JP2016068033A - Method for producing exhaust gas treatment catalyst - Google Patents

Method for producing exhaust gas treatment catalyst Download PDF

Info

Publication number
JP2016068033A
JP2016068033A JP2014201051A JP2014201051A JP2016068033A JP 2016068033 A JP2016068033 A JP 2016068033A JP 2014201051 A JP2014201051 A JP 2014201051A JP 2014201051 A JP2014201051 A JP 2014201051A JP 2016068033 A JP2016068033 A JP 2016068033A
Authority
JP
Japan
Prior art keywords
catalyst
powder
exhaust gas
titanium
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201051A
Other languages
Japanese (ja)
Other versions
JP6391397B2 (en
Inventor
広樹 堤
Hiroki Tsutsumi
広樹 堤
光晴 萩
Mitsuharu Hagi
光晴 萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2014201051A priority Critical patent/JP6391397B2/en
Publication of JP2016068033A publication Critical patent/JP2016068033A/en
Application granted granted Critical
Publication of JP6391397B2 publication Critical patent/JP6391397B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an exhaust gas treatment catalyst which is significantly increased in mechanical strength without impairing catalytic activity.SOLUTION: There are provided: a method for producing an exhaust gas treatment catalyst in which when a titanium-vanadium-based catalyst is produced, a dried powder obtained by pulverizing an unused catalyst obtained in a drying step of producing a catalyst and/or a baked powder obtained by pulverizing an unused catalyst obtained in a baking step of a catalyst and a used catalyst powder obtained by pulverizing a catalyst containing a used titanium-based oxide and vanadium-based oxide which were used for treating exhaust gas are mixed with a raw material powder of a catalyst; and an exhaust gas treatment method for treating exhaust gas containing a nitrogen oxide (NOx) and/or an organic halogen compound using the catalyst obtained by the production method.SELECTED DRAWING: None

Description

本発明は、排ガス中の有機ハロゲン化合物除去用触媒や窒素酸化物(NOx)を除去するための排ガス処理用触媒の製造方法に関し、特に、詳しくは脱硝活性を損なうことなく機械的強度を著しく向上させた排ガス処理用触媒の製造方法に関する。   The present invention relates to a method for producing an organic halogen compound removal catalyst or exhaust gas treatment catalyst for removing nitrogen oxides (NOx) in exhaust gas, and in particular, mechanical strength is significantly improved without impairing denitration activity. The present invention relates to a method for producing an exhaust gas treatment catalyst.

発電プラントや化学プラントの排ガス中の窒素酸化物を触媒の存在下でアンモニアによって還元除去する方法が広く用いられている。この反応に用いられる触媒(脱硝触媒)は、通常、チタンおよびバナジウムとともにタングステンまたはモリブデンなどの活性成分を含み、これらの原料を混練した後、ハニカム状あるいは板状構造体に成形し、さらに乾燥、焼成を行って製造される。   A method of reducing and removing nitrogen oxides in exhaust gas from power plants and chemical plants with ammonia in the presence of a catalyst is widely used. The catalyst used in this reaction (denitration catalyst) usually contains an active component such as tungsten or molybdenum together with titanium and vanadium, and after kneading these raw materials, it is formed into a honeycomb-like or plate-like structure, further dried, Manufactured by firing.

触媒はそれ自体が構造体であるために、運搬(輸送)や触媒充填作業時における破損、実機運転時の振動や排ガス中のダストの衝突によるクラックおよび摩耗等が発生する。このため一定の圧縮強度、圧壊強度または摩耗強度を有する必要がある。   Since the catalyst itself is a structural body, damage during transportation (transport) and catalyst filling work, cracks and wear due to vibration during operation of the actual machine and collision of dust in the exhaust gas occur. For this reason, it is necessary to have a certain compressive strength, crushing strength or wear strength.

触媒の強度や耐摩耗性を改良する方法として、排ガス脱硝触媒用原料、粘土鉱物および無機繊維を水と共に混合した後、所定の形状に成形して製造した触媒(特許文献1)、ガス入口側先端部を、ジルコニアゾルやケイ酸ジルコニウムゾルなどにより被覆した後、乾燥、焼成して製造した触媒(特許文献2)および触媒の孔径が略均一であり実質的に二つの独立した細孔群からなる細孔を有し、開口率70%以上のハニカム成形時の縦圧壊強度が15kg/cm以上の触媒(特許文献3)等が開示されている。 As a method for improving the strength and wear resistance of the catalyst, a catalyst manufactured by mixing a raw material for exhaust gas denitration catalyst, clay minerals and inorganic fibers with water and then molding the mixture into a predetermined shape (Patent Document 1), gas inlet side After the tip portion is coated with zirconia sol, zirconium silicate sol or the like, dried and calcined (Patent Document 2), and the catalyst pore diameter is substantially uniform and substantially from two independent pore groups. And a catalyst having a vertical crushing strength of 15 kg / cm 2 or more when forming a honeycomb having an opening ratio of 70% or more is disclosed (Patent Document 3).

いずれの触媒も強度向上や摩耗低減の効果を有するものの、無機繊維、ゾル、気孔形成のための添加剤を必要とすることから触媒製造コストの上昇を招くため、触媒原料の低廉化という点で改善の余地があった。脱硝触媒が今後とも広く利用されて行くためには、性能が優れ、強度が強く、かつ安価な脱硝触媒の製造プロセスが望まれている。   Although all the catalysts have the effect of improving the strength and reducing the wear, they require inorganic fibers, sols, and additives for pore formation, leading to an increase in catalyst production costs. There was room for improvement. In order for the denitration catalyst to be widely used in the future, a production process of a denitration catalyst that is excellent in performance, strong, and inexpensive is desired.

特開2006−223959号公報JP 2006-223959 A 特開平5−177144号公報JP-A-5-177144 特開平10−323570JP-A-10-323570

本発明の目的は、触媒活性を損なうことなく機械的強度を著しく増加させた排ガス処理用触媒を安価に製造する方法を提供することにある。   An object of the present invention is to provide a method for inexpensively producing an exhaust gas treatment catalyst having a significantly increased mechanical strength without impairing catalyst activity.

本発明者は、上記課題を解決する為に鋭意検討を行った結果、以下に示す製造方法により得られる触媒が有効である事を見出した。   As a result of intensive studies in order to solve the above problems, the present inventor has found that a catalyst obtained by the following production method is effective.

すなわち本発明は、(1)チタン系酸化物とバナジウム系酸化物を含有する排ガス処理用触媒の方法であって、該製法がチタン系酸化物の原料粉体とバナジウム系化合物を混練する工程と、成型工程と、乾燥工程および焼成工程を有し、該乾燥工程で得られる未使用触媒を粉砕した乾燥粉体および該焼成工程で得られる未使用触媒を粉砕した焼成粉体のうち少なくとも1種の粉体、ならびに排ガス処理に用いた使用済のチタン系酸化物とバナジウム系酸化物を含有する触媒を粉砕した使用済触媒粉体を該チタン系酸化物の粉体に混合することを特徴とする排ガス処理用触媒の製造方法。
(2)前記乾燥粉体、焼成粉体および使用済触媒の平均粒子径(メジアン径)が5から80μmであることを特徴とする請求項1に記載の排ガス処理用触媒の製造方法。
(3)前記の乾燥粉体および焼成粉体のうち少なく1種の粉体と前記の使用済触媒粉体をチタン系原料粉体と混合する場合において、チタン系原料粉体と乾燥粉体および焼成粉体のうち少なくとも1種、ならびに使用済触媒粉体の全質量に対して、該混合粉体中のチタン系原料粉体の配合割合が、5〜90質量%、乾燥粉体および焼成粉体のうち少なくとも1種の粉体の配合割合が、5〜30質量%、使用済触媒粉体の配合割合が、5〜80質量%であることを特徴とする(1)または(2)に記載の排ガス処理用触媒の製造方法。
(4)(1)〜(3)のいずれかに記載の製造方法により得られる触媒を用いて窒素酸化物を含む排ガスを処理することを特徴とする排ガス処理方法。
(5)(1)〜(3)のいずれかに記載の製造方法により得られる触媒を用いて有機ハロゲン化合物を含む排ガスを処理することを特徴とする排ガス処理方法。
That is, the present invention relates to (1) a method for treating exhaust gas containing a titanium-based oxide and a vanadium oxide, wherein the production method kneads the raw material powder of the titanium-based oxide and the vanadium compound; And at least one of a dry powder obtained by pulverizing an unused catalyst obtained in the drying step and a calcined powder obtained by pulverizing an unused catalyst obtained in the calcining step. And a used catalyst powder obtained by pulverizing a catalyst containing a used titanium-based oxide and a vanadium-based oxide used for exhaust gas treatment, is mixed with the titanium-based oxide powder. A method for producing an exhaust gas treatment catalyst.
(2) The method for producing an exhaust gas treatment catalyst according to claim 1, wherein an average particle size (median diameter) of the dry powder, the calcined powder and the used catalyst is 5 to 80 μm.
(3) When mixing at least one of the dry powder and the fired powder and the used catalyst powder with the titanium-based raw material powder, the titanium-based raw material powder, the dry powder, The blending ratio of the titanium-based raw material powder in the mixed powder is 5 to 90% by mass with respect to the total mass of at least one kind of the calcined powder and the used catalyst powder, and the dry powder and the calcined powder. (1) or (2) characterized in that the blending ratio of at least one powder in the body is 5 to 30% by mass, and the blending ratio of the used catalyst powder is 5 to 80% by mass. The manufacturing method of the catalyst for exhaust gas description of description.
(4) An exhaust gas treatment method comprising treating exhaust gas containing nitrogen oxides using a catalyst obtained by the production method according to any one of (1) to (3).
(5) An exhaust gas treatment method comprising treating an exhaust gas containing an organic halogen compound using a catalyst obtained by the production method according to any one of (1) to (3).

本発明を用いる事で、触媒活性を損なうことなく機械的強度に優れた、特に、圧縮強度が著しく向上した触媒を得ることができる。また強度向上のために特別の原料が不要になるので安価な触媒を得ることが可能となる。   By using the present invention, it is possible to obtain a catalyst having excellent mechanical strength, in particular, significantly improved compressive strength, without impairing catalytic activity. Further, since no special raw material is required for improving the strength, an inexpensive catalyst can be obtained.

以下、本発明にかかる排ガス処理触媒の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。   Hereinafter, although the manufacturing method of the exhaust gas treatment catalyst according to the present invention will be described in detail, the scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention is not impaired. Changes can be made as appropriate.

本発明にかかる排ガス処理触媒の製造方法は、チタン系酸化物およびバナジウム系酸化物を含む排ガス処理用触媒(以下、「チタン−バナジウム系触媒」と称することがある。)を得る方法において、チタン系酸化物の原料粉体とバナジウム系化合物を混練する工程と、成型工程と、乾燥工程および焼成工程を有し、該乾燥工程で得られる未使用触媒を粉砕した乾燥粉体および該焼成工程で得られる未使用触媒を粉砕した焼成粉体のうち少なくとも1種、ならびに排ガス処理に用いた使用済のチタン系酸化物とバナジウム系酸化物を含有する触媒を粉砕した使用済触媒粉体を該チタン系酸化物の原料粉体に混合しておくようにする。   The method for producing an exhaust gas treatment catalyst according to the present invention is a method for obtaining an exhaust gas treatment catalyst containing titanium-based oxide and vanadium-based oxide (hereinafter sometimes referred to as “titanium-vanadium-based catalyst”). A dry powder obtained by pulverizing an unused catalyst obtained in the drying step, and a firing step, which includes a step of kneading the raw material powder of the base oxide and the vanadium compound, a molding step, a drying step and a firing step The used catalyst powder obtained by pulverizing the catalyst containing at least one kind of the calcined powder obtained by pulverizing the obtained unused catalyst and the used titanium oxide and vanadium oxide used in the exhaust gas treatment is used as the titanium. It is made to mix with the raw material powder of a system oxide.

以下、本発明を実施する上での排ガス処理触媒の一般的な製造方法を説明するとともに、本発明の製造方法の特徴である、成形に用いる触媒材料の粉体におけるバナジウム含有率の調整についても詳細に説明する。   Hereinafter, a general method for producing an exhaust gas treatment catalyst for carrying out the present invention will be described, and adjustment of the vanadium content in the powder of the catalyst material used for molding, which is a feature of the production method of the present invention, will also be described. This will be described in detail.

本発明の製造方法は、一般的には、チタン化合物から原料となるチタン系酸化物の粉体(以下、チタン系原料粉体または原料粉体ともいう)を得る工程(以下、原料粉体調製工程ともいう)と、該チタン系原料粉体とバナジウムを必須として触媒活性成分を含む薬液と混合してさらに混練する工程(以下、混練工程ともいう)と、該混練物を成形する工程(以下、成形工程ともいう)と、得られた成形体を所望のサイズに切断する工程(以下、切断工程ともいう)と、切断して得られた切断体を乾燥する工程(以下、乾燥工程ともいう)と、乾燥して得られた乾燥体を焼成する工程(以下、焼成工程ともいう)により焼成体を得る工程を備えており、本発明においては、該乾燥体を粉砕した乾燥粉体や該焼成体を粉砕した焼成粉体をあらかじめ調製しておき、得られた乾燥粉体および焼成粉体のうち少なくとも一種の粉体を前記混練工程においてチタン系原料粉体と混合すれば良い。   The production method of the present invention generally comprises a step of obtaining a titanium oxide powder (hereinafter also referred to as titanium raw material powder or raw material powder) as a raw material from a titanium compound (hereinafter referred to as raw material powder preparation). A step), a step of mixing and further kneading the titanium-based raw material powder and vanadium with a chemical solution containing a catalytically active component (hereinafter also referred to as a kneading step), and a step of forming the kneaded product (hereinafter referred to as a step). , Also referred to as a molding step), a step of cutting the obtained molded body into a desired size (hereinafter also referred to as a cutting step), and a step of drying the cut body obtained by cutting (hereinafter also referred to as a drying step). And a step of obtaining a fired body by a step of firing a dried body obtained by drying (hereinafter also referred to as a firing step). In the present invention, Pre-fired powder obtained by grinding the fired body Prepared advance, it may be mixed with the titanium-based material powder in the kneading step at least one powder of the obtained dry powder and calcined powder.

本発明において、前記の乾燥体および焼成体は未使用触媒であり、該未使用触媒を粉砕したものがそれぞれ乾燥粉体および焼成粉体である。好ましい形態としては、乾燥粉体として切断工程で生じた切断片を粉砕したものを用いること、焼成粉体として焼成工程で生じたクラックや破損により製品の品質スペックに適合しないものを粉砕したものを用いること、である。従来、各工程中で発生する切断片やスペックに適合しないものは廃棄していたため、触媒原料の歩留まりの低下による製造コストの増加や環境廃棄物の増加の要因となっていたが、本発明によればこれらの問題も解消することができる。   In the present invention, the dried product and the calcined product are unused catalysts, and those obtained by pulverizing the unused catalyst are dried powder and calcined powder, respectively. As a preferable form, a dry powder obtained by pulverizing a cut piece produced in the cutting process, or a baked powder obtained by pulverizing a powder that does not conform to the quality specifications of the product due to cracks or breakage produced in the firing process is used. It is to use. Conventionally, since cut pieces generated in each process and those that do not conform to the specifications have been discarded, this has been a factor in increasing manufacturing costs and increasing environmental waste due to a decrease in the yield of catalyst raw materials. Therefore, these problems can be solved.

本発明においては、排ガス処理に用いた使用済触媒の粉体を含む。本発明に用いる使用済触媒は、特に限定されないが、後述するチタン−バナジウム系触媒の使用済触媒が好適に用いられる。   In this invention, the powder of the used catalyst used for exhaust gas treatment is included. Although the used catalyst used for this invention is not specifically limited, The used catalyst of the titanium-vanadium type catalyst mentioned later is used suitably.

本発明において、乾燥粉体および焼成粉体のうち少なく1種の粉体、ならびに使用済触媒粉体をチタン系原料粉体と混合する場合、チタン系原料粉体と乾燥粉体および焼成粉体のうち少なくとも1種、ならびに使用済触媒粉体の全質量に対して、混合粉体中の乾燥粉体および焼成粉体うち少なくとも1種の粉体の配合割合は、5〜30質量%であれば良く、好ましくは7〜28質量%、さらに好ましくは10〜25質量%である。使用済触媒の粉体の配合割合は、5〜80質量%であれば良く、好ましくは7〜70質量%、さらに好ましくは10〜60質量%である。上記範囲であれば本発明がより有効に適用できる。   In the present invention, when mixing at least one of the dry powder and the calcined powder and the used catalyst powder with the titanium-based material powder, the titanium-based material powder, the dry powder and the calcined powder are used. The blending ratio of at least one of the dry powder and the calcined powder in the mixed powder is 5 to 30% by mass with respect to the total mass of at least one of the above and the used catalyst powder. What is necessary is just 7-28 mass%, More preferably, it is 10-25 mass%. The blending ratio of the spent catalyst powder may be 5 to 80% by mass, preferably 7 to 70% by mass, and more preferably 10 to 60% by mass. If it is the said range, this invention can be applied more effectively.

本発明において、上記の乾燥体、焼成体等および使用済触媒を粉砕する方法としては、特に限定はされないが、例えば、ハンマーミル、ローラミル、ボールミルおよび気流粉砕機などを用いた粉砕方法が採用できる。粉砕により得られた乾燥粉体や焼成粉体は、平均粒子径(メジアン径)が100μm以下であることが好ましく、より好ましくは5〜80μm、さらに好ましくは10〜60μmである。平均粒子径(メジアン径)が100μmより大きいと、強度が低下するおそれがある。   In the present invention, the method for pulverizing the dried body, the calcined body, and the like and the used catalyst is not particularly limited. For example, a pulverization method using a hammer mill, a roller mill, a ball mill, an airflow pulverizer, or the like can be employed. . The dry powder or fired powder obtained by pulverization preferably has an average particle diameter (median diameter) of 100 μm or less, more preferably 5 to 80 μm, and still more preferably 10 to 60 μm. If the average particle diameter (median diameter) is larger than 100 μm, the strength may decrease.

本発明のチタン−バナジウム系触媒はチタン系酸化物とバナジウム系酸化物を必須として含む。   The titanium-vanadium catalyst of the present invention contains a titanium-based oxide and a vanadium-based oxide as essential components.

チタン系酸化物としては、チタンを必須金属元素として含む酸化物であり、具体的には、チタンの酸化物(単一酸化物)であっても、チタンと他の金属元素とを含む複合酸化物であってもよい。   The titanium-based oxide is an oxide containing titanium as an essential metal element. Specifically, even a titanium oxide (single oxide) is a composite oxide containing titanium and another metal element. It may be a thing.

複合酸化物であるチタン系酸化物としては、例えば、チタニア−シリカ複合酸化物、チタニア−シリカ−ジルコニア複合酸化物、チタニア−ジルコニア複合酸化物、チタニア−シリカ−モリブデン複合酸化物、チタニア−モリブデン複合酸化物、チタニア−シリカ−タングステン複合酸化物、チタニア−タングステン複合酸化物、チタニア−アルミナ複合酸化物などが挙げられ、好ましくは、チタニア−シリカ複合酸化物である。該複合酸化物の調製には特に制限はなく、従来知られた方法を用いれば良く、例えば、各元素の化合物の溶液を混合し、沈殿を生成させた後に濾過し、得られる濾過物を乾燥、焼成した後、粉砕することにより得ることができる。   Examples of titanium oxides that are composite oxides include titania-silica composite oxide, titania-silica-zirconia composite oxide, titania-zirconia composite oxide, titania-silica-molybdenum composite oxide, and titania-molybdenum composite. Examples thereof include oxides, titania-silica-tungsten composite oxides, titania-tungsten composite oxides, titania-alumina composite oxides, and titania-silica composite oxides are preferable. There are no particular limitations on the preparation of the composite oxide, and a conventionally known method may be used. For example, a solution of a compound of each element is mixed, a precipitate is formed and then filtered, and the resulting filtrate is dried. After firing, it can be obtained by pulverization.

チタン系酸化物の含有量(酸化物換算)は、完成触媒全質量に対して30〜99.9重量%であることが好ましく、より好ましくは50〜99.9重量%、さらに好ましくは70〜99.9重量%である。   The titanium-based oxide content (as oxide) is preferably 30 to 99.9% by weight, more preferably 50 to 99.9% by weight, and even more preferably 70 to 70% by weight based on the total mass of the finished catalyst. 99.9% by weight.

本発明のチタン−バナジウム系触媒において、バナジウム系酸化物はバナジウム元素を含む化合物を混練工程で用いることにより含有させることができる。バナジウム元素を含む化合物としては、例えば、バナジウム元素の酸化物、水酸化物、アンモニウム塩、シュウ酸塩および硫酸塩などが挙げられる。   In the titanium-vanadium catalyst of the present invention, the vanadium oxide can be contained by using a compound containing a vanadium element in the kneading step. Examples of the compound containing vanadium element include oxides, hydroxides, ammonium salts, oxalates, and sulfates of vanadium elements.

バナジウム系酸化物の含有量(酸化物換算)は、完成触媒全質量に対して0.1〜25重量%であることが好ましく、より好ましくは0.1〜20重量%、さらに好ましくは0.1〜15重量%である。   The vanadium-based oxide content (as oxide) is preferably 0.1 to 25% by weight, more preferably 0.1 to 20% by weight, and still more preferably 0.8% by weight based on the total mass of the finished catalyst. 1 to 15% by weight.

本発明においては、上記チタン−バナジウム系触媒は、チタン系酸化物やバナジウム系酸化物以外の他の金属酸化物を含んでいてもよく、例えば、タングステン、モリブデン、銅、鉄、クロム、マンガン、亜鉛、セリウムおよびスズなどからなる群より選ばれる少なくとも1種の元素を含有する酸化物が挙げられる。これらの中でも、タングステン、モリブデンが好適である。   In the present invention, the titanium-vanadium catalyst may contain a metal oxide other than titanium oxide and vanadium oxide, such as tungsten, molybdenum, copper, iron, chromium, manganese, Examples thereof include oxides containing at least one element selected from the group consisting of zinc, cerium, tin and the like. Among these, tungsten and molybdenum are preferable.

本発明において、乾燥粉体および焼成粉体のうち少なくとも1種の粉体、ならびに使用済触媒の粉体とチタン系原料粉体、バナジウムを必須とする触媒活性成分を含む薬液および成形助剤を用いて混練する場合の形態としては、特に限定されないが、例えば、次の3つが挙げられる。すなわち、第一の形態は乾燥粉体および焼成粉体のうち少なくとも1種の粉体、使用済触媒の粉体、チタン系原料粉体および活性成分を含む溶液を混合し、成形助剤を加えて混練する形態、第二の形態は乾燥粉体および焼成粉体のうち少なくとも1種の粉体、使用済触媒の粉体とチタン系原料粉体を混合した後、活性成分を含む溶液を成形助剤等と共に加えて、混練する形態、第三の形態は乾燥粉体および焼成粉体のうち少なくとも1種の粉体、使用済触媒の粉体を、チタン系原料粉体と活性成分を含む溶液と成形助剤等の混合物に加えて、混練する形態、である。   In the present invention, at least one of dry powder and calcined powder, a powder of a used catalyst, a titanium-based raw material powder, a chemical solution containing a catalytically active component essential for vanadium, and a molding aid are provided. Although it does not specifically limit as a form in the case of using and knead | mixing, For example, the following three are mentioned. That is, the first form is a mixture of at least one of dry powder and calcined powder, spent catalyst powder, titanium-based raw material powder and a solution containing an active ingredient, and a molding aid is added. The second form is a mixture of at least one of the dry powder and calcined powder, the spent catalyst powder and the titanium-based raw material powder, and then a solution containing the active ingredient is formed. In addition to the auxiliary agent, etc., the form of kneading, the third form is at least one kind of dry powder and calcined powder, used catalyst powder, titanium-based raw material powder and active ingredient In addition to a mixture of a solution and a molding aid or the like, it is a form of kneading.

混練工程においては、必要に応じて、乾燥粉体および焼成粉体の少なくとも1種ならびに使用済触媒の粉体の混合したものの他に、無機繊維、ゾル、気孔形成剤などを添加して成形してもよく、これらは通常触媒調製に使用される配合量の範囲で用いればよい。   In the kneading step, if necessary, in addition to a mixture of at least one of dry powder and calcined powder and spent catalyst powder, inorganic fiber, sol, pore-forming agent, etc. are added and molded. These may be used in the range of the amount usually used for catalyst preparation.

成形工程では、前記混練工程で得られた混練物の一部を用いて、所望の触媒形状に成形する。該成形は、乾燥粉体および焼成粉体の少なくとも1種ならびに使用済触媒の粉体(必要に応じて成形助剤等の他の成分を含む)を必須とする触媒材料を、押出し成形機などを用いて所望の形状とし、触媒材料のみからなる成形体を得るようにする一体成形であってもよいし、また、所望の形状を有する担体(例えば、非吸水性の耐熱基材など)上に、乾燥粉体および焼成粉体の少なくとも1種ならびに使用済触媒の粉体(必要に応じて成形助剤等の他の成分を含む)を必須とする触媒材料を塗布して、コートする担持成形であってもよい。担持成形の場合に用い得る担体は、通常、担持触媒を得る際に用いられる材質からなるものであれば特に限定はされないが、上記非吸水性の耐熱基材としては、例えば、ステンレス鋼などの金属や、コージェライト、ムライトおよびSiC等のセラミックス、ならびに、繊維状セラミックスを紙状素材に抄造したセラミックペーパーなどを、ハニカム状、板状、網状、円柱状、円筒状、波板(コルゲート)状、パイプ状、ドーナツ状、格子状、プレート状(波状プレートを複数積み重ねて隣合うプレート同士の間に空間を設けるようにしてなる形状)あるいは波状等の形状に加工したものを挙げられる。   In the forming step, a part of the kneaded product obtained in the kneading step is used to form a desired catalyst shape. The molding is performed by using, for example, an extrusion molding machine that contains at least one of dry powder and calcined powder and a catalyst material that includes spent catalyst powder (including other components such as a molding aid as necessary). It may be formed into a desired shape using a catalyst and may be integrally molded so as to obtain a molded body made only of a catalyst material, or on a carrier having a desired shape (for example, a non-water-absorbing heat-resistant substrate). And coating with a catalyst material, which requires at least one of a dry powder and a calcined powder and a powder of a used catalyst (including other components such as a molding aid as necessary). It may be molded. The carrier that can be used in the case of supported molding is not particularly limited as long as it is made of a material that is usually used for obtaining a supported catalyst. Examples of the non-water-absorbing heat-resistant substrate include stainless steel and the like. Metals, ceramics such as cordierite, mullite, and SiC, and ceramic paper made from fibrous ceramics on paper-like materials, honeycombs, plates, nets, columns, cylinders, corrugated plates , Pipe shape, donut shape, lattice shape, plate shape (a shape in which a plurality of corrugated plates are stacked so that a space is provided between adjacent plates) or a corrugated shape.

触媒形状については、特に限定されず、例えば、板状、波板状、網状、ハニカム状、ペレット状、円柱状、円筒状(パイプ状)などの形状においても採用できる。粒状や棒状、球状、リング状、円柱状などをなす微小な触媒を成形し、容器に充填したり堆積させたりした状態で使用することもできる。   The shape of the catalyst is not particularly limited, and for example, it can be adopted in shapes such as a plate shape, a corrugated plate shape, a net shape, a honeycomb shape, a pellet shape, a columnar shape, and a cylindrical shape (pipe shape). A fine catalyst having a granular shape, a rod shape, a spherical shape, a ring shape, a cylindrical shape, or the like can be formed and used in a state of being filled or deposited in a container.

本発明の乾燥工程において、乾燥温度は特に限定はされず、後の焼成工程の条件等を考慮して適宜設定すればよいが、乾燥温度は、20〜150℃であることが好ましく、より好ましくは40〜120℃、さらに好ましくは50〜100℃である。乾燥時間は、0.5〜20時間であることが好ましい。   In the drying step of the present invention, the drying temperature is not particularly limited, and may be appropriately set in consideration of the conditions of the subsequent firing step. The drying temperature is preferably 20 to 150 ° C, more preferably. Is 40 to 120 ° C, more preferably 50 to 100 ° C. The drying time is preferably 0.5 to 20 hours.

本発明の焼成燥工程において、焼成温度は特に限定はされず、通常の触媒製造において設定される範囲に設定することができるが、例えば、300〜600℃であることが好ましく、より好ましくは350〜580℃、さらに好ましくは400〜550℃である。焼成温度は、低すぎると、触媒強度が低下するおそれがあり、高すぎると、活性成分のシンタリングや触媒比表面積の低下を引き起こし、触媒活性が低下するおそれがある。焼成時間は、1〜40時間であることが好ましい。   In the calcination drying step of the present invention, the calcination temperature is not particularly limited and can be set within a range set in normal catalyst production. For example, it is preferably 300 to 600 ° C., more preferably 350 It is -580 degreeC, More preferably, it is 400-550 degreeC. If the calcination temperature is too low, the catalyst strength may be reduced, and if it is too high, the active component may be sintered or the catalyst specific surface area may be reduced, and the catalyst activity may be reduced. The firing time is preferably 1 to 40 hours.

本発明は、また、上記の製造方法により得られる排ガス処理触媒を用いて窒素酸化物(NOx)および/または有機ハロゲン化合物を含む排ガスを処理する排ガスの処理方法でもある。   The present invention is also an exhaust gas treatment method for treating exhaust gas containing nitrogen oxides (NOx) and / or organic halogen compounds using the exhaust gas treatment catalyst obtained by the above production method.

本発明の製造方法により得られた排ガス処理触媒は、石炭焚ボイラーや重油焚ボイラーから排出される排ガスや、産業廃棄物や都市廃棄物などを焼却により排出される焼却炉排ガスの処理において好適に用いられる。処理する排ガスの組成については特に制限はないが、前述したように、本発明により得られる排ガス処理触媒は、窒素酸化物(NOx)を除去する脱硝触媒として、あるいは、有機ハロゲン化合物を除去する有機ハロゲン化合物除去用触媒として、有効に用いることができる。   The exhaust gas treatment catalyst obtained by the production method of the present invention is suitable for the treatment of exhaust gas discharged from coal fired boilers and heavy oil fired boilers, incinerator exhaust gas discharged by incineration of industrial waste, municipal waste, etc. Used. The composition of the exhaust gas to be treated is not particularly limited, but as described above, the exhaust gas treatment catalyst obtained by the present invention is used as a denitration catalyst for removing nitrogen oxides (NOx) or an organic material for removing organic halogen compounds. It can be used effectively as a catalyst for removing halogen compounds.

本発明の製造方法により得られた排ガス処理触媒を、有機ハロゲン化合物除去用触媒として用いる場合、処理する排ガスの組成については、有機ハロゲン化合物を含むものであれば特に制限はないが、特にダイオキシン類(ポリハロゲン化ジベンゾダイオキシン、ポリハロゲン化ジベンゾフランおよびポリハロゲン化ビフェニルのうちから選ばれた少なくとも1種)やPCBを含む排ガスが好適である。本発明により得られた排ガス処理触媒を用いて有機ハロゲン化合物を除去するには、排ガスを130〜350℃の温度、好ましくは150〜250℃の温度で、該触媒に接触させ流通させることが望ましい。   When the exhaust gas treatment catalyst obtained by the production method of the present invention is used as an organic halogen compound removal catalyst, the composition of the exhaust gas to be treated is not particularly limited as long as it contains an organic halogen compound, but particularly dioxins. Exhaust gas containing PCB (at least one selected from polyhalogenated dibenzodioxins, polyhalogenated dibenzofurans and polyhalogenated biphenyls) and PCB is preferred. In order to remove the organic halogen compound using the exhaust gas treatment catalyst obtained by the present invention, it is desirable that the exhaust gas is brought into contact with the catalyst and circulated at a temperature of 130 to 350 ° C., preferably 150 to 250 ° C. .

本発明の製造方法により得られた排ガス処理触媒を、脱硝触媒として用いる場合、該触媒をアンモニアや尿素などの還元剤の存在下で、排ガスと接触させ、排ガス中の窒素酸化物を還元除去するようにする。この際の処理条件については、特に制限はなく、この種の反応に一般的に用いられている処理条件で実施することができる。具体的には、排ガスの種類、性状、要求される窒素酸化物の分解率などを考慮して適宜決定すればよいが、温度は、150〜600℃であることが好ましい。処理時の排ガス温度が150℃より低いと、脱硝効率が低下するおそれがあり、600℃を超えると、活性成分のシンタリングや触媒の比表面積が低下する等の問題が生じるおそれがある。   When the exhaust gas treatment catalyst obtained by the production method of the present invention is used as a denitration catalyst, the catalyst is brought into contact with exhaust gas in the presence of a reducing agent such as ammonia or urea to reduce and remove nitrogen oxides in the exhaust gas. Like that. The treatment conditions at this time are not particularly limited, and the treatment can be performed under the treatment conditions generally used for this type of reaction. Specifically, it may be determined appropriately in consideration of the type and properties of exhaust gas, the required decomposition rate of nitrogen oxides, etc., but the temperature is preferably 150 to 600 ° C. If the exhaust gas temperature during the treatment is lower than 150 ° C., the denitration efficiency may be lowered, and if it exceeds 600 ° C., problems such as the sintering of the active component and the specific surface area of the catalyst may be caused.

以下に実施例により発明を詳細に説明するが、本発明の効果を奏するものであれば以下の実施例に限定されるものではない。なお、以下では、便宜上、「リットル」を単に「L」と記すことがある。   The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples as long as the effects of the present invention are achieved. Hereinafter, for the sake of convenience, “liter” may be simply referred to as “L”.

(参考例1)
<チタン系原料粉体A(Ti−Si酸化物)の調製>
シリカゾル(SiOとして30重量%含有)8kgと10質量%アンモニア水250Lを混合した溶液に、硫酸チタニルの硫酸溶液(TiOとして100g/L含有、硫酸濃度400g/L)180Lをよく撹拌しながら徐々に滴下し、沈殿を生成させた後、適量の25質量%アンモニア水を加えてpHを8に調整した。このスラリーを濾過、洗浄し、150℃で20時間乾燥した。これを空気雰囲気下550℃で5時間焼成し、さらにハンマーミルを用いて粉砕し、平均粒子径(メジアン径)35μmのチタン系原料粉体A(Ti−Si酸化物)を得た。平均粒子径(メジアン径)の測定には株式会社堀場製作所製のレーザ回折・散乱式粒度分布測定装置LA−920を用いた。チタン系原料粉体Aの組成はTiO/SiOの質量比(酸化物換算)で88/12質量%であった。
(Reference Example 1)
<Preparation of titanium-based raw material powder A (Ti-Si oxide)>
To a solution obtained by mixing 8 kg of silica sol (containing 30 wt% as SiO 2 ) and 250 L of 10 mass% aqueous ammonia, 180 L of sulfuric acid solution of titanyl sulfate (containing 100 g / L as TiO 2 , sulfuric acid concentration 400 g / L) is stirred well. After gradually dropping to form a precipitate, an appropriate amount of 25% by mass aqueous ammonia was added to adjust the pH to 8. This slurry was filtered, washed, and dried at 150 ° C. for 20 hours. This was fired at 550 ° C. for 5 hours in an air atmosphere, and further pulverized using a hammer mill to obtain titanium-based raw material powder A (Ti—Si oxide) having an average particle diameter (median diameter) of 35 μm. For the measurement of the average particle diameter (median diameter), a laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by Horiba Ltd. was used. The composition of the titanium-based raw material powder A was 88/12% by mass in terms of a TiO 2 / SiO 2 mass ratio (as oxide).

(参考例2)
<乾燥粉体Bの調製>
メタバナジン酸アンモニウム(Vとして78重量%含有)2.1kg、シュウ酸3kg、モノエタノールアミン1kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)1.3kg、モノエタノールアミン0.5kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、参考例1で調製したTi−Si酸化物粉体(粉体A)20kgに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥し、さらにハンマーミルを用いて粉砕し、平均粒子径(メジアン径)20μmの乾燥粉体Bを得た。乾燥粉体Bの組成はTiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
(Reference Example 2)
<Preparation of dry powder B>
A homogeneous solution in which 2.1 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 3 kg of oxalic acid, and 1 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (containing 90 wt% as WO 3) ) Ti-Si oxide powder (powder A) prepared in Reference Example 1 with a uniform solution prepared by mixing and dissolving 1.3 kg and 0.5 kg of monoethanolamine in 2 L of water together with a molding aid and an appropriate amount of water. In addition to 20 kg, the mixture was kneaded with a kneader, and then formed into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. for 1 hour and further pulverized using a hammer mill to obtain a dry powder B having an average particle diameter (median diameter) of 20 μm. The composition of the dry powder B was 77/11/ 7 / 5 % by mass in terms of the mass ratio of TiO 2 / SiO 2 / V 2 O 5 / WO 3 (as oxide).

(参考例3)
<焼成粉体Cの調製>
メタバナジン酸アンモニウム(Vとして78重量%含有)2.1kg、シュウ酸3kg、モノエタノールアミン1kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)1.3kg、モノエタノールアミン0.5kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、参考例1で調製したTi−Si酸化物粉体(粉体A)20kgに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成した。これをハンマーミルを用いて粉砕し、平均粒子径(メジアン径)15μmの焼成粉体Cを得た。焼成粉体Cの組成はTiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
(Reference Example 3)
<Preparation of calcined powder C>
A homogeneous solution in which 2.1 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 3 kg of oxalic acid, and 1 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (containing 90 wt% as WO 3) ) Ti-Si oxide powder (powder A) prepared in Reference Example 1 with a uniform solution prepared by mixing and dissolving 1.3 kg and 0.5 kg of monoethanolamine in 2 L of water together with a molding aid and an appropriate amount of water. In addition to 20 kg, the mixture was kneaded with a kneader, and then formed into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere. This was pulverized using a hammer mill to obtain calcined powder C having an average particle diameter (median diameter) of 15 μm. The composition of the calcined powder C was 77/11/ 7 / 5 % by mass in terms of a mass ratio of TiO 2 / SiO 2 / V 2 O 5 / WO 3 (as oxide).

(参考例4)
<使用済触媒粉体Dの調製>
本発明の実施例に用いる使用済触媒は以下の経過をたどった触媒である。
まず、使用済触媒aは、メタバナジン酸アンモニウム(Vとして78重量%含有)2.1kg、シュウ酸3kg、モノエタノールアミン1kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)1.3kg、モノエタノールアミン0.5kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)20kgに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成して得られた。
触媒aの組成はチタン系原料粉体A/V/WOの質量比(酸化物換算)で88/7/5質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
触媒aに石炭焚ボイラー排ガスの処理装置に充填し排ガスを流通させ、8000時間の稼働を行った。排ガス処理の条件及び排ガス組成を下記に示す。稼働後の触媒aを、ハンマーミルを用いて粉砕し、平均粒子径(メジアン径)20μmの使用済触媒粉体Dを得た。
(Reference Example 4)
<Preparation of spent catalyst powder D>
The spent catalyst used in the examples of the present invention is a catalyst having the following course.
First, the spent catalyst a was prepared by mixing 2.1 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 3 kg of oxalic acid, and 1 kg of monoethanolamine in 3 L of water and ammonium paratungstate. (Contains 90% by weight as WO 3 ) 1.3 kg, Ti-Si oxidation prepared in Reference Example 1 together with a molding aid and an appropriate amount of water obtained by mixing and dissolving 0.5 kg of monoethanolamine in 2 L of water In addition to 20 kg of the product powder (titanium-based raw material powder A), it was kneaded with a kneader, and then molded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. . This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere.
The composition of the catalyst a is 88/ 7 / 5 % by mass (as oxide) of titanium-based raw material powder A / V 2 O 5 / WO 3 , TiO 2 / SiO 2 / V 2 O 5 / WO 3 The mass ratio (as oxide) was 77/11/7/5% by mass.
The catalyst a was charged into a coal-fired boiler exhaust gas treatment device and the exhaust gas was circulated, and operation was performed for 8000 hours. The exhaust gas treatment conditions and exhaust gas composition are shown below. The catalyst a after operation was pulverized using a hammer mill to obtain a used catalyst powder D having an average particle diameter (median diameter) of 20 μm.

<曝露条件>
ガス温度:350〜380℃
空間速度(STP):3000〜6000hr−1
<合成ガス組成>
NO:150〜200ppm,dry
NH:120〜160ppm,dry、
SO:400〜600ppm,dry、
:2〜4%,dry
O:7〜10%,wet
:balance
(実施例1)
<触媒Aの調製>
参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)11.3kgと、参考例2で得られた粉体B2.2kgと、参考例3で得られた焼成粉体C2.2kgと、参考例4で得られた使用済触媒粉体D4.3kgとを混合(B+C+D配合比率:44%)した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.2kg、シュウ酸1.7kg、モノエタノールアミン0.6kgを水1.7Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.7kg、モノエタノールアミン0.3kgを水1.1Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si酸化物粉体(チタン系原料粉体A)、乾燥粉体B、焼成粉体Cおよび使用済触媒粉体Dに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Aを得た。触媒Aの組成はチタン系原料粉体A/乾燥粉体B/焼成粉体C/使用済触媒粉体D/V/WOの質量比(酸化物換算)で52/10/10/20/4/3質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
<Exposure conditions>
Gas temperature: 350-380 ° C
Space velocity (STP): 3000 to 6000 hr −1
<Syngas composition>
NO X: 150~200ppm, dry
NH 3: 120~160ppm, dry,
SO X : 400 to 600 ppm, dry,
O 2 : 2 to 4%, dry
H 2 O: 7 to 10%, wet
N 2 : balance
Example 1
<Preparation of catalyst A>
11.3 kg of Ti—Si oxide powder (titanium-based raw material powder A) prepared in Reference Example 1, 2.2 kg of Powder B obtained in Reference Example 2, and calcined powder obtained in Reference Example 3 C2.2 kg and 4.3 kg of the used catalyst powder D obtained in Reference Example 4 were mixed (B + C + D blending ratio: 44%). Next, ammonium metavanadate (containing 78 wt% as V 2 O 5 ) 1.2 kg, oxalic acid 1.7 kg, monoethanolamine 0.6 kg mixed and dissolved in 1.7 L of water and ammonium paratungstate (Contains 90% by weight as WO 3 ) 0.7 kg, Ti-Si oxidation previously mixed with a homogeneous solution of 0.3 kg monoethanolamine mixed and dissolved in 1.1 L water together with molding aid and appropriate amount of water In addition to the product powder (titanium-based raw material powder A), dry powder B, calcined powder C and used catalyst powder D, after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, It was molded into a honeycomb shape with an opening of 2.9 mm and a wall thickness of 0.4 mm. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst A. The composition of the catalyst A is 52/10/10 in terms of mass ratio (as oxide) of titanium-based raw material powder A / dry powder B / calcined powder C / used catalyst powder D / V 2 O 5 / WO 3. It was 77/11/7/5 mass% in mass ratio (as oxide) of / 20/4/3 mass% and TiO 2 / SiO 2 / V 2 O 5 / WO 3 .

(実施例2)
<触媒Bの調製>
参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)11.3kgと、参考例2で得られた粉体B2.2kgと、参考例4で得られた使用済触媒粉体D6.5kgとを混合(B+D配合比率:44%)した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.2kg、シュウ酸1.7kg、モノエタノールアミン0.6kgを水1.7Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.7kg、モノエタノールアミン0.3kgを水1.1Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si酸化物粉体(チタン系原料粉体A)、乾燥粉体Bおよび使用済触媒粉体Dに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Bを得た。触媒Bの組成はチタン系原料粉体A/乾燥粉体B/使用済触媒粉体D/V/WOの質量比(酸化物換算)で52/10/30/4/3質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
(Example 2)
<Preparation of catalyst B>
11.3 kg of Ti—Si oxide powder (titanium-based raw material powder A) prepared in Reference Example 1, 2.2 kg of Powder B obtained in Reference Example 2, and used catalyst obtained in Reference Example 4 Powder D (6.5 kg) was mixed (B + D blending ratio: 44%). Next, ammonium metavanadate (containing 78 wt% as V 2 O 5 ) 1.2 kg, oxalic acid 1.7 kg, monoethanolamine 0.6 kg mixed and dissolved in 1.7 L of water and ammonium paratungstate (Contains 90% by weight as WO 3 ) 0.7 kg, Ti-Si oxidation previously mixed with a homogeneous solution of 0.3 kg monoethanolamine mixed and dissolved in 1.1 L water together with molding aid and appropriate amount of water In addition to the product powder (titanium-based raw material powder A), dry powder B and used catalyst powder D, after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, the opening is 2.9 mm, Molded into a honeycomb with a thickness of 0.4 mm. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst B. The composition of the catalyst B is 52/10/30/4/3 mass by mass ratio (as oxide) of titanium-based raw material powder A / dry powder B / used catalyst powder D / V 2 O 5 / WO 3. %, And the mass ratio of TiO 2 / SiO 2 / V 2 O 5 / WO 3 (as oxide) was 77/11/ 7 / 5 % by mass.

(実施例3)
<触媒Cの調製>
参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)11.3kgと、参考例3で得られた焼成粉体C2.2kgと、参考例4で得られた使用済触媒粉体D6.5kgとを混合(C+D配合比率:44%)した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)1.2kg、シュウ酸1.7kg、モノエタノールアミン0.6kgを水1.7Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.7kg、モノエタノールアミン0.3kgを水1.1Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si酸化物粉体(チタン系原料粉体A)、焼成粉体Cおよび使用済触媒粉体Dに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Cを得た。触媒Cの組成はチタン系原料粉体A/焼成粉体C/使用済触媒粉体D/V/WOの質量比(酸化物換算)で52/10/30/4/3質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
(Example 3)
<Preparation of catalyst C>
11.3 kg of the Ti—Si oxide powder (titanium-based raw material powder A) prepared in Reference Example 1, 2.2 kg of the calcined powder C obtained in Reference Example 3, and the used product obtained in Reference Example 4 Catalyst powder D (6.5 kg) was mixed (C + D blending ratio: 44%). Next, ammonium metavanadate (containing 78 wt% as V 2 O 5 ) 1.2 kg, oxalic acid 1.7 kg, monoethanolamine 0.6 kg mixed and dissolved in 1.7 L of water and ammonium paratungstate (Contains 90% by weight as WO 3 ) 0.7 kg, Ti-Si oxidation previously mixed with a homogeneous solution of 0.3 kg monoethanolamine mixed and dissolved in 1.1 L water together with molding aid and appropriate amount of water In addition to the product powder (titanium-based raw material powder A), the calcined powder C, and the used catalyst powder D, after being kneaded by a kneader, the outer shape is 80 mm square, the length is 500 mm, the opening is 2.9 mm, Molded into a honeycomb with a thickness of 0.4 mm. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst C. The composition of the catalyst C is 52/10/30/4/3 mass by mass ratio (as oxide) of titanium-based raw material powder A / calcined powder C / used catalyst powder D / V 2 O 5 / WO 3. %, And the mass ratio of TiO 2 / SiO 2 / V 2 O 5 / WO 3 (as oxide) was 77/11/ 7 / 5 % by mass.

(実施例4)
<触媒Dの調製>
参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)9.4kgと、参考例2で得られた粉体B2.1kgと、参考例3で得られた焼成粉体C2.1kgと、参考例4で得られた使用済触媒粉体D6.4kgとを混合(B+C+D配合比率:53%)した。次にメタバナジン酸アンモニウム(Vとして78重量%含有)0.9kg、シュウ酸1.4kg、モノエタノールアミン0.5kgを水1.4Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)0.6kg、モノエタノールアミン0.2kgを水0.9Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、先に混合したTi−Si酸化物粉体(チタン系原料粉体A)、乾燥粉体B、焼成粉体Cおよび使用済触媒粉体Dに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Dを得た。触媒Dの組成はチタン系原料粉体A/乾燥粉体B/焼成粉体C/使用済触媒粉体D/V/WOの質量比(酸化物換算)で44/10/10/30/3/3質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
Example 4
<Preparation of catalyst D>
9.4 kg of the Ti—Si oxide powder (titanium-based raw material powder A) prepared in Reference Example 1, 2.1 kg of the powder B obtained in Reference Example 2, and the fired powder obtained in Reference Example 3 C2.1 kg and 6.4 kg of the used catalyst powder D obtained in Reference Example 4 were mixed (B + C + D blending ratio: 53%). Next, 0.9 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 1.4 kg of oxalic acid, and 0.5 kg of monoethanolamine were mixed and dissolved in 1.4 L of water and ammonium paratungstate. (Contains 90% by weight as WO 3 ) 0.6kg, Ti-Si oxidation previously mixed with 0.9L of monoethanolamine mixed and dissolved in 0.9L of water together with molding aid and appropriate amount of water In addition to the product powder (titanium-based raw material powder A), dry powder B, calcined powder C and used catalyst powder D, after kneading with a kneader, the outer shape is 80 mm square, the length is 500 mm, It was molded into a honeycomb shape with an opening of 2.9 mm and a wall thickness of 0.4 mm. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst D. The composition of the catalyst D is 44/10/10 in terms of mass ratio (as oxide) of titanium-based raw material powder A / dry powder B / calcined powder C / used catalyst powder D / V 2 O 5 / WO 3. It was 77/11/7/5 mass% in mass ratio (as oxide) of / 30/3/3 mass% and TiO 2 / SiO 2 / V 2 O 5 / WO 3 .

(比較例1)
<触媒Eの調製>
メタバナジン酸アンモニウム(Vとして78重量%含有)2.1kg、シュウ酸3kg、モノエタノールアミン1kgを水3Lに混合・溶解させた均一溶液とパラタングステン酸アンモニウム(WOとして90重量%含有)1.3kg、モノエタノールアミン0.5kgを水2Lに混合・溶解させた均一溶液を成型助剤と適量の水とともに、参考例1で調製したTi−Si酸化物粉体(チタン系原料粉体A)20kgに加え、ニーダーで混練した後、押出成型機で外形80mm角、長さ500mm、目開き2.9mm、肉厚0.4mmのハニカム状に成型した。これを80℃で1時間乾燥した後、空気雰囲気下450℃で5時間焼成し、触媒Eを得た。触媒Eの組成はチタン系原料粉体A/V/WOの質量比(酸化物換算)で88/7/5質量%、TiO/SiO/V/WOの質量比(酸化物換算)で77/11/7/5質量%であった。
(Comparative Example 1)
<Preparation of catalyst E>
A homogeneous solution in which 2.1 kg of ammonium metavanadate (containing 78 wt% as V 2 O 5 ), 3 kg of oxalic acid, and 1 kg of monoethanolamine were mixed and dissolved in 3 L of water and ammonium paratungstate (containing 90 wt% as WO 3) ) Ti-Si oxide powder (titanium-based raw material powder) prepared in Reference Example 1 with a uniform solution prepared by mixing and dissolving 1.3 kg and 0.5 kg of monoethanolamine in 2 L of water together with a molding aid and an appropriate amount of water Body A) In addition to 20 kg, the mixture was kneaded with a kneader, and then molded into a honeycomb shape having an outer shape of 80 mm square, a length of 500 mm, an aperture of 2.9 mm, and a wall thickness of 0.4 mm by an extruder. This was dried at 80 ° C. for 1 hour and then calcined at 450 ° C. for 5 hours in an air atmosphere to obtain Catalyst E. The composition of catalyst E is 88/ 7 / 5 % by mass in terms of mass ratio (as oxide) of titanium-based raw material powder A / V 2 O 5 / WO 3 , TiO 2 / SiO 2 / V 2 O 5 / WO 3 The mass ratio (as oxide) was 77/11/7/5% by mass.

(圧縮強度の測定)
実施例1〜4で得られた触媒A〜Dおよび比較例1で得られた触媒Eを用いて、下記条件で圧縮強度を測定した。
なお、圧縮強度の測定には株式会社島津製作所の精密万能試験機オートグラフAG−250kNISを用いた。
<測定条件>
(1)外形80mm角、長さ80mmの試料を150℃で20時間乾燥後、デシケーター内で室温まで冷却する。
(2)荷重が均等に掛るように下記の図1の通り試料と圧板400mmφの間に厚さ2mmのカオウールシートを上下に挟む。
(3)クロスヘッドスピード3mm/min、ロードセル250kNにて試料が完全に破壊されるまで荷重を加える。
(Measurement of compressive strength)
Using the catalysts A to D obtained in Examples 1 to 4 and the catalyst E obtained in Comparative Example 1, the compressive strength was measured under the following conditions.
In addition, the precision universal testing machine Autograph AG-250kNIS of Shimadzu Corporation was used for the measurement of compressive strength.
<Measurement conditions>
(1) A sample having an external shape of 80 mm square and a length of 80 mm is dried at 150 ° C. for 20 hours and then cooled to room temperature in a desiccator.
(2) A 2 mm thick kao wool sheet is sandwiched between the sample and the pressure plate 400 mmφ as shown in FIG.
(3) A load is applied until the sample is completely destroyed at a crosshead speed of 3 mm / min and a load cell of 250 kN.

上記条件において、触媒A〜D(実施例1〜4)および触媒E(比較例1)の試料破壊時の最大荷重を測定し、圧縮強度を下記数式1に従い求めた。得られた圧縮強度を表1に示した。表1から分かるように触媒A〜D(実施例1〜4)は触媒E(比較例1)に較べて、圧縮強度が高いことが分かる。
[図1]

Figure 2016068033
Under the above conditions, the maximum load at the time of sample breakage of Catalysts A to D (Examples 1 to 4) and Catalyst E (Comparative Example 1) was measured, and the compressive strength was determined according to the following Equation 1. The obtained compressive strength is shown in Table 1. As can be seen from Table 1, the catalysts A to D (Examples 1 to 4) have higher compressive strength than the catalyst E (Comparative Example 1).
[Figure 1]
Figure 2016068033

[数式1]

Figure 2016068033
[Formula 1]
Figure 2016068033

Figure 2016068033
Figure 2016068033

(脱硝性能の評価)
実施例1〜4で得られた触媒A〜Dおよび比較例1で得られた触媒Eを溶融塩浴に浸漬されたステンレス製反応管に充填し、下記組成の合成ガスを下記条件下で触媒層に導入し、NO除去率を測定した。
(Evaluation of denitration performance)
Catalysts A to D obtained in Examples 1 to 4 and Catalyst E obtained in Comparative Example 1 were filled in a stainless steel reaction tube immersed in a molten salt bath, and a synthesis gas having the following composition was charged under the following conditions. was introduced in the layer was measured NO X removal rate.

NO除去率は反応管入口および反応管出口のNOx濃度をNOx計(化学発光式、日本サーモ株式会社製MODEL5100)により測定し、下記数式2に従い求めた。得られたNO除去率を表2に示した。表2から分かるように触媒A〜D(実施例1〜4)は触媒E(比較例1)に較べて、NO除去率が同じであることが分かる。 NO X removal rate reaction tube inlet and the NOx concentration in the reaction tube exit a NOx meter (chemiluminescent, Nippon Thermo Co. MODEL5100) was measured by, determined in accordance with Equation 2 below. The obtained NO X removal rate is shown in Table 2. Catalyst A~D As can be seen from Table 2 (Examples 1-4) are compared to the catalyst E (Comparative Example 1), it can be seen NO X removal rate is the same.

<反応条件>
ガス温度:350℃
空間速度(STP):26000hr−1
<合成ガス組成>
NO:100ppm,dry
NH:100ppm,dry、
:15%,dry
O:10%,wet
:balance
[数式2]

Figure 2016068033
<Reaction conditions>
Gas temperature: 350 ° C
Space velocity (STP): 26000 hr −1
<Syngas composition>
NO X : 100 ppm, dry
NH 3 : 100 ppm, dry,
O 2 : 15%, dry
H 2 O: 10%, wet
N 2 : balance
[Formula 2]
Figure 2016068033

Figure 2016068033
Figure 2016068033

(ダイオキシン類除去性能の評価)
実施例1〜4で得られた触媒A〜Dおよび比較例1で得られた触媒Eを用いて、下記組成の合成ガスを下記条件下で触媒層に導入し、ダイオキシン類除去率を測定した。
(Evaluation of dioxin removal performance)
Using the catalysts A to D obtained in Examples 1 to 4 and the catalyst E obtained in Comparative Example 1, a synthesis gas having the following composition was introduced into the catalyst layer under the following conditions, and the dioxin removal rate was measured. .

ダイオキシン類除去率は、下記数式3に従い求めた。得られたダイオキシン類除去率を表3に示した。表3から分かるように触媒A〜D(実施例1〜4)は触媒E(比較例1)に較べて、ダイオキシン類除去率が同じであることが分かる。   The dioxin removal rate was determined according to the following formula 3. The obtained dioxins removal rate is shown in Table 3. As can be seen from Table 3, it can be seen that Catalysts A to D (Examples 1 to 4) have the same dioxin removal rate as compared to Catalyst E (Comparative Example 1).

<反応条件>
ガス温度:200℃
空間速度(STP):4100hr−1
<合成ガス組成>
ダイオキシン類濃度:1ng
:15%,dry
O:10%,wet
:balance
[数式3]

Figure 2016068033
<Reaction conditions>
Gas temperature: 200 ° C
Space velocity (STP): 4100 hr −1
<Syngas composition>
Dioxin concentration: 1 ng
O 2 : 15%, dry
H 2 O: 10%, wet
N 2 : balance
[Formula 3]
Figure 2016068033

Figure 2016068033
Figure 2016068033

実施例および比較例の結果より、本発明の製造方法により得られる触媒は脱硝性能、ダイオキシン類除去性能を損なうことなく、圧縮強度は4〜5倍以上となっており、著しく向上していることが分かる。   From the results of Examples and Comparative Examples, the catalyst obtained by the production method of the present invention has a markedly improved compressive strength of 4 to 5 times or more without impairing the denitration performance and dioxin removal performance. I understand.

Claims (5)

チタン系酸化物とバナジウム系酸化物を含有する排ガス処理用触媒の方法であって、該製法はチタン系酸化物の原料粉体とバナジウム系化合物を混練する工程と、成型工程と、乾燥工程および焼成工程を有し、該乾燥工程で得られる未使用触媒を粉砕した乾燥粉体および該焼成工程で得られる未使用触媒を粉砕した焼成粉体のうち少なくとも1種の粉体、ならびに排ガス処理に用いた使用済のチタン系酸化物とバナジウム系酸化物を含有する触媒を粉砕した使用済触媒粉体を該チタン系酸化物の原料粉体に混合することを特徴とする排ガス処理用触媒の製造方法。   A catalyst for exhaust gas treatment containing a titanium-based oxide and a vanadium-based oxide, the method comprising a step of kneading a raw material powder of a titanium-based oxide and a vanadium-based compound, a molding step, a drying step, A dry powder obtained by pulverizing an unused catalyst obtained in the drying step, and at least one kind of powder obtained by pulverizing an unused catalyst obtained in the calcination step, and an exhaust gas treatment. Production of exhaust gas treatment catalyst comprising mixing used catalyst powder obtained by pulverizing used titanium-based oxide and catalyst containing vanadium-based oxide with raw material powder of titanium-based oxide Method. 前記乾燥粉体、焼成粉体および使用済触媒の平均粒子径(メジアン径)が5から80μmであることを特徴とする請求項1に記載の排ガス処理用触媒の製造方法。   2. The method for producing an exhaust gas treatment catalyst according to claim 1, wherein an average particle diameter (median diameter) of the dry powder, the calcined powder and the used catalyst is 5 to 80 μm. 前記の乾燥粉体および焼成粉体のうち少なく1種の粉体と前記の使用済触媒粉体をチタン系原料粉体と混合する場合において、チタン系原料粉体と乾燥粉体および焼成粉体のうち少なくとも1種粉体、ならびに使用済触媒粉体の全質量に対して、混合粉体中のチタン系原料粉体の配合割合が、5〜90質量%、乾燥粉体および焼成粉体のうち少なくとも1種の粉体の配合割合が5〜30質量%、使用済触媒粉体の配合割合が5〜80質量%であることを特徴とする請求項1または2に記載の排ガス処理用触媒の製造方法。   When mixing at least one of the dry powder and the fired powder and the spent catalyst powder with the titanium raw material powder, the titanium raw material powder, the dry powder and the fired powder The blending ratio of the titanium-based raw material powder in the mixed powder is 5 to 90% by mass with respect to the total mass of at least one kind of powder and the used catalyst powder, of the dry powder and the calcined powder. 3. The exhaust gas treatment catalyst according to claim 1, wherein the blending ratio of at least one kind of powder is 5 to 30 mass%, and the blending ratio of the used catalyst powder is 5 to 80 mass%. Manufacturing method. 請求項1〜3のいずれかに記載の製造方法により得られる触媒を用いて窒素酸化物を含む排ガスを処理することを特徴とする排ガス処理方法。   An exhaust gas treatment method comprising treating exhaust gas containing nitrogen oxides using the catalyst obtained by the production method according to claim 1. 請求項1〜3のいずれかに記載の製造方法により得られる触媒を用いて有機ハロゲン化合物を含む排ガスを処理することを特徴とする排ガス処理方法。   An exhaust gas treatment method comprising treating exhaust gas containing an organic halogen compound using the catalyst obtained by the production method according to claim 1.
JP2014201051A 2014-09-30 2014-09-30 Method for producing exhaust gas treatment catalyst Active JP6391397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201051A JP6391397B2 (en) 2014-09-30 2014-09-30 Method for producing exhaust gas treatment catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201051A JP6391397B2 (en) 2014-09-30 2014-09-30 Method for producing exhaust gas treatment catalyst

Publications (2)

Publication Number Publication Date
JP2016068033A true JP2016068033A (en) 2016-05-09
JP6391397B2 JP6391397B2 (en) 2018-09-19

Family

ID=55865515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201051A Active JP6391397B2 (en) 2014-09-30 2014-09-30 Method for producing exhaust gas treatment catalyst

Country Status (1)

Country Link
JP (1) JP6391397B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841528A (en) * 2020-07-22 2020-10-30 湖北中油优艺环保科技有限公司 Hazardous waste incineration denitration catalyst and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162634A (en) * 1981-03-30 1982-10-06 Mitsubishi Chem Ind Ltd Decomposing method for nox
JPH07163876A (en) * 1993-12-13 1995-06-27 Babcock Hitachi Kk Ammonia reducing catalyst of nitrogen oxide exhaust gas and production thereof
JP2004209355A (en) * 2002-12-27 2004-07-29 Nippon Shokubai Co Ltd Method for manufacturing catalyst for exhaust gas treatment
JP2006150352A (en) * 2004-11-08 2006-06-15 Nippon Shokubai Co Ltd Catalyst and method for exhaust gas treatment
JP2011251245A (en) * 2010-06-02 2011-12-15 Mitsubishi Heavy Ind Ltd Method for regeneration of exhaust gas treatment catalyst, and exhaust gas treatment catalyst produced using the method
JP2015182030A (en) * 2014-03-25 2015-10-22 株式会社日本触媒 Method for producing exhaust gas treatment catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162634A (en) * 1981-03-30 1982-10-06 Mitsubishi Chem Ind Ltd Decomposing method for nox
JPH07163876A (en) * 1993-12-13 1995-06-27 Babcock Hitachi Kk Ammonia reducing catalyst of nitrogen oxide exhaust gas and production thereof
JP2004209355A (en) * 2002-12-27 2004-07-29 Nippon Shokubai Co Ltd Method for manufacturing catalyst for exhaust gas treatment
JP2006150352A (en) * 2004-11-08 2006-06-15 Nippon Shokubai Co Ltd Catalyst and method for exhaust gas treatment
JP2011251245A (en) * 2010-06-02 2011-12-15 Mitsubishi Heavy Ind Ltd Method for regeneration of exhaust gas treatment catalyst, and exhaust gas treatment catalyst produced using the method
US20120204543A1 (en) * 2010-06-02 2012-08-16 Mitsubishi Heavy Industries, Ltd. Method for regeneration of exhaust gas treatment catalyst, and exhaust gas treatment cataylst produced using the method
JP2015182030A (en) * 2014-03-25 2015-10-22 株式会社日本触媒 Method for producing exhaust gas treatment catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111841528A (en) * 2020-07-22 2020-10-30 湖北中油优艺环保科技有限公司 Hazardous waste incineration denitration catalyst and preparation method thereof
CN111841528B (en) * 2020-07-22 2023-07-14 湖北中油优艺环保科技有限公司 Dangerous waste incineration denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP6391397B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
KR100992258B1 (en) The method of Exhaust Gas Treatment Catalyst with Honeycomb Structure Using the Titanium Dioxide Powder
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
JP4538198B2 (en) Titanium dioxide powder for honeycomb exhaust gas treatment catalyst and honeycomb exhaust gas treatment catalyst using the titanium dioxide powder
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
JPWO2006132097A1 (en) Titanium oxide, exhaust gas treatment catalyst, and exhaust gas purification method
JP6441140B2 (en) Method for producing titanium oxide fine powder using spent catalyst and method for producing exhaust gas treatment catalyst using the powder
JP2013091045A (en) Exhaust gas treating method
JP4098703B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JP6308832B2 (en) Method for producing exhaust gas treatment catalyst
JP6591919B2 (en) Method for manufacturing honeycomb-type denitration catalyst
JP6697287B2 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxide, and method for purifying exhaust gas
JP2006223959A (en) Method of producing exhaust gas denitrification catalyst
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
JP6132498B2 (en) Titanium / silicon / tungsten oxide, denitration catalyst using the same, method for preparing the oxide, and denitration method
JP6391397B2 (en) Method for producing exhaust gas treatment catalyst
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP3496964B2 (en) Catalyst for ammonia reduction of nitrogen oxides in exhaust gas and method for producing the same
JP6663761B2 (en) Method for producing honeycomb type denitration catalyst
WO2014104071A1 (en) Modified titanium oxide fine particle powder for molded bodies, composition for molded bodies, and molded body
JP4177661B2 (en) Method for producing exhaust gas treatment catalyst
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JP7183081B2 (en) Denitrification catalyst and method for producing the same
JP2004290753A (en) Heat-resistant denitrification catalyst
JP2012206058A (en) Denitration catalyst and denitrification method
JP6016572B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180821

R150 Certificate of patent or registration of utility model

Ref document number: 6391397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150