へ進む。ステップS115では、検査処理の結果に基づいて、検査部432は成形装置420により成形された構造物が良品か否かを判定する。構造物が良品である場合、すなわち設計情報の座標と形状情報の座標とが一致する場合には、ステップS115が肯定判定されて処理を終了する。構造物が良品ではない場合、すなわち設計情報の座標と形状情報の座標とが一致しない場合や設計情報には無い座標が検出された場合には、ステップS115が否定判定されてステップS116へ進む。
ステップS116では、検査部432は構造物の不良部位が修復可能か否かを判定する。不良部位が修復可能ではない場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲を超えている場合には、ステップ116が否定判定されて処理を終了する。不良部位が修復可能な場合、すなわち不良部位における設計情報の座標と形状情報の座標との差分が所定範囲内の場合には、ステップS116が肯定判定されてステップS117へ進む。この場合、検査部432はリペア装置440にリペア情報を出力する。ステップS117においては、リペア装置440は、入力したリペア情報に基づいて、構造物に対してリペア処理を行ってステップS113へ戻る。なお、上述したように、リペア装置440は、リペア処理にて成形装置420が行う成形処理と同様の処理を再度行う。
上述した第2の実施の形態による構造物製造システムによれば、以下の作用効果が得られる。
(1)構造物製造システム400の画像測定装置100は、設計装置410の設計処理に基づいて成形装置420により作成された構造物の形状情報を取得する測定処理を行い、制御システム430の検査部432は、測定処理にて取得された形状情報と設計処理にて作成された設計情報とを比較する検査処理を行う。したがって、構造物の欠陥の検査や構造物の内部の情報を非破壊検査によって取得し、構造物が設計情報の通りに作成された良品であるか否かを判定できるので、構造物の品質管理に寄与する。
(2)リペア装置440は、検査処理の比較結果に基づいて、構造物に対して成形処理を再度行うリペア処理を行うようにした。したがって、構造物の不良部分が修復可能な場合には、再度成形処理と同様の処理を構造物に対して施すことができるので、設計情報に近い高品質の構造物の製造に寄与する。
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(変形例1)
上記実施の形態では、予め被測定物Sを測定するための測定手順を定めるティーチングの際に、端部検出パラメータ(検出領域、エッジ検出閾値、エッジ検出方向)を設定する処理を行う例について説明した。しかしながら、ティーチングの際に限らなくてよく、たとえば、被測定物Sに対する端部検出処理の際に上記端部検出パラメータを設定する処理を行うようにしてもよい。
(変形例2)
上述した実施の形態では、検出領域が矩形状である例について説明したが、検出領域の形状はこれに限らなくてよく、たとえば線分形状などであってもよい。
(変形例3)
上記実施の形態では、検出領域内の画素の輝度値を所定方向に一次微分した一次微分値の分布を用いて、エッジ検出方向およびエッジ検出閾値を設定する例について説明した。また、複数の候補領域を設定し、各候補領域内の画素の輝度値を所定方向に一次微分した一次微分値の分布を用いて、検出領域を設定する例について説明した。しかしながら、上述の方法に限らなくてよく、たとえば上記画素の輝度値そのものを用いてもよい。また、上記画素の輝度値の代わりに、たとえば上記画素の色情報など、種々の画素値を用いるようにしてもよい。また、上記一次微分値の代わりに、たとえば二次以上の微分で得られた二次微分値など、この他の演算処理で得られた値を用いてもよい。
(変形例4)
上記実施の形態において、エッジ検出閾値を超える他のピークが目標エッジ対応ピークの両側にある場合にエッジ検出閾値を再設定した際に、目標エッジ対応ピークの両側のいずれにも、再設定したエッジ検出閾値を超える他のピークがなくなる場合も考えられる。このような場合には、方向設定部54は、上記図5のステップS7のように、x軸正方向およびx軸負方向のいずれかをエッジ検出方向として設定すればよい。また、たとえば、方向設定部54は、目標エッジ対応ピークの両側のうち、再設定前のエッジ検出閾値を超える他のピークの数の少ない側から多い側へ向かう方向にエッジ検出方向を設定するようにしてもよい。
(変形例5)
上記実施の形態では、画像測定装置100の内部に、端部検出パラメータ(検出領域、エッジ検出閾値、エッジ検出方向)の設定機能を有する画像処理装置60が設けられている例について説明した。しかしながら、上記画像処理装置60の機能の全部または一部が画像測定装置100の外部に設けられていてもよい。たとえば、画像測定装置100に外部のティーチングユニットが接続される場合に、このティーチングユニットが上記画像処理装置60の機能の全部または一部を有していてもよい。
(変形例6)
上述の実施の形態では、画像を用いた画像測定処理装置を例に挙げたが、これに限定されない。例えば、X線を用いた測定装置であっても良い。X線を用いた測定装置としては、例えば、米国特許2013−0083896号に開示されている。勿論、赤外線を用いた測定装置でも構わない。すなわち測定に用いる波長は上述の実施形態に限られない。また、本実施の形態においては、被測定物Sで反射する画像を用いた測定装置を例に挙げたが、X線を用いた装置のように、被測定物Sを透過する画像でも構わない。また、本実施の形態では、被測定物Sの表面画像を用いた場合を例に挙げたが、これに限られない。例えば、被測定物Sの内部情報に基づく画像を用いても構わない。例えば、X線を用いた測定装置を用いて被測定物Sの内部情報を求めても構わない。例えば、米国特許2013−008396号に開示されている。この場合、被測定物Sに対して複数の方向から照射された複数の透過画像を用いて再構成処理を行い、被測定物Sの内部を含む形状情報を取得する。この再構成後の形状情報に対して、所定平面での断面画像を用いても構わない。被測定物Sの断面画像の再構成方法として、例えば、フィルタ補正逆投影法および逐次近似法が挙げられる。逆投影法およびフィルタ補正逆投影法に関しては、例えば、米国特許出願公開第2002/0154728号に記載されている。また、逐次近似法に関しては、例えば、米国特許出願公開2010/0220908号に記載されている。
(変形例7)
上記実施の形態では、画像測定装置100のホストコンピュータ4の制御装置44が実行する種々のプログラム(たとえば、図5のフローチャートで示した画像処理プログラム)が予めハードディスク49に格納されている例を説明した。上記プログラムは、CD−ROMなどの記録媒体やインターネットなどのデータ信号を通じてホストコンピュータ4に提供することができる。図15は、その様子を示す図である。ホストコンピュータ4は、例えばCD−ROM104を介してプログラムの提供を受ける。また、ホストコンピュータ4は通信回線101との接続機能を有する。サーバーコンピュータ102は上記プログラムを提供するコンピュータであり、ハードディスク103などの記録媒体にプログラムを格納する。通信回線101は、インターネットなどの通信回線、あるいは専用通信回線などである。サーバーコンピュータ102はハードディスク103を使用してプログラムを読み出し、通信回線101を介してプログラムをホストコンピュータ4に送信する。すなわち、プログラムをデータ信号として搬送波にのせて、通信回線101を介して送信する。このように、プログラムは、記録媒体やデータ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給できる。
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
なお、上述の各実施の形態または変形例の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施の形態または変形例で引用した検出装置などに関するすべての公開公報および米国特許の開示を援用して本文の記載の一部とする。
1…撮像ユニット、2…光源ユニット、3…インターフェイスユニット、4…ホストコンピュータ、13…光学系ユニット、14…結像光学系、15…撮像装置、40…コンピュータ本体、41…キーボード、42…マウス、43…ディスプレイ、44…制御装置、45…メモリ、49…ハードディスク、51…端部指定部、52…検出領域設定部、53…分布取得部、54…方向設定部、55…閾値設定部、56…表示制御部、60…画像処理装置、100…画像測定装置、400…構造物製造システム、410…設計装置、420…成形装置、430…制御システム、432…検査部、440…リペア装置、521…候補領域設定部、522…延在分布取得部、523…領域選択部

Claims (20)

  1. 被測定物を撮像して得られる撮像画像内において、前記被測定物の端部を指定する端部指定部と、
    前記端部指定部により指定される端部を含む前記撮像画像内の一部の領域を端部検出領域として設定する端部検出領域設定部と、
    前記端部検出領域内の所定方向での画素値の分布を取得する分布取得部と、
    前記分布取得部で取得される分布の形状を用いて、前記端部検出領域内に含まれる複数の端部のうち前記端部指定部により指定される端部に対する検出方向を設定する方向設定部と、
    を備える画像処理装置。
  2. 請求項1に記載の画像処理装置において、
    前記分布取得部で取得される前記端部検出領域内の所定方向での画素値の分布は、前記端部検出領域の所定方向での輝度の分布である、画像処理装置。
  3. 請求項1又は2に記載の画像処理装置において、
    前記分布取得部は、前記端部検出領域内の画素値を所定方向に微分した微分値の分布を取得する、画像処理装置。
  4. 請求項3に記載の画像処理装置において、
    前記分布取得部で取得される分布の形状は、前記微分値の分布におけるピークの高さを含み、
    前記方向設定部は、前記ピークの高さに基づいて前記検出方向を設定する、画像処理装置。
  5. 請求項1乃至4の何れか一項に記載の画像処理装置において、
    前記端部指定部により指定される端部に対応する画素値に基づいて、前記端部を検出するための閾値を設定する閾値設定部をさらに備える画像処理装置。
  6. 請求項5に記載の画像処理装置において、
    前記閾値設定部は、前記端部検出領域内の画素値を所定方向に微分した微分値の分布における、前記端部指定部により指定される端部に対応する端部対応ピークの高さに基づいて、前記閾値を設定する、画像処理装置。
  7. 請求項6に記載の画像処理装置において、
    前記方向設定部は、前記微分値の分布における前記端部対応ピーク以外の他のピークであって前記閾値を超えるピークが前記端部指定部により指定される端部の両側のうちの一方側のみにある場合は、前記両側のうちの他方側から一方側へ向かう方向を、前記検出方向として設定する、画像処理装置。
  8. 請求項7に記載の画像処理装置において、
    前記閾値設定部は、前記閾値を超える前記他のピークが前記端部指定部により指定される端部の両側にある場合は、前記閾値を超える前記他のピークが前記両側のうちの一方側のみとなるように前記閾値を再設定する画像処理装置。
  9. 請求項7または8に記載の画像処理装置において、
    前記端部対応ピークを超える前記他のピークが前記端部指定部により指定される端部の両側にある場合は、前記方向設定部による前記検出方向の設定を行わない旨を表示部に表示させる表示制御部をさらに備える画像処理装置。
  10. 請求項1乃至9の何れか一項に記載の画像処理装置において、
    前記端部検出領域設定部は、
    前記撮像画像内に、前記端部指定部により指定される端部を含み延在方向がそれぞれ異なる複数の領域を候補領域として設定する候補領域設定部と、
    複数の前記候補領域の各々において、前記延在方向での画素値の分布を取得する延在分布取得部と、
    複数の前記候補領域の各々における前記分布の前記端部指定部により指定される端部に対応する値に基づいて、複数の前記候補領域のうちの一つを前記端部検出領域として選択する領域選択部と、
    を有し、
    前記領域選択部により選択された前記端部検出領域の延在方向を前記所定方向とする画像処理装置。
  11. 請求項10に記載の画像処理装置において、
    前記延在分布取得部により取得される前記延在方向での画素値の分布は、前記候補領域内の画素値を前記延在方向に微分した微分値の分布である、画像処理装置。
  12. 請求項1乃至11の何れか一項に記載の画像処理装置において、
    前記被測定物を撮像して得られる撮像画像は、前記被測定物を測定するための測定手順を定めるために用いられる、画像処理装置。
  13. 請求項1乃至12の何れか一項に記載の画像処理装置と、
    前記被測定物を撮像して得られる撮像画像を取得する撮像部と、
    を備える画像測定装置。
  14. 被測定物を撮像して得られる撮像画像内において、前記被測定物の端部を指定することと、
    前記指定される端部を含む前記撮像画像内の一部の領域を端部検出領域として指定することと、
    前記端部検出領域内の所定方向での画素値の分布を取得することと、
    前記取得される分布の形状を用いて、前記端部検出領域内に含まれる複数の端部のうち前記指定される端部に対する検出方向を設定することと、
    を含む画像処理方法。
  15. 被測定物を撮像して得られる撮像画像内において、前記被測定物の端部を指定する処理と、
    前記指定される端部を含む前記撮像画像内の一部の領域を端部検出領域として指定する処理と、
    前記端部検出領域内の所定方向での画素値の分布を取得する処理と、
    前記取得される分布の形状を用いて、前記端部検出領域内に含まれる複数の端部のうち前記指定される端部に対する検出方向を設定する処理と、
    をコンピュータに実行させるための画像処理プログラム。
  16. 被測定物を撮像して得られる撮像画像内において、前記被測定物の端部を指定する端部指定部と、
    前記撮像画像内に、前記端部指定部により指定される端部を含み延在方向がそれぞれ異なる複数の領域を候補領域として設定する候補領域設定部と、
    前記複数の前記候補領域内の各々において、前記延在方向での画素値の分布を取得する延在分布取得部と、
    複数の前記候補領域の各々における前記分布の前記端部指定部により指定される端部に対応する値に基づいて、複数の前記候補領域のうちの一つを端部検出領域として選択する領域選択部と、
    を備える画像処理装置。
  17. 請求項16に記載の画像処理装置において、
    前記延在分布取得部により取得される前記延在方向での画素値の分布は、前記候補領域内の画素値を前記延在方向に微分した微分値の分布である、画像処理装置。
  18. 構造物の形状に関する設計情報を作成し、
    前記設計情報に基づいて前記構造物を作成し、
    作成された前記構造物の形状を、請求項13に記載の画像測定装置を用いて計測して形状情報を取得し、
    前記取得された前記形状情報と前記設計情報とを比較する構造物の製造方法。
  19. 請求項18に記載の構造物の製造方法において、
    前記形状情報と前記設計情報との比較結果に基づいて実行され、前記構造物の再加工を行う構造物の製造方法。
  20. 請求項19に記載の構造物の製造方法において、
    前記構造物の再加工は、前記設計情報に基づいて前記構造物の作成を再度行う構造物の製造方法。
JP2014196659A 2014-09-26 2014-09-26 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法 Pending JP2016070683A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014196659A JP2016070683A (ja) 2014-09-26 2014-09-26 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196659A JP2016070683A (ja) 2014-09-26 2014-09-26 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法

Publications (1)

Publication Number Publication Date
JP2016070683A true JP2016070683A (ja) 2016-05-09

Family

ID=55866520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196659A Pending JP2016070683A (ja) 2014-09-26 2014-09-26 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法

Country Status (1)

Country Link
JP (1) JP2016070683A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044824A (ja) * 2016-09-13 2018-03-22 大日本印刷株式会社 造形物検査装置、造形物検査制御装置および造形物検査方法
JP2019169007A (ja) * 2018-03-23 2019-10-03 株式会社熊本精研工業 加工対象物の加工計測装置
JP7390743B2 (ja) 2022-01-05 2023-12-04 株式会社 Sai 物体測定装置及び物体測定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018044824A (ja) * 2016-09-13 2018-03-22 大日本印刷株式会社 造形物検査装置、造形物検査制御装置および造形物検査方法
JP2019169007A (ja) * 2018-03-23 2019-10-03 株式会社熊本精研工業 加工対象物の加工計測装置
JP7390743B2 (ja) 2022-01-05 2023-12-04 株式会社 Sai 物体測定装置及び物体測定方法

Similar Documents

Publication Publication Date Title
US9329024B2 (en) Dimension measuring apparatus, dimension measuring method, and program for dimension measuring apparatus
US9959451B2 (en) Image inspection device, image inspection method and image inspection program
KR101078781B1 (ko) 3차원 형상 검사방법
JP7143057B2 (ja) 三次元測定装置
JP5597056B2 (ja) 画像測定装置、画像測定方法及び画像測定装置用のプログラム
JP5997989B2 (ja) 画像測定装置、その制御方法及び画像測定装置用のプログラム
TW201020511A (en) Method of measuring a three-dimensional shape
KR101241175B1 (ko) 실장기판 검사장치 및 검사방법
US20160054119A1 (en) Shape measurement device, structure production system, shape measurement method, structure production method, and shape measurement program
US9772480B2 (en) Image measurement device
JP2007327836A (ja) 外観検査装置及び方法
WO2012043058A1 (ja) 検査装置、検査方法及びプログラム
WO2012057284A1 (ja) 三次元形状測定装置、三次元形状測定方法、構造物の製造方法および構造物製造システム
US20130010107A1 (en) Method for measuring height, non-transitory computer readable medium storing a program for measuring height, and height measuring apparatus
KR20150022463A (ko) 기판 검사 장치
JP2016070683A (ja) 画像処理装置、画像測定装置、画像処理方法、画像処理プログラムおよび構造物の製造方法
JP6829992B2 (ja) 光走査高さ測定装置
US20170069110A1 (en) Shape measuring method
JP2017032340A (ja) 三次元画像検査装置、三次元画像検査方法及び三次元画像検査プログラム並びにコンピュータで読み取り可能な記録媒体
JP5191265B2 (ja) 光学顕微鏡装置及び光学顕微鏡用データ処理装置
JP6287153B2 (ja) センサユニット、形状測定装置、及び構造物製造システム
JP2015210396A (ja) アライメント装置、顕微鏡システム、アライメント方法、及びアライメントプログラム
JP6840590B2 (ja) 校正用システム、校正治具、校正方法、及び校正用プログラム
KR20200014137A (ko) 고집적 인쇄회로기판의 초고해상 고속 병렬처리 자동검사장치
WO2016067423A1 (ja) 画像測定装置、構造物の製造方法、画像測定方法および画像測定プログラム