JP2016066698A - Component mounting device - Google Patents

Component mounting device Download PDF

Info

Publication number
JP2016066698A
JP2016066698A JP2014194599A JP2014194599A JP2016066698A JP 2016066698 A JP2016066698 A JP 2016066698A JP 2014194599 A JP2014194599 A JP 2014194599A JP 2014194599 A JP2014194599 A JP 2014194599A JP 2016066698 A JP2016066698 A JP 2016066698A
Authority
JP
Japan
Prior art keywords
negative pressure
component
suction
nozzle
suction nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014194599A
Other languages
Japanese (ja)
Other versions
JP6348037B2 (en
Inventor
雅浩 近藤
Masahiro Kondo
雅浩 近藤
瑞穂 山本
Mizuho Yamamoto
瑞穂 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Machine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Machine Manufacturing Co Ltd filed Critical Fuji Machine Manufacturing Co Ltd
Priority to JP2014194599A priority Critical patent/JP6348037B2/en
Publication of JP2016066698A publication Critical patent/JP2016066698A/en
Application granted granted Critical
Publication of JP6348037B2 publication Critical patent/JP6348037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve control that stabilizes an absorption state of a component absorbed to an absorption nozzle of a component mounting device with low power consumption.SOLUTION: Each mounting head 24 holding an absorption nozzle 26 is provided with a vacuum pump 27. The vacuum pump 27 is constituted to adjust negative pressure supplied to the absorption nozzle 26 by adjusting the number of rotation of the pump. A control device 31 of a component mounting device 10 determines an absorption state (a displacement amount of the absorption position and a component absorption posture) of the component absorbed to the absorption nozzle 26 and adjusts the number of rotation of the pump of the vacuum pump 27 according to the determination result to adjust the negative pressure supplied from the vacuum pump 27 to the mounting head 24 and to adjust absorption force of the absorption nozzle 26, thereby stabilizing the absorption state of the component. This can eliminate the necessity of maintaining the negative pressure of the vacuum pump 27 at a constant relatively large negative pressure during production and achieve control that stabilizes an absorption state of the component absorbed to the absorption nozzle 26 with low power consumption.SELECTED DRAWING: Figure 2

Description

本発明は、部品を吸着する吸着ノズルに供給する負圧を調整する機能を備えた部品実装機に関する発明である。   The present invention relates to a component mounting machine having a function of adjusting a negative pressure supplied to a suction nozzle that sucks a component.

この種の部品実装機としては、特許文献1(特開2012−69836号公報)に記載されているように、真空ポンプから吸着ノズルに供給される負圧を検出する圧力センサを設け、この圧力センサで検出した負圧が予め設定した所定範囲内に収まるように真空ポンプの駆動/停止を制御するようにしたものがある。   As this type of component mounting machine, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2012-69836), a pressure sensor that detects a negative pressure supplied to a suction nozzle from a vacuum pump is provided. There is one in which the driving / stopping of the vacuum pump is controlled so that the negative pressure detected by the sensor falls within a predetermined range set in advance.

特開2012−69836号公報JP 2012-69836 A

しかし、上記特許文献1の構成では、真空ポンプから吸着ノズルに供給される負圧を予め設定した所定範囲内に収まるように真空ポンプの駆動/停止を制御するだけであるため、生産中に吸着ノズルに吸着する部品の吸着状態のばらつきに対応できない。例えば、吸着ノズルに吸着する部品の種類が同じであっても、部品の吸着位置のずれ量が大きくなると、部品吸着ミスや部品吸着姿勢の異常(立ち吸着、斜め吸着等)が発生しやすくなったり、吸着ノズルに吸着した部品を吸着位置から回路基板の実装位置へ搬送する際に、吸着ノズルに吸着した部品に作用する慣性力により部品の吸着位置がずれて部品の実装位置がずれる現象が発生しやすくなる。このような部品吸着ミスや、部品吸着姿勢の異常、搬送時の部品の吸着位置のずれを防ぐには、真空ポンプから吸着ノズルに供給する負圧(大気圧との差圧)を増大させて吸着ノズルの吸引力を増大させて部品の吸着状態を安定させることが有効であるため、真空ポンプの負圧を常に大きめの一定負圧に維持するようにしているが、生産中に真空ポンプの負圧を常に大きめの一定負圧に維持すると、真空ポンプを駆動するのに要する消費電力量が嵩むという欠点があった。   However, in the configuration of Patent Document 1 described above, the vacuum pump is only driven / stopped so that the negative pressure supplied from the vacuum pump to the suction nozzle falls within a predetermined range. It cannot cope with variations in the suction state of the parts sucked by the nozzle. For example, even if the types of parts to be picked up by the suction nozzle are the same, if the amount of shift in the picked-up position of the parts increases, component picking mistakes and part picking posture abnormalities (standing sticking, slanting picking, etc.) are likely to occur. When the component sucked by the suction nozzle is transported from the suction position to the circuit board mounting position, there is a phenomenon in which the component suction position shifts due to the inertial force acting on the component sucked by the suction nozzle and the component mounting position shifts. It tends to occur. To prevent such component suction mistakes, component suction posture abnormalities, and component suction position shifts during transportation, increase the negative pressure (differential pressure from the atmospheric pressure) supplied from the vacuum pump to the suction nozzle. Since it is effective to increase the suction force of the suction nozzle to stabilize the suction state of the parts, the negative pressure of the vacuum pump is always maintained at a large constant negative pressure. If the negative pressure is always maintained at a large constant negative pressure, there is a drawback that the amount of power consumed to drive the vacuum pump increases.

そこで、本発明が解決しようとする課題は、吸着ノズルに吸着する部品の吸着状態を安定させる制御を低消費電力で実現できる部品実装機を提供することである。   Therefore, the problem to be solved by the present invention is to provide a component mounting machine capable of realizing control for stabilizing the suction state of a component sucked by a suction nozzle with low power consumption.

上記課題を解決するために、請求項1に係る発明は、負圧源から負圧を吸着ノズルに供給し、該吸着ノズルで部品を吸着して回路基板に実装する部品実装機において、前記吸着ノズルに吸着した部品の吸着状態(吸着位置のずれ量や部品吸着姿勢等)を判定する吸着状態判定手段と、前記吸着状態判定手段で判定した部品の吸着状態に基づいて前記負圧源の負圧を調整して前記吸着ノズルの吸引力を調整する負圧調整手段とを備えた構成としたものである。この構成では、吸着ノズルに吸着した部品の吸着状態を判定して、その判定結果に応じて負圧源の負圧を調整して吸着ノズルの吸引力を調整するようにしているため、生産中に負圧源の負圧を常に大きめの一定負圧に維持する必要がなくなり、吸着ノズルに吸着する部品の吸着状態を安定させる制御を低消費電力で実現できる。   In order to solve the above-mentioned problem, the invention according to claim 1 is directed to a component mounting machine that supplies a negative pressure from a negative pressure source to a suction nozzle, sucks the component with the suction nozzle, and mounts it on a circuit board. A suction state determination unit that determines a suction state of a component sucked by the nozzle (a displacement amount of a suction position, a component suction posture, etc.), and a negative pressure source based on the suction state of the component determined by the suction state determination unit And a negative pressure adjusting means for adjusting the suction force of the suction nozzle by adjusting the pressure. In this configuration, the suction state of the part sucked by the suction nozzle is determined, and the suction force of the suction nozzle is adjusted by adjusting the negative pressure of the negative pressure source according to the determination result. In addition, the negative pressure of the negative pressure source need not always be maintained at a constant large negative pressure, and control for stabilizing the suction state of the parts sucked by the suction nozzle can be realized with low power consumption.

また、吸着ノズルに吸着した部品を吸着位置から回路基板の実装位置へ搬送する際に、部品の吸着状態が安定していないと、部品に作用する慣性力により部品の吸着位置がずれて回路基板の部品の実装位置がずれる可能性がある。部品の実装位置ずれ量は、部品の吸着状態の不安定性(搬送時の部品の吸着位置ずれ量)を反映したパラメータとなる。   In addition, when the component sucked by the suction nozzle is transported from the suction position to the mounting position of the circuit board, if the suction state of the component is not stable, the suction position of the component is shifted due to the inertial force acting on the component. There is a possibility that the mounting position of the parts will be shifted. The component mounting position deviation amount is a parameter reflecting instability of the component suction state (component adsorption position deviation amount during conveyance).

そこで、請求項2のように、回路基板に実装した部品の実装位置ずれ量を判定する実装位置ずれ量判定手段を備え、前記負圧調整手段は、前記吸着状態判定手段で判定した部品の吸着状態と前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量とに基づいて負圧源の負圧を調整するようにしても良い。このようにすれば、回路基板の部品の実装位置ずれの原因となる搬送時の部品の吸着位置のずれも防止するように吸着ノズルの吸引力(負圧)を調整して搬送時の部品の吸着状態を安定させる制御も、低消費電力で実現できる。   Therefore, as described in claim 2, a mounting position deviation amount determining means for determining a mounting position deviation amount of a component mounted on the circuit board is provided, and the negative pressure adjusting means is configured to adsorb the component determined by the adsorption state determining means. The negative pressure of the negative pressure source may be adjusted based on the state and the mounting position shift amount of the component determined by the mounting position shift amount determination means. In this way, the suction force (negative pressure) of the suction nozzle is adjusted so as to prevent the displacement of the suction position of the component at the time of transport, which causes the mounting position shift of the component on the circuit board. Control to stabilize the adsorption state can also be realized with low power consumption.

具体的には、請求項3のように、前記負圧調整手段は、前記吸着状態判定手段で判定した部品の吸着状態が安定とみなせる所定範囲内に収まらないときに負圧源の負圧(大気圧との差圧)を増大させて吸着ノズルの吸引力を増大させ、部品の吸着状態が安定とみなせる所定範囲内に収まっているときに負圧源の負圧を減少させて吸着ノズルの吸引力を減少させるようにすれば良い。   Specifically, as in claim 3, the negative pressure adjusting means is configured such that the negative pressure of the negative pressure source (when the suction state of the component determined by the suction state determination means does not fall within a predetermined range that can be considered stable) The suction pressure of the suction nozzle is increased by increasing the differential pressure from the atmospheric pressure, and the negative pressure of the negative pressure source is reduced by reducing the negative pressure of the negative pressure source when the suction state of the component is within a predetermined range that can be considered stable. What is necessary is just to make it reduce suction power.

また、請求項4のように、前記負圧調整手段は、前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内(つまり安定吸着とみなせる所定範囲内)に収まらないときに負圧源の負圧を増大させて吸着ノズルの吸引力を増大させ、部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まっているときに負圧源の負圧を減少させて吸着ノズルの吸引力を減少させるようにすれば良い。   According to a fourth aspect of the present invention, the negative pressure adjusting means has a component mounting position deviation amount determined by the mounting position deviation amount determining means within a predetermined range in which the influence of the suction position deviation during conveyance can be ignored (that is, stable). When the pressure does not fall within the predetermined range (which can be regarded as suction), the negative pressure of the negative pressure source is increased to increase the suction power of the suction nozzle. When the pressure is within the range, the negative pressure of the negative pressure source may be reduced to reduce the suction force of the suction nozzle.

また、請求項5のように、吸着ノズルに吸着した部品を吸着位置から回路基板の実装位置へ搬送する搬送速度を制御する搬送速度制御手段を備え、前記搬送速度制御手段は、前記負圧調整手段により調整した負圧源の負圧が調整可能な最大負圧に達しているときに前記吸着状態判定手段で判定した部品の吸着状態が安定とみなせる所定範囲内に収まらない場合には、回路基板の実装位置への部品の搬送速度を低下させるようにしても良い。要するに、負圧源の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、部品の吸着状態が不安定と判断される場合には、回路基板の実装位置への部品の搬送速度を低下させて、吸着ノズルに吸着した部品に作用する慣性力を減少させることで、部品の吸着状態を安定させて、搬送時の部品の吸着位置のずれを防止するものである。   According to a fifth aspect of the present invention, the apparatus includes a conveyance speed control unit that controls a conveyance speed for conveying the component adsorbed by the adsorption nozzle from the adsorption position to the circuit board mounting position, and the conveyance speed control unit includes the negative pressure adjustment unit. When the negative pressure of the negative pressure source adjusted by the means has reached the maximum adjustable negative pressure, the suction state of the component determined by the suction state determination means does not fall within a predetermined range that can be considered stable. You may make it reduce the conveyance speed of the component to the mounting position of a board | substrate. In short, when the negative pressure of the negative pressure source has reached the maximum adjustable negative pressure and the negative pressure cannot be increased any further, and the suction state of the component is determined to be unstable. , Decreasing the component conveyance speed to the circuit board mounting position and reducing the inertial force acting on the component adsorbed to the adsorption nozzle, stabilizing the component adsorption state, and the component adsorption position during conveyance This prevents the deviation.

また、請求項6のように、前記搬送速度制御手段は、前記負圧調整手段により調整した負圧源の負圧が調整可能な最大負圧に達しているときに前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まらない場合には、回路基板の実装位置への部品の搬送速度を低下させるようにしても良い。要するに、負圧源の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まらない場合には、搬送時に部品の吸着位置ずれが発生していると判断して、回路基板の実装位置への部品の搬送速度を低下させて、吸着ノズルに吸着した部品に作用する慣性力を減少させることで、部品の吸着状態を安定させて、搬送時の部品の吸着位置ずれを防止するものである。   Further, according to a sixth aspect of the present invention, the transport speed control means is configured to determine the mounting position deviation amount when the negative pressure of the negative pressure source adjusted by the negative pressure adjustment means reaches an adjustable maximum negative pressure. If the component mounting position deviation amount determined in step 1 does not fall within a predetermined range in which the influence of the suction position deviation during conveyance can be ignored, the component conveyance speed to the circuit board mounting position may be reduced. . In short, when the negative pressure of the negative pressure source has reached the maximum adjustable negative pressure and the negative pressure cannot be increased any further, the component mounting position shift amount is the If the impact does not fall within the specified range that can be ignored, it is determined that the component suction position has shifted during transport, and the component transport speed to the mounting position on the circuit board is reduced. By reducing the inertial force acting on the sucked part, the suction state of the part is stabilized, and the suction position shift of the part during conveyance is prevented.

本発明は、請求項7のように、生産開始時の負圧初期値を吸着ノズルに吸着する部品の種類及び/又は吸着ノズルのノズル径に応じて設定するようにしても良い(ここで、「部品の種類及び/又は吸着ノズルのノズル径」とは、「部品の種類と吸着ノズルのノズル径の両方又はいずれか一方」を意味する)。要するに、吸着ノズルに吸着する部品の種類や吸着ノズルのノズル径によって、部品を安定して吸着するのに必要な負圧が異なるため、生産開始時の負圧初期値を部品の種類や吸着ノズルのノズル径に応じて設定するようにすれば、生産開始時の負圧初期値と適正な負圧との差を小さくすることができて、生産開始後に短時間で負圧を部品の種類や吸着ノズルのノズル径に応じた適正な負圧に調整することができる。   In the present invention, the negative pressure initial value at the start of production may be set according to the type of the component to be sucked by the suction nozzle and / or the nozzle diameter of the suction nozzle as in claim 7 (here, The “component type and / or nozzle diameter of the suction nozzle” means “part type and / or nozzle diameter of the suction nozzle”). In short, since the negative pressure required to stably absorb parts varies depending on the type of parts to be sucked into the suction nozzle and the nozzle diameter of the suction nozzle, the initial negative pressure at the start of production is determined based on the type of parts and the suction nozzle. If the nozzle diameter is set according to the nozzle diameter, the difference between the initial negative pressure at the start of production and the appropriate negative pressure can be reduced. It can be adjusted to an appropriate negative pressure according to the nozzle diameter of the suction nozzle.

また、請求項8のように、前記負圧調整手段により調整した負圧源の負圧のデータを部品の種類及び/又は吸着ノズルのノズル径と関連付けて記憶する記憶手段を備え、前記負圧調整手段は、前記記憶手段に記憶された部品の種類毎及び/又は吸着ノズルのノズル径毎の負圧のデータの中から吸着ノズルに吸着する部品の種類及び/又は吸着ノズルのノズル径に応じた負圧のデータを選んで生産開始時の負圧初期値に設定するようにしても良い。このようにすれば、生産中に調整した負圧を学習して、その学習値を次回の生産開始時の負圧初期値に設定することができ、生産開始後に短時間で負圧を部品の種類や吸着ノズルのノズル径に応じた適正な負圧に調整することができる。   Further, as in claim 8, the negative pressure source negative pressure data adjusted by the negative pressure adjusting means is stored in association with the type of component and / or the nozzle diameter of the suction nozzle, the negative pressure The adjustment means is responsive to the type of the component adsorbed to the adsorption nozzle and / or the nozzle diameter of the adsorption nozzle from the negative pressure data for each type of component and / or the nozzle diameter of the adsorption nozzle stored in the storage means. Alternatively, the negative pressure data may be selected and set to the initial negative pressure value at the start of production. In this way, the negative pressure adjusted during production can be learned, and the learned value can be set to the initial negative pressure value at the start of the next production. The negative pressure can be adjusted appropriately according to the type and the nozzle diameter of the suction nozzle.

また、請求項9のように、前記負圧調整手段により調整した前記負圧源の負圧の履歴データを部品の種類及び/又は吸着ノズルのノズル径と関連付けて記憶する記憶手段を備え、前記負圧調整手段は、前記記憶手段に記憶された部品の種類毎及び/又は吸着ノズルのノズル径毎の負圧の履歴データの中から吸着ノズルに吸着する部品の種類及び/又は吸着ノズルのノズル径に応じた負圧の履歴データを選んで統計処理して生産開始時の負圧初期値を設定するようにしても良い。このようにすれば、過去の生産中に吸着動作毎に調整した負圧にばらつきがあっても、その履歴データを統計処理することで、吸着動作毎に調整した負圧のばらつきの影響を少なくして生産開始時の負圧初期値を設定することができる。   According to a ninth aspect of the present invention, the storage device stores the negative pressure history data of the negative pressure source adjusted by the negative pressure adjustment unit in association with the type of component and / or the nozzle diameter of the suction nozzle, The negative pressure adjusting means includes the type of the component adsorbed to the adsorption nozzle and / or the nozzle of the adsorption nozzle from the history data of the negative pressure for each type of component and / or the nozzle diameter of the adsorption nozzle stored in the storage unit. Alternatively, negative pressure history data corresponding to the diameter may be selected and statistically processed to set an initial negative pressure value at the start of production. In this way, even if there is a variation in negative pressure adjusted for each adsorption operation during past production, the history data is statistically processed to reduce the influence of variations in negative pressure adjusted for each adsorption operation. Thus, the negative pressure initial value at the start of production can be set.

また、請求項10のように、生産開始前に回路基板に実装する部品の実装順序を負圧初期値の大きい順又は小さい順に並び替えて設定する生産管理手段を備えた構成としても良い。要するに、負圧調整毎の負圧変化量が大きいほど負圧源の消費電力量が増えるため、部品の実装順序を負圧初期値の大きい順又は小さい順に並び替えて、負圧調整毎の負圧変化量を小さくするものであり、これにより、負圧源の消費電力量を更に節減することができる。   Further, as in claim 10, there may be provided a configuration including production management means for rearranging and setting the mounting order of components to be mounted on the circuit board before the start of production in order of increasing or decreasing negative pressure initial value. In short, as the amount of negative pressure change for each negative pressure adjustment increases, the power consumption of the negative pressure source increases.Therefore, the order of component mounting is rearranged in order of increasing or decreasing initial negative pressure value, and negative pressure for each negative pressure adjustment. This is to reduce the amount of pressure change, thereby further reducing the power consumption of the negative pressure source.

また、請求項11のように、吸着ノズルに供給する負圧を検出する圧力センサを備え、前記負圧調整手段は、前記圧力センサにより検出した負圧に基づいて前記負圧源の負圧を調整するようにしても良い。このようにすれば、吸着ノズルに供給する実際の負圧を確実に目標とする負圧に調整することができる。   Further, as in claim 11, a pressure sensor for detecting a negative pressure supplied to the suction nozzle is provided, and the negative pressure adjusting means adjusts the negative pressure of the negative pressure source based on the negative pressure detected by the pressure sensor. You may make it adjust. In this way, the actual negative pressure supplied to the suction nozzle can be reliably adjusted to the target negative pressure.

本発明は、1台の部品実装機に複数の実装ヘッドを設けた構成にも適用可能であるが、この場合、吸着ノズルを保持する実装ヘッド毎に負圧を調整する必要がある。
そこで、請求項12のように、実装ヘッド毎に負圧源として真空ポンプを設けた構成とすると良い。この場合、真空ポンプは、ポンプ回転数を調整することで負圧を調整する構成のものを使用すれば良い。
The present invention can be applied to a configuration in which a plurality of mounting heads are provided in one component mounting machine. In this case, it is necessary to adjust the negative pressure for each mounting head that holds the suction nozzle.
Therefore, as in claim 12, it is preferable to provide a vacuum pump as a negative pressure source for each mounting head. In this case, the vacuum pump may be configured to adjust the negative pressure by adjusting the pump rotation speed.

図1は本発明の一実施例における部品実装機の側面図である。FIG. 1 is a side view of a component mounter according to an embodiment of the present invention. 図2は部品実装機の制御系の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the control system of the component mounter. 図3は部品実装ラインの構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a component mounting line. 図4はXY方向の部品吸着位置ずれの判定例を示す図である。FIG. 4 is a diagram illustrating a determination example of the component suction position deviation in the XY directions. 図5はθ方向(回転方向)の部品吸着位置ずれの判定例を示す図である。FIG. 5 is a diagram illustrating a determination example of the component suction position deviation in the θ direction (rotation direction). 図6は生産開始前に回路基板に実装する部品の実装順序を負圧初期値(ポンプ回転数)の大きい順又は小さい順に並び替えて設定する一例を説明する図である。FIG. 6 is a diagram for explaining an example in which the mounting order of components to be mounted on the circuit board before the start of production is rearranged and set in descending order of initial negative pressure value (pump rotation speed). 図7は負圧調整プログラムの処理の流れを示すフローチャート(その1)である。FIG. 7 is a flowchart (part 1) showing the flow of processing of the negative pressure adjustment program. 図8は負圧調整プログラムの処理の流れを示すフローチャート(その2)である。FIG. 8 is a flowchart (part 2) showing the flow of processing of the negative pressure adjustment program.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいて部品実装機の構成を説明する。
部品実装機10のベース台11上には、回路基板12を搬送するコンベア13が設けられている(以下、このコンベア13による回路基板12の搬送方向をX方向とする)。このコンベア13を構成する2本のコンベアレール13a,13bとコンベアベルト14a,14bを支持する支持部材15a,15bのうち、一方の支持部材15aを、一定位置に固定し、その反対側の支持部材15bのY方向位置を送りねじ機構(図示せず)等によってガイドレール16に沿って調整することで、コンベア13の幅(コンベアレール13a,13bの間隔)を回路基板12の幅に合わせて調整できるようになっている。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, the configuration of the component mounting machine will be described with reference to FIG.
A conveyor 13 for conveying the circuit board 12 is provided on the base 11 of the component mounter 10 (hereinafter, the conveyance direction of the circuit board 12 by the conveyor 13 is referred to as X direction). Of the two support rails 13a and 13b and the support members 15a and 15b that support the conveyor belts 14a and 14b constituting the conveyor 13, one support member 15a is fixed at a fixed position, and the opposite support member The width of the conveyor 13 (the interval between the conveyor rails 13a and 13b) is adjusted to the width of the circuit board 12 by adjusting the position in the Y direction of 15b along the guide rail 16 by a feed screw mechanism (not shown) or the like. It can be done.

また、ベース台11上のコンベア13の側方には、デバイスパレット22が着脱可能に取り付けられ、このデバイスパレット22上に、部品を供給する複数のフィーダ23が着脱可能に取り付けられている。   A device pallet 22 is detachably attached to the side of the conveyor 13 on the base 11, and a plurality of feeders 23 for supplying parts are detachably attached on the device pallet 22.

この部品実装機10には、実装ヘッド24を水平方向(XY方向)及び上下方向(Z方向)に移動させるヘッド移動装置25が設けられている。実装ヘッド24には、フィーダ23により吸着位置に送られた部品を吸着する1本又は複数本の吸着ノズル26が保持されている。   The component mounter 10 is provided with a head moving device 25 that moves the mounting head 24 in the horizontal direction (XY direction) and the vertical direction (Z direction). The mounting head 24 holds one or a plurality of suction nozzles 26 that suck the components sent to the suction position by the feeder 23.

吸着ノズル26を保持する実装ヘッド24には、負圧源である真空ポンプ27から負圧が供給される。1台の部品実装機10に複数の実装ヘッド24が設けられた構成の場合は、実装ヘッド24毎に真空ポンプ27が1台ずつ設けられる。また、図3に示すように、複数台の部品実装機10を並べて配列した部品実装ラインでは、各部品実装機10の実装ヘッド24毎に真空ポンプ27が1台ずつ設けられる。要するに、1つの実装ヘッド24に対して1台の真空ポンプ27が割り当てられる。真空ポンプ27は、ポンプ回転数を調整することで負圧を調整するように構成されている。   A negative pressure is supplied to the mounting head 24 holding the suction nozzle 26 from a vacuum pump 27 which is a negative pressure source. In the case where a plurality of mounting heads 24 are provided in one component mounting machine 10, one vacuum pump 27 is provided for each mounting head 24. As shown in FIG. 3, in the component mounting line in which a plurality of component mounting machines 10 are arranged side by side, one vacuum pump 27 is provided for each mounting head 24 of each component mounting machine 10. In short, one vacuum pump 27 is assigned to one mounting head 24. The vacuum pump 27 is configured to adjust the negative pressure by adjusting the pump rotation speed.

実装ヘッド24には、真空ポンプ27から供給される負圧を吸着ノズル26に供給するエアー通路(図示せず)と、該エアー通路を開閉する開閉弁(図示せず)と、吸着ノズル26に供給する負圧を検出する圧力センサ28とが設けられている。   The mounting head 24 includes an air passage (not shown) for supplying negative pressure supplied from the vacuum pump 27 to the suction nozzle 26, an on-off valve (not shown) for opening and closing the air passage, and a suction nozzle 26. A pressure sensor 28 for detecting the negative pressure to be supplied is provided.

図2に示すように、部品実装機10の制御装置31には、キーボード、マウス、タッチパネル等の入力装置32と、液晶ディスプレイ、CRT等の表示装置34と、後述する図7及び図8の負圧調整プログラムや後述する調整後の負圧のデータ等を記憶するROM、RAM、ハードディスク等の記憶装置33(記憶手段)と、吸着ノズル26に吸着した部品をその下方から撮像するパーツカメラ35(部品撮像用のカメラ)と、回路基板12の上面の基準マーク(図示せず)をその上方から撮像するマークカメラ36(基準マーク撮像用のカメラ)等が接続されている。パーツカメラ35は、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する途中の位置で該部品をその下方から撮像する位置に設置され、一方、マークカメラ36は、ヘッド移動装置25によって実装ヘッド24と一体的に移動するように設置されている。尚、パーツカメラ35もヘッド移動装置25によって実装ヘッド24と一体的に移動するように設置して、吸着ノズル26に吸着した部品をプリズム(図示せず)等を介して該パーツカメラ35で撮像するように構成しても良い。   As shown in FIG. 2, the control device 31 of the component mounting machine 10 includes an input device 32 such as a keyboard, a mouse, and a touch panel, a display device 34 such as a liquid crystal display and a CRT, and the negative devices shown in FIGS. A storage device 33 (storage means) such as a ROM, a RAM, a hard disk or the like for storing a pressure adjustment program and negative pressure data after adjustment, which will be described later, and a parts camera 35 (for imaging a part adsorbed to the adsorption nozzle 26 from below. A component imaging camera) is connected to a mark camera 36 (reference mark imaging camera) that images a reference mark (not shown) on the upper surface of the circuit board 12 from above. The parts camera 35 is installed at a position where the component picked up by the suction nozzle 26 is picked up from a position at which the component is picked up from the suction position to the mounting position of the circuit board 12, while the mark camera 36 is a head camera. The moving device 25 is installed so as to move integrally with the mounting head 24. The parts camera 35 is also installed so as to move integrally with the mounting head 24 by the head moving device 25, and the parts sucked by the suction nozzle 26 are imaged by the parts camera 35 via a prism (not shown). You may comprise so that it may do.

部品実装機10の制御装置31は、パーツカメラ35やマークカメラ36で撮像した画像を処理する画像処理機能を備え、吸着ノズル26に吸着した部品がパーツカメラ35の上方の撮像エリアを通過する際に、該吸着ノズル26に吸着した部品をパーツカメラ35で撮像して、該吸着ノズル26に吸着した部品の吸着状態を画像処理により判定する吸着状態判定手段として機能する。この際、部品の吸着状態として、吸着ノズル26に対する部品の吸着位置のずれ量や部品吸着姿勢の異常(立ち吸着、斜め吸着等)の有無を判定する。また、部品実装機10の制御装置31は、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する搬送速度を制御する搬送速度制御手段としても機能する。   The control device 31 of the component mounter 10 has an image processing function for processing an image captured by the parts camera 35 or the mark camera 36, and when the component sucked by the suction nozzle 26 passes through the imaging area above the parts camera 35. In addition, the parts sucked by the suction nozzle 26 are imaged by the parts camera 35, and function as a suction state determination unit that determines the suction state of the parts sucked by the suction nozzle 26 by image processing. At this time, as the component suction state, the amount of displacement of the component suction position with respect to the suction nozzle 26 and the presence / absence of abnormality in the component suction posture (standing suction, oblique suction, etc.) are determined. The control device 31 of the component mounting machine 10 also functions as a transport speed control unit that controls a transport speed for transporting the component sucked by the suction nozzle 26 from the suction position to the mounting position of the circuit board 12.

図3に示すように、回路基板12を搬送する搬送経路41に複数の部品実装機10を配列して部品実装ラインが構成されている。部品実装ラインには、上流側に半田印刷機42が設置され、下流側に検査装置43とリフロー装置44が設置されている。検査装置43は、回路基板12に実装した部品の実装位置ずれ量を判定する実装位置ずれ量判定手段として機能し、回路基板12の部品の実装位置ずれ量等の実装状態を画像処理により検査し、その検査結果の情報を生産管理コンピュータ45に送信する。生産管理コンピュータ45は、部品実装ラインを構成する各部品実装機10、半田印刷機42及び検査装置43の動作を管理すると共に、検査装置43から送信されてくる部品の実装位置ずれ量の情報を、当該部品を実装した部品実装機10の制御装置31へ送信する。   As shown in FIG. 3, a component mounting line is configured by arranging a plurality of component mounting machines 10 on a transport path 41 that transports the circuit board 12. In the component mounting line, a solder printer 42 is installed on the upstream side, and an inspection device 43 and a reflow device 44 are installed on the downstream side. The inspection device 43 functions as a mounting position deviation amount determination unit that determines a mounting position deviation amount of a component mounted on the circuit board 12, and inspects a mounting state such as a mounting position deviation amount of the component of the circuit board 12 by image processing. The information of the inspection result is transmitted to the production management computer 45. The production management computer 45 manages the operations of the component mounting machines 10, the solder printing machine 42 and the inspection device 43 that constitute the component mounting line, and receives information on the amount of component mounting position deviation transmitted from the inspection device 43. , To the control device 31 of the component mounter 10 on which the component is mounted.

ところで、吸着ノズル26に吸着する部品の種類が同じであっても、部品の吸着位置のずれ量が大きくなると、部品吸着ミス(部品吸着失敗)や部品吸着姿勢の異常(立ち吸着、斜め吸着等)が発生しやすくなったり、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する際に、吸着ノズル26に吸着した部品に作用する慣性力により部品の吸着位置がずれて部品の実装位置がずれる現象が発生しやすくなる。このような部品吸着ミス、部品吸着姿勢の異常や部品搬送時の吸着位置のずれを防ぐには、真空ポンプ27から吸着ノズル26に供給する負圧(大気圧との差圧)を増大させて吸着ノズル26の吸引力を増大させて部品の吸着状態を安定させることが有効であるが、従来のように、生産中に真空ポンプ27の負圧を常に大きめの一定負圧に維持するようにすると、真空ポンプ27を駆動するのに要する消費電力量が嵩むという欠点があった。   By the way, even if the types of the parts to be sucked by the suction nozzle 26 are the same, if the shift amount of the part suction position becomes large, a part suction error (part suction failure) or a part suction posture abnormality (standing suction, diagonal suction, etc.) ) Or the suction position of the component is shifted due to inertial force acting on the component sucked by the suction nozzle 26 when the component sucked by the suction nozzle 26 is transported from the suction position to the mounting position of the circuit board 12. As a result, the mounting position of the component tends to shift. In order to prevent such component suction mistakes, component suction posture abnormalities, and displacement of the suction position during component transportation, the negative pressure (differential pressure from the atmospheric pressure) supplied from the vacuum pump 27 to the suction nozzle 26 is increased. Although it is effective to increase the suction force of the suction nozzle 26 to stabilize the suction state of the parts, the negative pressure of the vacuum pump 27 is always maintained at a large constant negative pressure during production as in the prior art. As a result, the power consumption required to drive the vacuum pump 27 is increased.

そこで、本実施例では、部品実装機10の制御装置31は、後述する図7及び図8の負圧調整プログラムを実行することで、吸着ノズル26に吸着した部品の吸着状態(吸着位置のずれ量や部品吸着姿勢等)を判定して、その判定結果に応じて真空ポンプ27のポンプ回転数を調整することで真空ポンプ27から実装ヘッド24に供給する負圧を調整して吸着ノズル26の吸引力を調整する負圧調整手段として機能する。尚、本実施例では、真空ポンプ27が発生する負圧とポンプ回転数との間に相関関係があることを考慮して、ポンプ回転数を調整して真空ポンプ27の負圧を目標とする負圧に調整するようにしているが、真空ポンプ27のポンプ回転数とその駆動モータの電流や電圧との間にも相関関係があるため、真空ポンプ27の駆動モータの電流又は電圧を調整することで、ポンプ回転数を調整して真空ポンプ27の負圧を目標とする負圧に調整するようにしても良い。   Therefore, in this embodiment, the control device 31 of the component mounting machine 10 executes a negative pressure adjustment program shown in FIGS. The negative pressure supplied from the vacuum pump 27 to the mounting head 24 is adjusted by adjusting the pump rotation speed of the vacuum pump 27 according to the determination result. It functions as a negative pressure adjusting means for adjusting the suction force. In this embodiment, in consideration of the correlation between the negative pressure generated by the vacuum pump 27 and the pump rotational speed, the pump rotational speed is adjusted to target the negative pressure of the vacuum pump 27. Although the pressure is adjusted to a negative pressure, the current or voltage of the drive motor of the vacuum pump 27 is adjusted because there is a correlation between the pump rotation speed of the vacuum pump 27 and the current and voltage of the drive motor. By adjusting the pump rotation speed, the negative pressure of the vacuum pump 27 may be adjusted to the target negative pressure.

例えば、吸着ノズル26に吸着した部品の吸着状態が安定とみなせる所定範囲内に収まらない場合(つまり部品の吸着位置のずれ量が安定吸着可能な所定範囲内に収まらない場合や、部品吸着姿勢が正常とみなせる所定範囲内に収まらない場合)には、真空ポンプ27のポンプ回転数を上昇させて真空ポンプ27の負圧を増大させることで、吸着ノズル26の吸引力を増大させて、吸着ノズル26に吸着した部品が落下するのを防止したり、搬送時の部品の吸着位置ずれを防止する。次サイクルでは、同じ種類の部品を吸着する際には、前回増大させた負圧で部品を吸着し、再び、部品の吸着状態が安定とみなせる所定範囲内に収まらない場合には、再び、真空ポンプ27の負圧を増大させる。これにより、部品の吸着状態が安定するまで、真空ポンプ27のポンプ回転数を徐々に上昇させて真空ポンプ27の負圧を徐々に増大させて吸着ノズル26の吸引力を徐々に増大させる。   For example, when the suction state of the component sucked by the suction nozzle 26 does not fall within a predetermined range that can be regarded as stable (that is, when the deviation amount of the suction position of the component does not fall within a predetermined range where stable suction is possible, or when the component suction posture is In the case where it does not fall within a predetermined range that can be regarded as normal), the suction force of the suction nozzle 26 is increased by increasing the pump rotation speed of the vacuum pump 27 and increasing the negative pressure of the vacuum pump 27, so that the suction nozzle 26 prevents the component adsorbed on 26 from falling or prevents the component from adsorbing from being displaced during conveyance. In the next cycle, when picking up parts of the same type, the parts are picked up with the negative pressure that was increased last time. The negative pressure of the pump 27 is increased. Thus, the suction force of the suction nozzle 26 is gradually increased by gradually increasing the pump rotation speed of the vacuum pump 27 and gradually increasing the negative pressure of the vacuum pump 27 until the suction state of the components is stabilized.

逆に、部品の吸着状態が安定とみなせる所定範囲内に収まっている場合には、真空ポンプ27のポンプ回転数を徐々に低下させて真空ポンプ27の負圧を徐々に減少させて吸着ノズル26の吸引力を徐々に減少させる。これにより、真空ポンプ27の消費電力量を節減する。   On the other hand, when the suction state of the component is within a predetermined range that can be regarded as stable, the suction nozzle 26 is configured by gradually decreasing the pump rotation speed of the vacuum pump 27 and gradually decreasing the negative pressure of the vacuum pump 27. Gradually reduce the suction power. Thereby, the power consumption of the vacuum pump 27 is reduced.

また、真空ポンプ27の負圧が調整可能な最大負圧に達しているときに、部品の吸着状態が安定とみなせる所定範囲内に収まらない場合には、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する搬送速度を低下させて、搬送時に部品に作用する慣性力を低下させることで、部品の吸着状態を安定させる。要するに、真空ポンプ27の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、部品の吸着状態が不安定と判断される場合には、回路基板12の実装位置への部品の搬送速度を低下させて、吸着ノズル26に吸着した部品に作用する慣性力を減少させることで、部品の吸着状態を安定させて、搬送時の部品の吸着位置のずれを防止するものである。   Further, when the vacuum pressure of the vacuum pump 27 reaches the maximum adjustable negative pressure, if the suction state of the component does not fall within a predetermined range that can be regarded as stable, the component sucked by the suction nozzle 26 is moved to the suction position. The suction speed of the component is stabilized by lowering the conveyance speed at which the component is conveyed to the mounting position of the circuit board 12 and reducing the inertial force acting on the component during conveyance. In short, when the negative pressure of the vacuum pump 27 has reached the maximum negative pressure that can be adjusted and the negative pressure cannot be increased any more, and the suction state of the component is determined to be unstable. By lowering the conveying speed of the component to the mounting position of the circuit board 12 and reducing the inertial force acting on the component adsorbed by the adsorption nozzle 26, the adsorption state of the component is stabilized, and the component at the time of conveyance This prevents the adsorption position from shifting.

ここで、図4及び図5を用いて、吸着ノズル26に吸着した部品の吸着位置のずれ量と吸着状態の安定性との関係を説明する。図4はXY方向の部品吸着位置ずれの判定例を示し、図5はθ方向(回転方向)の部品吸着位置ずれの判定例を示している。   Here, with reference to FIGS. 4 and 5, the relationship between the amount of displacement of the suction position of the component sucked by the suction nozzle 26 and the stability of the suction state will be described. FIG. 4 shows a determination example of the component suction position deviation in the XY directions, and FIG. 5 shows a determination example of the component suction position deviation in the θ direction (rotation direction).

図4及び図5に示すように、XY方向、θ方向のいずれの方向の部品の吸着位置ずれであっても、部品吸着位置ずれ量が部品吸着中心から安定吸着可能な位置ずれライン内(安定吸着とみなせる所定範囲内)に収まっていれば、真空ポンプ27の負圧を増大させることなく、部品の吸着状態の安定性を確保できるが、部品吸着位置ずれ量が安定吸着可能な位置ずれラインを越えると、部品の吸着状態の安定性を確保するためには、真空ポンプ27の負圧を増大させて吸着ノズル26の吸引力を増大させる必要がある。しかし、部品吸着位置ずれ量が許容最大吸着位置ずれライン(許容される所定範囲)を越えると、真空ポンプ27の負圧を増大させても、部品の吸着状態の安定性を確保できないため、吸着異常として廃棄処分される。尚、パーツカメラ35の撮像画像で認識した部品吸着姿勢が異常(立ち吸着、斜め吸着等)の場合も、吸着異常として廃棄処分される。   As shown in FIG. 4 and FIG. 5, the component adsorption position deviation amount is within the position deviation line (stable If it is within a predetermined range that can be regarded as suction), the stability of the suction state of the component can be ensured without increasing the negative pressure of the vacuum pump 27, but the displacement position of the component suction position can be stably absorbed. In order to ensure the stability of the suction state of the parts, it is necessary to increase the suction force of the suction nozzle 26 by increasing the negative pressure of the vacuum pump 27. However, if the component adsorption position deviation exceeds the allowable maximum adsorption position deviation line (allowable predetermined range), even if the negative pressure of the vacuum pump 27 is increased, the stability of the component adsorption state cannot be ensured. Discarded as abnormal. It should be noted that even if the component suction posture recognized by the captured image of the parts camera 35 is abnormal (standing suction, oblique suction, etc.), it is discarded as a suction abnormality.

また、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する際に、部品の吸着状態が安定していないと、部品に作用する慣性力により部品の吸着位置がずれて部品の実装位置がずれる可能性がある。部品の実装位置ずれ量は、部品の吸着状態の不安定性(搬送時の部品の吸着位置ずれ量)を反映したパラメータとなる。   In addition, when the component sucked by the suction nozzle 26 is transported from the suction position to the mounting position of the circuit board 12, if the component suction state is not stable, the component suction position shifts due to inertial force acting on the component. There is a possibility that the mounting position of the component is shifted. The component mounting position deviation amount is a parameter reflecting instability of the component suction state (component adsorption position deviation amount during conveyance).

そこで、本実施例では、部品実装機10の制御装置31は、後述する図7及び図8の負圧調整プログラムを実行することで、検査装置43で検査した回路基板12の部品の実装位置ずれ量の情報を生産管理コンピュータ45を経由して受信して、上述した部品の吸着状態の他に部品の実装位置ずれ量も考慮して真空ポンプ27のポンプ回転数を調整することで真空ポンプ27の負圧を調整して吸着ノズル26の吸引力を調整する。例えば、部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内(つまり安定吸着とみなせる所定範囲内)に収まらない場合には、真空ポンプ27の負圧を増大させて吸着ノズル26の吸引力を増大させて、搬送時の部品の吸着位置のずれを防止し、部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まっている場合には、真空ポンプ27の負圧を減少させて吸着ノズル26の吸引力を減少させる。このようにすれば、回路基板12の部品の実装位置ずれの原因となる搬送時の部品の吸着位置のずれも防止するように吸着ノズル26の吸引力(負圧)を調整して搬送時の部品の吸着状態を安定させる制御も、低消費電力で実現できる。   Therefore, in this embodiment, the control device 31 of the component mounting machine 10 executes a negative pressure adjustment program shown in FIGS. 7 and 8 to be described later, so that the mounting position shift of the components of the circuit board 12 inspected by the inspection device 43 is performed. Information on the amount is received via the production management computer 45, and the vacuum pump 27 is adjusted by adjusting the pump rotation speed of the vacuum pump 27 in consideration of the component mounting position shift amount in addition to the above-described component adsorption state. The suction force of the suction nozzle 26 is adjusted by adjusting the negative pressure. For example, when the component mounting position deviation amount does not fall within a predetermined range in which the influence of the adsorption position deviation at the time of conveyance can be ignored (that is, within a predetermined range that can be regarded as stable adsorption), the negative pressure of the vacuum pump 27 is increased. When the suction force of the suction nozzle 26 is increased to prevent the displacement of the suction position of the component during transportation, and the amount of mounting position displacement of the component is within a predetermined range in which the influence of the suction position displacement during transportation can be ignored In order to reduce the suction pressure of the suction nozzle 26, the negative pressure of the vacuum pump 27 is decreased. In this way, the suction force (negative pressure) of the suction nozzle 26 is adjusted so as to prevent the displacement of the suction position of the component at the time of transport, which causes a shift in the mounting position of the component of the circuit board 12. Control that stabilizes the suction state of components can also be realized with low power consumption.

また、真空ポンプ27の負圧が調整可能な最大負圧に達しているときに、回路基板12の部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まらない場合には、吸着ノズル26に吸着した部品を吸着位置から回路基板12の実装位置へ搬送する搬送速度を低下させて、搬送時に部品に作用する慣性力を低下させることで、部品の吸着状態を安定させる。要するに、真空ポンプ27の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、回路基板12の部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まらない場合には、搬送時に部品の吸着位置のずれが生じていると判断して、回路基板12の実装位置への部品の搬送速度を低下させることで、吸着ノズル26に吸着した部品の吸着状態を安定させて搬送時の部品の吸着位置のずれを防止するものである。   Further, when the negative pressure of the vacuum pump 27 reaches the adjustable maximum negative pressure, the mounting position deviation amount of the components of the circuit board 12 does not fall within a predetermined range in which the influence of the adsorption position deviation at the time of conveyance can be ignored. In this case, by lowering the conveyance speed at which the component adsorbed by the adsorption nozzle 26 is conveyed from the adsorption position to the mounting position of the circuit board 12 and reducing the inertial force acting on the component at the time of conveyance, the component adsorption state is reduced. Stabilize. In short, when the negative pressure of the vacuum pump 27 reaches the maximum negative pressure that can be adjusted and the negative pressure cannot be increased any more, the mounting position shift amount of the components on the circuit board 12 is not improved. If it does not fall within a predetermined range in which the influence of the suction position shift can be ignored, it is determined that the component suction position has shifted during transport, and the transport speed of the component to the mounting position of the circuit board 12 is reduced. In this way, the suction state of the component sucked by the suction nozzle 26 is stabilized, and the shift of the suction position of the component during conveyance is prevented.

本発明は、生産開始時に真空ポンプ27の負圧を毎回同じ初期値(例えば標準値)から調整するようにしても良いが、負圧を初期値から適正な負圧に調整するまでの負圧調整量が大きくなると、負圧調整完了までの時間(部品の吸着状態が安定するまでの時間)が長くなり、その分、生産開始後に、部品吸着ミスや、搬送時の吸着部品の落下や部品吸着位置ずれによる部品実装不良が発生する頻度が増加する。
この対策として、本実施例では、次のいずれかの方法で生産開始時の負圧初期値を設定する。
In the present invention, the negative pressure of the vacuum pump 27 may be adjusted from the same initial value (for example, standard value) every time production is started, but the negative pressure is adjusted until the negative pressure is adjusted from the initial value to an appropriate negative pressure. When the adjustment amount increases, the time until the negative pressure adjustment is completed (the time until the suction state of the parts becomes stable) becomes longer. After that, after the start of production, the part suction mistake, the fall of the suction parts during transportation, and the parts The frequency of occurrence of component mounting defects due to suction position deviation increases.
As a countermeasure, in this embodiment, the negative pressure initial value at the start of production is set by any of the following methods.

[負圧初期値設定方法(その1)]
生産開始時の負圧初期値を、吸着ノズル26に吸着する部品の種類及び/又は吸着ノズル26のノズル径に応じて設定する(ここで、「部品の種類及び/又は吸着ノズル26のノズル径」とは、「部品の種類と吸着ノズル26のノズル径の両方又はいずれか一方」を意味する)。要するに、吸着ノズル26に吸着する部品の種類や吸着ノズル26のノズル径によって、部品を安定して吸着するのに必要な負圧が異なるため、生産開始時の負圧初期値を部品の種類や吸着ノズル26のノズル径に応じて設定するようにすれば、生産開始時の負圧初期値と適正な負圧との差を小さくすることができて、生産開始後に短時間で負圧を部品の種類や吸着ノズル26のノズル径に応じた適正な負圧に調整することができる。
[Negative pressure initial value setting method (1)]
The negative pressure initial value at the start of production is set in accordance with the type of component sucked by the suction nozzle 26 and / or the nozzle diameter of the suction nozzle 26 (here, “type of component and / or nozzle diameter of the suction nozzle 26”). “Means“ the type of component and / or the nozzle diameter of the suction nozzle 26 ”). In short, since the negative pressure required to stably absorb the component differs depending on the type of component adsorbed on the adsorption nozzle 26 and the nozzle diameter of the adsorption nozzle 26, the initial negative pressure value at the start of production is changed to the type of component, If it is set according to the nozzle diameter of the suction nozzle 26, the difference between the negative pressure initial value at the start of production and the appropriate negative pressure can be reduced, and the negative pressure can be set in a short time after the start of production. It is possible to adjust to a proper negative pressure according to the type of nozzle and the nozzle diameter of the suction nozzle 26.

[負圧初期値設定方法(その2)]
生産中に調整した真空ポンプ27の負圧のデータを、部品の種類及び/又は吸着ノズル26のノズル径と関連付けて記憶装置33に記憶しておき、記憶された部品の種類毎及び/又は吸着ノズル26のノズル径毎の負圧のデータの中から吸着ノズル26に吸着する部品の種類及び/又は吸着ノズル26のノズル径に応じた負圧のデータを選んで生産開始時の負圧初期値に設定する。このようにすれば、生産中に調整した負圧を学習して、その学習値を次回の生産開始時の負圧初期値に設定することができ、生産開始後に短時間で負圧を部品の種類や吸着ノズル26のノズル径に応じた適正な負圧に調整することができる。
[Negative pressure initial value setting method (2)]
The negative pressure data of the vacuum pump 27 adjusted during production is stored in the storage device 33 in association with the type of component and / or the nozzle diameter of the suction nozzle 26, and stored for each type of component and / or suction. From the negative pressure data for each nozzle diameter of the nozzle 26, the negative pressure initial value at the start of production is selected by selecting the negative pressure data corresponding to the type of component to be sucked by the suction nozzle 26 and / or the nozzle diameter of the suction nozzle 26. Set to. In this way, the negative pressure adjusted during production can be learned, and the learned value can be set to the initial negative pressure value at the start of the next production. An appropriate negative pressure can be adjusted according to the type and the nozzle diameter of the suction nozzle 26.

[負圧初期値設定方法(その3)]
生産中に調整した真空ポンプ27の負圧の履歴データを、部品の種類及び/又は吸着ノズル26のノズル径と関連付けて記憶装置33に記憶しておき、記憶された部品の種類毎及び/又は吸着ノズル26のノズル径毎の負圧の履歴データの中から吸着ノズル26に吸着する部品の種類及び/又は吸着ノズル26のノズル径に応じた負圧の履歴データを選んで統計処理して生産開始時の負圧初期値を設定する。
[Negative pressure initial value setting method (part 3)]
The negative pressure history data of the vacuum pump 27 adjusted during production is stored in the storage device 33 in association with the type of component and / or the nozzle diameter of the suction nozzle 26, and for each type of stored component and / or Production of statistical data by selecting negative pressure history data corresponding to the type of parts adsorbed to the suction nozzle 26 and / or the nozzle diameter of the suction nozzle 26 from the negative pressure history data for each nozzle diameter of the suction nozzle 26 Set the negative pressure initial value at the start.

ここで、統計処理とは、例えば、平均値、中央値、最頻値等の代表値を算出する処理を意味し、平均値の算出処理は、相加平均、相乗平均、調和平均等であっても良いし、負圧の履歴データにそれぞれ重みを付けて平均化する加重平均値(重み付き平均値)であっても良く、例えば、新しいデータほど重みを大きくして加重平均値を算出するようにしても良い。このようにすれば、過去の生産中に吸着動作毎に調整した負圧にばらつきがあっても、その履歴データを統計処理することで、吸着動作毎に調整した負圧のばらつきの影響を少なくして生産開始時の負圧初期値を設定することができる。   Here, the statistical processing means, for example, processing for calculating a representative value such as an average value, a median value, or a mode value, and the average value calculation processing is an arithmetic average, a geometric average, a harmonic average, or the like. Alternatively, it may be a weighted average value (weighted average value) in which negative pressure history data is weighted and averaged. For example, the weighted average value is calculated by increasing the weight of new data. You may do it. In this way, even if there is a variation in negative pressure adjusted for each adsorption operation during past production, the history data is statistically processed to reduce the influence of variations in negative pressure adjusted for each adsorption operation. Thus, the negative pressure initial value at the start of production can be set.

また、本実施例では、部品実装機10の制御装置31(又は生産管理コンピュータ45)は、図6に示すように、生産開始前に回路基板12に実装する部品の実装順序を負圧初期値(ポンプ回転数、電流、電圧)の大きい順又は小さい順に並び替えて設定する生産管理手段としても機能する。要するに、負圧調整毎の負圧変化量が大きいほど真空ポンプ27の消費電力量が増えるため、部品の実装順序を負圧初期値の大きい順又は小さい順に並び替えて、負圧調整毎の負圧変化量を小さくするものであり、これにより、真空ポンプ27の消費電力量を更に節減することができる。   In the present embodiment, the control device 31 (or the production management computer 45) of the component mounting machine 10 sets the mounting order of components to be mounted on the circuit board 12 before the start of production as shown in FIG. It also functions as production management means for rearranging and setting (in order of increasing or decreasing pump speed, current, voltage). In short, since the power consumption of the vacuum pump 27 increases as the amount of change in negative pressure for each negative pressure adjustment increases, the component mounting order is rearranged in order of increasing or decreasing negative pressure initial value, and negative pressure for each negative pressure adjustment. This is to reduce the amount of change in pressure, thereby further reducing the power consumption of the vacuum pump 27.

また、部品実装機10の制御装置31は、実装ヘッド24に設けた圧力センサ28の出力を読み込んで、吸着ノズル26に供給する負圧を常時監視し、部品吸着ミス等により負圧が急激に減少したときには、同時に吸着している部品や次の吸着サイクルの吸着に影響が出ないように真空ポンプ27のポンプ回転数を上昇させて負圧を速やかに回復して、同時に吸着している部品や次の吸着サイクルで部品を安定して吸着できるようにする。負圧回復後は、速やかに真空ポンプ27のポンプ回転数を上昇前の状態に戻して、次の吸着サイクルの負圧が過大になることを防止する。   Further, the control device 31 of the component mounting machine 10 reads the output of the pressure sensor 28 provided in the mounting head 24, constantly monitors the negative pressure supplied to the suction nozzle 26, and the negative pressure suddenly increases due to a component suction error or the like. When the number decreases, the parts adsorbed at the same time or the parts that are adsorbed simultaneously by increasing the pump rotation speed of the vacuum pump 27 so as not to affect the adsorption of the next adsorption cycle and quickly recovering the negative pressure. In the next adsorption cycle, the parts can be adsorbed stably. After the negative pressure is recovered, the pump rotation speed of the vacuum pump 27 is quickly returned to the state before the increase, thereby preventing the negative pressure in the next adsorption cycle from becoming excessive.

更に、部品実装機10の制御装置31は、真空ポンプ27から吸着ノズル26に供給する負圧を圧力センサ28の負圧検出値に基づいて常時監視し、負圧検出値が目標とする負圧からずれていると判断した場合には、そのずれ量に応じて真空ポンプ27のポンプ回転数を調整して、吸着ノズル26に供給する実際の負圧を確実に目標とする負圧に調整する。つまり、圧力センサ28の負圧検出値が目標とする負圧に一致するように真空ポンプ27のポンプ回転数をフィードバック制御する。   Further, the control device 31 of the component mounting machine 10 constantly monitors the negative pressure supplied from the vacuum pump 27 to the suction nozzle 26 based on the negative pressure detection value of the pressure sensor 28, and the negative pressure detection value is the target negative pressure. If it is determined that there is a deviation, the pump rotation speed of the vacuum pump 27 is adjusted according to the deviation amount, and the actual negative pressure supplied to the suction nozzle 26 is reliably adjusted to the target negative pressure. . In other words, the pump rotation speed of the vacuum pump 27 is feedback-controlled so that the negative pressure detection value of the pressure sensor 28 matches the target negative pressure.

以上説明した本実施例の負圧調整の一例を図7及び図8の負圧調整プログラムを用いて説明する。図7及び図8の負圧調整プログラムは、部品実装機10の制御装置31(又は生産管理コンピュータ45)によって実行され、特許請求の範囲でいう負圧調整手段としての役割を果たす。本プログラムは、生産開始時に起動され、まず、ステップ101で、負圧学習モードが選択されているか否かを判定する。ここで、負圧学習モードとは、生産中に調整した負圧(真空ポンプ27のポンプ回転数)を学習して生産開始時の負圧初期値を負圧学習値に設定するモードである。このステップ101で、負圧学習モードが選択されていると判定された場合は、ステップ102に進み、生産開始時の負圧初期値を、後述する図8のステップ118で記憶装置33に記憶した前回の生産終了時の負圧(前回の生産中に最後に調整した負圧)に設定する。この際、部品の種類毎及び/又は吸着ノズル26のノズル径毎の負圧の記憶データの中から吸着ノズル26に吸着する部品の種類及び/又は吸着ノズル26のノズル径に応じた負圧の記憶データを選んで生産開始時の負圧初期値に設定する。尚、負圧初期値としては、真空ポンプ27のポンプ回転数、電流、電圧のいずれかに換算した値を用いれば良い。   An example of the negative pressure adjustment of the present embodiment described above will be described using the negative pressure adjustment program of FIGS. 7 and 8 is executed by the control device 31 (or the production management computer 45) of the component mounter 10, and serves as a negative pressure adjusting means in the claims. This program is started at the start of production. First, in step 101, it is determined whether or not the negative pressure learning mode is selected. Here, the negative pressure learning mode is a mode in which the negative pressure (pump rotation speed of the vacuum pump 27) adjusted during production is learned and the initial negative pressure value at the start of production is set as the negative pressure learning value. If it is determined in step 101 that the negative pressure learning mode is selected, the process proceeds to step 102 where the initial negative pressure value at the start of production is stored in the storage device 33 in step 118 of FIG. Set to the negative pressure at the end of the previous production (the negative pressure adjusted last during the previous production). At this time, the negative pressure corresponding to the type of component and / or the nozzle diameter of the suction nozzle 26 out of the storage data of the negative pressure for each type of component and / or the nozzle diameter of the suction nozzle 26 is used. Select the stored data and set the initial negative pressure at the start of production. In addition, what is necessary is just to use the value converted into the pump rotation speed of the vacuum pump 27, an electric current, or a voltage as a negative pressure initial value.

一方、上記ステップ101で、負圧学習モードが選択されていないと判定された場合は、ステップ103に進み、生産開始時の負圧初期値を標準値に設定する。この際、標準値は常に一定の値を用いても良いが、吸着ノズル26に吸着する部品の種類や吸着ノズル26のノズル径に応じた標準値を予め設定しておき、部品の種類や吸着ノズル26のノズル径に応じた標準値を生産開始時の負圧初期値に設定するようにしても良い。   On the other hand, if it is determined in step 101 that the negative pressure learning mode is not selected, the process proceeds to step 103, where the initial negative pressure value at the start of production is set to the standard value. At this time, the standard value may always be a constant value, but a standard value is set in advance according to the type of component to be sucked to the suction nozzle 26 and the nozzle diameter of the suction nozzle 26, and the type of component and the suction You may make it set the standard value according to the nozzle diameter of the nozzle 26 to the negative pressure initial value at the time of a production start.

生産開始時の負圧初期値の設定後、ステップ104に進み、真空ポンプ27の負圧を生産開始時の負圧初期値に一致させるように真空ポンプ27のポンプ回転数を調整する。この後、ステップ105に進み、実装ヘッド24の吸着ノズル26を吸着位置へ移動させて、フィーダ23により吸着位置に送られた部品を該吸着ノズル26に吸着する。そして、次のステップ106で、吸着ノズル26に吸着した部品がパーツカメラ35の上方の撮像エリアを通過する際に、該吸着ノズル26に吸着した部品をパーツカメラ35で撮像して、該吸着ノズル26に吸着した部品の吸着状態(吸着位置ずれ量や部品吸着姿勢)を画像処理により判定する。   After setting the negative pressure initial value at the start of production, the routine proceeds to step 104, where the pump rotation speed of the vacuum pump 27 is adjusted so that the negative pressure of the vacuum pump 27 matches the negative pressure initial value at the start of production. Thereafter, the process proceeds to step 105, the suction nozzle 26 of the mounting head 24 is moved to the suction position, and the component sent to the suction position by the feeder 23 is sucked to the suction nozzle 26. In the next step 106, when the part sucked by the suction nozzle 26 passes through the imaging area above the parts camera 35, the part camera 35 takes an image of the part sucked by the suction nozzle 26, and the suction nozzle 26 The suction state (the amount of suction position deviation or the part suction posture) of the part sucked on the part 26 is determined by image processing.

この後、ステップ107に進み、次の(1) 〜(3) のいずれかに該当するか否かで吸着異常であるか否か判定する。
(1) 部品の吸着位置ずれ量が許容最大吸着位置ずれラインを越えていること
(2) 部品の吸着姿勢が異常(立ち吸着、斜め吸着等)であること
(3) 部品吸着ミスにより吸着ノズル26に部品が吸着されていないこと
Thereafter, the process proceeds to step 107, and it is determined whether or not the adsorption is abnormal depending on whether one of the following (1) to (3) is satisfied.
(1) The amount of component adsorption position deviation exceeds the allowable maximum adsorption position deviation line.
(2) Absorption posture of parts is abnormal (standing adsorption, oblique adsorption, etc.)
(3) The parts are not picked up by the picking nozzle 26 due to a picking mistake.

このステップ107で、吸着異常と判定されば、ステップ108に進み、吸着ノズル26に吸着した部品を所定の回収ボックス(図示せず)に廃棄して、上記ステップ105に戻り、次の部品を吸着する。尚、部品吸着ミスの場合は、上記ステップ108の処理を省略して上記ステップ105に戻る。   If it is determined in step 107 that the suction is abnormal, the process proceeds to step 108 where the part sucked by the suction nozzle 26 is discarded in a predetermined collection box (not shown), and the process returns to step 105 to suck the next part. To do. If there is a component suction error, the process of step 108 is omitted and the process returns to step 105.

一方、上記ステップ107で、吸着異常ではないと判定されば、ステップ109に進み、検査装置43で検査した回路基板12の部品の実装位置ずれ量の情報を生産管理コンピュータ45を経由して受信する。この際、受信する部品の実装位置ずれ量の情報は、同じ吸着ノズル26で実装した同じ部品の実装位置ずれ量の情報である。   On the other hand, if it is determined in step 107 that there is no suction abnormality, the process proceeds to step 109, and information on the mounting position deviation amount of the component of the circuit board 12 inspected by the inspection device 43 is received via the production management computer 45. . At this time, the information on the mounting position deviation amount of the component to be received is information on the mounting position deviation amount of the same component mounted by the same suction nozzle 26.

この後、ステップ110に進み、部品の吸着状態(吸着位置ずれ量や部品吸着姿勢)及び実装位置ずれ量が安定吸着とみなせる所定範囲内であるか否かを判定する。その結果、部品の吸着状態及び実装位置ずれ量が安定吸着とみなせる所定範囲内であると判定されれば、ステップ111に進み、真空ポンプ27の負圧を所定量減少させて、図8のステップ115に進み、吸着ノズル26に吸着した部品を回路基板12の実装位置へ搬送して該部品を該実装位置に実装する。   Thereafter, the process proceeds to step 110, where it is determined whether or not the component suction state (suction position deviation amount or component suction posture) and the mounting position deviation amount are within a predetermined range that can be regarded as stable suction. As a result, if it is determined that the suction state of the component and the mounting position deviation amount are within a predetermined range that can be regarded as stable suction, the process proceeds to step 111, the negative pressure of the vacuum pump 27 is decreased by a predetermined amount, and the step of FIG. Proceeding to 115, the component sucked by the suction nozzle 26 is transported to the mounting position of the circuit board 12, and the component is mounted at the mounting position.

これに対し、上記ステップ110で、部品の吸着状態や実装位置ずれ量が安定吸着とみなせる所定範囲内であると判定されれば、ステップ112に進み、真空ポンプ27の負圧が調整可能な最大負圧に達しているか否かを判定し、その結果、調整可能な最大負圧に達していないと判定されれば、ステップ113に進み、真空ポンプ27の負圧を所定量増大させて、吸着ノズル26の吸引力を増大させることで、部品の吸着状態を安定させて、図8のステップ115に進み、吸着ノズル26に吸着した部品を回路基板12の実装位置へ搬送して該部品を該実装位置に実装する。   On the other hand, if it is determined in step 110 that the component suction state and the mounting position deviation amount are within a predetermined range that can be regarded as stable suction, the process proceeds to step 112, and the negative pressure of the vacuum pump 27 can be adjusted to the maximum. It is determined whether or not the negative pressure has been reached. As a result, if it is determined that the maximum negative pressure that can be adjusted has not been reached, the routine proceeds to step 113 where the negative pressure of the vacuum pump 27 is increased by a predetermined amount to By increasing the suction force of the nozzle 26, the suction state of the component is stabilized, and the process proceeds to step 115 in FIG. 8, the component sucked by the suction nozzle 26 is transported to the mounting position of the circuit board 12, and the component is Mount at the mounting position.

一方、上記ステップ112で、真空ポンプ27の負圧が調整可能な最大負圧に達していると判定されれば、それ以上、負圧を増大できない状態になっているため、ステップ114に進み、吸着ノズル26に吸着した部品を回路基板12の実装位置へ搬送する搬送速度を所定量低下させて、吸着ノズル26に吸着した部品に作用する慣性力を減少させることで、部品の吸着状態を安定させて、搬送時の部品の吸着位置のずれを防止する。そして、図8のステップ115に進み、吸着ノズル26に吸着した部品を回路基板12の実装位置に実装する。   On the other hand, if it is determined in step 112 that the negative pressure of the vacuum pump 27 has reached the maximum negative pressure that can be adjusted, the negative pressure cannot be increased any more. The suction speed of the component is stabilized by reducing the conveying speed for transporting the component sucked by the suction nozzle 26 to the mounting position of the circuit board 12 by a predetermined amount and reducing the inertial force acting on the component sucked by the suction nozzle 26. Thus, it is possible to prevent the displacement of the suction position of the parts during conveyance. Then, the process proceeds to step 115 in FIG. 8, and the component sucked by the suction nozzle 26 is mounted at the mounting position of the circuit board 12.

部品実装後、ステップ116に進み、生産終了か否かを判定し、まだ生産終了ではないと判定されれば、前述したステップ105以降の処理を再び実行する。これにより、部品の吸着状態が安定するまで、真空ポンプ27のポンプ回転数を徐々に上昇させて真空ポンプ27の負圧を徐々に増大させて吸着ノズル26の吸引力を徐々に増大させる。   After mounting the components, the process proceeds to step 116, where it is determined whether or not the production is finished. If it is judged that the production is not finished yet, the processes after step 105 described above are executed again. Thus, the suction force of the suction nozzle 26 is gradually increased by gradually increasing the pump rotation speed of the vacuum pump 27 and gradually increasing the negative pressure of the vacuum pump 27 until the suction state of the components is stabilized.

その後、上記ステップ116で、生産終了と判定されれば、ステップ117に進み、負圧学習モードが選択されているか否かを判定し、負圧学習モードが選択されていると判定されれば、ステップ118に進み、生産終了時の負圧の情報(生産終了時の真空ポンプ27のポンプ回転数、電流、電圧のいずれか)を部品の種類及び/又は吸着ノズル26のノズル径と関連付けて記憶装置33に記憶して、本プログラムを終了する。
一方、上記ステップ117で、負圧学習モードが選択されていないと判定されれば、上記ステップ118の負圧学習処理を行わずに、本プログラムを終了する。
Thereafter, if it is determined in step 116 that production is finished, the process proceeds to step 117, where it is determined whether the negative pressure learning mode is selected, and if it is determined that the negative pressure learning mode is selected, Proceeding to step 118, information on negative pressure at the end of production (any of the pump speed, current, and voltage of the vacuum pump 27 at the end of production) is stored in association with the type of component and / or the nozzle diameter of the suction nozzle 26. The program is stored in the device 33 and the program is terminated.
On the other hand, if it is determined in step 117 that the negative pressure learning mode is not selected, the present program is terminated without performing the negative pressure learning process in step 118.

以上説明した本実施例では、吸着ノズル26に吸着した部品の吸着状態を判定して、その判定結果に応じて真空ポンプ27の負圧を調整して吸着ノズル26の吸引力を調整するようにしているため、生産中に真空ポンプ27の負圧を常に大きめの一定負圧に維持する必要がなくなり、吸着ノズル26に吸着する部品の吸着状態を安定させる制御を低消費電力で実現できる。   In the present embodiment described above, the suction state of the parts sucked by the suction nozzle 26 is determined, and the negative pressure of the vacuum pump 27 is adjusted according to the determination result to adjust the suction force of the suction nozzle 26. Therefore, it is not necessary to always maintain the negative pressure of the vacuum pump 27 at a large constant negative pressure during production, and control for stabilizing the suction state of the parts sucked by the suction nozzle 26 can be realized with low power consumption.

しかも、本実施例では、回路基板12に実装した部品の実装位置ずれ量を検査装置43で検査し、部品の吸着状態に加えて、部品の実装位置ずれ量も考慮して、真空ポンプ27の負圧を調整して吸着ノズル26の吸引力を調整するようにしているため、部品の実装位置ずれの原因となる搬送時の部品の吸着位置のずれも防止するように吸着ノズル26の吸引力(負圧)を調整して搬送時の部品の吸着状態を安定させる制御も、低消費電力で実現できる。   In addition, in this embodiment, the mounting position shift amount of the component mounted on the circuit board 12 is inspected by the inspection device 43, and the mounting position shift amount of the component is taken into consideration in addition to the suction state of the component. Since the suction force of the suction nozzle 26 is adjusted by adjusting the negative pressure, the suction force of the suction nozzle 26 is also prevented so as to prevent the displacement of the suction position of the component during conveyance, which causes a shift in the mounting position of the component. Control that adjusts (negative pressure) to stabilize the suction state of components during conveyance can also be realized with low power consumption.

また、真空ポンプ27の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、部品の吸着状態が不安定と判断される場合には、回路基板の実装位置への部品の搬送速度を低下させるようにしたので、この場合でも、吸着ノズル26に吸着した部品に作用する慣性力を減少させて部品の吸着状態を安定させることができ、搬送時の部品の吸着位置のずれを防止することができる。   Also, when the negative pressure of the vacuum pump 27 has reached the maximum adjustable negative pressure and the negative pressure cannot be increased any further, and the component suction state is determined to be unstable. Since the conveying speed of the component to the mounting position of the circuit board is reduced, even in this case, the inertia force acting on the component adsorbed to the adsorption nozzle 26 can be reduced and the adsorbing state of the component can be stabilized. In this way, it is possible to prevent the displacement of the suction position of the parts during conveyance.

同様に、真空ポンプ27の負圧が調整可能な最大負圧に達していて、それ以上、負圧を増大できない状態になっているときに、検査装置43で検査した部品の実装位置ずれ量が搬送時の吸着位置ずれの影響を無視できる所定範囲内に収まらない場合には、搬送時に部品の吸着位置ずれが発生していると判断して、回路基板の実装位置への部品の搬送速度を低下させるようにしたので、この場合でも、搬送時に吸着ノズル26に吸着した部品に作用する慣性力を減少させて部品の吸着状態を安定させることができ、搬送時の部品の吸着位置ずれを防止することができる。   Similarly, when the negative pressure of the vacuum pump 27 has reached the maximum adjustable negative pressure and the negative pressure cannot be increased any more, the mounting position shift amount of the component inspected by the inspection device 43 is increased. If it does not fall within the predetermined range where the influence of the suction position deviation during transportation can be ignored, it is determined that the part suction position deviation has occurred during transportation, and the part transportation speed to the mounting position of the circuit board is set. Even in this case, it is possible to reduce the inertial force acting on the component adsorbed to the suction nozzle 26 during conveyance, thereby stabilizing the component adsorption state, and preventing the component adsorption position shift during conveyance. can do.

また、本実施例では、生産開始前に回路基板12に実装する部品の実装順序を負圧初期値(ポンプ回転数、電流、電圧)の大きい順又は小さい順に並び替えて設定するようにしたので、負圧調整毎の負圧変化量を小さくすることができて、真空ポンプ27の消費電力節減効果を増大させることができる。   Further, in this embodiment, the mounting order of components to be mounted on the circuit board 12 before the start of production is set by rearranging the negative pressure initial values (pump rotation speed, current, voltage) in descending order or in ascending order. The amount of change in negative pressure for each negative pressure adjustment can be reduced, and the power consumption saving effect of the vacuum pump 27 can be increased.

尚、本発明は、上記実施例に限定されず、部品実装機10の構成を変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。   Needless to say, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention, such as changing the configuration of the component mounting machine 10.

10…部品実装機、12…回路基板、13…コンベア、23…フィーダ、24…実装ヘッド、25…ヘッド移動装置、26…吸着ノズル、27…真空ポンプ(負圧源)、28…圧力センサ、31…制御装置(負圧調整手段,吸着状態判定手段,搬送速度制御手段,生産管理手段)、33…記憶装置(記憶手段)、35…パーツカメラ(部品撮像用のカメラ)、41…搬送経路、43…検査装置(実装位置ずれ量判定手段)、44…リフロー装置、45…生産管理コンピュータ   DESCRIPTION OF SYMBOLS 10 ... Component mounting machine, 12 ... Circuit board, 13 ... Conveyor, 23 ... Feeder, 24 ... Mounting head, 25 ... Head moving device, 26 ... Adsorption nozzle, 27 ... Vacuum pump (negative pressure source), 28 ... Pressure sensor, 31 ... Control device (negative pressure adjusting means, adsorption state determining means, conveyance speed control means, production management means), 33 ... storage device (storage means), 35 ... part camera (camera for imaging parts), 41 ... conveying path 43 ... Inspection device (mounting position deviation amount judging means) 44 ... Reflow device 45 ... Production management computer

Claims (12)

負圧源から負圧を吸着ノズルに供給し、該吸着ノズルで部品を吸着して回路基板に実装する部品実装機において、
前記吸着ノズルに吸着した部品の吸着状態を判定する吸着状態判定手段と、
前記吸着状態判定手段で判定した部品の吸着状態に基づいて前記負圧源の負圧を調整して前記吸着ノズルの吸引力を調整する負圧調整手段と
を備えていることを特徴とする部品実装機。
In a component mounting machine that supplies negative pressure from a negative pressure source to a suction nozzle, sucks components with the suction nozzle, and mounts them on a circuit board.
A suction state determination means for determining a suction state of a component sucked by the suction nozzle;
A negative pressure adjusting means for adjusting the suction force of the suction nozzle by adjusting the negative pressure of the negative pressure source based on the suction state of the part determined by the suction state determining means. Mounting machine.
前記回路基板に実装した部品の実装位置ずれ量を判定する実装位置ずれ量判定手段を備え、
前記負圧調整手段は、前記吸着状態判定手段で判定した部品の吸着状態と前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量とに基づいて前記負圧源の負圧を調整することを特徴とする請求項1に記載の部品実装機。
A mounting position deviation amount determining means for determining a mounting position deviation amount of a component mounted on the circuit board;
The negative pressure adjustment unit adjusts the negative pressure of the negative pressure source based on the component suction state determined by the suction state determination unit and the component mounting position shift amount determined by the mounting position shift amount determination unit. The component mounting machine according to claim 1, wherein:
前記負圧調整手段は、前記吸着状態判定手段で判定した部品の吸着状態が所定範囲内に収まらないときに前記負圧源の負圧(大気圧との差圧)を増大させて前記吸着ノズルの吸引力を増大させ、前記部品の吸着状態が所定範囲内に収まっているときに前記負圧源の負圧(大気圧との差圧)を減少させて前記吸着ノズルの吸引力を減少させることを特徴とする請求項1又は2に記載の部品実装機。   The negative pressure adjusting means increases the negative pressure (differential pressure from the atmospheric pressure) of the negative pressure source when the suction state of the component determined by the suction state determination means does not fall within a predetermined range. The suction force of the suction nozzle is decreased by decreasing the negative pressure (differential pressure from the atmospheric pressure) of the negative pressure source when the suction state of the component is within a predetermined range. The component mounting machine according to claim 1 or 2, wherein 前記負圧調整手段は、前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量が所定範囲内に収まらないときに前記負圧源の負圧(大気圧との差圧)を増大させて前記吸着ノズルの吸引力を増大させ、前記部品の実装位置ずれ量が所定範囲内に収まっているときに前記負圧源の負圧(大気圧との差圧)を減少させて前記吸着ノズルの吸引力を減少させることを特徴とする請求項2に記載の部品実装機。   The negative pressure adjusting means increases the negative pressure (differential pressure from the atmospheric pressure) of the negative pressure source when the mounting position deviation amount of the component determined by the mounting position deviation amount determination means does not fall within a predetermined range. And increasing the suction force of the suction nozzle to reduce the negative pressure (differential pressure from the atmospheric pressure) of the negative pressure source when the amount of mounting position deviation of the component is within a predetermined range. The component mounting machine according to claim 2, wherein the suction force is reduced. 前記吸着ノズルに吸着した部品を吸着位置から回路基板の実装位置へ搬送する搬送速度を制御する搬送速度制御手段を備え、
前記搬送速度制御手段は、前記負圧調整手段により調整した前記負圧源の負圧が調整可能な最大負圧に達しているときに前記吸着状態判定手段で判定した部品の吸着状態が所定範囲内に収まらない場合に前記搬送速度を低下させることを特徴とする請求項1乃至4のいずれかに記載の部品実装機。
A transport speed control means for controlling a transport speed for transporting the component sucked by the suction nozzle from the suction position to the mounting position of the circuit board;
The conveyance speed control means has a predetermined range of the suction state of the component determined by the suction state determination means when the negative pressure of the negative pressure source adjusted by the negative pressure adjustment means has reached a maximum adjustable negative pressure. 5. The component mounting machine according to claim 1, wherein the conveying speed is reduced when it does not fit inside. 5.
前記吸着ノズルに吸着した部品を吸着位置から回路基板の実装位置へ搬送する搬送速度を制御する搬送速度制御手段を備え、
前記搬送速度制御手段は、前記負圧調整手段により調整した前記負圧源の負圧が調整可能な最大負圧に達しているときに前記実装位置ずれ量判定手段で判定した部品の実装位置ずれ量が所定範囲内に収まらない場合に前記搬送速度を低下させることを特徴とする請求項2に記載の部品実装機。
A transport speed control means for controlling a transport speed for transporting the component sucked by the suction nozzle from the suction position to the mounting position of the circuit board;
The conveyance speed control means is a component mounting position deviation determined by the mounting position deviation amount determining means when the negative pressure of the negative pressure source adjusted by the negative pressure adjusting means reaches an adjustable maximum negative pressure. The component mounting machine according to claim 2, wherein when the amount does not fall within a predetermined range, the conveyance speed is decreased.
前記負圧調整手段は、生産開始時の負圧初期値を前記吸着ノズルに吸着する部品の種類及び/又は該吸着ノズルのノズル径に応じて設定することを特徴とする請求項1乃至6のいずれかに記載の部品実装機。   The negative pressure adjusting means sets a negative pressure initial value at the start of production in accordance with the type of component sucked by the suction nozzle and / or the nozzle diameter of the suction nozzle. The component mounting machine according to any one of the above. 前記負圧調整手段により調整した前記負圧源の負圧のデータを部品の種類及び/又は前記吸着ノズルのノズル径と関連付けて記憶する記憶手段を備え、
前記負圧調整手段は、前記記憶手段に記憶された部品の種類毎及び/又は前記吸着ノズルのノズル径毎の負圧のデータの中から前記吸着ノズルに吸着する部品の種類及び/又は前記吸着ノズルのノズル径に応じた負圧のデータを選んで生産開始時の負圧初期値に設定することを特徴とする請求項1乃至6のいずれかに記載の部品実装機。
Storage means for storing negative pressure data of the negative pressure source adjusted by the negative pressure adjusting means in association with the type of component and / or the nozzle diameter of the suction nozzle;
The negative pressure adjusting means includes the type of the component adsorbed to the adsorption nozzle and / or the adsorption from the negative pressure data for each type of component and / or the nozzle diameter of the adsorption nozzle stored in the storage unit. 7. The component mounting machine according to claim 1, wherein negative pressure data corresponding to the nozzle diameter of the nozzle is selected and set to a negative pressure initial value at the start of production.
前記負圧調整手段により調整した前記負圧源の負圧の履歴データを部品の種類及び/又は前記吸着ノズルのノズル径と関連付けて記憶する記憶手段を備え、
前記負圧調整手段は、前記記憶手段に記憶された部品の種類毎及び/又は前記吸着ノズルのノズル径毎の負圧の履歴データの中から前記吸着ノズルに吸着する部品の種類及び/又は前記吸着ノズルのノズル径に応じた負圧の履歴データを選んで統計処理して生産開始時の負圧初期値を設定することを特徴とする請求項1乃至6のいずれかに記載の部品実装機。
Storage means for storing negative pressure history data of the negative pressure source adjusted by the negative pressure adjusting means in association with the type of component and / or the nozzle diameter of the suction nozzle;
The negative pressure adjusting means includes the type of the component adsorbed to the adsorption nozzle from the negative pressure history data for each type of component and / or the nozzle diameter of the adsorption nozzle stored in the storage unit and / or the 7. The component mounting machine according to claim 1, wherein negative pressure history data corresponding to the nozzle diameter of the suction nozzle is selected and statistically processed to set an initial negative pressure value at the start of production. .
生産開始前に回路基板に実装する部品の実装順序を負圧初期値の大きい順又は小さい順に並び替えて設定する生産管理手段を備えていることを特徴とする請求項7乃至9のいずれかに記載の部品実装機。   The production management means for rearranging and setting the mounting order of components to be mounted on the circuit board before the start of production, in order of increasing or decreasing negative pressure initial value. The component mounting machine described. 前記吸着ノズルに供給する負圧を検出する圧力センサを備え、
前記負圧調整手段は、前記圧力センサにより検出した負圧に基づいて前記負圧源の負圧を調整することを特徴とする請求項1乃至10のいずれかに記載の部品実装機。
A pressure sensor for detecting a negative pressure supplied to the suction nozzle;
The component mounting machine according to claim 1, wherein the negative pressure adjusting unit adjusts a negative pressure of the negative pressure source based on a negative pressure detected by the pressure sensor.
前記吸着ノズルを保持する実装ヘッド毎に前記負圧源として真空ポンプを設けたことを特徴とする請求項1乃至11のいずれかに記載の部品実装機。   The component mounting machine according to claim 1, wherein a vacuum pump is provided as the negative pressure source for each mounting head that holds the suction nozzle.
JP2014194599A 2014-09-25 2014-09-25 Component mounter Active JP6348037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014194599A JP6348037B2 (en) 2014-09-25 2014-09-25 Component mounter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014194599A JP6348037B2 (en) 2014-09-25 2014-09-25 Component mounter

Publications (2)

Publication Number Publication Date
JP2016066698A true JP2016066698A (en) 2016-04-28
JP6348037B2 JP6348037B2 (en) 2018-06-27

Family

ID=55804232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014194599A Active JP6348037B2 (en) 2014-09-25 2014-09-25 Component mounter

Country Status (1)

Country Link
JP (1) JP6348037B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015097880A1 (en) * 2013-12-27 2017-03-23 富士機械製造株式会社 Electronic component mounting machine
JP2020013819A (en) * 2018-07-13 2020-01-23 ヤマハ発動機株式会社 Component mounting apparatus
US11644776B1 (en) 2021-10-14 2023-05-09 Fujifilm Business Innovation Corp. Endless belt, fixing belt, fixing device, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246798A (en) * 2001-02-19 2002-08-30 Matsushita Electric Ind Co Ltd Mounting machine
JP2003023294A (en) * 2001-07-06 2003-01-24 Yamaha Motor Co Ltd Surface mounting machine
JP2007281432A (en) * 2006-03-15 2007-10-25 Matsushita Electric Ind Co Ltd Determination method of component mounting condition
JP2012151239A (en) * 2011-01-18 2012-08-09 Fuji Mach Mfg Co Ltd Mounting device and mounting method of electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246798A (en) * 2001-02-19 2002-08-30 Matsushita Electric Ind Co Ltd Mounting machine
JP2003023294A (en) * 2001-07-06 2003-01-24 Yamaha Motor Co Ltd Surface mounting machine
JP2007281432A (en) * 2006-03-15 2007-10-25 Matsushita Electric Ind Co Ltd Determination method of component mounting condition
JP2012151239A (en) * 2011-01-18 2012-08-09 Fuji Mach Mfg Co Ltd Mounting device and mounting method of electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015097880A1 (en) * 2013-12-27 2017-03-23 富士機械製造株式会社 Electronic component mounting machine
JP2020013819A (en) * 2018-07-13 2020-01-23 ヤマハ発動機株式会社 Component mounting apparatus
JP7068081B2 (en) 2018-07-13 2022-05-16 ヤマハ発動機株式会社 Component mounting device
US11644776B1 (en) 2021-10-14 2023-05-09 Fujifilm Business Innovation Corp. Endless belt, fixing belt, fixing device, and image forming apparatus

Also Published As

Publication number Publication date
JP6348037B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
US20190394913A1 (en) Inspection apparatus, component mounting system, and component mounting method
JP6348037B2 (en) Component mounter
WO2018131136A1 (en) Manufacturing management device
JP6511374B2 (en) Substrate production system and processing apparatus for printed circuit board
KR101692802B1 (en) Substrate working device, substrate working method and substrate working system
JP2013074086A (en) Work system for board
JP5980944B2 (en) Production monitoring system and production monitoring method for component mounting line
JP6232583B2 (en) Substrate transport method and component mounting apparatus
JP6476196B2 (en) Maintenance guidance system and maintenance guidance method
JP6043871B2 (en) Substrate transport apparatus, surface mounter, and substrate transport method
JP2010098213A (en) Device and method for supporting maintenance of electronic component mounting device
WO2016170644A1 (en) Feeder device and carrier tape feeding method for feeder device
JP6734465B2 (en) Component mounter
JPH0983198A (en) Apparatus and method for automatic mounting electronic component
JP4357931B2 (en) Component mounter
JP4633912B2 (en) Electronic component mounting device
JP2019197898A (en) Component mounting system and component mounting method
JP4853459B2 (en) Component mounting line
JP7432058B2 (en) Substrate transfer device and substrate transfer method
JP2015012166A (en) Board work system
JP6433702B2 (en) Component mounter
WO2024047760A1 (en) Substrate-working machine
WO2023144865A1 (en) Control device
JP6774380B2 (en) How to notify the status of board work equipment and conveyor belts
JP5860688B2 (en) Board work machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6348037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250