JP2016062735A - イオンフィルター及びその製造方法 - Google Patents

イオンフィルター及びその製造方法 Download PDF

Info

Publication number
JP2016062735A
JP2016062735A JP2014189317A JP2014189317A JP2016062735A JP 2016062735 A JP2016062735 A JP 2016062735A JP 2014189317 A JP2014189317 A JP 2014189317A JP 2014189317 A JP2014189317 A JP 2014189317A JP 2016062735 A JP2016062735 A JP 2016062735A
Authority
JP
Japan
Prior art keywords
conductive layer
main surface
ion filter
thickness
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014189317A
Other languages
English (en)
Other versions
JP6027583B2 (ja
Inventor
大輔 荒井
Daisuke Arai
大輔 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2014189317A priority Critical patent/JP6027583B2/ja
Priority to PCT/JP2015/075705 priority patent/WO2016043115A1/ja
Priority to CN201580049701.7A priority patent/CN107078017B/zh
Priority to US15/512,518 priority patent/US10037860B2/en
Priority to EP15841522.4A priority patent/EP3196921B1/en
Priority to KR1020177008460A priority patent/KR101809232B1/ko
Publication of JP2016062735A publication Critical patent/JP2016062735A/ja
Application granted granted Critical
Publication of JP6027583B2 publication Critical patent/JP6027583B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/46Control electrodes, e.g. grid; Auxiliary electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/06Proportional counter tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/14Manufacture of electrodes or electrode systems of non-emitting electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】電子増幅器100に用いられるイオンフィルター10を提供する。【解決手段】絶縁性基材11と、絶縁性基材11の一方主面に形成された第1導電層12と、絶縁性基材11の他方主面に形成された第2導電層13と、絶縁性基材11の厚さ方向に沿って形成された複数の貫通孔30と、を有し、第1導電層12の第1厚さth1と、第2導電層13の第2厚さth2とを異なるように構成する。【選択図】 図2C

Description

本発明は、電子増幅器に用いられるイオンフィルター及びその製造方法に関する。
電子増幅フォイルを備えたガス電子増幅器が知られている(特許文献1)。
特開2007−234485号公報
この種のガス電子増幅器は、検出対象の放射線を入射させ、放射線とガスとの光電効果による相互作用によりガス原子から飛び出した電子を、多数の貫通孔を備えた電子増幅フォイルを用いて電子なだれ効果により増幅させ、その電気信号を検出する。
電子を増幅させる際には、増幅した電子と同数の陽イオンが発生する。電子増幅フォイルの貫通孔内部の電場の影響により、陽イオンは電子の移動方向とは逆方向に進行する。
また、質量が相対的に大きい陽イオンの移動速度は、電子の移動速度よりも遅いため、ガス電子増幅器の内部に平板状に集まって留まり、電場を生成する場合がある。
陽イオンにより形成される電場は測定する電子の移動方向を変化させるため、三次元飛跡検出器(TPC:Time Projection Chamber)などの検出精度に影響を与えるという、いわゆる陽イオン問題が生じる。
この陽イオン問題に関し、従来は、電子増幅器の上にワイヤー電極を設置し、ワイヤー電極から発生した電場によって、陽イオンの進行を防止する手法が知られている。
しかし、高磁場下で使用されるワイヤー電極の近傍にはE×B effectが発生し、移動する電子の軌道がワイヤー電極の近傍で歪むという別の問題が生じる。
また、陽イオンの進行を防止する際に、電子の移動までもが妨げられると、検出精度が低下するという問題がある。
このように、従来においては、電子の移動及び移動する電子の軌道に与える影響を抑制しつつ、陽イオンの進行を防ぐ手段が求められていた。
本発明が解決しようとする課題は、電子の移動及び移動する電子の軌道に与える影響を抑制しつつも、陽イオンの進行を防止するイオンフィルターを提供することである。
[1]本発明は、電子増幅器に用いられるイオンフィルターであって、絶縁性基材と、前記絶縁性基材の一方主面に形成された第1導電層と、前記絶縁性基材の他方主面に形成された第2導電層と、前記絶縁性基材の厚さ方向に沿って形成された複数の貫通孔と、を有し、前記第1導電層の第1厚さと、前記第2導電層の第2厚さとが異なるイオンフィルターを提供することにより、上記課題を解決する。
[2]上記発明において、前記絶縁性基材の一方主面は、前記電子増幅器における電子の移動方向の下流側に配置され、前記絶縁性基材の他方主面を、前記電子増幅器における電子の移動方向の上流側に配置し、前記絶縁性基材の一方主面に形成された前記第1導電層の前記第1厚さを、前記第2導電層の前記第2厚さよりも厚く構成することにより上記課題を解決する。
[3]上記発明において、前記イオンフィルターは、前記電子増幅器が備える電子増幅フォイルに併設され、前記絶縁性基材の一方主面を前記電子増幅フォイル側に配置され、当該一方主面に形成された前記第1導電層の前記第1厚さを、前記他方主面に形成された前記第2導電層の前記第2厚さよりも厚く構成することにより上記課題を解決する。
[4]上記発明において、前記第1導電層の表面部を第1の材料で形成し、前記第2導電層の表面部を第1の材料とは異なる第2の材料で形成することにより、上記課題を解決する。
[5]上記発明において、前記第1厚さを、前記第2厚さの30倍以下とすることにより、上記課題を解決する。
[6]上記発明において、前記貫通孔の開口率を75%以上とすることにより、上記課題を解決する。
[7]本発明は、絶縁性基材と、前記絶縁性基材の一方主面に形成された導電層と、前記絶縁性基材の他方主面に形成され、前記一方主面に形成された導電層よりも厚さが薄い導電層と、を備えた基材を準備する工程と、前記一方主面に形成された導電層の所定領域を除去して所定パターンの第1導電層を形成する工程と、前記一方主面側からレーザーを照射して、前記絶縁性基材の前記所定領域に対応する領域を除去する工程と、前記所定領域が除去された前記基材の両面側からエッチング液を作用させて、前記他方主面に形成された導電層のうち前記所定領域に対応する領域を除去する工程と、を有する製造方法を提供することにより、上記課題を解決する。
[8]本発明は、絶縁性基材と、前記絶縁性基材の一方主面に形成された導電層と、前記絶縁性基材の他方主面に形成され、前記一方主面に形成された導電層よりも厚さが薄い導電層と、を備えた基材を準備する工程と、前記一方主面に形成された導電層の所定領域を除去して所定パターンの第1導電層を形成する工程と、前記一方主面側からレーザーを照射して又はエッチング液を用いて、前記絶縁性基材の前記所定領域に対応する領域を除去する工程と、前記絶縁性基材の前記他方主面に形成された導電層の表面をエッチングレジストで覆う工程と、前記所定領域が除去された前記基材の前記一方主面側からエッチング液を作用させて、前記他方主面に形成された導電層のうち前記所定領域に対応する領域を除去する工程と、を有する製造方法を提供することにより、上記課題を解決する。
本発明によれば、電子の移動及び移動する電子の軌道に与える影響を抑制しつつも、陽イオンの進行を防止するイオンフィルターを提供できる。
本発明の実施形態の電子増幅器の構成図である。 本発明の実施形態のイオンフィルターの一例を模式的に示す斜視図である。 本発明の実施形態のイオンフィルターの一例を模式的に示す平面図である。 図2Bに示すIIC−IIC線に沿う断面の第1の例を模式的に示す断面図である。 図2Bに示すIIC−IIC線に沿う断面の第2の例を模式的に示す断面図である。 図3(A)(B)(C)(D)は、本実施形態のイオンフィルターの第1の製造方法を説明するための図である。 図4(A)(B)(C)(D)(E)は、本実施形態のイオンフィルターの第2の製造方法を説明するための図である。
以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、本発明に係るイオンフィルターを、ガス電子増幅器に適用した場合を例にして説明する。本実施形態の電子増幅器100は、荷電粒子、ガンマ線、X線、中性子あるいは紫外線などの放射線を検出するために用いられる。この種の電子増幅器は、検出対象の放射線を入射させ、放射線とガスとの光電効果による相互作用によりガス原子から飛び出した光電子を電子なだれ効果により増幅させ、放射線を電気信号として検出する。
図1は本実施形態における電子増幅器100の構成図である。
図1に示すように、本実施形態の電子増幅器100は、チャンバCB内に配置された電極5と、イオンフィルター10と、電子増幅フォイル2と、検出電極3とを有する。図示しない電源は、電極5、イオンフィルター10、電子増幅フォイル2、及び検出電極3に電力を供給する。電子増幅器100は、検出電極3から検出信号を取得する検出器4を備える。各構成について、以下に説明する。
チャンバCBは、検出用ガスで満たされる空間を形成する。チャンバCBに充填される検出用ガスとしては、一般に、希ガスとクエンチャーガスとの組合せが使用される。希ガスとしては、例えば、He、Ne、Ar、Xeなどを含む。クエンチャーガスとしては、例えば、CO、CH、C、CF、C10などを含む。特に限定されないが、希ガス中に混合するクエンチャーガスの混合比率は5〜30%とすることが好ましい。
電極5は、チャンバCB内に電界を形成する。電離した電子は、この電界の中を、アノードとして機能する検出電極3側へドリフト移動する。
電子増幅フォイル2は、電子を増幅させる。
本実施形態において用いられる電子増幅フォイル2は、シート状の絶縁性基材の両主面が銅などの導電層が形成され、多数の貫通孔を有する。電子増幅フォイル2の貫通孔は、絶縁性基材の主面に対して略垂直方向に延在する。絶縁性基材の両主面に形成された導電層に数百Vの電位差を与えることで、貫通孔の内部には高電場が形成される。この貫通孔内部に電子が入ると、急激に加速される。加速した電子は、周囲のガス分子を電離させ、貫通孔内部において電子が雪崩式に増幅される(電子なだれ効果)。なお、電子増幅フォイル2は、GEM:Gas Electorn Multiplierとも呼ばれる。
特に限定されないが、電子増幅フォイル2の厚さは、数百μm程度である。一例ではあるが、貫通孔の直径は70[μm]程度、ピッチは140[μm]程度のものが知られている。貫通孔の間隔は数百μm程度である。電子増幅フォイル2の貫通孔30の開口率は、23%程度である。電子増幅フォイル2を構成する絶縁性基材の材料としては、例えば、ポリイミドや液晶ポリマーなどの高分子ポリマー材料を用いることができる。電子増幅フォイル2を構成する導電層の材料としては、例えば、銅、アルミニウム、金、又はボロンなどを用いることができる。電子増幅フォイル2の導電層は、導電性材料を絶縁性材料にスパッタ蒸着して形成してもよいし、めっき処理により形成してもよいし、ラミネート処理により形成してもよい。
検出電極3は、電子なだれ効果により増倍された電子を検出し、検出信号を検出器4に送出する。検出器4は取得した信号に基づいて各種の検出データを演算する。特に限定されないが、検出データは、荷電粒子の飛跡の測定、入射粒子の位置やエネルギーの測定などに用いられる。
チャンバCB内において、電子は、矢印で示す移動方向Eに沿って移動する。電子の移動方向において、電極5側は上流側であり、検出電極3側が下流側である。
続いて、本実施形態のイオンフィルター10について説明する。
先述したように、ガスの電離により電子数が増幅される際に、同数の陽イオンが生成される。この陽イオンのうち、電子増幅フォイル2の貫通孔の中央から電子増幅フォイル2を通過し、ドリフト領域DRに移動(フィードバック)するものがある。陽イオンのドリフト速度は遅いため、陽イオンが長時間ドリフト領域に平板状に一群として滞在し、ドリフト領域DRに局所的にイオン密度の高い場所を形成してしまう。これにより、ドリフト領域DRの電場が歪められる。チャンバ内に磁場が存在する場合、ドリフトする電子にE×B effectを与えられると、位置分解能が低下する場合がある。
本実施形態のイオンフィルター10は、電子増幅に伴い発生した陽イオンが検出電極3側(電子の移動方向Eとは逆方向)に移動しないように捕集する機能を有する。
本実施形態のイオンフィルター10は、絶縁性基材と、その絶縁性基材の一方主面に形成された第1導電層と、その絶縁性基材の他方主面に形成された第2導電層と、その絶縁性基材の厚さ方向に沿って形成された複数の貫通孔と、を有する。
図2A,図2B,図2C及び図2Dは、本実施形態のイオンフィルター10の一例を模式的に示す図である。
図2Aは、本実施形態のイオンフィルター10の斜視図であり、図2Bは、本実施形態のイオンフィルター10の平面図である。各図に示すように、本実施形態のイオンフィルター10は貫通孔30を備える。隣り合う貫通孔30の間にはリム20が形成される。貫通孔30はリム20に囲われている。リム20が貫通孔30の内壁を構成する。貫通孔30は、イオンフィルター10の主面に沿う開口部31を形成する。
特に限定されないが、本実施形態のイオンフィルター10において、貫通孔30の開口率は75%以上である。本実施形態において、貫通孔30の開口率とは、貫通孔30により形成される開口部31の面積の、絶縁性基材の主面の面積に対する割合である。開口部31は、イオンフィルターの主面に沿う、絶縁性基材の無い二次元領域である。本実施形態の貫通孔30の開口部31の形状は略六角形である。本実施形態のイオンフィルター10は、いわゆるハニカム構造を有する。
また、本実施形態の貫通孔30を囲むリム20とリム20の間隔は140[μm]以上〜300[μm]以下である。また、リム20の幅(貫通孔30の内壁間の距離)は、45[μm]以下である。
ところで、本実施形態のイオンフィルター10は、フィードバックしてくる陽イオンを捕集し、ドリフト領域DRへ移動しないように機能するが、その一方で、電子の移動を妨げてはならないという制約がある。このため、イオンフィルター10として利用するためには、貫通孔30の開口率が高く、かつ厚さが薄い構造であることが求められる。
発明者らが行ったシミュレーションによれば、イオンの移動を妨げないようにするため、つまり、イオンフィルター10として機能するためには、イオンフィルター10の貫通孔30の開口率は70%以上であることが望ましいということがわかった。また、発明者らが行ったシミュレーションによれば、イオンの移動を妨げないようにするため、イオンフィルター10の絶縁性基材11の厚さが25[μm]以下であることが望ましいということがわかった。
本発明の本実施形態では、これらの条件を満たすイオンフィルター10を提供する。
本実施形態のイオンフィルター10は、電子を増幅する電子増幅フォイル2の上流側(電極5,ドリフト領域DR側)に、電子増幅フォイル2とは別の部材として配置される。本実施形態のイオンフィルター10は、電子増幅に伴い発生した陽イオンを捕集するという、電子増幅フォイル2とは異なる目的において用いられ、電子増幅フォイル2とは異なる機能を奏するものである。
本実施形態では、イオンフィルター10を、電子の移動方向Eにおいて、電子増幅フォイル2よりも上流側(電極5側,ドリフト領域DR側)に配置する。つまり、イオンフィルター10は、電子増幅フォイル2と電極5との間に配置する。イオンフィルター10をこのように配置することにより、電子増幅フォイル2において発生する陽イオン群を、イオンフィルター10で捕集し、フィードバックする陽イオンがドリフト領域DRの全体に影響を与えることを防止する。これにより、ドリフト電子が陽イオン群の影響を受けにくくすることができる。
図2Cは、本実施形態のイオンフィルター10の、図2Bに示すIIC−IIC線に沿う断面の一例を示す図である。
図2Cに示すように、本実施形態のイオンフィルター10は、絶縁性基材11の一方主面に形成された第1導電層12の第1厚さth1と、他方主面に形成された第2導電層13の第2厚さth2とが異なるように構成される。第1導電層12と第2導電層13とを同じ厚さとする場合よりも、第1導電層12と第2導電層13とを異なる厚さとした方が、電子透過率が向上するためである。電子透過率が向上することにより、電子増幅器100を用いた測定結果の精度を向上させることができる。例えば、電子の飛跡を測定する場合におけるその位置検出精度を向上させることができる。
本実施形態のイオンフィルター10は、特に限定されないが、第1導電層12の第1厚さth1を、0.5[μm]以上とすることが好ましい。第1導電層12が形成された絶縁性基材11における、第1導電層12と絶縁性基材11との接着層の界面は、その接着性を確保する関係から、第1導電層12の厚さがこれを下回ると、接着層(絶縁層)が露出して形成する電場が乱れる場合があるからである。また、本実施形態の第2導電層13の第2厚さth2を1.0[μm]以上とすることが好ましい。第1導電層12と第2導電層13の厚さの差が2倍以下であると、期待する効果が得られないためである。
また、本実施形態のイオンフィルター10において、第1厚さth1は、第2厚さth2の30倍以下とすることが好ましい。第1導電層12の厚さth1と第2導電層13の厚さth2の比が1:30を超えると、イオンフィルター10を通過した電子が、イオンフィルター10に戻ってきてしまうことがあるからである。電子がイオンフィルター10に戻ってきてしまうと、結果として電子透過率が低下してしまうため、第1厚さth1は、第2厚さth2の30倍以下とする。
本実施形態において、絶縁性基材11の一方主面は、電子増幅器100における電子の移動方向Eの下流側(検出電極3側)に配置され、絶縁性基材11の他方主面は、電子増幅器100における電子の移動方向Eの上流側(ドリフト領域DR側、電極5側)に配置される。そして、絶縁性基材11の一方主面に形成された第1導電層12の第1厚さth1は、第2導電層13の第2厚さth2よりも厚く構成される。
本実施形態の電子増幅器100は、電子増幅フォイル2を備える場合には、イオンフィルター10は、電子増幅器100が備える電子増幅フォイル2に併設される。そして、絶縁性基材11の一方主面は電子増幅フォイル2側に配置され、一方主面に形成された第1導電層12の第1厚さth1は、他方主面に形成された第2導電層13の第2厚さth2よりも厚く構成される。なお、電子増幅器100は、電子を増幅させるものであれば、電子増幅フォイル2でなくてもよい。
発明者らは、本実施形態のように、第1導電層12と第2導電層13の厚さが異なるイオンフィルター10と、第1導電層12と第2導電層13の厚さが同じイオンフィルターについて、これらを電子増幅器100に用いた場合における電子の飛跡のシミュレーションを行った。そして、電子の飛跡からイオンの電子透過率を求めた。
シミュレーションの結果を考察すると、本実施形態の第1導電層12と第2導電層13の厚さが異なるイオンフィルター10の方が、第1導電層12と第2導電層13の厚さが同じイオンフィルターよりも、電子透過率が優れていることが分かった。
なお、本シミュレーションにおいては、第1導電層12、第2導電層13は銅で組成されることを想定した。
第1導電層12の方が第2導電層13よりも厚さが厚いイオンフィルター10と、第1導電層12と第2導電層13の厚さが同じイオンフィルターについて、それぞれ、電子の飛跡のシミュレーション結果を得た。第1導電層12の方が第2導電層13よりも厚さが厚いイオンフィルター10としては、第1厚さth1:第2厚さth2が、1:10のもの、1:20のもの、1:30のものについてシミュレーションした。本シミュレーションでは厚さ1=1[μm]とした。
なお、本シミュレーションにおいて、厚さが相対的に厚い第1導電層12は、電子の流れ方向の下流側に配置し、厚さが相対的に薄い第2導電層13は、電子の流れ方向の上流側に配置した。
シミュレーションの結果、第1導電層12と第2導電層13の厚さが同じイオンフィルターに対して、第1導電層12の方が第2導電層13よりも厚く構成されたイオンフィルター10の方が、これら第1導電層12,第2導電層13によって電子の通過が阻害される範囲が狭いことが分かった。
つまり、第1導電層12を第2導電層13よりも厚く構成したイオンフィルター10は、第1導電層12と第2導電層13の厚さが同じイオンフィルターよりも、電子の軌道に影響を与えるものの、イオンフィルター10を通過した後の電子の位置を元の位置に戻す(通過前の位置に戻す)力が強いので、電子の軌道の最終的なずれ量(xy方向:yは電子の流れの方向に沿うずれ量)を小さくできる。
また、本シミュレーションにおいて、第1導電層12と第2導電層13の厚さの比が30(第1厚さth1:第2厚さth2=30:1)を超えると、電子がイオンフィルター10の方へ戻ってきてしまう現象が生じることがわかった。
本実施形態のイオンフィルター10において、絶縁性基材11の一方主面に形成された第1導電層12の少なくとも表面部121を形成する材料と、他方主面に形成された第2導電層13の表面部131を形成する材料とが異なる材料で構成してもよい。
図2Dに、第1導電層12の表面部121が、第2導電層13の材料とは異なる材料から形成された例を示す。図2Dに示すように、第1導電層12は、表面部121と基礎部122を備える構成を有する。表面部121は、第1導電層12の一部を構成する。表面部121は、第1導電層12のうち外部に露出された部分である。表面部121は、基礎部122の表面に形成される。表面部121は、基礎部122の表面にめっき、蒸着などの手法により薄膜又は層として形成される。表面部121の厚さは、特に限定されない。第1導電層12は、表面部121と絶縁性基材11との間に存在する基礎部122を備える。なお、基礎部122は、第1導電層12のうち、表面部121以外の部分である。
本実施形態において、第2導電層13は、表面部131と基礎部132を備える構成とすることができる。第2導電層13と表面部131と基礎部132は、第1導電層12と表面部121と基礎部122と同様に構成できる。前段落の第1導電層12と表面部121と基礎部122に関する説明を、第2導電層13と表面部131と基礎部132の説明として援用する。
図2Dに示す例では、第1導電層12が表面部121と基礎部122を備え、第2導電層13が一体として構成された表面部131と基礎部132を含む例を示す。第2導電層13の表面部131と基礎部132は同じ材料から一体として構成されており、第2導電層13の表面の部分が、表面部131を構成する。
本実施形態のイオンフィルター10において、第1導電層12の表面部121は、銅、ニッケル、金、タングステン、亜鉛、アルミニウム、クロム、スズ、及びコバルトの物質からなる群のうち、何れか一種以上の物質を含む材料から形成される。第2導電層13の表面部131は、第1導電層12の表面部121の材料とは異なる材料であって、銅、ニッケル、金、タングステン、亜鉛、アルミニウム、クロム、及びコバルトの物質からなる群のうち、何れか一種以上の物質を含む材料から形成される。
金は、その安定性において第1導電層12の表面部121、第2導電層13の表面部131に適している。
アルミニウムは、その軽さにおいて第1導電層12の表面部121、第2導電層13の表面部131に適している。イオンフィルター10、ひいては電子増幅器100の重量を軽減できる。
ニッケルは、その剛性(強さ)において第1導電層12の表面部121、第2導電層13の表面部131に適している。剛性は、イオンフィルター10の強度向上に貢献する。また、ニッケルは、その寸法安定性において第1導電層12の表面部121、第2導電層13の表面部131に適している。寸法安定性は、イオンフィルター10の平坦性に貢献する。
タングステンは、その硬さにおいて第1導電層12の表面部121、第2導電層13の表面部131に適している。硬性は、イオンフィルター10の引っ張り強度の向上に貢献する。
アルミニウム、クロム、コバルト、ニッケルは、多重クーロンの散乱が小さいという観点において、第1導電層12の表面部121、第2導電層13の表面部131に適している。多重クーロンの散乱は、電子の飛跡に影響を与える。電子の飛跡に与えた影響は、後段において行われる測定処理の精度に影響を与える。多重クーロンの散乱が小さいことは、検出結果を用いた測定精度の向上に貢献する。
金、クロム、亜鉛、コバルト、ニッケル、タングステン、スズは、ガンマ線領域に反応性を有する点において、第1導電層12の表面部121、第2導電層13の表面部131に適している。γ線領域の反応性は、ガンマ線の検出効率を向上させる。ガンマカメラや非破壊検査器のようなガス放射線検出器においてはその検出精度の向上に貢献する。
コバルト、ニッケル、クロム、タングステンは、剛性が高い点において、第1導電層12の表面部121、第2導電層13の表面部131に適している。薄く、貫通孔が多数形成された構造のイオンフィルター10は変形や断線による影響を受けやすい。剛性が高い点は、イオンフィルター10の強度向上に貢献する。
本実施形態では、第2導電層13の表面部131又は第1導電層12の表面部121の何れか一方を、銅を含む材料で形成する。銅は加工しやすく、本実施形態のように細いリム20と開口率の高いパターンの作製に適しており、入手が容易である。
特に限定されないが、本実施形態のイオンフィルター10において、第1導電層12の表面部121はニッケルにより形成され、第1導電層12の基礎部122は銅により形成される。本例における第1導電層12の表面部121は、銅で形成された基礎部122の表面にニッケルを用いためっき処理により形成される。本例における第2導電層13の表面部131及び基礎部132はいずれも銅を含む材料で形成される。第2導電層13の表面部131及び基礎部132は、一体として構成されている。
特に限定されないが、第1導電層12の銅により形成された基礎部122の厚さは8[μm]であり、ニッケルめっき層として形成された表面部121の厚さは2[μm]である。また、表面部131及び基礎部132が一体として、銅により形成された第2導電層13の厚さは、2[μm]である。
次に、図3及び図4に基づいて、本実施形態のイオンフィルター10の製造方法について三つの態様を説明する。図3及び図4においては、製造工程が分かりやすいように、端面図にて表現した。
<第1の製造方法>
まず、第1の製造方法について説明する。
第1の製造方法では、図3(A)に示すように、絶縁性基材11Aの一方主面(図中上側面)に導電層12Aが形成され、その他方主面(図中下側面)に導電層13Aが形成された基材10Aを準備する。導電層12Aの厚さth1´は、導電層13Aの厚さth2´よりも厚い。特に限定されないが、本実施形態では、絶縁性基材11Aの厚さが12[μm]以上〜25[μm]以下の基材10Aを用いる。また、特に限定されないが、本実施形態では、導電層12Aの厚さth1´が13[μm]以上であり、導電層13Aの厚さth2´が6[μm]未満の基材10Aを用いる。
なお、図3(A)において示す絶縁性基材11Aは、イオンフィルター10の絶縁性基材11に対応し、導電層12Aはイオンフィルター10の第1導電層12に対応し、導電層13Aはイオンフィルター10の第2導電層13に対応する。
図3(B)に示すように、既知のフォトリソグラフィ技術を用いて、導電層12Aの所定領域を除去して所定パターンの第1導電層12を形成する。本実施形態において所定パターンは、ハニカムパターンである。本実施形態において、第1導電層12の線幅を、15[μm]以上〜45[μm]以下に形成することが好ましい。
次に、絶縁性基材11のうち、所定領域に対応する部分を除去する。
図3(C)に示すように、第1導電層12が形成された一方主面側(図中上側)から波長が500[nm]以下のUV−YAGレーザーを照射する。例えば、第三高調波(波長355[nm])のUV−YAGレーザーを照射する。一方主面側から照射されるレーザーに対し、所定のハニカムパターンに形成された第1導電層12がマスクとなり、所定領域に対応する領域(本例では六角形の領域)の絶縁性基材11が除去される。一方主面側から他方主面側までの絶縁性基材11を除去して、貫通孔30を形成する。
この絶縁性基材11を除去する工程は、エッチング液を用いて行ってもよい。図3(B)に示す状態の基材10にエッチング液に作用させると、第1導電層12及び第2導電層13がマスクとなり、所定領域に対応する領域(本例では六角形の領域)の絶縁性基材11が除去される。
なお、ポリイミドなどの絶縁性基材11の実際の除去工程では、工程の内容にもよるが、除去部分との境界面にテーパーを形成することができる。例えば、エッチング液により除去された部分には、主面に対して50〜60度のテーパー面が形成することもできる。図3は、工程を簡潔に説明するため、そのような形態の変化は省略して示す。
プラズマデスミヤ処理などのデスミヤ処理を実施する。デスミヤ処理の手法は、絶縁性基材11の除去の手法に応じて、出願時に知られた手法を適宜に用いる。
最後に、絶縁性基材11の所定領域が除去された基材10Aの両面側からエッチング液を作用させる。エッチング液は、基材10Aの他方主面側に形成された第2導電層13Aの一方主面側から作用するとともに、第2導電層13Aの他方主面側からも作用する。絶縁性基材11が除去された所定領域は両面からエッチングされる。このため、第1導電層13Aの所定領域に対応する部分のエッチング速度は、所定領域以外に対応する部分のエッチング速度の約2倍となる。導電層13Aのうち所定領域に対応する領域が除去されるタイミングにおいて、導電層13Aのうち所定領域以外に対応する領域は残っている。つまり、エッチング処理により、導電層13Aのうちの所定領域に対応する領域だけを除去して、第2導電層13を形成する。
エッチング液は、導電層13Aの材料に応じて適宜に選択できる。本処理において、エッチング液は、所定領域に対応する導電層13Aの領域(除去する領域)については、両方の面側(一方主面側及び他方主面側)から作用する。所定領域に対応する導電層13Aの領域は、他の領域に比べて二倍の速さで除去される。また、第1導電層12は、第2導電層13よりも厚く構成されているので、本エッチング処理によって回路(所定領域の導電層)に欠損が生じることはない。
その結果、図3(D)に示すように、一方主面側から他方主面側まで貫通した貫通孔を形成できる。これにより、所定パターン(例えばハニカムパターン)を構成するイオンフィルター10を得ることができる。
一例ではあるが、導電層12Aの厚さth1´が13[μm]であり、導電層13Aの厚さth2´が6[μm]の基材10Aを用いて本実施形態のイオンンフィルター10を作製したところ、第1導電層12の厚さth1が10[μm]、第2導電層13の厚さth2が2[μm]のイオンフィルター10を作製できた。
開口率が75%以上を占める貫通孔30及びその貫通孔30を形成するリム20を、薄いシートに形成するのは容易ではない。本願出願時におけるフォトリソグラフィ技術においてエッチングパターンのずれの原因となる露光精度は+/−10[μm]程度と言われる。また、絶縁性基材11のエッチング処理を正確に実行することは困難であり、例えば、ポリイミドのエッチング処理においては傾斜が生じてしまう。このように、絶縁性基材の両主面に同じパターンを同じ位置に形成し、同じ位置を貫通させることは難しい。しかも、開口率が75%以上であるためには、リム20の幅が45[μm]以下であることが求められるため、このような導電層を形成することは容易ではなかった。
既知のフォトリソグラフィ技術では基板11Aの一方主面側のみからエッチング処理を行う。本実施形態の製造方法によれば、基板11Aの両主面側から同時にエッチング処理を行うことにより、他方主面側の導電層13Aの所定領域のみを除去して貫通孔30を形成する。既知のフォトリソグラフィ技術を用いないので、露光精度の限界により生じるエッチングパターンのずれという問題が生じない。これにより、本実施形態に係る、貫通孔30が形成されたイオンフィルター10を作製できる。この製造方法によれば、貫通孔30の開口率を75%以上にすることができる。また、他方主面側の導電層13Aをエッチングする際に、パターン形成のためのレジストを形成する工程を省くことができる。
発明者らの検証によれば、本実施形態のイオンフィルター10の通過前後において、イオンフィルター10を通過した後の電子の位置が、イオンフィルター10を通過する前の電子の位置に戻る(ずれ量が小さくなる)現象が確認された。本実施形態のイオンフィルター10は、電子の軌道に影響を与えるものの、イオンフィルター10を通過した後の電子の位置を元の位置に戻す(通過前の位置に戻す)力が強いので、電子の軌道の最終的なずれ量(xy方向:yは電子の流れの方向に沿うずれ量)を小さくできる。このように、本実施形態のイオンフィルター10によれば、最終的な電子の位置のずれ量を抑制しつつ、陽イオンの移動を抑制できる構造のイオンフィルター10を提供できるとともに、併せて製造コストを低減できる。
また、本製造方法において、導電層12Aを形成する材料と、導電層12Bを形成する材料とが異なる材料で構成された基材10Aを、図3(A)の出発材料として準備してもよい。この場合において、図3(C)の第1導電層12を形成する工程においては、導電層12Aのみが反応し、導電層13Aが反応しないエッチング液を用いて、第1導電層12の所定領域を除去する。導電層12Aを形成する材料と、導電層13Aを形成する材料とが異なる材料で構成することにより、出発材料として用いる基材10Aの導電層12Aの厚さth1´と得られた第1導電層12の厚さth1との差、及び出発材料として用いる基材10Aの導電層13Aの厚さth2´と得られた第1導電層13の厚さth2との差、つまり厚みの減少を小さくできる。
<第2の製造方法>
続いて、図4に基づいて、第2の製造方法について説明する。この第2の製造方法は、先述した第1の製造方法と基本的な工程は共通するので、図3の記載及び第1の製造方法の説明を援用しつつ説明する。
第1の製造方法と同様に、図4(A)に示すように、絶縁性基材11Aの一方主面(図中上側面)に導電層12Aが形成され、その他方主面(図中下側面)に導電層13Aが形成された基材10Aを準備する。導電層12Aを形成する第1の材料と、導電層13Aを形成する第2の材料とは、同じ材料である。第1の材料と第2の材料は、いずれも導電性材料である。本例において、第1及び第2の材料は銅である。導電層12A,導電層13Aは、めっき、スパッタリング、蒸着などの薄膜形成技術を用いて作製できる。
なお、図4(A)において示す絶縁性基材11Aは、イオンフィルター10の絶縁性基材11に対応し、導電層12Aはイオンフィルター10の第1導電層12に対応し、導電層13Aはイオンフィルター10の第2導電層13に対応する。
図4(B)に示すように、既知のフォトリソグラフィ技術を用いて、導電層12Aの所定領域を除去して所定パターンの第1導電層12の基礎部122を形成する。この第1導電層12の基礎部122によって形成される所定パターンは、平面視においてハニカムパターンである。特に限定されないが、本例では、絶縁性基材11Aの導電層12A及び導電層13Aを、いずれも銅を含む材料で形成し、導電層12Aの所定領域を除去して第1導電層12の基礎部122を形成する。本実施形態において、第1導電層12の基礎部122の線幅を、12[μm]以上〜25[μm]以下に形成することが好ましい。
次に、図4(C)に示すように、絶縁性基材11の一方主面の第1導電層12の基礎部122の表面に表面部121を形成する処理を行う。表面部121は、めっき、スパッタリング、蒸着などにより形成できる。本実施形態において、第1導電層12の表面部121は、絶縁性基材11の他方主面の導電層13Aの表面部131を形成する材料とは異なる材料を用いて形成される。特に限定されないが、本実施形態では、第1導電層12の基礎部122の表面に、ニッケルめっき処理を行う。これにより、第1導電層12の表面に、ニッケルを含む材料により表面部121を形成する。基礎部122に表面部121が形成された第1導電層12の線幅は、リム20の幅に対応する。リム20の幅は、15[μm]以上〜45[μm]以下である。
次に、絶縁性基材11のうち、所定領域に対応する部分を除去する。
第1の製造方法と同様に、図4(D)に示すように、第1導電層12が形成された一方主面側(図中上側)から波長が500[nm]以下のUV−YAGレーザーを照射する。そして、一方主面側から他方主面側までの絶縁性基材11を除去して、貫通孔を形成する。第1の製造方法と同様に、この絶縁性基材11を除去する工程は、エッチング液を用いて行ってもよい。その後、第1の製造方法と同様に、プラズマデスミヤ処理などのデスミヤ処理を実施する。
最後に、所定領域が除去された基材10Aの両面からエッチング液を作用させて他方主面に形成された第2導電層13のうち所定領域に対応する領域、つまり貫通孔30に対応する領域を除去する。
エッチング液は、導電層13Aの材料に応じて適宜に選択できる。本工程において、除去対象となる導電層13Aを形成する材料にのみ反応するエッチング液を用いる。本例では、導電層13Aは銅を含む材料で形成されているので、銅にのみ反応する硫酸と過酸化水素水を混合したエッチング液を用いる。一方、第1導電層12の表面部121は、ニッケルを含む材料で形成されているので、本エッチング処理によって回路(所定領域の導電層)に欠損が生じることはない。
本処理において、エッチング液は、所定領域に対応する導電層13Aの領域(除去する領域)については、両面側(一方主面側及び他方主面側)から作用する。所定領域に対応する導電層13Aの領域は、他の領域に比べて二倍の速さで除去される。導電層13Aのうち所定領域に対応する領域が除去されるタイミングにおいて、導電層13Aのうち所定領域以外に対応する領域は残っている。つまり、エッチング処理により、導電層13Aのうちの所定領域に対応する領域だけを除去して、第2導電層13を形成できる。
その結果、図4(E)に示すように、一方主面側から他方主面側まで貫通した貫通孔を形成できる。これにより、所定パターン(例えばハニカムパターン)を構成するイオンフィルター10を得ることができる。
<第3の製造方法>
さらに、第3の製造方法について説明する。
第3の製造方法の工程は、第1の製造方法及び第2の製造方法と基本的な工程は共通する。第3の製造方法では、第1及び第2の製造方法における、絶縁性基材11Aをレーザーにより除去し、デスミヤ処理をした後の工程として、エッチングレジストを形成する以下の工程に行う。
デスミヤ処理をした後に、絶縁性基材11Aの他方主面側の導電層13Aの表面の全面にエッチングレジストを貼りつける。エッチングレジストは、導電層13Aの他方主面側の露出面の全体を覆う。エッチングレジストを貼りつけた状態でエッチング処理を行う。エッチング処理により、導電層13Aの所定領域に対応する領域を除去する。その後、エッチングレジストを剥離する。
エッチングレジストを形成する本製造方法によれば、エッチングレジストを形成しない第1の製造方法に比べて、出発材料として用いる基材10Aの導電層12Aの厚さth1´と得られた第1導電層12の厚さth1との差、及び出発材料として用いる基材10Aの導電層13Aの厚さth2´と得られた第1導電層13の厚さth2との差を小さくできる。
一例ではあるが、本製造方法によれば、導電層12Aの厚さth1´が13[μm]であり、導電層13Aの厚さth2´が2[μm]の基材10Aを用いて本実施形態のイオンンフィルター10を作製したところ、第1導電層12の厚さth1が12[μm]、第2導電層13の厚さth2が2[μm]のイオンフィルター10を作製することができた。
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
100…電子増幅器
10…イオンフィルター
11…絶縁性シート
12…第1導電層
121…第1導電層の表面部
122…第1導電層の基礎部
13…第2導電層
131…第2導電層の表面部
132…第2導電層の基礎部
20…リム
30…貫通孔
31…開口部
2…電子増幅フォイル
3…検出電極
4…検出器
5…電極
DR…ドリフト領域
E…電子の流れ方向

Claims (8)

  1. 電子増幅器に用いられるイオンフィルターであって、
    絶縁性基材と、
    前記絶縁性基材の一方主面に形成された第1導電層と、
    前記絶縁性基材の他方主面に形成された第2導電層と、
    前記絶縁性基材の厚さ方向に沿って形成された複数の貫通孔と、を有し、
    前記第1導電層の第1厚さと、前記第2導電層の第2厚さとが異なるイオンフィルター。
  2. 前記絶縁性基材の一方主面は、前記電子増幅器における電子の移動方向の下流側に配置され、前記絶縁性基材の他方主面は、前記電子増幅器における電子の移動方向の上流側に配置され、
    前記絶縁性基材の一方主面に形成された前記第1導電層の前記第1厚さは、前記第2導電層の前記第2厚さよりも厚い請求項1に記載のイオンフィルター。
  3. 前記イオンフィルターは、前記電子増幅器が備える電子増幅フォイルに併設され、
    前記絶縁性基材の一方主面は前記電子増幅フォイル側に配置され、当該一方主面に形成された前記第1導電層の前記第1厚さは、前記他方主面に形成された前記第2導電層の前記第2厚さよりも厚い請求項1又は2に記載のイオンフィルター。
  4. 前記第1導電層の表面部が第1の材料で形成され、前記第2導電層の表面部が第1の材料とは異なる第2の材料で形成されたイオンフィルター。
  5. 前記第1導電層の前記第1厚さは、前記第2導電層の前記第2厚さの30倍以下である請求項1〜4の何れか一項に記載のイオンフィルター。
  6. 前記貫通孔の開口率は、75%以上である請求項1〜5の何れか一項に記載のイオンフィルター。
  7. 絶縁性基材と、前記絶縁性基材の一方主面に形成された導電層と、前記絶縁性基材の他方主面に形成され、前記一方主面に形成された導電層よりも厚さが薄い導電層と、を備えた基材を準備する工程と、
    前記一方主面に形成された導電層の所定領域を除去して所定パターンの第1導電層を形成する工程と、
    前記一方主面側からレーザーを照射して又はエッチング液を用いて、前記絶縁性基材の前記所定領域に対応する領域を除去する工程と、
    前記所定領域が除去された前記基材の両面側からエッチング液を作用させて、前記他方主面に形成された導電層のうち前記所定領域に対応する領域を除去する工程と、を有するイオンフィルターの製造方法。
  8. 絶縁性基材と、前記絶縁性基材の一方主面に形成された導電層と、前記絶縁性基材の他方主面に形成され、前記一方主面に形成された導電層よりも厚さが薄い導電層と、を備えた基材を準備する工程と、
    前記一方主面に形成された導電層の所定領域を除去して所定パターンの第1導電層を形成する工程と、
    前記一方主面側からレーザーを照射して又はエッチング液を用いて、前記絶縁性基材の前記所定領域に対応する領域を除去する工程と、
    前記絶縁性基材の前記他方主面に形成された導電層の表面をエッチングレジストで覆う工程と、
    前記所定領域が除去された前記基材の前記一方主面側からエッチング液を作用させて、前記他方主面に形成された導電層のうち前記所定領域に対応する領域を除去する工程と、を有するイオンフィルターの製造方法。
JP2014189317A 2014-09-17 2014-09-17 イオンフィルター及びその製造方法 Active JP6027583B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014189317A JP6027583B2 (ja) 2014-09-17 2014-09-17 イオンフィルター及びその製造方法
PCT/JP2015/075705 WO2016043115A1 (ja) 2014-09-17 2015-09-10 イオンフィルター及びその製造方法
CN201580049701.7A CN107078017B (zh) 2014-09-17 2015-09-10 离子过滤器以及其制造方法
US15/512,518 US10037860B2 (en) 2014-09-17 2015-09-10 Ion filter and method of manufacturing same
EP15841522.4A EP3196921B1 (en) 2014-09-17 2015-09-10 Ion filter and methods for producing same
KR1020177008460A KR101809232B1 (ko) 2014-09-17 2015-09-10 이온 필터 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014189317A JP6027583B2 (ja) 2014-09-17 2014-09-17 イオンフィルター及びその製造方法

Publications (2)

Publication Number Publication Date
JP2016062735A true JP2016062735A (ja) 2016-04-25
JP6027583B2 JP6027583B2 (ja) 2016-11-16

Family

ID=55533153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014189317A Active JP6027583B2 (ja) 2014-09-17 2014-09-17 イオンフィルター及びその製造方法

Country Status (6)

Country Link
US (1) US10037860B2 (ja)
EP (1) EP3196921B1 (ja)
JP (1) JP6027583B2 (ja)
KR (1) KR101809232B1 (ja)
CN (1) CN107078017B (ja)
WO (1) WO2016043115A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320679A1 (de) * 2003-04-30 2004-12-02 Infineon Technologies Ag Behandlung von Werkstücken mit überkritischem Wasser
KR101988856B1 (ko) * 2015-12-02 2019-06-13 가부시키가이샤후지쿠라 이온 필터 및 이온 필터의 제조 방법
US10751549B2 (en) * 2018-07-18 2020-08-25 Kenneth Hogstrom Passive radiotherapy intensity modulator for electrons
US11092704B2 (en) * 2018-11-13 2021-08-17 Radiation Detection Technologies, Inc. Methods for manufacturing lithium foil neutron detectors
CN110349761B (zh) * 2019-07-05 2021-04-06 中国科学院微电子研究所 一种具有通孔阵列的平板电容结构制造方法及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508935A (ja) * 1997-10-22 2001-07-03 ヨーロピアン オーガナイゼイション フォー ニュークリア リサーチ 非常に高性能な放射線検出器と、このような放射線検出器を含む視差のない平面天球型x線イメージ装置
JP2005010163A (ja) * 2003-06-19 2005-01-13 Ge Medical Systems Global Technology Co Llc X線画像のサブピクセル分解能のための中心点装置及び方法
JP2010067613A (ja) * 2008-09-15 2010-03-25 Photonis Netherlands Bv 電子増倍を用いる真空管用イオン障壁メンブレン、電子増倍を用いる真空管用電子増倍構造、並びにそのような電子増倍構造を備える電子増倍を用いる真空管
JP2012185025A (ja) * 2011-03-04 2012-09-27 Tokuyama Corp 放射線画像検出器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011265A (en) * 1997-10-22 2000-01-04 European Organization For Nuclear Research Radiation detector of very high performance
US6198798B1 (en) 1998-09-09 2001-03-06 European Organization For Nuclear Research Planispherical parallax-free X-ray imager based on the gas electron multiplier
JP5022611B2 (ja) 2006-03-02 2012-09-12 独立行政法人理化学研究所 ガス電子増幅フォイルの製造方法
GB0723487D0 (en) 2007-11-30 2008-01-09 Micromass Ltd Mass spectrometer
WO2009127220A1 (en) 2008-04-14 2009-10-22 Cern - European Organization For Nuclear Research Technology Transfer Group A method of manufacturing a gas electron multiplier
CN103681204B (zh) 2012-09-08 2016-09-07 复旦大学 电感耦合等离子体质谱离子传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508935A (ja) * 1997-10-22 2001-07-03 ヨーロピアン オーガナイゼイション フォー ニュークリア リサーチ 非常に高性能な放射線検出器と、このような放射線検出器を含む視差のない平面天球型x線イメージ装置
JP2005010163A (ja) * 2003-06-19 2005-01-13 Ge Medical Systems Global Technology Co Llc X線画像のサブピクセル分解能のための中心点装置及び方法
JP2010067613A (ja) * 2008-09-15 2010-03-25 Photonis Netherlands Bv 電子増倍を用いる真空管用イオン障壁メンブレン、電子増倍を用いる真空管用電子増倍構造、並びにそのような電子増倍構造を備える電子増倍を用いる真空管
JP2012185025A (ja) * 2011-03-04 2012-09-27 Tokuyama Corp 放射線画像検出器

Also Published As

Publication number Publication date
EP3196921A4 (en) 2018-05-02
WO2016043115A1 (ja) 2016-03-24
CN107078017A (zh) 2017-08-18
US10037860B2 (en) 2018-07-31
CN107078017B (zh) 2019-09-20
US20170256378A1 (en) 2017-09-07
EP3196921A1 (en) 2017-07-26
KR101809232B1 (ko) 2018-01-18
KR20170048480A (ko) 2017-05-08
JP6027583B2 (ja) 2016-11-16
EP3196921B1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP6027583B2 (ja) イオンフィルター及びその製造方法
JP5022611B2 (ja) ガス電子増幅フォイルの製造方法
JP5855577B2 (ja) 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法
US9111737B2 (en) Method for fabricating an amplification gap of an avalanche particle detector
JP6027584B2 (ja) ガス電子増幅器用イオンフィルター
JP6481049B2 (ja) イオンフィルター及びイオンフィルターの製造方法
JP5973513B2 (ja) イオンフィルターの製造方法
US20150380224A1 (en) Electronic amplifying substrate and method of manufacturing electronic amplifying substrate
KR101331493B1 (ko) 레이저 유도 입자 발생을 위한 진공층을 포함하는 이중층 타겟의 제조방법 및 이에 의해 제조되는 이중층 타겟
JP6504982B2 (ja) イオンフィルター及びその製造方法
Spanggaard et al. GEM detectors for the transverse profile measurement of low energy antiprotons and high energy hadrons
Kaminski Micropattern gas detectors
Villa Developing and evaluating new micropattern gas detectors
JP5912732B2 (ja) 電子増幅用基板および検出器
Duarte Pinto Gas Electron Multipliers
Duarte Pinto Gas Electron Multipliers: Development of large area GEMs and spherical GEMs
JP2013200196A (ja) 電子増幅用基板の製造方法および電子増幅用基板

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R151 Written notification of patent or utility model registration

Ref document number: 6027583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250