JP2016069058A - Leakage detection device of soft packaging container - Google Patents

Leakage detection device of soft packaging container Download PDF

Info

Publication number
JP2016069058A
JP2016069058A JP2014202374A JP2014202374A JP2016069058A JP 2016069058 A JP2016069058 A JP 2016069058A JP 2014202374 A JP2014202374 A JP 2014202374A JP 2014202374 A JP2014202374 A JP 2014202374A JP 2016069058 A JP2016069058 A JP 2016069058A
Authority
JP
Japan
Prior art keywords
chamber
inspected
packaging container
region
optical displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014202374A
Other languages
Japanese (ja)
Other versions
JP6421523B2 (en
Inventor
智仁 横井
Tomohito Yokoi
智仁 横井
宏行 小林
Hiroyuki Kobayashi
宏行 小林
康伸 南雲
Yasunobu Nagumo
康伸 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2014202374A priority Critical patent/JP6421523B2/en
Publication of JP2016069058A publication Critical patent/JP2016069058A/en
Application granted granted Critical
Publication of JP6421523B2 publication Critical patent/JP6421523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a leakage detection device of a soft packaging container accurately and quickly detecting leakage of a specified region having a three-dimensional molding portion or the like.SOLUTION: A leakage detection device of a soft packaging container includes: a chamber which is formed by a pair of chamber vessels and stores a region to be inspected of the soft packaging container therein; pressure adjustment means for sucking air in a space in the chamber; optical displacement sensors which are respectively provided outside the pair of chamber vessels so as to measure the displacement of the region to be inspected which is stored in the chamber; and leakage determination means for determining leakage of the region to be inspected from the displacement of the region to be inspected which is measured by the optical displacement sensors. Each of the pair of chamber vessels includes a transparent window transmitting light ray of the optical displacement sensors to a surface facing the optical displacement sensors.SELECTED DRAWING: Figure 4

Description

本発明は、パウチ等の軟包装容器における漏れ(穴開き)を検出する漏れ検出装置に関し、さらには、圧力調整されたチャンバー内部に収容された軟包装容器の被検査領域の変位を光学式変位センサで計測することにより、軟包装容器の漏れを検出する漏れ検出装置に関する。   The present invention relates to a leak detection device for detecting a leak (opening) in a soft packaging container such as a pouch, and further, optical displacement is applied to the displacement of an inspected area of a soft packaging container accommodated in a pressure-adjusted chamber. The present invention relates to a leak detection device that detects a leak of a flexible packaging container by measuring with a sensor.

日常生活において、主要な消費商品である調味料や洗剤等の内容物は、プラスチックボトルに充填して販売されているが、省資源や環境保護の面から、消費後のプラスチックボトルに、詰め替え用として廃棄しやすい軟包装容器に充填、密封されている内容物を詰め替え、プラスチックボトルを繰り返して使用することが多くなっている。
そして、繰り返し使用するプラスチックボトルに詰め替える際に、内容物を注ぎやすくするために、詰め替え用の軟包装容器として、パウチに立体的な注出口(ノズル)成形を施した注出口付パウチ(注出機能付き包装袋)が広く使用されている。(特許文献1)
In daily life, contents such as seasonings and detergents, which are the main consumer products, are sold in plastic bottles. However, from the viewpoint of resource conservation and environmental protection, they can be refilled into plastic bottles after consumption. As a flexible packaging container that is easy to dispose of, the contents that are filled and sealed are refilled, and plastic bottles are repeatedly used.
In order to make it easier to pour the contents when refilling plastic bottles that are used repeatedly, as a soft packaging container for refilling, a pouch with a spout (pouring) with a three-dimensional spout (nozzle) formed on the pouch Functional packaging bags) are widely used. (Patent Document 1)

一方、柔軟性を有する包装体や変形可能な蓋を有する容器をチャンバー内部に収容し、チャンバー内部の圧力を減圧させた際の柔軟性を有する包装体膨れ変化量もしくはチャンバー内を加圧した後の蓋の変位を測定することにより、包装体や容器の密閉度を検出することができる検査装置が知られている。(特許文献2、3)   On the other hand, after a flexible packaging body or a container having a deformable lid is accommodated inside the chamber and the pressure inside the chamber is reduced, the flexible packaging body swelling change amount or after pressurizing the inside of the chamber There is known an inspection apparatus that can detect the degree of sealing of a package or a container by measuring the displacement of the lid. (Patent Documents 2 and 3)

また、フィルム製包装体の蓋付き栓を一対の小型チャンバーで気密に囲繞するとともに、栓における船形台座を挟持体により挟圧した状態でチャンバー内を減圧した後、挟持体による挟圧を緩めたときのチャンバー内の圧力変化を検出することにより、フィルム製包装体に設けた蓋付き栓とフィルムとの間の空気の漏洩を検出する検出装置は知られている。(特許文献4)   In addition, the cap with lid of the film packaging body was hermetically surrounded by a pair of small chambers, and after the chamber was depressurized while the ship-shaped pedestal in the plug was clamped by the clamping body, the clamping pressure by the clamping body was relaxed A detection device that detects leakage of air between a cap with a lid provided on a film-made package and a film by detecting a change in pressure in the chamber is known. (Patent Document 4)

特開2000−177756JP 2000-177756 A 特開昭60−202341JP-A-60-202341 特開2000−88694JP 2000-88694 A 特開2005−207806JP-A-2005-207806

特許文献1に示されているパウチ等の軟包装容器では、注出口部等の所定領域を立体的に成形することにより、その形成段階や軟包装容器の搬送段階において立体成形部、および、その近傍にピンポール等の穴やクラック等のひび割れ(以下、これらを総じて穴開きと称する。)が発生する可能性がある。このため、内容物を充填、密封した軟包装容器の内容物漏洩の原因となる所定領域の穴開きを有効に検出する必要がある。   In a soft packaging container such as a pouch shown in Patent Document 1, by forming a predetermined region such as a spout part in a three-dimensional manner, a three-dimensionally molded part in the formation stage and the conveyance stage of the flexible packaging container, and its There is a possibility that a hole such as a pin pole or a crack such as a crack (hereinafter collectively referred to as a hole opening) may occur in the vicinity. For this reason, it is necessary to detect effectively the opening of the predetermined area | region which causes the content leakage of the soft packaging container with which the content was filled and sealed.

また、特許文献2、3に記載されている検査装置は、被検査対象である包装体や容器の全体をチャンバー内に収容して密閉度を検査するため、被検査対象の全体的な密閉度を検査することはできるが、軟包装容器の立体的な注出口部などの穴開きが発生する可能性がある所定領域を集中して検査をするものではなかった。そのため、チャンバーが大型化してしまい、チャンバー内部の減圧等に時間がかかるなどの課題があった。
また、内容物充填密封前のパウチ等の軟包装容器など、曲がりやたわみ等の変形し易い被検査対象の変位の計測には対応できず、正確に変位を計測することができなかった。
Moreover, since the inspection apparatus described in Patent Documents 2 and 3 contains the entire package or container to be inspected in a chamber and inspects the sealing degree, the overall sealing degree of the inspected object However, it was not intended to focus on a predetermined area where a hole such as a three-dimensional spout of a soft packaging container may be perforated. For this reason, the chamber is enlarged, and there is a problem that it takes time to depressurize the chamber.
In addition, it cannot cope with the measurement of the displacement of the object to be inspected, such as a flexible packaging container such as a pouch before filling and sealing the contents, which is easily deformed, and the displacement cannot be measured accurately.

一方、特許文献4に記載されている検査装置は、圧力センサや挟持体をチャンバー内に配置させる必要があることから、装置構成が複雑にならざるを得ないという課題があった。   On the other hand, the inspection apparatus described in Patent Document 4 has a problem that the apparatus configuration has to be complicated because it is necessary to arrange the pressure sensor and the sandwiching body in the chamber.

本発明は、これらの問題点を解決するものであり、立体成形部分等を有する特定領域の漏れを正確かつ迅速に検出する軟包装容器の漏れ検出装置を提供することを目的とするものである。   The present invention solves these problems, and an object of the present invention is to provide a leak detection device for a flexible packaging container that accurately and quickly detects a leak in a specific region having a three-dimensionally shaped portion or the like. .

本発明の軟包装容器の漏れ検出装置は、前記課題を解決するために、一対のチャンバー容器により形成され、内部に軟包装容器の被検査領域を収容するチャンバーと、チャンバー内部の空間の空気を吸引する真空発生手段と、一対のチャンバー容器外方にそれぞれ設けられ、チャンバー内部に収容された被検査領域の変位を計測する一対の光学式変位センサと、前記光学式変位センサにより計測された被検査領域の変位から被検査領域の漏れを判定する漏れ判定手段とを備え、前記一対のチャンバー容器は、光学式変位センサに対向する面に光学式変位センサの光線を透過する透明窓が設けられているものである。   In order to solve the above-mentioned problem, a leak detection apparatus for a flexible packaging container according to the present invention is formed by a pair of chamber containers, and contains a chamber for accommodating an inspected region of the flexible packaging container, and air in the space inside the chamber. Vacuum generating means for sucking, a pair of optical displacement sensors provided outside the pair of chamber containers, respectively, for measuring the displacement of the region to be inspected, and a target measured by the optical displacement sensor Leakage determining means for determining leakage of the region to be inspected from displacement of the inspection region, and the pair of chamber containers are provided with a transparent window that transmits the light beam of the optical displacement sensor on a surface facing the optical displacement sensor. It is what.

軟包装容器の被検査領域の変位を計測する光学式変位センサがチャンバーを形成する一対のチャンバー容器の外方にそれぞれ設けられているので、被検査領域の膨張による変位を正確に計測することができ、被検査領域の漏れの有無を正確かつ迅速に検出することができる。   Optical displacement sensors that measure the displacement of the inspected area of the flexible packaging container are respectively provided outside the pair of chamber containers forming the chamber, so that the displacement due to the expansion of the inspected area can be accurately measured. It is possible to accurately and quickly detect the presence or absence of leakage in the inspection area.

(a)は、本発明の実施形態に係る漏れ検出装置の概略説明図、(b)は、漏れ検出の対象となる軟包装容器の概略説明図である。(A) is a schematic explanatory drawing of the leak detection apparatus which concerns on embodiment of this invention, (b) is a schematic explanatory drawing of the flexible packaging container used as the object of leak detection. (a)は、本発明の実施形態に係る漏れ検出装置のチャンバーの平面図、(b)は、同側面図である。(A) is a top view of the chamber of the leak detection apparatus which concerns on embodiment of this invention, (b) is the same side view. 本発明の実施形態に係る漏れ検出装置による漏れ検出工程を説明する図であって、被検査領域を検出位置に配置する状態を説明する図である。It is a figure explaining the leak detection process by the leak detection apparatus which concerns on embodiment of this invention, Comprising: It is a figure explaining the state which arrange | positions a to-be-inspected area | region in a detection position. 本発明の実施形態に係る漏れ検出装置による漏れ検出工程を説明する図であって、チャンバー内部に収容した被検査領域の変位を計測する状態を説明する図である。It is a figure explaining the leak detection process by the leak detection apparatus which concerns on embodiment of this invention, Comprising: It is a figure explaining the state which measures the displacement of the to-be-inspected area | region accommodated in the inside of a chamber. 本発明の実施形態に係る漏れ検出装置による漏れ検出工程を説明する図であって、被検査領域の変位を計測後、チャンバー内部の真空を大気圧に解放する状態を説明する図である。It is a figure explaining the leak detection process by the leak detection apparatus which concerns on embodiment of this invention, Comprising: After measuring the displacement of a to-be-inspected area | region, it is a figure explaining the state which releases the vacuum inside a chamber to atmospheric pressure. 本発明の実施形態に係る漏れ検出装置の真空発生手段に係る真空電磁弁及び真空破壊手段に係る真空破壊電磁弁の駆動状態、軟包装容器被検査領域の変化量、及び、チャンバー内部の圧力の関係を示すグラフである。Of the vacuum electromagnetic valve related to the vacuum generating means and the vacuum breaking electromagnetic valve related to the vacuum breaking means of the leak detection device according to the embodiment of the present invention, the amount of change in the inspected area of the soft packaging container, and the pressure inside the chamber It is a graph which shows a relationship. 本発明の実施形態に係る漏れ検出装置の光学式変位センサによる計測状態を説明する図であり、(a)は、通常時における軟包装容器の計測状態、(b)は、軟包装容器に曲がりが生じた場合の計測状態を説明する図である。It is a figure explaining the measurement state by the optical displacement sensor of the leak detection apparatus which concerns on embodiment of this invention, (a) is the measurement state of the flexible packaging container in the normal time, (b) is bent to a flexible packaging container. It is a figure explaining the measurement state when this occurs. 本発明の実施形態に係る漏れ検出装置の判定手段による判定方法を説明する図である。It is a figure explaining the determination method by the determination means of the leak detection apparatus which concerns on embodiment of this invention.

−漏れ検出装置の構成−
(全体の構成)
本発明の実施形態に係る漏れ検出装置を図面を参照して説明する。
本発明の漏れ検出装置Aは、図1(a)に示すように、内部に被検査領域を収容するチャンバー1を構成する一対のチャンバー容器11,12と、チャンバー1内部の空気を吸引する真空発生手段21と、チャンバー容器11,12それぞれの外方に配置され、チャンバー1内部に収容された被検査領域の変位を計測する一対の光学式変位センサ3a,3bと、光学式変位センサ3a,3bにより計測された被検査領域の変位から漏れを判定する漏れ判定手段(図示しない。)とにより構成されている。
-Configuration of leak detection device-
(Overall configuration)
A leak detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1A, a leak detection apparatus A according to the present invention includes a pair of chamber containers 11 and 12 that constitute a chamber 1 that houses a region to be inspected, and a vacuum that sucks air inside the chamber 1. A pair of optical displacement sensors 3a and 3b that are disposed outside the generating means 21 and the chamber containers 11 and 12 and measure the displacement of the region to be inspected contained in the chamber 1, and the optical displacement sensors 3a and 3a, It is comprised with the leak determination means (not shown) which determines a leak from the displacement of the to-be-inspected area | region measured by 3b.

本発明の漏れ検出装置により漏れを検出する、軟包装容器の被検査領域の一例を、図1(b)に示す注出口付パウチ5を用いて説明する。注出口付パウチ5は、プラスチックフィルムをヒートシールしてなり、注出口部51を有するパウチ5(包装袋)として形成されている。注出口部51の近傍には図示しないノッチ等の切り込みが設けられ、切り込みから注出口部先端を引きちぎることにより注出口部を開口し、そこから詰め替え容器、例えば液体洗剤等の内容物を注ぎ込んで詰め替えることができる。そして、注出口部51には膨らみのある立体成形部52が形成され、内容物の注ぎ込み時に注出口部が閉塞することがないよう流路を確保し、また注出口部51の折れ曲がり等を防止して安定した内容物の注出を行うことができる。そして、この立体成形部52を含む注出口部51周辺が本実施形態における被検査領域Bとなる。   An example of the inspected area of the flexible packaging container, in which leakage is detected by the leak detection device of the present invention, will be described using a pouch 5 with a spout as shown in FIG. The pouch 5 with a spout is formed by heat-sealing a plastic film and is formed as a pouch 5 (packaging bag) having a spout 51. A notch or the like not shown is provided in the vicinity of the spout 51, and the spout is opened by tearing the tip of the spout from the cut, and a refill container such as a liquid detergent is poured into the spout. Can be refilled. The spout portion 51 is formed with a bulging three-dimensional molded portion 52 to secure a flow path so that the spout portion is not blocked when the contents are poured, and prevents the spout portion 51 from being bent. Thus, stable contents can be poured out. Then, the periphery of the spout 51 including the three-dimensionally shaped part 52 is the inspection area B in this embodiment.

(チャンバー)
チャンバー1を形成するチャンバー容器11、12は、たとえばステンレスやアルミ合金等の金属材料から形成された部材の内部を、パウチ5の被検査領域Bの外周に対応した形状(例えば被検査領域Bの外周に沿う形状)にくり抜いてなる壁部材11a,12a同士が離反する側の面(図1の壁部材11aの上側、および、壁部材12aの下側)に、光学式変位センサの光線が透過できるアクリル等の合成樹脂やガラス等からなる透明板11b,12bを固定することにより底部に透明窓を有する箱状に形成されている。そして、壁部材11a,12a同士が対向する側の面(図1の壁部材11aの下側、および、壁部材12aの上側)が当接部11c,12cとして構成される。そして、チャンバー1を形成した際に密閉性を高めるため、また、パウチ5を挟み込む際にパウチ5の傷つきを防止するために、当接部11c,12cの少なくとも一方(本実施形態においては当接部11c)にウレタンゴム等の弾性材11dが設けられている。なお、チャンバー1の密閉性が保てる場合には、弾性材11dは必ずしも必要ではない。
(Chamber)
The chamber containers 11 and 12 that form the chamber 1 have a shape corresponding to the outer periphery of the inspection area B of the pouch 5 (for example, the inspection area B). The light beam of the optical displacement sensor is transmitted to the surfaces (the upper side of the wall member 11a in FIG. 1 and the lower side of the wall member 12a) on the side where the wall members 11a and 12a are separated from each other (the shape along the outer periphery). By fixing the transparent plates 11b and 12b made of synthetic resin such as acrylic or glass or the like, it is formed in a box shape having a transparent window at the bottom. And the surface (the lower side of the wall member 11a of FIG. 1 and the upper side of the wall member 12a) of the side which wall members 11a and 12a oppose is comprised as contact part 11c, 12c. In order to improve the sealing performance when the chamber 1 is formed, and to prevent the pouch 5 from being damaged when the pouch 5 is sandwiched, at least one of the contact portions 11c and 12c (in the present embodiment, the contact portion 11c). The part 11c) is provided with an elastic material 11d such as urethane rubber. Note that the elastic material 11d is not necessarily required when the sealing property of the chamber 1 can be maintained.

チャンバー容器11,12の壁部材11a,12aの当接部11c,12cの内縁は被検査領域Bの外周に対応した形状をしているので、チャンバー1内部に無駄な空間が少なく、後述するチャンバー1内部の圧力の調節が迅速にできる。また、図2のようにチャンバー容器11,12の当接部11c,12cを直接当接、または、パウチの被検査領域Bの外周ごと挟持して密閉して被検査領域Bをチャンバー1内部に収容することにより、パウチ5の立体成形部52およびその周辺箇所の検査を行いたい領域を特定して検査を行うことができる。   Since the inner edges of the contact portions 11c and 12c of the wall members 11a and 12a of the chamber containers 11 and 12 have a shape corresponding to the outer periphery of the inspection area B, there is little wasted space inside the chamber 1, and the chamber described later 1 The internal pressure can be quickly adjusted. Further, as shown in FIG. 2, the contact portions 11 c and 12 c of the chamber containers 11 and 12 are directly contacted, or the outer periphery of the inspection region B of the pouch is sandwiched and sealed to place the inspection region B inside the chamber 1. By accommodating, it is possible to specify and inspect a region where it is desired to inspect the three-dimensionally shaped portion 52 of the pouch 5 and its peripheral portion.

そして、一対のチャンバー容器11,12は、図示しないアクチュエータの動力により、当接部11c,12c同士が当接、または、パウチの被検査領域Bの外周ごと挟持して密閉する密閉状態、及び、当接部11c,12c同士が離間する開放状態に移動可能に構成されており、チャンバー容器11,12の当接部11c,12cを密閉状態にすることにより、内部に密閉空間を備えるチャンバー1が構成される。
なお、漏れ検出装置Aに対するパウチ5の被検査領域Bの配置動作等に支障がなければ、チャンバー容器11,12の一方を固定し、他方のみを移動可能に構成することにより密閉状態と開放状態とを切り替えてもよい。
The pair of chamber containers 11 and 12 are in a sealed state in which the contact portions 11c and 12c are in contact with each other by the power of an actuator (not shown), or are sandwiched and sealed together with the outer periphery of the inspection region B of the pouch, and The abutting portions 11c and 12c are configured to be movable in an open state in which the abutting portions 11c and 12c are separated from each other, and the chamber 1 having a sealed space inside is formed by sealing the abutting portions 11c and 12c of the chamber containers 11 and 12. Composed.
If there is no problem in the placement operation of the inspection region B of the pouch 5 with respect to the leak detection device A, one of the chamber containers 11 and 12 is fixed and only the other is movable, so that the sealed state and the open state are maintained. And may be switched.

(真空発生手段)
真空発生手段21は、チャンバー1内部の空気を吸引し、チャンバー1内部を真空にする真空発生装置21aと、真空発生装置21aに接続されてチャンバー1内部の負圧状態を調節する真空圧力調整装置21bと、真空圧力調整装置21bに接続されて真空発生装置21aとチャンバー1内部との間の開放、及び閉鎖を切り替える真空電磁弁21cとからなる。
(Vacuum generation means)
The vacuum generating means 21 sucks air inside the chamber 1 and vacuums the inside of the chamber 1, and a vacuum pressure adjusting device that is connected to the vacuum generating device 21 a and adjusts the negative pressure state inside the chamber 1. 21b, and a vacuum electromagnetic valve 21c that is connected to the vacuum pressure adjusting device 21b and switches between opening and closing between the vacuum generating device 21a and the inside of the chamber 1.

(真空破壊手段)
真空破壊手段22は、大気圧(ゲージ圧0kPa、絶対圧101.3kPa)より高い正圧の圧縮空気を発生させて送り込む圧縮空気発生装置22aと、圧縮空気発生装置22aに接続されて送り込まれる圧縮空気の圧力を調整する真空破壊圧力調整装置22bと、真空破壊圧力調整装置22bに接続されて真空破壊圧力調整装置22bとチャンバー1内部との間の開放及び閉鎖を切り替える真空破壊電磁弁22cとからなる。
(Vacuum breaking means)
The vacuum breaker 22 generates a compressed air having a positive pressure higher than the atmospheric pressure (gauge pressure 0 kPa, absolute pressure 101.3 kPa) and sends the compressed air to the compressed air generator 22a. From a vacuum breaking pressure adjusting device 22b for adjusting the pressure of air, and a vacuum breaking electromagnetic valve 22c connected to the vacuum breaking pressure adjusting device 22b and switching between opening and closing between the vacuum breaking pressure adjusting device 22b and the inside of the chamber 1 Become.

そして、図2に示すように、真空電磁弁21cの出力管21dと真空破壊電磁弁22cの出力管22dは合流して連通管23に接続され、連通管23はチャンバー1内部へ、パウチ5の被検査領域B外の開口23aに配管され連通している。したがって、真空発生手段21によるチャンバー1内部の空気の吸引、及び、真空破壊手段22によるチャンバー1内部への空気の圧送に伴う空気流による被検査領域Bの曲がりや振動を防止できるため、被検査領域Bの変位の計測を安定した状態で行うことができる。   As shown in FIG. 2, the output pipe 21d of the vacuum electromagnetic valve 21c and the output pipe 22d of the vacuum breaking electromagnetic valve 22c merge and are connected to the communication pipe 23. The communication pipe 23 is connected to the inside of the chamber 1, and the pouch 5 A pipe is connected to and communicated with the opening 23a outside the inspection area B. Therefore, since the vacuum generating means 21 can prevent the bending of the inspected area B and the vibration due to the air flow accompanying the suction of the air inside the chamber 1 and the vacuum breaking means 22 to the air inside the chamber 1, Measurement of the displacement of the region B can be performed in a stable state.

(光学式変位センサ)
光学式変位センサ3a,3bは、それぞれ一対のチャンバー容器11,12の外方に配置されており、投光部より照射したレーザ等の光線をチャンバー容器11,12それぞれの透明窓を介して被検査領域B内の計測箇所に投光し、計測箇所より反射する反射光を受光することにより、被検査領域B内の計測箇所の変位を計測する。
(Optical displacement sensor)
The optical displacement sensors 3a and 3b are disposed outside the pair of chamber containers 11 and 12, respectively, and are irradiated with light beams such as laser beams emitted from the light projecting unit through the transparent windows of the chamber containers 11 and 12, respectively. By projecting light to a measurement location in the inspection area B and receiving reflected light reflected from the measurement location, the displacement of the measurement location in the inspection area B is measured.

−漏れ検出装置による変位の計測方法−
図3乃至6を参照して、本発明の漏れ検出装置Aによる被検査領域Bの変位の計測方法について説明する。
図3に示すように、例えば、製造ラインにより製造されたパウチ5は、図示しない搬送手段により矢印アに示す方向に搬送され、その注出口部51を含む被検査領域Bが、離間状態に移動された上下一対のチャンバー容器11,12の間に位置決めされる。
-Displacement measurement method using leak detector-
With reference to FIG. 3 thru | or 6, the measuring method of the displacement of the to-be-inspected area | region B by the leak detection apparatus A of this invention is demonstrated.
As shown in FIG. 3, for example, the pouch 5 manufactured by the manufacturing line is transported in the direction indicated by the arrow A by a transport means (not shown), and the inspection area B including the spout 51 is moved to a separated state. Positioned between the paired upper and lower chamber containers 11 and 12.

パウチ5の被検査領域Bがチャンバー容器11,12の間の所定の位置に位置決めされると、図示しないアクチュエータにより、上下一対のチャンバー容器11,12を矢印イ、ウに示す方向に移動させ、チャンバー容器11,12の当接部11c、12cが被検査領域Bを挟み込んで密閉状態となることにより、チャンバー1内部にパウチ5の被検査領域Bを密封空間に収容する。   When the inspection area B of the pouch 5 is positioned at a predetermined position between the chamber containers 11 and 12, the pair of upper and lower chamber containers 11 and 12 are moved in the directions shown by arrows a and c by an actuator (not shown), The abutting portions 11 c and 12 c of the chamber containers 11 and 12 sandwich the inspected area B and are in a sealed state, so that the inspected area B of the pouch 5 is accommodated in the sealed space inside the chamber 1.

図4に示すように、チャンバー1内部にパウチ5の被検査領域Bが収容されると、光学式変位センサ3a,3bにより初期状態における被検査領域Bの所定箇所、例えば、立体成形部52中心の変位(初期値)を計測する。そして、光学式変位センサ3a,3bがそれぞれ計測した値a0,b0を図示しない判定手段に送信し、判定手段の記憶手段に初期値として記憶する(図6のt0)。   As shown in FIG. 4, when the inspection area B of the pouch 5 is accommodated in the chamber 1, the optical displacement sensors 3 a and 3 b use the optical displacement sensors 3 a and 3 b to set a predetermined portion of the inspection area B in the initial state, for example, the center of the three-dimensional molding unit 52. Measure the displacement (initial value). Then, the values a0 and b0 respectively measured by the optical displacement sensors 3a and 3b are transmitted to a determination unit (not shown) and stored as an initial value in a storage unit of the determination unit (t0 in FIG. 6).

ここで、図6も併せて説明すると、実線はチャンバー内を減圧後の大気解放を、自然大気圧(外気)により行う場合(ケース1)である。破線はケース1における大気解放を自然大気圧に換えて圧縮空気を送り込む真空破壊により行う場合(ケース2)を示し、時間tだけ大気圧開放時間を短縮することができる。また、一点鎖線はケース2と同様に、真空破壊により大気解放を行うが、短縮した大気解放の時間tの分を検査時間に充てるため、真空破壊電磁弁22cのONを時間tだけ遅らせた場合(ケース3)である。
なお、真空電磁弁21cのONの時間とチャンバー1内部の空気が吸引し始めて内圧が下がり始める時間、チャンバー1の内圧が下がり始める時間と被検査領域Bが膨張し始める時間、真空電磁弁OFFの時間とチャンバー1内部が解放し始めて内圧が上がり始める時間、チャンバー1の内圧が上がり始める時間と被検査領域Bが収縮し始める時間等には若干の時間差(応答時間)があるが、装置の動作をわかりやすく説明するために各応答時間を無視している。
Here, FIG. 6 will also be described. The solid line represents the case where the atmosphere is released into the chamber after decompression by natural atmospheric pressure (outside air) (case 1). A broken line indicates a case (case 2) in which release of the atmosphere in case 1 is performed by a vacuum break in which compressed air is sent instead of natural atmospheric pressure, and the atmospheric pressure release time can be shortened by time t. In the same manner as in Case 2, the one-dot chain line releases the atmosphere by vacuum break. However, when the shortened atmosphere release time t is used for the inspection time, the vacuum break electromagnetic valve 22c is turned on by delaying the time t. (Case 3).
It should be noted that the ON time of the vacuum electromagnetic valve 21c, the time when the internal pressure of the chamber 1 starts to be sucked and the internal pressure starts to decrease, the time when the internal pressure of the chamber 1 starts to decrease and the time when the inspection area B starts to expand, There is a slight time difference (response time) between the time and the time when the inside of the chamber 1 starts to release and the internal pressure starts to rise, the time when the internal pressure of the chamber 1 starts to rise and the time when the region B to be inspected starts to shrink, etc. Each response time is ignored for easy understanding.

そして、初期値a0,b0が計測された後に、真空発生手段21の真空電磁弁21cを開放して、真空発生装置21aによりチャンバー1内部の空気を吸引を開始する(t1)。チャンバー1内部の空気を吸引し、チャンバー1内部の圧力を減圧するとパウチ5の被検査領域Bがパウチ内部に存在する空気とチャンバー1内部との圧力差により膨張される。次いで、真空圧力調整装置21bによりチャンバー1内部の圧力を真空(所定の負圧。例えばゲージ圧−80kPa)まで減圧させ、パウチ5の被検査領域Bをさらに膨張させる(t2)。そして、真空電磁弁21cを所定時間開放してチャンバー1内部の圧力を漏れ検出に必要な所定時間真空に維持する。   Then, after the initial values a0 and b0 are measured, the vacuum electromagnetic valve 21c of the vacuum generating means 21 is opened, and suction of the air inside the chamber 1 is started by the vacuum generating device 21a (t1). When the air inside the chamber 1 is sucked and the pressure inside the chamber 1 is reduced, the inspection region B of the pouch 5 is expanded by the pressure difference between the air existing inside the pouch and the inside of the chamber 1. Next, the pressure inside the chamber 1 is reduced to a vacuum (a predetermined negative pressure, for example, a gauge pressure of −80 kPa) by the vacuum pressure adjusting device 21b, and the inspection area B of the pouch 5 is further expanded (t2). Then, the vacuum electromagnetic valve 21c is opened for a predetermined time, and the pressure inside the chamber 1 is maintained in a vacuum for a predetermined time required for leak detection.

このように、チャンバー1内部が真空状態を維持している時間を含むように設定された所定時間(ケース1,2におけるta〜tb、すなわち検査区間A、および、ケース3におけるta〜tb’、すなわち検査区間A’)において、被検査領域Bの変位を所定時間計測する。所定時間計測した値は随時判定手段に送信し、判定手段の記憶手段に光学式変位センサ3aの計測値a1,a2・・・、および、光学式変位センサ3bの計測値b1,b2・・・として記憶する。
なお、計測箇所の初期状態の厚み等が予め判明している場合には、初期値a0,b0の計測は必要ないが、初期値を計測しておくことにより、被検査領域Bの初期状態のたわみ等による誤差を把握して適宜補正することができ、被検査領域Bの膨張前後の正確な膨張(被検査領域の変形量)を求めることができる。
Thus, a predetermined time set to include the time during which the inside of the chamber 1 is maintained in a vacuum state (ta to tb in cases 1 and 2, that is, inspection section A, and ta to tb ′ in case 3) That is, in the inspection section A ′), the displacement of the inspection area B is measured for a predetermined time. The values measured for a predetermined time are transmitted to the determination means as needed, and the measured values a1, a2,... Of the optical displacement sensor 3a and the measured values b1, b2,. Remember as.
When the initial thickness of the measurement location is known in advance, the initial values a0 and b0 are not required to be measured. However, by measuring the initial values, the initial state of the region B to be inspected can be obtained. An error due to deflection or the like can be grasped and appropriately corrected, and an accurate expansion (a deformation amount of the inspection area) before and after the expansion of the inspection area B can be obtained.

そして、計測値a1,a2・・・,b1,b2・・・が計測され、後述の漏れ判定が終了すると、図5に示すように、真空発生手段21の真空電磁弁21cを閉鎖するとともに、真空破壊電磁弁22cを開放し、チャンバー1内部の大気解放を行う。ここで、前述したケース2,3の場合には、真空破壊電磁弁22cの開放により、圧縮空気発生装置22a、および、真空破壊圧力調整装置22bにより圧力調整された圧縮空気を、チャンバー1内部に送り込む(図6中、ケース1,2におけるt3、ケース3におけるt3’)。
次いで、チャンバー1内部の圧力が大気圧付近に昇圧・解放され、パウチ5の被検査領域Bが初期状態の形状に復元される(図6中、ケース1,3におけるt4、ケース2におけるt4’)。
なお、ケース2,3においては、真空破壊手段22によってチャンバー1内部に強制的に圧縮空気が送り込まれることにより、チャンバー1内部の圧力は迅速に大気圧付近に昇圧・解放される。そして、チャンバー1内部が大気圧に解放されたチャンバー容器11,12を矢印エ、オに示す方向に移動させてチャンバー1を開放し、パウチ5は図示しない搬送手段により検査装置外へ移動させて、一連の漏れ検出工程が終了する。
Then, the measured values a1, a2,..., B1, b2... Are measured, and when the leak determination described later is completed, the vacuum electromagnetic valve 21c of the vacuum generating means 21 is closed as shown in FIG. The vacuum breaking electromagnetic valve 22c is opened, and the atmosphere inside the chamber 1 is released. In the cases 2 and 3 described above, the compressed air generated by the compressed air generating device 22a and the vacuum breaking pressure adjusting device 22b is released into the chamber 1 by opening the vacuum breaking electromagnetic valve 22c. (In FIG. 6, t3 in cases 1 and 2 and t3 ′ in case 3).
Next, the pressure inside the chamber 1 is increased and released to near atmospheric pressure, and the inspection area B of the pouch 5 is restored to the initial shape (in FIG. 6, t4 in cases 1 and 3 and t4 ′ in case 2). ).
In cases 2 and 3, the compressed air is forcibly sent into the chamber 1 by the vacuum breaker 22, so that the pressure inside the chamber 1 is quickly raised and released to near atmospheric pressure. Then, the chamber containers 11 and 12 having the inside of the chamber 1 released to the atmospheric pressure are moved in the directions indicated by arrows D and E to open the chamber 1, and the pouch 5 is moved outside the inspection apparatus by a conveying means (not shown). The series of leak detection steps is completed.

図6から判るように、チャンバー1内部の大気圧への昇圧・解放を、圧縮空気発生装置22aと、真空破壊圧力調整装置22bが存在せず、真空破壊電磁弁22cを開放して自然大気圧により行う場合の大気圧への昇圧・解放時間(図6の、ケース1におけるt3〜t4)に比べて、真空破壊手段22によりチャンバー1内部に強制的に圧縮空気を送り込むことにより行う場合の大気圧への昇圧・解放時間(図6の、ケース2におけるt3〜t4’、ケース3におけるt3’〜t4)は、時間tだけ短縮される。
そして、短縮した時間tを、変位を計測する時間に充て計測することにより(図6中、ケース3におけるta〜tb’)一連の検出工程時間全体に要する時間が、自然大気圧を利用した大気解放の場合と同じであっても、後述の漏れ判例方法によって、より正確に漏れを検出することができる(図6中、一点鎖線のケース3)。また、大気解放時間を短縮した時間tをそのまま削減することにより、一連の検出工程時間全体の短縮ができる(図6中、破線のケース2。)。
As can be seen from FIG. 6, there is no compressed air generator 22a and vacuum break pressure regulator 22b, and the vacuum break electromagnetic valve 22c is opened to increase the pressure to the atmospheric pressure inside the chamber 1 and release. Compared with the pressure increase / release time to atmospheric pressure (t3 to t4 in case 1 in FIG. 6) when the pressure is released by the vacuum pressure, the vacuum break means 22 forcibly supplies compressed air into the chamber 1 The pressure increase / release time to the atmospheric pressure (t3 to t4 ′ in case 2 and t3 ′ to t4 in case 3 in FIG. 6) is shortened by time t.
Then, by measuring the shortened time t as the time for measuring the displacement (in FIG. 6, ta to tb ′ in case 3), the time required for the entire series of detection process time is the atmosphere using natural atmospheric pressure. Even if it is the same as the case of release, the leak can be detected more accurately by the leak case method described later (case 3 in FIG. 6). Further, by reducing the time t for reducing the air release time as it is, the entire series of detection process time can be shortened (case 2 shown by a broken line in FIG. 6).

次に、図7を参照して、チャンバー1内部における注出口部51に立体成形部52を有するパウチ5の変位の計測方法をさらに説明する。
初期状態においては、図7(a)の破線で示すように、パウチ5の被検査領域Bは、立体成形部52に空気が残留し、他は、プラスチックフィルムが密着された状態でチャンバー1内部に収容されている。その状態で、光学式変位センサ3a,3bで初期状態における被検査領域Bの計測箇所の変位を計測することにより、被検査領域B(初期状態)の変位として、それぞれ初期値a0,b0が得られる。
Next, with reference to FIG. 7, the measuring method of the displacement of the pouch 5 which has the three-dimensional shaping | molding part 52 in the spout part 51 in the chamber 1 is further demonstrated.
In the initial state, as shown by the broken line in FIG. 7A, in the inspection area B of the pouch 5, air remains in the three-dimensional molded portion 52, and the other is the inside of the chamber 1 with the plastic film being in close contact therewith. Is housed in. In this state, the optical displacement sensors 3a and 3b measure the displacement of the measurement location in the inspection area B in the initial state, thereby obtaining initial values a0 and b0 as the displacement of the inspection area B (initial state), respectively. It is done.

次いで、密閉状態のチャンバー1内部が真空発生手段21により真空状態に調整されると、パウチ5が良品である場合には、パウチ5の被検査領域Bの立体成形部52等に残留している空気によりパウチ5内の圧力がチャンバー1内部の圧力に対して相対的に高くなる。その結果、パウチ5の被検査領域Bが図7(a)の実線で示すように膨張する。そして、光学式変位センサ3a,3bで被検査領域Bの所定箇所の変位を計測することにより、膨張時の位置として計測値ai,bi(iは1からnの整数。なお、nは計測時間中に変位を計測する回数)が得られる。
なお、変位の計測は、チャンバー1内部が減圧された状態において所定時間(図6中、ケース1,2の場合は検査区間A、ケース3の場合は検査区間A’)に亘って計測され、複数の計測値a1,a2,・・・,ai,・・・an、b1,b2,・・・,bi,・・・,bnを得ることが好ましい。
そして、計測値ai,biと初期値a0,b0とを用いて、被検査領域Bの膨張(被検査領域の変化量)として算出することができる。
Next, when the inside of the sealed chamber 1 is adjusted to a vacuum state by the vacuum generating means 21, if the pouch 5 is a non-defective product, it remains in the three-dimensional molding portion 52 or the like of the inspection area B of the pouch 5. Air increases the pressure in the pouch 5 relative to the pressure in the chamber 1. As a result, the inspection area B of the pouch 5 expands as shown by the solid line in FIG. Then, by measuring the displacement of a predetermined portion of the inspection area B with the optical displacement sensors 3a and 3b, the measured values ai and bi (i is an integer from 1 to n. N is a measurement time) as the position at the time of expansion. The number of times during which displacement is measured).
In addition, the measurement of the displacement is measured over a predetermined time (in FIG. 6, in the case of Cases 1 and 2, in the inspection section A, in the case of Case 3, the inspection section A ′) in a state where the inside of the chamber 1 is decompressed, It is preferable to obtain a plurality of measured values a1, a2, ..., ai, ... an, b1, b2, ..., bi, ..., bn.
Then, using the measured values ai, bi and the initial values a0, b0, it is possible to calculate the expansion of the inspection area B (the amount of change in the inspection area).

ところで、本発明のように、被検査対象が柔軟性を備えるパウチ5の場合には、変位の計測過程において常に安定した形状を維持しているとは限らず、例えば、図7(b)の実線に示すように、チャンバー1内部の空気の吸引やパウチ5の自重等により被検査領域Bにたわみが生じてしまう場合がある。本発明の漏れ検出装置Aは、このような状態であっても、被検査領域Bの変化量を正確に算出することができる。
すなわち、本発明の漏れ検出装置Aは、チャンバー1の外方に備えた一対の光学式変位センサ3a,3bにより、被検査領域Bの変位を計測するため、図7(b)のように、一方の光学式変位センサ3aには、パウチ5のたわみにより初期値a0と計測値aiとがほぼ等しくなり、一方の光学式変位センサ3aのみから被検査領域Bの変化量が算出されない場合であっても、他方の光学式変位センサ3bに被検査領域Bのたわみによる変形を加算した計測値biが測定され、初期値a0,b0と計測値ai,biとから、パウチ5のたわみを考慮した被検査領域Bの変化量を正確に算出することができる。
By the way, in the case where the object to be inspected is a pouch 5 having flexibility as in the present invention, it does not always maintain a stable shape in the displacement measurement process. For example, as shown in FIG. As indicated by the solid line, there may be a case where the inspection area B is bent due to the suction of air inside the chamber 1 or the weight of the pouch 5. Even in such a state, the leak detection apparatus A of the present invention can accurately calculate the amount of change in the region B to be inspected.
That is, since the leak detection apparatus A of the present invention measures the displacement of the region B to be inspected by the pair of optical displacement sensors 3a and 3b provided outside the chamber 1, as shown in FIG. In one optical displacement sensor 3a, the initial value a0 and the measured value ai are substantially equal due to the deflection of the pouch 5, and the amount of change in the inspected area B is not calculated from only one optical displacement sensor 3a. However, the measurement value bi obtained by adding the deformation due to the deflection of the inspection area B to the other optical displacement sensor 3b is measured, and the deflection of the pouch 5 is taken into consideration from the initial values a0, b0 and the measurement values ai, bi. The amount of change of the inspection area B can be calculated accurately.

なお、初期値a0,b0と計測値ai,biとから被検査領域Bの変化量を算出する方法としては、計測値ai,biと初期値a0,b0から、例えばai−a0+bi−b0により求めた変化量を算出するなど、適宜設定すればよい。
また、被検査領域Bの変化量を、一対の光学式変位センサ3a,3bの計測値ai,biを合わせた値として算出することにより、検出感度を高くすることができる。
As a method for calculating the amount of change in the inspected area B from the initial values a0, b0 and the measured values ai, bi, it is obtained from the measured values ai, bi and the initial values a0, b0 by, for example, ai−a0 + bi−b0. What is necessary is just to set suitably, such as calculating the changed amount.
In addition, the detection sensitivity can be increased by calculating the amount of change in the inspection region B as a value obtained by combining the measurement values ai and bi of the pair of optical displacement sensors 3a and 3b.

−漏れ判定方法−
図8を参照して、漏れ判定手段による漏れ判定方法について説明する。
被検査領域Bに穴開きがない場合、すなわち、パウチ5が良品である場合には、パウチ5の被検査領域Bの立体成形部52等に残留している空気により、被検査領域B内の圧力が、空気を吸引され真空状態となるチャンバー1内部の圧力に対して相対的に高いため、被検査領域Bが膨張する(図8a良品)。
-Leakage determination method-
With reference to FIG. 8, the leak determination method by a leak determination means is demonstrated.
When there is no hole in the inspected area B, that is, when the pouch 5 is a non-defective product, the air remaining in the three-dimensional molded portion 52 of the inspected area B of the pouch 5 and the like in the inspected area B Since the pressure is relatively high with respect to the pressure inside the chamber 1 that is in a vacuum state due to the suction of air, the inspection area B expands (non-defective product in FIG. 8a).

これに対して、被検査領域Bに比較的大きな穴開きが存在する場合には、真空発生手段21によりチャンバー1内部の空気が吸引されても、被検査領域Bの立体成形部52等に残留している空気は、被検査領域Bの穴開き箇所を通ってチャンバー1内部に放出・拡散され、チャンバー1内部の空気と共に吸引されるために被検査領域B内の圧力は相対的に高くならず、膨張しない。仮に、空気の吸引初期において、その急激に生じた圧力差により膨張したとしても、被検査領域B内の空気はすぐに穴開き箇所を通って真空発生手段21により吸引されるため、その膨張状態を維持することはできず、パウチ5の弾性により初期状態に復元してしまう(図8a穴開き大)。   On the other hand, when a relatively large hole is present in the inspection area B, even if the air inside the chamber 1 is sucked by the vacuum generating means 21, it remains in the three-dimensional molding portion 52 of the inspection area B or the like. The air being discharged is released and diffused into the chamber 1 through the perforated portion of the inspection area B, and is sucked together with the air inside the chamber 1, so that the pressure in the inspection area B becomes relatively high. Does not expand. Even if the air is inflated due to the sudden pressure difference at the initial stage of air suction, the air in the inspected area B is immediately sucked by the vacuum generating means 21 through the perforated portion. Cannot be maintained, and is restored to the initial state by the elasticity of the pouch 5 (FIG. 8a, large hole opening).

したがって、チャンバー1内部が真空状態となっている時間を含むよう適宜設定した検査区間Aにおける被検査領域Bの変化量を算出し、算出した変位量と予め定めた閾値1とを比較し、変位量の方が大きい場合(ai−a0+Bi−B0>閾値1)、パウチ5に大きな穴開きが存在しない良品である(漏れなし)と判別することができる。   Therefore, the amount of change in the inspection area B in the inspection section A set appropriately so as to include the time during which the chamber 1 is in a vacuum state is calculated, the calculated displacement amount is compared with a predetermined threshold value 1, and the displacement is calculated. When the amount is larger (ai−a0 + Bi−B0> threshold 1), it can be determined that the pouch 5 is a non-defective product (no leak).

しかしながら、例えば、被検査領域Bに極小さな穴開きが存在する場合などは、チャンバー1内部の減圧により被検査領域Bが一旦膨張した後に、膨張した被検査領域B内から極小さな穴開き箇所を通って空気が徐々にチャンバー1内に放出,拡散されるため、被検査領域Bの変化量が検査区間内では閾値1以下とはならずに、良品であると判断されてしまう可能性がある(図8a穴開き小)。   However, for example, when a very small hole is present in the inspection area B, the inspection area B is temporarily expanded due to the reduced pressure inside the chamber 1, and then a very small opening is detected from within the expanded inspection area B. Since air gradually passes through the chamber 1 and is diffused, the amount of change in the inspected area B may not be less than or equal to the threshold value 1 in the inspection section and may be judged as a non-defective product. (FIG. 8a small hole opening).

そのため、本発明では、被検査領域Bの穴開き検出方法として、検査区間での変化量と閾値1とを比較する判別方法(図8a)に加えて、検査区間での2点の変化量の変化を求めて漏れの有無を検出する判別方法をさらに採用している(図8b)。
この方法は、チャンバー1内部が真空状態初期の時期t2を含むように設定された時間の検査区間Bにおける最大変化量(第1の変化量aiB−a0+biB−b0)と、検査区間Bから所定時間経過後(例えば、真空破壊電磁弁22cのトリガータイミングt3、または、t3’)の検査Cにおける変化量(第2の変化量aiC−a0+biC−b0)とを比較する。そして、第1の変化量と第2の変化量との差が所定値(閾値2)以上である場合(aiB−aiC+biB−biC≧閾値2)には、検査区間内において被検査領域Bが一旦膨張した後に、膨張した被検査領域Bから極小さな穴開き箇所を通って空気が徐々に漏れて収縮したと判断して、パウチ5に穴開きが存在する(漏れあり)と判定することができる(図8b穴開き小)。
Therefore, in the present invention, as a method for detecting a hole in the inspection area B, in addition to a determination method (FIG. 8 a) for comparing the amount of change in the inspection section with the threshold value 1, A discriminating method for detecting a change and detecting the presence or absence of leakage is further employed (FIG. 8b).
In this method, the maximum change amount (first change amount ai B −a0 + bi B −b0) in the inspection section B of the time set so that the inside of the chamber 1 includes the initial time t2 in the vacuum state, and the inspection section B A change amount (second change amount ai C −a0 + bi C −b0) in the inspection C after a predetermined time has elapsed (for example, the trigger timing t3 or t3 ′ of the vacuum break electromagnetic valve 22c) is compared. When the difference between the first change amount and the second change amount is equal to or greater than a predetermined value (threshold value 2) (ai B −ai C + bi B −bi C ≧ threshold value 2), After the inspection area B has once expanded, it is determined that air gradually leaked from the expanded inspection area B through a very small hole location and contracted, and there is a hole in the pouch 5 (leak). Can be determined (FIG. 8b small hole opening).

この判定方法を採用することにより、パウチ5に対して、極小さな穴開きの有無を的確に判定することが可能となる。但し、検査区間での離れた2点の変化量の変化を求めて穴開きの有無を検出する判別方法のみでは、被検査領域Bに極めて大きな穴開きが存在する場合、チャンバー1内部の負圧状態において、ほとんど膨張せず(図8b穴開き特大)、第1の変化量と第2の変化量との差が検出されないために、穴開きの存在を検出することができない。   By adopting this determination method, it is possible to accurately determine the presence or absence of a very small hole in the pouch 5. However, only with a determination method for detecting the presence or absence of a hole by obtaining a change in the amount of change at two points apart in the inspection section, if there is a very large hole in the region B to be inspected, the negative pressure inside the chamber 1 In the state, there is almost no expansion (FIG. 8b, oversized hole), and the difference between the first change amount and the second change amount is not detected, so that the presence of the hole cannot be detected.

このため、本発明の漏れ検出装置Aの漏れ判定手段においては、図8aに示した、検査区間の全ての変化量と閾値1とを比較する判定方法と、図8bに示した、検査区間の2点変化量の差と閾値2を比較する判別方法とを併用することが多様な穴開きを検出する上で好ましい。
なお、検査区間で閾値と比較する判定方法において、該検査区間で計測・算出される複数の変化量のすべてが閾値以上であることを条件としてもよく、また、該複数の変化量の平均値が閾値以上であることを条件としてもよい。
また、光学式変位センサ読み取りのノイズの影響を緩和するため、i番目の変位について、例えばi−1番目、i番目、i+1番目の変位とを合わせて移動平均をとった値から計算した変化量で判定してもよい。
また、前述した実施形態では、初期値a0,b0を計測し、計測値ai,biから被検査領域Bの変化量を求め、その変化量について閾値と比較し漏れ判定を行ったが、初期値a0,b0の代わりに予め設定した閾値と計測値ai,biとから判定してもよい。例えば、計測値aiとbiの和、ai+biについて、設定した閾値1’との大小を比較して判定を行えばよく、本実施形態の変位測定結果をもとに、検査区間Aについて、ai+bi>閾値1’を満たし、必要に応じて更に、初期の検査区間B内の任意の時間のaiB+biBの最大値と検査CでのaiC+biCとの差が、aiB+biB−(aiC+biC)(=aiB−aiC+biB−biC)<閾値2も満たす場合に、穴開きは存在しない(漏れなし)とする判定条件に設定してもよい。
また、検査区間で2点の差を比較する判別方法において、検査区間Bにおける変位量は、検査区間Bにおいて算出できる複数の変位量の平均値としてもよい。
さらに、漏れ判定手段について、他にも被検査領域の変化量または計測値ai,biがそれぞれ所定の閾値の範囲に入っている場合に漏れがないとする判定条件に設定してもよい。
さらにまた、一対の光学式変位センサでパウチ5の表裏1箇所ずつについて計測したが、適宜複数箇所について計測し、個々の値について判定、または、平均をとって判定してもよい。
For this reason, in the leak determination means of the leak detection apparatus A of the present invention, the determination method shown in FIG. 8a for comparing all the variation amounts of the inspection section with the threshold 1, and the inspection section shown in FIG. It is preferable to use the difference between the two-point change amount and the determination method for comparing the threshold value 2 in order to detect various hole openings.
In the determination method for comparing with the threshold value in the examination section, all of the plurality of change amounts measured / calculated in the examination section may be a condition that is greater than or equal to the threshold value, and the average value of the plurality of change quantities It is good also as a condition that is more than a threshold.
Further, in order to mitigate the influence of noise in reading the optical displacement sensor, for the i-th displacement, for example, the amount of change calculated from the value obtained by taking the moving average of the i-1th, i-th and i + 1-th displacements. You may judge by.
In the above-described embodiment, the initial values a0 and b0 are measured, the amount of change in the inspected region B is obtained from the measured values ai and bi, and the amount of change is compared with a threshold value to determine leakage. Instead of a0 and b0, determination may be made from a preset threshold and measured values ai and bi. For example, the determination may be made by comparing the sum of the measured values ai and bi, ai + bi, with the set threshold value 1 ′, and based on the displacement measurement result of the present embodiment, for the examination section A, ai + bi> The threshold value 1 ′ is satisfied, and if necessary, the difference between the maximum value of ai B + bi B at an arbitrary time in the initial examination section B and ai C + bi C in the examination C is expressed as ai B + bi B − ( ai C + bi C ) (= ai B −ai C + bi B −bi C ) <If threshold value 2 is also satisfied, a determination condition may be set such that no hole is present (no leakage).
Further, in the determination method for comparing the difference between two points in the inspection section, the displacement amount in the inspection section B may be an average value of a plurality of displacement amounts that can be calculated in the inspection section B.
Further, the leakage determination means may be set to a determination condition that there is no leakage when the amount of change in the inspected area or the measured values ai and bi are within a predetermined threshold range.
Furthermore, the measurement is performed for each of the front and back sides of the pouch 5 using a pair of optical displacement sensors. However, the measurement may be performed for a plurality of locations as appropriate, and individual values may be determined or averaged for determination.

本実施形態の装置は、パウチ等の軟包装容器の製造ラインに組込まれるインライン装置として構成しても、また、独立するオフライン装置として構成してもよい。
また、被検査対象は注出口部に立体成形部を備えた注出口付パウチに限らず、例えば単純な矩形状パウチの中央に立体形成部を形成したものなど、軟包装容器の形態や立体成形部の形成位置、形状は特に問わない。
The apparatus of this embodiment may be configured as an inline apparatus incorporated in a production line for soft packaging containers such as pouches, or may be configured as an independent off-line apparatus.
In addition, the inspection target is not limited to a pouch with a spout provided with a three-dimensionally shaped part in the spout part, but, for example, a form of a soft packaging container or a three-dimensionally shaped product such as a three-dimensionally formed part formed at the center of a simple rectangular pouch. The formation position and shape of the part are not particularly limited.

A 漏れ検出装置
B 被検査領域
1 チャンバー
11 チャンバー容器
11a 壁部材
11b 透明板
11c 当接部
11d 弾性材
12 チャンバー容器
12a 壁部材
12b 透明板
12c 当接部
2 圧力調節手段
21 真空発生手段
21a 真空発生装置
21b 真空圧力調整装置
21c 真空電磁弁
21d 出力管
22 真空破壊手段
22a 圧縮空気発生装置
22b 真空破壊圧力調整装置
22c 真空破壊電磁弁
22d 出力管
23 連通管
23a 開口
3a 光学式変位センサ
3b 光学式変位センサ
5 注出口付パウチ(軟包装容器)
51 注出口部
52 立体成形部
A Leak Detection Device B Inspected Area 1 Chamber 11 Chamber Container 11a Wall Member 11b Transparent Plate 11c Abutting Part 11d Elastic Material 12 Chamber Container 12a Wall Member 12b Transparent Plate 12c Abutting Part 2 Pressure Adjusting Means 21 Vacuum Generating Means 21a Vacuum Generation Device 21b Vacuum pressure adjusting device 21c Vacuum solenoid valve 21d Output tube 22 Vacuum breaker 22a Compressed air generator 22b Vacuum break pressure adjusting device 22c Vacuum break solenoid valve 22d Output tube 23 Communication tube 23a Opening 3a Optical displacement sensor 3b Optical displacement Sensor 5 Pouch with spout (soft packaging container)
51 Outlet part 52 Solid molding part

Claims (8)

一対のチャンバー容器により形成され、内部に軟包装容器の被検査領域を収容するチャンバーと、
チャンバー内部の空間の空気を吸引する真空発生手段と、
一対のチャンバー容器外方にそれぞれ設けられ、チャンバー内部に収容された被検査領域の変位を計測する光学式変位センサと、
前記光学式変位センサにより計測された被検査領域の変位から被検査領域の漏れを判定する漏れ判定手段とを備え、
前記一対のチャンバー容器は、前記光学式変位センサに対向する面に前記光学式変位センサの光線を透過する透明窓が設けられている
ことを特徴とする軟包装容器の漏れ検出装置。
A chamber that is formed by a pair of chamber containers, and accommodates an inspected area of the flexible packaging container inside;
Vacuum generating means for sucking air in the space inside the chamber;
An optical displacement sensor that is provided outside each of the pair of chamber containers and measures the displacement of the region to be inspected contained in the chamber;
Leak determination means for determining leakage of the inspection area from the displacement of the inspection area measured by the optical displacement sensor,
The pair of chamber containers is provided with a transparent window that transmits light beams of the optical displacement sensor on a surface facing the optical displacement sensor.
前記チャンバーは、一対のチャンバー容器に設けられた当接部同士、または、当接部と軟包装容器の被検査領域外周とを当接することにより形成され、
前記当接部の内縁は、被検査領域の外周に対応した形状をなし、
前記当接部を押圧させることにより被検査領域の外周を密閉して被検査領域をチャンバー内部に収容する
ことを特徴とする請求項1に記載の軟包装容器の漏れ検出装置。
The chamber is formed by abutting the abutting portions provided in a pair of chamber containers, or the abutting portion and the outer periphery of the inspected region of the flexible packaging container,
The inner edge of the contact portion has a shape corresponding to the outer periphery of the area to be inspected,
The leak detection device for a soft packaging container according to claim 1, wherein the contact area is pressed to seal an outer periphery of the inspection area and accommodate the inspection area in the chamber.
前記チャンバー内部の空間に圧縮空気を送り込む真空破壊手段を備え、
前記真空破壊手段は、前記光学式変位センサによる被検査領域の変位を計測した後、圧縮空気を送り込むことを特徴とする請求項1又は2に記載の軟包装容器の漏れ検出装置。
Comprising vacuum breaking means for sending compressed air into the space inside the chamber;
The apparatus for detecting leakage of a flexible packaging container according to claim 1 or 2, wherein the vacuum breaking means sends in compressed air after measuring the displacement of the region to be inspected by the optical displacement sensor.
前記真空破壊手段は、前記チャンバー内部に連通する連通口が前記チャンバー内部に収容された被検査領域外に設けてある
ことを特徴とする請求項3に記載の軟包装容器の漏れ検出装置。
The leak detection apparatus for a flexible packaging container according to claim 3, wherein the vacuum breaker has a communication port that communicates with the inside of the chamber outside an inspection area accommodated in the chamber.
前記真空発生手段は、前記チャンバー内部に連通する連通口が前記チャンバー内部に収容された被検査領域外に設けてある
ことを特徴とする請求項1乃至4のいずれかに記載の軟包装容器の漏れ検出装置。
The flexible packaging container according to any one of claims 1 to 4, wherein the vacuum generating means is provided with a communication port communicating with the inside of the chamber outside an inspection region accommodated in the chamber. Leak detection device.
前記光学式変位センサは、前記圧力調節手段によりチャンバー内部の圧力を調節する前に被検査領域の変位を計測し、被検査領域の変位量を算出する際の基準とする
ことを特徴とする請求項1乃至5のいずれかに記載の軟包装容器の漏れ検出装置。
The optical displacement sensor is used as a reference when measuring the displacement of the region to be inspected before adjusting the pressure inside the chamber by the pressure adjusting means and calculating the amount of displacement of the region to be inspected. Item 6. The flexible packaging container leak detection device according to any one of Items 1 to 5.
前記漏れ判定手段は、前記光学式変位センサにより計測した測定値により求めた変位量が所定値以上である場合に漏れなしと判定する
ことを特徴とする請求項1乃至6のいずれかに記載の軟包装容器の漏れ検出装置。
The said leak determination means determines that there is no leak when the displacement amount calculated | required by the measured value measured with the said optical displacement sensor is more than predetermined value. The one in any one of Claim 1 thru | or 6 characterized by the above-mentioned. Leak detection device for flexible packaging containers.
前記漏れ判定手段は、前記光学式変位センサにより計測した測定値により求めた変位量が所定値以上であって、かつ、該変位量が所定時間内に所定値以上変化しない場合に漏れなしと判定する
ことを特徴とする請求項1乃至7のいずれかに記載の軟包装容器の漏れ検出装置。
The leakage determination means determines that there is no leakage when the amount of displacement obtained from the measured value measured by the optical displacement sensor is equal to or greater than a predetermined value and the displacement does not change more than the predetermined value within a predetermined time. The leak detection device for a soft packaging container according to any one of claims 1 to 7.
JP2014202374A 2014-09-30 2014-09-30 Leak detection device for flexible packaging containers Active JP6421523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014202374A JP6421523B2 (en) 2014-09-30 2014-09-30 Leak detection device for flexible packaging containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202374A JP6421523B2 (en) 2014-09-30 2014-09-30 Leak detection device for flexible packaging containers

Publications (2)

Publication Number Publication Date
JP2016069058A true JP2016069058A (en) 2016-05-09
JP6421523B2 JP6421523B2 (en) 2018-11-14

Family

ID=55863956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202374A Active JP6421523B2 (en) 2014-09-30 2014-09-30 Leak detection device for flexible packaging containers

Country Status (1)

Country Link
JP (1) JP6421523B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202341A (en) * 1984-03-27 1985-10-12 Matsushita Refrig Co Pressure-reduction-degree checking device of packed body
JP2000088694A (en) * 1998-09-16 2000-03-31 Ishida Co Ltd Inspection apparatus for sealing performance of airtight container
JP2004317477A (en) * 2003-04-03 2004-11-11 Furukawa Mfg Co Ltd Leakage inspection method and device for sealed part of package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60202341A (en) * 1984-03-27 1985-10-12 Matsushita Refrig Co Pressure-reduction-degree checking device of packed body
JP2000088694A (en) * 1998-09-16 2000-03-31 Ishida Co Ltd Inspection apparatus for sealing performance of airtight container
JP2004317477A (en) * 2003-04-03 2004-11-11 Furukawa Mfg Co Ltd Leakage inspection method and device for sealed part of package

Also Published As

Publication number Publication date
JP6421523B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
CN103998910B (en) Method for carrying out leak detection on non-rigid sample to be tested
US9927321B2 (en) Film chamber and method for leak detection on a non-rigid specimen
JPH0835906A (en) Method and equipment for testing hollow container
JPS61107126A (en) Apparatus for measuring vacuum degree of vacuum pack type heat insulating material
CN207741899U (en) A kind of vacuum leak detector
CN104568347B (en) Testing device and testing method for testing leakage of small cigarette case
CN103969007A (en) Tightness detection device of transparent paper for cigarette packing
CN103969423A (en) Method and device for detecting airtightness of transparent cigarette packing paper based on pressure sensor
CN104614136A (en) Vacuum decay method for testing leak of cigarette packaging body
JP6421523B2 (en) Leak detection device for flexible packaging containers
US20030033857A1 (en) Apparatus and method to detect leaks in sealed packages
CN204269323U (en) A kind of proving installation tested box cigarette small packaging and leak
JP5673513B2 (en) Sealed container sealing inspection method and inspection apparatus
CN100543425C (en) Flow determining method and flow rate-measuring device
JPS5944637A (en) Method and device for inspecting tight sealing failure of sealed vessel
JP4937725B2 (en) Packaging container inspection apparatus and packaging container inspection method
JP5105506B2 (en) Container inspection method and container inspection apparatus
CN112298810B (en) Vacuum sealing apparatus including vacuum cycle with transducer feedback
CN204269324U (en) A kind of vacuum decay method test cigarette package body leakage tester
JP6519979B2 (en) Defect inspection apparatus and defect inspection method
NL9000641A (en) METHOD AND APPARATUS FOR EXAMINING A PACKAGING FOR THE PRESENCE OF A LEAK.
JP6243803B2 (en) Filling state inspection apparatus and filling state inspection method
JP4154077B2 (en) Air leak detection method for sealed containers
CN203337342U (en) Detection device for leakproofness of plastic bag packaging sealing
CN111086755A (en) Package assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6421523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150