JP2016059829A - Wastewater treatment apparatus of penetration liquid washing including fluorescent liquid and developer generated in penetration flaw detection inspection, and method therefor - Google Patents

Wastewater treatment apparatus of penetration liquid washing including fluorescent liquid and developer generated in penetration flaw detection inspection, and method therefor Download PDF

Info

Publication number
JP2016059829A
JP2016059829A JP2014186818A JP2014186818A JP2016059829A JP 2016059829 A JP2016059829 A JP 2016059829A JP 2014186818 A JP2014186818 A JP 2014186818A JP 2014186818 A JP2014186818 A JP 2014186818A JP 2016059829 A JP2016059829 A JP 2016059829A
Authority
JP
Japan
Prior art keywords
water
osmotic
treated water
tank
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014186818A
Other languages
Japanese (ja)
Other versions
JP5852199B1 (en
Inventor
昌武 加納
Masatake Kano
昌武 加納
鈴男 石黒
Suzuo Ishiguro
鈴男 石黒
智史 後藤
Tomoji Goto
智史 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI KINZOKU KOGYO KK
SUIREI KK
Original Assignee
ASAHI KINZOKU KOGYO KK
SUIREI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI KINZOKU KOGYO KK, SUIREI KK filed Critical ASAHI KINZOKU KOGYO KK
Priority to JP2014186818A priority Critical patent/JP5852199B1/en
Application granted granted Critical
Publication of JP5852199B1 publication Critical patent/JP5852199B1/en
Publication of JP2016059829A publication Critical patent/JP2016059829A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus of penetration liquid washing generated in penetration flaw detection inspection, capable of creating wastewater (waste liquid) of the penetration liquid washing to clean water which can be reused, and achieving reuse (recycle) of almost whole amount of the clean water, and a method therefor.SOLUTION: The wastewater treatment apparatus of penetration liquid washing generated in penetration flaw detection inspection is configured so that: first treatment water Y1 treated in a reaction tank 3 comprising a wastewater tank 1 of penetration liquid washing and active carbon 6, is separated at an MF membrane device 8, and is introduced to an active carbon tower, then fifth treatment water Y5 having high density separated from the MF membrane device 8 is introduced to an MF concentrated water tank 15, then fourth treatment water treated at the active carbon tower is introduced to an RO membrane device via a reverse penetration membrane treatment water tank, then clean water created at the RO membrane device can be recycled and discharged, and the fifth treatment water Y5 having high density and introduced to the MF concentrated water tank 15 is introduced to a dewatering machine 23, for reducing volume of sludge.SELECTED DRAWING: Figure 1-1

Description

本発明は、浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法に関する。   The present invention relates to a drainage treatment apparatus for osmotic water washing generated in a penetrant inspection and a method thereof.

本発明は、航空機の材料(加工部材)の浸透探傷検査(蛍光浸透探傷検査)で発生する浸透液水洗の排水(ザイグロ検査用の水洗処理排水とも云われる)の排水処理装置と、その方法に関する出願である。   The present invention relates to a wastewater treatment apparatus and a method for drainage of osmotic water washing (also referred to as flushing wastewater for zygro inspection) generated in penetration inspection (fluorescence penetration inspection) of aircraft materials (processed members). It is an application.

近年、肉眼では見えない微小亀裂(クラック、ピンホール、腐食等の傷)を探し出す手段として、必要とされている手段が、浸透探傷検査である。周知の如く、この浸透探傷検査は、浸透液(蛍光液)を塗布し、微小亀裂に浸透させる。一定時間経過後表面の浸透液を水洗し、その後、現像(剤)処理を行い、暗室内で紫外線を照明し、目視検査する方法である。本発明が目的とする、航空機の材料の微小亀裂検出に利用できる方法である。   In recent years, penetration flaw detection is a necessary means for searching for microcracks (cracks such as cracks, pinholes, and corrosion) that are invisible to the naked eye. As is well known, in this penetrant inspection, a penetrating solution (fluorescent solution) is applied and penetrates into a microcrack. In this method, the permeation solution on the surface is washed with water after a lapse of a certain time, followed by development (agent) treatment, illumination with ultraviolet rays in a dark room, and visual inspection. The present invention is a method that can be used for detecting microcracks in aircraft materials.

この蛍光液と現像(剤)を含む処理水(浸透液水洗の排水)は、そのまま放流することはできないこと、又は水の使用量が多くなり、コストの低廉化を図るためには、リサイクルが必要となる。そのために、最も簡単な方法では、浸透液水洗の排水を、オゾン処理槽で処理した後に、活性汚泥処理槽(生物処理)と活性炭槽で吸着処理した後に、放流する方法である。しかし、この有機物を吸着処理するには十分でなく、かつリサイクルには向いていない構造である。   The treated water containing this fluorescent solution and the developer (agent) (drainage for osmotic water washing) cannot be discharged as it is, or the amount of water used is increased, and in order to reduce costs, recycling is required. Necessary. Therefore, the simplest method is a method in which the waste water from the permeate washing is treated in an ozone treatment tank, adsorbed in an activated sludge treatment tank (biological treatment) and an activated carbon tank, and then discharged. However, the structure is not sufficient for adsorption treatment of the organic matter and is not suitable for recycling.

この改良として、図3−1、図3−2と図4に示した方法が利用されている。この方法を概述すると、浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)001の浸透液水洗の排水001aが、ポンプ・配管002を介して吸着槽003に送られ(導かれ)、この吸着槽003で添加される活性炭004aと濾過助剤(ベントナイト液004b)により、有機物、界面活性剤、又は蛍光液、現像(剤)等を吸着処理し、第001処理水を、配管005を介してパック剤006a添加の反応槽006、及び苛性ソーダ007a添加の調整層007、並びに高分子凝集剤008a添加の凝集層008に、順次送り、それぞれの槽で、順次処理される。例えば、PH調整(図中PHで示す。他も同じ)を図りつつ、苛性ソーダの添加により、例えば、水酸化アルミニウムの形成された中性域を形成するとともに、凝集剤の添加により、フロックを生成する等の処理を行い、第002処理水が生成される。この第002処理水は、図示しない配管等を介して沈殿槽009に送られる。この沈殿槽009で比重分離され、上澄みで生成された上澄み清澄水は、配管0010を介して処理水槽0011に到り廃棄されるか、又は再利用タンク0012に送られた後、廃棄される。また、沈殿槽009で比重分離されたスラッジは、その底部に設けた配管0013を介して脱水機0014に送られる。脱水機0014で形成された、図示しない、脱水ケーキは廃棄される。脱水機0014で生成された清澄水は、浸透液水洗の排水槽001にリターンされることもあり得る。図中Pはポンプ、Mはモータ、Iは羽根を示す。   As an improvement, the method shown in FIGS. 3-1, 3-2 and 4 is used. To outline this method, the drainage 001a of the osmotic water washing in the osmotic water washing drain tank (raw water tank storing the drainage of the osmotic water washing) 001 is sent to the adsorption tank 003 via the pump / pipe 002 (guided). ), The activated carbon 004a and the filter aid (bentonite liquid 004b) added in the adsorption tank 003 are used to adsorb organic substances, surfactants, fluorescent liquids, development (agents), etc. Through 005, it is sequentially fed to the reaction tank 006 to which the pack agent 006a has been added, the adjustment layer 007 to which the caustic soda 007a has been added, and the coagulation layer 008 to which the polymer flocculant 008a has been added. For example, while adjusting the pH (indicated by PH in the figure, the same applies to others), by adding caustic soda, for example, a neutral region in which aluminum hydroxide is formed is formed, and floc is generated by adding a flocculant The 002 treated water is generated by performing a process such as This 002 treated water is sent to a sedimentation tank 009 via a pipe (not shown). The supernatant clarified water separated by specific gravity in the sedimentation tank 009 and generated in the supernatant reaches the treated water tank 0011 via the pipe 0010 or is discarded after being sent to the reuse tank 0012. Further, the sludge separated by specific gravity in the settling tank 009 is sent to the dehydrator 0014 through a pipe 0013 provided at the bottom thereof. A dehydrated cake (not shown) formed by the dehydrator 0014 is discarded. The clarified water produced by the dehydrator 0014 may be returned to the drainage tank 001 for washing with osmotic liquid. In the figure, P is a pump, M is a motor, and I is a blade.

以上で説明した従来の浸透液水洗の排水処理方法は、処理水槽0011に貯留した上澄み清澄水は、有機物、界面活性剤、又は蛍光液と現像(剤)等を吸着処理したものである。しかし、純粋の清澄水までは到っていない。従って、処理水槽0011内の上澄み清澄水は、放流で処理することを余儀なくされるとともに、リサイクルには向いていない構造である。   In the conventional drainage treatment method for osmotic water washing described above, the supernatant clarified water stored in the treated water tank 0011 is obtained by adsorbing an organic substance, a surfactant, a fluorescent solution and a developing agent or the like. However, it has not reached pure clear water. Therefore, the supernatant clear water in the treated water tank 0011 has a structure that is forced to be discharged and is not suitable for recycling.

この種の浸透液水洗の排水処理方法において、処理後に生成される清澄水であって、リサイクル可能な清澄度を確保するには、精密濾過装置(MF膜装置)とか、逆浸透膜濾過装置(RO膜装置)とかを採用する必要性がある。   In this type of drainage treatment method for osmotic water washing, in order to ensure refining water that is clarified water produced after treatment, a microfiltration device (MF membrane device) or a reverse osmosis membrane filtration device ( There is a need to adopt an RO membrane device).

そこで、本発明が意図する、この種の浸透液水洗の排水処理方法において、この種のMF膜装置とか、RO膜装置とかを採用する従来技術は検索できなかった。故に、一般な排水・廃液処理方法・装置に関して挙げ、本発明との関係を説明する。   Thus, in this type of drainage treatment method for osmotic water washing as intended by the present invention, it has not been possible to search for prior art that employs this type of MF membrane device or RO membrane device. Therefore, a general drainage / waste liquid treatment method / apparatus will be described and the relationship with the present invention will be described.

文献として、特開2010−89071号公報とか、特開2013−193079号公報が挙げられるが、この文献(1)、(2)は、単純に、MF膜装置とRO膜装置とを連設配備した構造であり、二重濾過が目的であり(濾過の捕集性の向上のみであり)、この種のMF膜装置とRO膜装置とが有効に利用されていないものと考えられる。従って、本発明の意図する、例えば、MF膜装置での高精度の分離を図り、RO膜装置におけるRO膜の詰り等の負荷の軽減化、又は脱水機の負荷の軽減化(MF膜装置とRO膜装置等との相乗効果と、装置の有効利用、その他として、捕集性の向上等)、その他一般細菌の除去、腐敗防止等に対する効果が期待できないと考えられる。また、特開2014−117684号公報が挙げられるが、この文献(3)は、MF膜装置とRO膜装置との間、又はそれぞれにバッファ槽を連設配備、又はそれぞれ個別に配備した構造であり、主として、PH調整と、処理液の貯留、及び/又は、流れ調整が目的であり(濾過の捕集性の向上と、処理液の流れの確保であり)、この種のMF膜装置とRO膜装置とが有効に利用されていないものと考えられる。従って、前述の文献(1)、(2)と同じように、本発明が意図する、効果は期待できないと考えられる。   As literature, JP 2010-89071 A or JP 2013-193079 A can be mentioned. However, in this literature (1) and (2), an MF membrane device and an RO membrane device are simply arranged in series. It is considered that this type of MF membrane device and RO membrane device are not effectively used because double filtration is intended (only to improve the collection performance of filtration). Therefore, for example, high precision separation in the MF membrane device intended by the present invention is achieved, and the load such as clogging of the RO membrane in the RO membrane device is reduced, or the load on the dehydrator is reduced (with the MF membrane device). It is considered that the synergistic effect with the RO membrane device and the like, the effective use of the device, etc., and other effects such as the improvement of trapping property, and the removal of other general bacteria, the prevention of corruption, etc. cannot be expected. Moreover, although Unexamined-Japanese-Patent No. 2014-117684 is mentioned, this literature (3) is the structure which arranged the buffer tank between the MF membrane apparatus and the RO membrane apparatus, or arranged each separately, or each arranged separately. Yes, mainly for the purpose of adjusting the pH, storing the processing liquid, and / or adjusting the flow (improving the collection ability of the filtration and ensuring the flow of the processing liquid), and this kind of MF membrane device It is considered that the RO membrane device is not effectively used. Therefore, it is considered that the effects intended by the present invention cannot be expected as in the above-mentioned documents (1) and (2).

特開2010−89071号公報JP 2010-89071 A 特開2013−193079号公報JP 2013-193079 A 特開2014−117684号公報JP 2014-117684 A

本発明は、従来の課題を解決する為に、次のような効果達成を意図する。   The present invention intends to achieve the following effects in order to solve the conventional problems.

即ち、本発明は、浸透探傷検査で発生する浸透液水洗の排水処理を行うことで、第一の目的として、浸透液水洗の排水(廃液)を、再利用可能な清澄水に生成することと、清澄水の略全量の再利用(リサイクル)を図る。また、第二の目的として、MF膜装置とRO膜装置と、他の装置との連繋配備、及び/又は、薬液の適宜箇所での添加等を介して、MF膜装置での高精度の分離を図り、かつRO膜装置におけるRO膜の詰り等の負荷の軽減化、又は脱水機の負荷の軽減化(MF膜装置とRO膜装置等との相乗効果と、装置の有効利用、並びにその他として、捕集性の向上等)と、その他一般細菌の除去、腐敗防止等とを図る。   That is, the present invention performs the drainage treatment of the osmotic water washing generated in the osmotic flaw inspection, and the first purpose is to generate the effluent (waste liquid) of the osmotic water washing into reusable clear water. , Reuse (recycle) almost the entire amount of clear water. In addition, as a second object, the MF membrane device, the RO membrane device, and other devices are connected to each other and / or through addition of a chemical solution at an appropriate location, etc., with high accuracy in the MF membrane device. And reducing the load such as clogging of the RO membrane in the RO membrane device, or reducing the load on the dehydrator (the synergistic effect between the MF membrane device and the RO membrane device, the effective use of the device, etc. , Improvement of trapping ability, etc.), removal of other general bacteria, prevention of spoilage, etc.

本発明は、従来の課題を解決し、かつ本発明の効果達成の為に、請求項1〜請求項7で開示した、浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法を提供する。   In order to solve the conventional problems and achieve the effects of the present invention, the present invention provides a drainage treatment apparatus and method for osmotic water washing generated in a penetrant flaw inspection disclosed in claims 1 to 7. provide.

請求項1の発明は、浸透探傷検査で発生する浸透液水洗の排水(廃液)処理装置であり、
浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)と活性炭を備えた反応槽で処理した第1処理水を、配管を介して接続した精密濾過装置(MF膜装置)に導き、MF膜装置で分離した第2処理水を、配管を介して活性炭塔に導くとともに、MF膜装置で分離した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く構成とし、
活性炭塔において、第2処理水に硫酸、並びに苛性ソーダを添加した後に、活性炭塔には、配管を介して逆浸透膜処理水槽を接続するとともに、活性炭塔で処理した第4処理水を、逆浸透膜処理水槽を経由して逆浸透膜濾過装置(RO膜装置)に導く構成であって、RO膜装置で生成した清澄水を、リサイクル可能、又は放流可能とし、
MF濃縮水槽に導いた高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を可能とする浸透探傷検査で発生する浸透液水洗の排水処理装置であり、MF膜装置とRO膜装置と、他の装置との連繋配備、及び/又は、薬液の適宜箇所での添加等を介して、MF膜装置での高精度の分離を図り、かつRO膜装置におけるRO膜の詰り等の負荷の軽減化、又は脱水機の負荷の軽減化(MF膜装置とRO膜装置等との相乗効果と、装置の有効利用、並びにその他として、捕集性の向上等)と、その他一般細菌の除去、腐敗防止等が図れる特徴がある。さらに、沈殿槽、凝集槽等を配備しないことから、処理・作業・メンテナンス等の容易化とコストの低廉化に寄与できる、等の実益がある。
The invention of claim 1 is a drainage (waste liquid) treatment device for osmotic water washing generated in osmotic flaw inspection,
The first treated water treated in the drainage tank of osmotic water washing (raw water tank storing the effluent of osmotic water washing) and the reaction tank equipped with activated carbon is led to a microfiltration device (MF membrane device) connected via a pipe. The second treated water separated by the MF membrane device is guided to the activated carbon tower via a pipe, and the high-concentration fifth treated water separated by the MF membrane device is led to the MF concentrated water tank via the pipe,
In the activated carbon tower, after adding sulfuric acid and caustic soda to the second treated water, a reverse osmosis membrane treated water tank is connected to the activated carbon tower through a pipe, and the fourth treated water treated in the activated carbon tower is reverse osmosis. It is a structure that leads to a reverse osmosis membrane filtration device (RO membrane device) via a membrane treated water tank, and the clarified water generated by the RO membrane device can be recycled or discharged.
This is a wastewater treatment device for osmotic water washing that occurs in the penetrant flaw detection test that allows the high-concentration fifth treated water led to the MF concentrated water tank to be dehydrated through a pipe and to reduce the volume of sludge. Highly accurate separation in the MF membrane device is achieved through the continuous arrangement of the membrane device, the RO membrane device, and / or other devices, and / or addition of chemicals at appropriate locations, and the RO in the RO membrane device Reduction of load such as clogging of membrane, or reduction of load of dehydrator (synergistic effect of MF membrane device and RO membrane device, effective use of device, and other improvements in collection performance, etc.) In addition, there are other features such as removal of general bacteria and prevention of spoilage. Furthermore, since a settling tank, a coagulation tank, etc. are not provided, there is an actual benefit that it can contribute to facilitation of processing, work, maintenance, etc. and cost reduction.

請求項2の発明は、RO膜装置は、合成高分子系のスパイラル型エレメントでなる逆浸透膜(RO膜)を用いて、脱塩を行い、塩分濃度低下を可能とする浸透探傷検査で発生する浸透液水洗の排水処理装置であり、請求項1の特徴を達成できることと、この特徴を達成するに、最適な逆浸透膜を提供できる特徴がある。   In the invention of claim 2, the RO membrane device is generated by a penetrant flaw inspection that enables desalination by using a reverse osmosis membrane (RO membrane) made of a synthetic polymer spiral element to reduce the salt concentration. The effluent treatment apparatus for osmotic water washing is characterized by being able to achieve the features of claim 1 and providing an optimum reverse osmosis membrane to achieve this feature.

請求項3の発明は、MF膜装置は、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)を素材とする公称孔径0.1〜0.03μmの中空糸膜モジュールを用いて、活性炭を回収する浸透探傷検査で発生する浸透液水洗の排水処理装置であり、請求項1の特徴を達成できることと、この特徴を達成するに、最適なMF膜を提供できる特徴がある。   According to the invention of claim 3, the MF membrane device uses a hollow fiber membrane module having a nominal pore diameter of 0.1 to 0.03 μm made of polyvinylidene fluoride (PVDF) as a raw material, and detects penetrant flaw detection. The effluent treatment device for osmotic water washing generated in (1) has the characteristics that the feature of claim 1 can be achieved and that an optimum MF membrane can be provided to achieve this feature.

請求項4の発明は、反応槽への活性炭の搬入は、スクリューフィーダを介して、間欠的に自動供給する浸透探傷検査で発生する浸透液水洗の排水処理装置であり、請求項1の特徴を達成できることと、この特徴を達成するに、最適な反応槽への活性炭の搬入機構を提供できる特徴がある。   The invention according to claim 4 is a wastewater treatment apparatus for osmotic water washing in which activated carbon is carried into the reaction tank, which is generated by a penetrant flaw inspection automatically supplied intermittently via a screw feeder. In order to achieve this feature, there is a feature that can provide an optimum mechanism for bringing activated carbon into the reaction vessel.

請求項5の発明は、浸透探傷検査で発生する浸透液水洗の排水(廃液)処理方法であり、
浸透液水洗の排水を、ポンプと配管とで浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)に導く第1工程と、
浸透液水洗の排水槽に貯留された浸透液水洗の排水に含まれる有機物、界面活性剤、又は蛍光液、現像(剤)を、反応槽の活性炭に吸着して、第1処理水を生成する第2工程と、
反応槽に接続した精密濾過装置(MF膜装置)に導き、MF膜装置で、第1処理水(又は、浸透液水洗の排水)にある有機物、界面活性剤、又は蛍光液、現像(剤)を吸着した活性炭を回収するとともに、雑菌を分離処理して、第2処理水を生成する第3工程と、
MF膜装置で分離処理した第2処理水を、配管を介してMF処理水槽に送り、硫酸並びに苛性ソーダを添加し、第3処理水を生成する第4工程と、
MF処理水槽に接続した活性炭塔に導き、有機物、界面活性剤、又は蛍光液、現像(剤)を含まない第4処理水を生成する第5工程と、
また、MF膜装置で分離処理した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く第6工程と、
活性炭塔で分離処理した第4処理水を、配管を介して逆浸透膜処理水槽に導く第7工程と、
逆浸透膜処理水槽を、配管を介して逆浸透膜濾過装置(RO膜装置)に接続し、RO膜装置で第4処理水を、分離処理して生成された清澄水を、リサイクル、又は放流する第8・9工程と、
MF濃縮水槽に導いた前記高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を達成する第10工程と、
でなる浸透探傷検査で発生する浸透液水洗の排水処理方法であり、浸透液水洗の排水の処理水を、再利用可能な清澄水に生成できることと、清澄水の略全量の再利用(リサイクル)が図れる特徴がある。さらに、沈殿槽、凝集槽等を配備しないことから、処理・作業・メンテナンス等の容易化とコストの低廉化、或いは作業・メンテナンス等の迅速化に寄与できること、等の実益がある。
The invention of claim 5 is a drainage (waste liquid) treatment method for osmotic water washing that occurs in osmotic inspection,
A first step of guiding the drainage of the osmotic water washing to the drainage tank of the osmotic water washing (raw water tank storing the drainage of the osmotic water washing) with a pump and a pipe;
The organic matter, surfactant, or fluorescent solution and development (agent) contained in the drainage of the osmotic water washing stored in the osmotic water washing drainage tank are adsorbed to the activated carbon in the reaction tank to generate the first treated water. A second step;
Lead to the microfiltration device (MF membrane device) connected to the reaction tank, and in the MF membrane device, the organic matter, surfactant, fluorescent solution, development (agent) in the first treated water (or drainage of the permeate washing) Recovering the activated carbon adsorbing the water, separating the germs and generating a second treated water,
A fourth step of sending the second treated water separated by the MF membrane device to the MF treated water tank via the pipe, adding sulfuric acid and caustic soda to generate third treated water;
A fifth step of leading to an activated carbon tower connected to the MF treated water tank and generating a fourth treated water containing no organic matter, surfactant, or fluorescent solution, and development (agent);
Further, a sixth step of guiding the high-concentration fifth treated water separated by the MF membrane device to the MF concentrated water tank through the pipe,
A seventh step of guiding the fourth treated water separated by the activated carbon tower to a reverse osmosis membrane treated water tank via a pipe;
The reverse osmosis membrane treated water tank is connected to a reverse osmosis membrane filtration device (RO membrane device) via a pipe, and the fourth treated water is separated by the RO membrane device, and the clarified water generated by separation treatment is recycled or discharged. 8th and 9th steps,
A tenth step of guiding the high-concentration fifth treated water led to the MF concentrated water tank to a dehydrator via a pipe to achieve volume reduction of sludge;
It is a drainage treatment method for osmotic water washing that occurs in osmotic flaw inspection, and it is possible to generate treated water for osmotic water washing wastewater into reusable clear water and to reuse almost all of the clear water (recycling) There is a feature that can be achieved. Further, since no settling tank, agglomeration tank, etc. are provided, there are practical benefits such as ease of processing / work / maintenance and cost reduction, or speeding up of work / maintenance.

請求項6の発明は、MF濃縮水槽の第5処理水に、濾過助剤を添加し、脱水機の濾布の脱水性を確保可能とする浸透探傷検査で発生する浸透液水洗の排水処理方法であり、請求項5の特徴を達成できることと、この特徴を達成するに、最適な濾過助剤の添加状況を提供できる特徴がある。   Invention of Claim 6 adds the filter aid to the 5th treated water of MF concentration water tank, and can ensure the dewaterability of the filter cloth of a dehydrator, The drainage processing method of the osmotic water washing generated by the penetration inspection inspection Thus, the characteristics of claim 5 can be achieved, and there can be provided an optimum state of adding a filter aid to achieve this characteristic.

請求項7の発明は、RO膜装置で第4処理水を分離処理して生成した清澄水を、RO透過水槽に貯留するとともに、分離処理した濃縮水を、RO濃縮水槽に貯留する構成とし、
清澄水を、リサイクルし、また、濃縮水を、さらに排水処理する浸透探傷検査で発生する浸透液水洗の排水処理方法であり、請求項5の特徴を達成できることと、この特徴を達成するに、最適なRO膜装置と、RO透過水槽、並びにRO濃縮水槽との配備、かつ連繋構造を提供できる特徴がある。
The invention of claim 7 is configured to store the clarified water produced by separating the fourth treated water in the RO membrane device in the RO permeate tank, and the separated concentrated water to be stored in the RO concentrated water tank.
This is a drainage treatment method for osmotic water washing that occurs in a penetrant flaw inspection in which clarified water is recycled and the concentrated water is further drained. In order to achieve the characteristics of claim 5, There exists the characteristic which can provide the arrangement | positioning and connection structure with an optimal RO membrane apparatus, RO permeation | transmission water tank, and RO concentrated water tank.

本発明の実施形態に係る浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法に関して説明するに好ましい、一例のフローチャート図FIG. 1 is a flowchart of an example that is preferable for explaining a drainage treatment apparatus for osmotic water washing that occurs in a penetrant inspection according to an embodiment of the present invention, and a method thereof. 本発明の実施形態に係る浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法に関して説明するに好ましい、一例のフローチャート図FIG. 1 is a flowchart of an example that is preferable for explaining a drainage treatment apparatus for osmotic water washing that occurs in a penetrant inspection according to an embodiment of the present invention, and a method thereof. 図1の概念を説明するに好ましい、一例のフローチャート図Preferred flowchart for explaining the concept of FIG. 従来の浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法に関して説明する、一例のフローチャート図Flow chart of an example, explaining a drainage treatment apparatus for osmotic water washing generated in a conventional penetrant inspection and its method 従来の浸透探傷検査で発生する浸透液水洗の排水処理装置と、その方法に関して説明する、一例のフローチャート図Flow chart of an example, explaining a drainage treatment apparatus for osmotic water washing generated in a conventional penetrant inspection and its method 図3の概念を説明する、一例のフローチャート図An example flowchart illustrating the concept of FIG.

浸透探傷検査で発生する浸透液(蛍光液、現像(剤))水洗の排水処理装置の説明を、図1と図2を基にして説明すると、1は浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)であり、図示しない、浸透探傷検査で発生する浸透液水洗の排水が貯留される。この浸透液水洗の排水槽1には、レベルセンサーが付設されている(他の各槽で同じであり、省略する)。浸透液水洗の排水槽1は第1配管2により反応槽3に繋がっており、この反応槽3には、スクリューフィーダ5により供給された活性炭6が収容されている。また、この反応槽3は、第2配管7により精密濾過装置(MF膜装置8)に繋がる。このMF膜装置8は、図示しないが、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)を素材とする公称孔径0.1〜0.03μmで、望ましくは、0.02mの中空糸膜モジュール800を採用し、ケーシング801内に吊下支持されている。ケーシング801は、フレーム802に、障子のように複数本配備されている。このMF膜装置8には、後述するがエアが供給され、このエアを利用して中空糸膜モジュール800に導かれた、反応槽3で処理済の浸透液水洗の排水を、押出し、かつ濾過するために使用される。   The description of the drainage treatment apparatus for washing with penetrant (fluorescent solution, developer (agent)) generated in penetrant flaw inspection will be described with reference to FIGS. 1 and 2. The raw water tank in which the drainage of the osmotic water washed by the penetrant flaw inspection (not shown) is stored. A level sensor is attached to the drainage tank 1 for washing with osmotic liquid (the same applies to other tanks, and is omitted). The drainage tank 1 for osmotic water washing is connected to a reaction tank 3 by a first pipe 2, and activated carbon 6 supplied by a screw feeder 5 is accommodated in the reaction tank 3. The reaction tank 3 is connected to a microfiltration device (MF membrane device 8) by the second pipe 7. Although not shown, this MF membrane device 8 employs a hollow fiber membrane module 800 having a nominal pore diameter of 0.1 to 0.03 μm and preferably 0.02 m made of polyvinylidene fluoride (PVDF). The suspension is supported in the casing 801. A plurality of casings 801 are arranged on the frame 802 like a shoji. As will be described later, air is supplied to the MF membrane device 8, and the drainage of the osmotic water washing treated in the reaction tank 3 and guided to the hollow fiber membrane module 800 using this air is extruded and filtered. Used to do.

MF膜装置8には、第3配管10により活性炭塔11、及び/又は、MF処理水槽12に繋がっている。そして、このMF処理水槽12では、後述する硫酸、苛性ソーダを添加して処理し、清澄予備水を生成する。また、MF膜装置8には、第4配管13によりMF濃縮水槽15に繋がっている。   The MF membrane device 8 is connected to the activated carbon tower 11 and / or the MF treated water tank 12 by the third pipe 10. And in this MF process water tank 12, the sulfuric acid and caustic soda which are mentioned later are added and processed, and clear preliminary water is produced | generated. The MF membrane device 8 is connected to the MF concentrated water tank 15 by the fourth pipe 13.

MF処理水槽12は、第5配管16により逆浸透膜処理水槽17に繋がっており、逆浸透膜処理水槽17には、MF処理水槽12で処理された清澄予備水を、第5配管16を介して受入れ、かつ一時的に貯留する。逆浸透膜処理水槽17には、第6配管20により逆浸透膜濾過装置(RO膜装置21)に繋がる。このRO膜装置21は、図示しないが、合成高分子系のスパイラル型エレメントでなる逆浸透膜2100を採用し、フレーム2102に、横架状態のように複数本支持したケーシング2101と、このケーシング2101に内蔵した逆浸透膜2100とで構成される。ケーシング2101に導入された清澄予備水を、逆浸透膜2100で濾過し、清澄水を生成する。この清澄水は、第8・9配管(符号付さず)によりリサイクル、又は放流される。   The MF treated water tank 12 is connected to a reverse osmosis membrane treated water tank 17 by a fifth pipe 16, and the clear preliminary water treated in the MF treated water tank 12 is passed through the fifth pipe 16 to the reverse osmosis membrane treated water tank 17. And temporarily store. The reverse osmosis membrane treated water tank 17 is connected to a reverse osmosis membrane filtration device (RO membrane device 21) by a sixth pipe 20. Although not shown, this RO membrane device 21 employs a reverse osmosis membrane 2100 made of a synthetic polymer spiral element, and a casing 2101 that is supported by a frame 2102 in a horizontal state, and this casing 2101. And a reverse osmosis membrane 2100 built in. The clear preliminary water introduced into the casing 2101 is filtered through the reverse osmosis membrane 2100 to generate clear water. This clarified water is recycled or discharged through the eighth and ninth pipes (not labeled).

MF濃縮水槽15は、第7配管22により脱水機23に繋がっており、脱水機23でスラッジの減容化を可能とする。また、図示しない脱水ケーキは廃棄する。   The MF concentrated water tank 15 is connected to a dehydrator 23 by a seventh pipe 22, and the dehydrator 23 can reduce the volume of sludge. Also, the dehydrated cake (not shown) is discarded.

次に、浸透探傷検査で発生する浸透液水洗の排水(廃液)処理方法を、図1と図2を基にして説明する。   Next, a drainage (waste liquid) treatment method for permeate water washing generated in the permeation flaw inspection will be described with reference to FIGS.

第1工程は、浸透探傷検査で発生した浸透液水洗の排水Xを、図示しないポンプPと、図示しない配管とで浸透液水洗の排水槽1(浸透液水洗の排水を貯留した原水槽)に導く。   In the first step, the drainage X of the osmotic water washing generated in the osmotic flaw inspection is transferred to the drainage tank 1 of the osmotic water washing (raw water tank storing the drainage of the osmotic water washing) with a pump P (not shown) and a pipe (not shown). Lead.

第2工程は、浸透液水洗の排水槽1に貯留された浸透液水洗の排水Xを、第1配管2で反応槽3に導き、浸透液水洗の排水Xに含まれる有機物、界面活性剤、又は蛍光液、現像(剤)を、反応槽3に添加された活性炭6に吸着して、第1処理水Y1(第1処理原水)を生成する。   In the second step, the osmotic water washing wastewater X stored in the osmotic water washing drainage tank 1 is guided to the reaction tank 3 by the first pipe 2, and the organic matter, surfactant, Alternatively, the fluorescent solution and the development (agent) are adsorbed on the activated carbon 6 added to the reaction tank 3 to generate the first treated water Y1 (first treated raw water).

第3工程は、第1処理水Y1を、反応槽3に第2配管7を介して接続した精密濾過装置(MF膜装置8)に導き、このMF膜装置8で、第1処理水Y1(又は、浸透液水洗の排水X)にある有機物、界面活性剤、又は蛍光液、現像(剤)を吸着した活性炭6を回収するとともに、雑菌を分離処理(濾過処理)して、第2処理水Y2を生成する。前記回収した活性炭は、清掃しての再利用か、廃棄する。   In the third step, the first treated water Y1 is led to a microfiltration device (MF membrane device 8) connected to the reaction tank 3 via the second pipe 7, and the first treated water Y1 ( Or the activated carbon 6 adsorbing the organic matter, the surfactant, the fluorescent solution, and the development (agent) in the drainage water X) of the osmotic water washing is recovered, and the bacteria are separated (filtered) to obtain the second treated water. Y2 is generated. The collected activated carbon is reused after cleaning or discarded.

第4工程は、MF膜装置8で分離処理した第2処理水Y2を、例えば、第3配管10を介してMF処理水槽12に貯留し、貯留した第2処理水Y2に、硫酸、並びに苛性ソーダを添加し、後述するRO膜装置21に適したPHに調整しながら、高い清澄度の第3処理水Y3を生成する。本発明では、第2処理水Y2に、硫酸、並びに苛性ソーダを添加する処理方法であって、パック剤を使用しない。従って、例えば、PH調整剤の添加量を軽減できること、処理・作業・メンテナンス等の容易化とコストの低廉化に寄与できること、等の実益がある。また、第2処理水Y2は、水質検査により、濃度の高低で、MF処理水槽12、又は後述する第5工程の活性炭塔11のどちらに送るかを決定する。図2において、同じ枠内に図示している。   In the fourth step, the second treated water Y2 separated by the MF membrane device 8 is stored in, for example, the MF treated water tank 12 via the third pipe 10, and the stored second treated water Y2 is mixed with sulfuric acid and caustic soda. Is added, and the third treated water Y3 with high clarity is generated while adjusting the pH to be suitable for the RO membrane device 21 described later. In this invention, it is the processing method which adds a sulfuric acid and caustic soda to the 2nd treated water Y2, Comprising: A pack agent is not used. Therefore, for example, there are actual benefits such as the ability to reduce the amount of the PH adjuster added, the ease of processing, work, maintenance, etc. and the reduction in cost. Further, the second treated water Y2 has a high or low concentration by water quality inspection, and determines whether it is sent to the MF treated water tank 12 or the activated carbon tower 11 in the fifth step described later. In FIG. 2, it is shown in the same frame.

第5工程は、第3処理水Y3を、MF処理水槽12に第3a配管10aを介して接続した活性炭塔11に導き、活性炭塔11で分離処理(吸着処理)し、有機物、界面活性剤、又は蛍光液、現像(剤)がなく、かつ雑菌がない第4処理水Y4(清澄予備水)を生成する。この活性炭塔11では、第3処理水Y3の色や汚れを、活性炭に吸着させることで、例えば、清澄度を確保する。活性炭塔11において、汚染された活性炭は回収し、清掃しての再利用か、廃棄する。   In the fifth step, the third treated water Y3 is guided to the activated carbon tower 11 connected to the MF treated water tank 12 via the 3a pipe 10a, and separated (adsorbed) by the activated carbon tower 11, and organic matter, surfactant, Alternatively, the fourth treated water Y4 (clarified preliminary water) free from fluorescent solution and development (agent) and free from various bacteria is generated. In the activated carbon tower 11, for example, the clarification is ensured by adsorbing the color and dirt of the third treated water Y <b> 3 to the activated carbon. In the activated carbon tower 11, the contaminated activated carbon is collected and reused after being cleaned or discarded.

第6工程は、MF膜装置8で分離処理した高濃度の第5処理水Y5を、第4配管13を介してMF濃縮水槽15に導き、スラッジ成分を濃縮した状態を確保するとともに、後述するように、脱水機23に対する負荷軽減と、脱水機23等の運転と作業の効率化等を図る。尚、このMF濃縮水槽15には、濾過助剤15aを、スクリューフィーダ5により供給する。また、このMF膜装置8は、例えば、公称孔径0.02μmの中空糸膜モジュール800を採用し、RO膜装置21の負荷の軽減化と、スラッジの効率的な分離と捕集とが図れること、並びに細菌除去が図れること等の実益がある。   In the sixth step, the high-concentration fifth treated water Y5 separated by the MF membrane device 8 is guided to the MF concentrated water tank 15 through the fourth pipe 13 to ensure a state in which the sludge component is concentrated and will be described later. As described above, the load on the dehydrator 23 is reduced, and the operation and operation of the dehydrator 23 and the like are improved. The MF concentrated water tank 15 is supplied with a filter aid 15a by a screw feeder 5. In addition, this MF membrane device 8 employs, for example, a hollow fiber membrane module 800 having a nominal pore diameter of 0.02 μm, and can reduce the load on the RO membrane device 21 and efficiently separate and collect sludge. In addition, there are practical benefits such as bacteria removal.

尚、前記MF膜装置8で分離処理した高濃度の第5処理水Y5を、第4配管13を介してMF濃縮水槽15に導く前に、中間貯留槽30を介在して、MF濃縮水槽15に自然の流れで導き、かつ無動力化等を意図する。   Before the high-concentration fifth treated water Y5 separated by the MF membrane device 8 is led to the MF concentrated water tank 15 via the fourth pipe 13, the intermediate storage tank 30 is interposed and the MF concentrated water tank 15 is interposed. It is intended to be guided by natural flow and to be powered off.

第7工程は、活性炭塔11で分離(吸着)処理した第4処理水Y4を、第5配管16を介して逆浸透膜処理水槽17に導き、第4処理水Y4のRO膜装置21での処理に備える。尚、第4処理水Y4を、希釈水として、浸透液水洗の排水槽1に第1リターンQ1することも有り得る(再利用である。以下同じ)。   In the seventh step, the fourth treated water Y4 separated (adsorbed) by the activated carbon tower 11 is guided to the reverse osmosis membrane treated water tank 17 through the fifth pipe 16, and the fourth treated water Y4 in the RO membrane device 21 is introduced. Prepare for processing. The fourth treated water Y4 may be used as dilution water for the first return Q1 to the drainage tank 1 for washing with osmotic liquid (reuse, the same applies hereinafter).

第8・9工程は、逆浸透膜処理水槽17を、第6配管20を介して逆浸透膜濾過装置(RO膜装置21)に接続し、第4処理水Y4を、逆浸透膜処理水槽17よりRO膜装置21に入れて、RO膜装置21は、第4処理水Y4中に溶解した成分の浸透圧以上の圧力を逆浸透膜(RO膜)に掛けることで、水だけを膜内部に浸透させ、有機物、界面活性剤、又は蛍光液、現像(剤)成分や塩類を濃縮分離処理(濾過/吸着処理)する。このRO膜装置21で生成された清澄水Y6を、リサイクル(第8工程)、又は放流(第9工程)する。このRO膜装置21では、塩分除去を主眼とし、イオン(塩分)を除去、かつ分離する。即ち、塩分濃度の低下を確保し、シミ発生回避と、リサイクル達成とを図ることで、本来の目的達成が可能となり、また省エネ化、並びにコストの低廉化、及び環境維持等が図れる実益がある。また、必要により、生成された清澄水Y6は、水質状態で、雑菌処理を行う。尚、清澄水Y6は、逆浸透膜処理水槽17に第2リターンQ2することも有り得る。   In the eighth and ninth steps, the reverse osmosis membrane treated water tank 17 is connected to the reverse osmosis membrane filtration device (RO membrane device 21) via the sixth pipe 20, and the fourth treated water Y4 is treated as the reverse osmosis membrane treated water tank 17. The RO membrane device 21 is put into the RO membrane device 21. The RO membrane device 21 applies only the osmotic pressure of the component dissolved in the fourth treated water Y4 to the reverse osmosis membrane (RO membrane), so that only water enters the membrane. The organic substance, the surfactant, the fluorescent solution, the developing (agent) component and the salt are concentrated and separated (filtering / adsorption processing). The clarified water Y6 generated by the RO membrane device 21 is recycled (eighth step) or discharged (9th step). This RO membrane device 21 mainly removes salt and removes and separates ions (salt). In other words, by ensuring the decrease in salinity, avoiding the occurrence of stains and achieving recycling, the original purpose can be achieved, and there is an actual benefit that energy saving, cost reduction and environmental maintenance can be achieved. . If necessary, the produced clarified water Y6 is subjected to various bacteria treatment in a water quality state. The clarified water Y6 may return to the reverse osmosis membrane treated water tank 17 for the second return Q2.

第10工程は、MF濃縮水槽15に導いた高濃度の第5処理水Y5を、第7配管22を介して脱水機23に導き、スラッジの減容化を達成する。本発明は、高分子凝集剤を使用しないので、脱水機23において、膜の目詰りの頻度が少なく、保守管理と、効率的な実施ができる。尚、脱水機23の膜による濾過性を確保するために、助剤を添加することもあり得る。また、脱水機23で発生した処理水は、RO膜装置21に送り、第4処理水Y4とともに処理する。さらに、尚、脱水機23で発生した処理水は、希釈水として、浸透液水洗の排水槽1に第3リターンQ3することも有り得る。   In the tenth step, the high-concentration fifth treated water Y5 led to the MF concentrated water tank 15 is guided to the dehydrator 23 through the seventh pipe 22 to achieve sludge volume reduction. Since the present invention does not use a polymer flocculant, in the dehydrator 23, the frequency of clogging of the membrane is small, and maintenance management and efficient implementation can be performed. In addition, in order to ensure the filterability by the membrane of the dehydrator 23, an auxiliary agent may be added. Further, the treated water generated in the dehydrator 23 is sent to the RO membrane device 21 and treated together with the fourth treated water Y4. Furthermore, the treated water generated in the dehydrator 23 may be subjected to a third return Q3 to the drainage tank 1 for washing with osmotic liquid as dilution water.

以上で説明したように、本発明は、第1リターンQ1〜第3リターンQ3、並びにリサイクル等により、浸透液水洗の排水の略完全なクローズ化(処理水の完全リサイクル化)を達成できる。   As described above, according to the present invention, the first return Q1 to the third return Q3, recycling, and the like can achieve substantially complete closure of the drainage of the osmotic water washing (complete recycling of treated water).

以上で説明した、浸透探傷検査で発生する浸透液水洗の排水(廃液)処理装置と、その方法の説明等は、好ましい一例を示したものである。従って、前述の条件に、何ら、拘泥される理由はなく、例えば、同様な効果と特徴を発揮できる、他の実施例や、その他の構造・手段は、本発明の範疇である。   The explanation of the drainage (waste liquid) treatment apparatus for the osmotic water washing generated in the osmotic flaw detection described above, the method thereof, and the like show a preferable example. Therefore, there is no reason to be bound by the above-mentioned conditions. For example, other embodiments and other structures and means that can exhibit the same effects and features are within the scope of the present invention.

1 浸透液水洗の排水槽
2 第1配管
3 反応槽
5 スクリューフィーダ
6 活性炭
7 第2配管
8 MF膜装置
800 中空糸膜モジュール
801 ケーシング
802 フレーム
10 第3配管
10a 第3a配管
11 活性炭塔
12 MF処理水槽
13 第4配管
15 MF濃縮水槽
15a 濾過助剤
16 第5配管
17 逆浸透膜処理水槽
20 第6配管
21 RO膜装置
2100 逆浸透膜
2101 ケーシング
2102 フレーム
22 第7配管
23 脱水機
30 中間貯留槽
001 浸透液水洗の排水槽
001a 浸透液水洗の排水
002 配管
003 吸着槽
004a 活性炭
004b ベントナイト液
005 配管
006 反応槽
006a パック剤
007 調整層
007a 苛性ソーダ
008 凝集層
008a 高分子凝集剤
009 沈殿槽
0010 配管
0011 処理水槽
0012 再利用タンク
0013 配管
0014 脱水機
X 浸透液水洗の排水
Y1 第1処理水
Y2 第2処理水
Y3 第3処理水
Y4 第4処理水
Y5 第5処理水
Y6 清澄水
Q1 第1リターン
Q2 第2リターン
Q3 第3リターン
DESCRIPTION OF SYMBOLS 1 Drainage tank of osmotic water washing 2 1st piping 3 Reaction tank 5 Screw feeder 6 Activated carbon 7 2nd piping 8 MF membrane apparatus 800 Hollow fiber membrane module 801 Casing 802 Frame 10 3rd piping 10a 3a piping 11 Activated carbon tower 12 MF processing Water tank 13 4th pipe 15 MF concentrated water tank 15a Filter aid 16 5th pipe 17 Reverse osmosis membrane treated water tank 20 6th pipe 21 RO membrane device 2100 Reverse osmosis membrane 2101 Casing 2102 Frame 22 7th pipe 23 Dehydrator 30 Intermediate storage tank 001 Drainage tank for osmotic water washing 001a Drainage water for osmotic water washing 002 Pipe 003 Adsorption tank 004a Activated carbon 004b Bentonite liquid 005 Pipe 006 Reaction tank 006a Packing agent 007 Adjustment layer 007a Caustic soda 008 Aggregation layer 008a Polymer flocculant 008a Pipe 0011 Treated water tank 0012 Reuse tank 0013 Pipe 0014 Dehydrator X Drainage of osmotic water washing Y1 1st treated water Y2 2nd treated water Y3 3rd treated water Y4 4th treated water Y5 5th treated water Y6 Clear water Q1 1st Return Q2 Second return Q3 Third return

本発明は、浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置と、その方法に関する。
The present invention relates to a wastewater treatment apparatus for osmotic water rinsing containing a fluorescent solution and a developer generated in an osmotic flaw detection test, and a method thereof.

本発明は、従来の課題を解決し、かつ本発明の効果達成の為に、請求項1〜請求項7で開示した、浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置と、その方法を提供する。
In order to solve the conventional problems and achieve the effects of the present invention, the present invention is disclosed in claims 1 to 7 and is a drainage of osmotic water washing containing a fluorescent solution and a developer generated in a penetrant flaw inspection. A processing apparatus and method are provided.

請求項1の発明は、航空機の材料に蛍光液を塗布し、微小亀裂に浸透させた後に、表面の浸透液を水洗し、現像剤処理を行い、蛍光液と現像剤を含む浸透液水洗の排水処理装置であり、
浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)と活性炭を備えた反応槽で処理した第1処理水を、配管を介して接続した精密濾過装置(MF膜装置)に導き、MF膜装置で分離した第2処理水を、配管を介してMF処理水槽、又は活性炭塔に導くとともに、MF膜装置で分離した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く構成とし、
MF処理水槽において、第2処理水に硫酸、又は苛性ソーダを添加した後に、活性炭塔に導き活性炭塔は配管を介して逆浸透膜処理水槽接続するとともに、活性炭塔で処理した第4処理水を、逆浸透膜処理水槽を経由して逆浸透膜濾過装置(RO膜装置)に導く構成とするとともに、第4処理水を、排水槽にリターンする第1リターン用の配管を設け、RO膜装置で生成した清澄水を、逆浸透膜処理水槽にリターンする第2リターン用の配管を設け
MF濃縮水槽に導いた高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を可能とするとともに、脱水機で生成した処理水を、浸透液水洗の排水槽にリターンする第3リターン用の配管を設け、
た構成とした浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置であり、であり、MF膜装置とRO膜装置と、他の装置との連繋配備、及び/又は、薬液の適宜箇所での添加等を介して、MF膜装置での高精度の分離を図り、かつRO膜装置におけるRO膜の詰り等の負荷の軽減化、又は脱水機の負荷の軽減化(MF膜装置とRO膜装置等との相乗効果と、装置の有効利用、並びにその他として、捕集性の向上等)と、その他一般細菌の除去、腐敗防止等が図れる特徴がある。さらに、沈殿槽、凝集槽等を配備しないことから、処理・作業・メンテナンス等の容易化とコストの低廉化に寄与できる、等の実益がある。
According to the first aspect of the present invention, after the fluorescent liquid is applied to the aircraft material and penetrated into the microcracks, the surface penetrating liquid is washed with water, the developer treatment is performed, and the penetrating liquid water washing containing the fluorescent liquid and the developer is performed. Wastewater treatment equipment ,
The first treated water treated in the drainage tank of osmotic water washing (raw water tank storing the effluent of osmotic water washing) and the reaction tank equipped with activated carbon is led to a microfiltration device (MF membrane device) connected via a pipe. The second treated water separated by the MF membrane device is guided to the MF treated water tank or the activated carbon tower through the pipe, and the high concentration fifth treated water separated by the MF membrane apparatus is fed to the MF concentrated water tank through the pipe. With a configuration leading to
In MF treatment water tank, after adding sulfuric acid or caustic soda to the second treated water is guided to the activated carbon column, along with the activated carbon column is connected to the reverse osmosis membrane treating tank via a pipe, a fourth process water treated with activated carbon tower Is connected to a reverse osmosis membrane filtration device (RO membrane device) via a reverse osmosis membrane treated water tank, and a first return pipe for returning the fourth treated water to the drainage tank is provided , and the RO membrane is provided . A second return pipe is provided for returning the clarified water generated by the apparatus to the reverse osmosis membrane treated water tank ,
High concentrations fifth process water that led to MF concentrated water tank, led into dehydrator through the pipe, while enabling volume reduction of sludge, the treated water produced by the dehydrator, drain tank permeate washing A third return pipe is provided to return to
Configuration and the fluorescent liquid generated at penetrant a waste water treatment apparatus of permeate washing containing developer, a, MF membrane device and the RO membrane apparatus and, cooperative deployment with other devices, and / or , High-precision separation in the MF membrane device through addition of chemical solution at appropriate locations, etc., and reduction of load such as clogging of RO membrane in RO membrane device, or reduction of load on dehydrator ( The synergistic effect of the MF membrane device and the RO membrane device, the effective use of the device, and other improvements in the trapping property, etc.), the removal of other general bacteria, the prevention of corruption, and the like. Furthermore, since a settling tank, a coagulation tank, etc. are not provided, there is an actual benefit that it can contribute to facilitation of processing, work, maintenance, etc. and cost reduction.

請求項2の発明は、航空機の材料に蛍光液を塗布し、微小亀裂に浸透させた後に、表面の浸透液を水洗し、現像剤処理を行い、蛍光液と現像剤を含む浸透液水洗の排水処理装置であり
浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)と活性炭を備えた反応槽で処理した第1処理水を、配管を介して接続した精密濾過装置(MF膜装置)に導き、MF膜装置で分離した第2処理水を、配管を介してMF処理水槽、及び活性炭塔に導くとともに、MF膜装置で分離した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く構成とし、
MF処理水槽において、第2処理水に硫酸、又は苛性ソーダを添加した後に、活性炭塔に導き、活性炭塔は配管を介して逆浸透膜処理水槽に接続するとともに、活性炭塔で処理した第4処理水を、逆浸透膜処理水槽を経由して逆浸透膜濾過装置(RO膜装置)に導く構成とするとともに、第4処理水を、排水槽にリターンする第1リターン用の配管を設け、RO膜装置で生成した清澄水を、逆浸透膜処理水槽にリターンする第2リターン用の配管を設け
MF濃縮水槽に導いた高濃度の前記第5処理水を、配管を介して脱水機に導き、スラッジの減容化を可能とするとともに、脱水機で生成した処理水を、浸透液水洗の排水槽にリターンする第3リターン用の配管を設け、
た構成とした浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置であり、請求項1の実益を同じように達成できる。
In the invention of claim 2, after applying the fluorescent solution to the aircraft material and infiltrating the microcracks, the surface penetrating solution is washed with water, the developer treatment is performed, and the penetrating solution water washing containing the fluorescent solution and the developer is performed. Wastewater treatment equipment ,
The first treated water treated in the drainage tank of osmotic water washing (raw water tank storing the effluent of osmotic water washing) and the reaction tank equipped with activated carbon is led to a microfiltration device (MF membrane device) connected via a pipe. The second treated water separated by the MF membrane device is guided to the MF treated water tank and the activated carbon tower through the pipe, and the high concentration fifth treated water separated by the MF membrane apparatus is fed to the MF concentrated water tank via the pipe. With a configuration leading to
In the MF treated water tank, after adding sulfuric acid or caustic soda to the second treated water, it is led to the activated carbon tower, and the activated carbon tower is connected to the reverse osmosis membrane treated water tank through the pipe and is treated with the activated carbon tower. Is connected to a reverse osmosis membrane filtration device (RO membrane device) via a reverse osmosis membrane treated water tank, and a first return pipe for returning the fourth treated water to the drainage tank is provided, and the RO membrane is provided. A second return pipe is provided for returning the clarified water generated by the apparatus to the reverse osmosis membrane treated water tank ,
The high-concentration fifth treated water led to the MF concentrated water tank is guided to a dehydrator through a pipe to reduce the volume of sludge, and the treated water generated by the dehydrator is discharged from the osmotic water washing. A third return pipe is provided to return to the water tank.
The wastewater treatment apparatus for osmotic water washing containing a fluorescent solution and a developer generated in the osmotic flaw detection having the above-described configuration, can achieve the same benefits as in claim 1.

請求項3の発明は、MF膜装置は、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)を素材とする公称孔径0.1〜0.03μmの中空糸膜モジュールを用いて、活性炭を回収する浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置であり、であり、請求項1の特徴を達成できることと、この特徴を達成するに、最適なMF膜を提供できる特徴がある。
According to the invention of claim 3, the MF membrane apparatus uses a hollow fiber membrane module having a nominal pore diameter of 0.1 to 0.03 μm made of polyvinylidene fluoride (PVDF) as a material, and detects penetrant flaw detection. The wastewater treatment apparatus for washing with a penetrant liquid containing a fluorescent solution and a developer generated in step 1. The feature of claim 1 can be achieved, and an optimum MF film can be provided to achieve this feature. .

請求項4の発明は、反応槽への活性炭の搬入は、スクリューフィーダを介して、間欠的に自動供給する浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置であり、請求項1の特徴を達成できることと、この特徴を達成するに、最適な反応槽への活性炭の搬入機構を提
供できる特徴がある。
The invention of claim 4 is a wastewater treatment apparatus for washing with an osmotic liquid containing a fluorescent solution and a developer that are generated in an osmotic flaw detection that automatically and intermittently carries activated carbon into a reaction tank via a screw feeder. The feature of claim 1 can be achieved, and in order to achieve this feature, there is a feature that can provide an optimum mechanism for loading activated carbon into the reaction vessel.

請求項5の発明は、航空機の材料に蛍光液を塗布し、微小亀裂に浸透させた後に、表面の浸透液を水洗し、現像剤処理を行い、蛍光液と現像剤を含む浸透液水洗の排水(廃液)処理する方法であり、
浸透液水洗の排水を、ポンプと配管とで浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)に導く第1工程と、
浸透液水洗の排水槽に貯留された浸透液水洗の排水に含まれる有機物、界面活性剤、又は蛍光液、現像剤を、反応槽の活性炭に吸着して、第1処理水を生成する第2工程と、
反応槽に接続した精密濾過装置(MF膜装置)に導き、MF膜装置で、第1処理水(又は、浸透液水洗の排水)に含まれる有機物、界面活性剤、又は蛍光液、現像剤を吸着した活性炭を回収するとともに、雑菌を分離処理して、第2処理水を生成する第3工程と、
MF膜装置で分離処理した第2処理水を、配管を介してMF処理水槽に送り、硫酸、又は苛性ソーダを添加し、第3処理水を生成する第4工程と、
MF処理水槽に接続した活性炭塔に導き、有機物、界面活性剤、又は蛍光液、現像剤を含まない第4処理水を生成する第5工程と、
また、MF膜装置で分離処理した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く第6工程と、
活性炭塔で分離処理した第4処理水を、配管を介して逆浸透膜処理水槽に導くとともに、排水槽に第1リターンする第7工程と、
逆浸透膜処理水槽を、配管を介して逆浸透膜濾過装置(RO膜装置)に接続し、RO膜装置で第4処理水を、分離処理して生成された清澄水を、逆浸透膜処理水槽に第3リターンしてリサイクル、又は放流する第8・9工程と、
MF濃縮水槽に導いた高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を達成するとともに、浸透液水洗の排水槽に第3リターンする第10工程と、
でなる浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理する方法であり、浸透液水洗の排水の処理水を、再利用可能な清澄水に生成できることと、清澄水の略全量の再利用(リサイクル)が図れる特徴がある。さらに、沈殿槽、凝集槽等を配備しないことから、処理・作業・メンテナンス等の容易化とコストの低廉化、或いは作業・メンテナンス等の迅速化に寄与できること、等の実益がある。
In the invention of claim 5, after applying the fluorescent solution to the aircraft material and infiltrating the microcracks, the surface penetrating solution is washed with water, the developer treatment is performed, and the penetrating solution water washing containing the fluorescent solution and the developer is performed. a method for draining (waste) treatment,
A first step of guiding the drainage of the osmotic water washing to the drainage tank of the osmotic water washing (raw water tank storing the drainage of the osmotic water washing) with a pump and a pipe;
A second treated water is generated by adsorbing an organic substance, a surfactant, or a fluorescent solution and a developer contained in the waste water of the permeate water wash stored in the permeate water drainage tank to the activated carbon of the reaction tank. Process,
Lead to the microfiltration device (MF membrane device) connected to the reaction tank, and use the MF membrane device to remove the organic matter, surfactant, fluorescent solution, and developer contained in the first treated water (or drainage from the osmotic water washing). A third step of recovering the adsorbed activated carbon and separating the bacteria to produce second treated water;
A fourth step of sending the second treated water separated by the MF membrane device to the MF treated water tank via a pipe, adding sulfuric acid or caustic soda to generate third treated water;
A fifth step of leading to an activated carbon tower connected to the MF treated water tank and generating a fourth treated water that does not contain organic matter, surfactant, or fluorescent solution, and developer ;
Further, a sixth step of guiding the high-concentration fifth treated water separated by the MF membrane device to the MF concentrated water tank through the pipe,
A seventh process in which the fourth treated water separated by the activated carbon tower is led to the reverse osmosis membrane treated water tank via the pipe and first returned to the drain tank ;
The reverse osmosis membrane treated water tank is connected to a reverse osmosis membrane filtration device (RO membrane device) via a pipe, and the fourth treated water is separated by the RO membrane device, and the clarified water generated by the separation treatment is treated with the reverse osmosis membrane treatment. 8th and 9th steps for recycling or discharging to the water tank for the third return ;
A tenth step of guiding the high-concentration fifth treated water led to the MF concentrated water tank to a dehydrator via a pipe to achieve volume reduction of sludge and returning to the drainage tank of the osmotic water washing ;
It is a method of draining waste water of permeate water washing containing a fluorescent solution and a developer generated in a penetrant flaw inspection, and that the treated water of waste water of permeate water wash can be generated into reusable clear water, and clear water The feature is that almost the entire amount can be reused (recycled). Further, since no settling tank, agglomeration tank, etc. are provided, there are practical benefits such as ease of processing / work / maintenance and cost reduction, or speeding up of work / maintenance.

請求項6の発明は、MF濃縮水槽の第5処理水に、濾過助剤を添加し、脱水機の濾布の脱水性を確保可能とする浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理する方法であり、請求項5の特徴を達成できることと、この特徴を達成するに、最適な濾過助剤の添加状況を提供できる特徴がある。
The invention of claim 6 includes a fluorescent solution and a developer that are generated in a penetrant flaw inspection that allows a filter aid to be added to the fifth treated water of the MF concentrated water tank to ensure the dewaterability of the filter cloth of the dehydrator. This is a method for treating waste water by osmotic water washing, and is characterized in that the feature of claim 5 can be achieved and that the optimum addition of filter aid can be provided to achieve this feature.

請求項7の発明は、RO膜装置で第4処理水を分離処理して生成した清澄水を、RO透過水槽に貯留するとともに、分離処理した濃縮水を、RO濃縮水槽に貯留する構成とし、清澄水を、リサイクルし、また、濃縮水を、さらに排水処理する浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理する方法であり、請求項5の特徴を達成できることと、この特徴を達成するに、最適なRO膜装置と、RO透過水槽、並びにRO濃縮水槽との配備、かつ連繋構造を提供できる特徴がある。
The invention of claim 7 is configured to store the clarified water produced by separating the fourth treated water in the RO membrane device in the RO permeate tank, and the separated concentrated water to be stored in the RO concentrated water tank. 6. A method for draining waste water of permeate washing with a fluorescent solution and a developer generated in a penetrant flaw inspection in which clear water is recycled and concentrated water is further drained, and the characteristics of claim 5 can be achieved. In order to achieve this feature, there is a feature that an optimal RO membrane device, an RO permeating water tank, and an RO concentrated water tank can be provided and connected.

以上で説明した、浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理装置と、その方法の説明等は、好ましい一例を示したものである。従って、前述の条件に、何やら、拘泥される理由はなく、例えば、同様な効果と特徴を発揮できる、他の実施例や、その他の構造・手段は、本発明の範疇である。

The explanation of the drainage treatment apparatus for osmotic water washing including the fluorescent solution and developer generated in the osmotic flaw detection described above, the method thereof, and the like show a preferable example. Therefore, there is no reason to be bound by the above-mentioned conditions. For example, other embodiments and other structures and means that can exhibit the same effects and features are within the scope of the present invention.

請求項5の発明は、航空機の材料に蛍光液を塗布し、微小亀裂に浸透させた後に、表面の浸透液を水洗し、現像剤処理を行い、蛍光液と現像剤を含む浸透液水洗の排水(廃液)処理する方法であり、
浸透液水洗の排水を、ポンプと配管とで浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)に導く第1工程と、
浸透液水洗の排水槽に貯留された浸透液水洗の排水に含まれる有機物、界面活性剤、又は蛍光液、現像剤を、反応槽の活性炭に吸着して、第1処理水を生成する第2工程と、
反応槽に接続した精密濾過装置(MF膜装置)に導き、MF膜装置で、第1処理水(又は、浸透液水洗の排水)に含まれる有機物、界面活性剤、又は蛍光液、現像剤を吸着した活性炭を回収するとともに、雑菌を分離処理して、第2処理水を生成する第3工程と、
MF膜装置で分離処理した第2処理水を、配管を介してMF処理水槽に送り、硫酸、又は苛性ソーダを添加し、第3処理水を生成する第4工程と、
MF処理水槽に接続した活性炭塔に導き、有機物、界面活性剤、又は蛍光液、現像剤を含まない第4処理水を生成する第5工程と、
また、MF膜装置で分離処理した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く第6工程と、
活性炭塔で分離処理した第4処理水を、配管を介して逆浸透膜処理水槽に導くとともに、排水槽に第1リターンする第7工程と、
逆浸透膜処理水槽を、配管を介して逆浸透膜濾過装置(RO膜装置)に接続し、RO膜装置で第4処理水を、分離処理して生成された清澄水を、逆浸透膜処理水槽に第リターンしてリサイクル、又は放流する第8・9工程と、
MF濃縮水槽に導いた高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を達成するとともに、浸透液水洗の排水槽に第3リターンする第10工程と、
でなる浸透探傷検査で発生する蛍光液と現像剤を含む浸透液水洗の排水処理する方法であり、浸透液水洗の排水の処理水を、再利用可能な清澄水に生成できることと、清澄水の略全量の再利用(リサイクル)が図れる特徴がある。さらに、沈殿槽、凝集槽等を配備しないことから、処理・作業・メンテナンス等の容易化とコストの低廉化、或いは作業・メンテナンス等の迅速化に寄与できること、等の実益がある。
In the invention of claim 5, after applying the fluorescent solution to the aircraft material and infiltrating the microcracks, the surface penetrating solution is washed with water, the developer treatment is performed, and the penetrating solution water washing containing the fluorescent solution and the developer is performed. Wastewater (waste liquid) treatment method,
A first step of guiding the drainage of the osmotic water washing to the drainage tank of the osmotic water washing (raw water tank storing the drainage of the osmotic water washing) with a pump and a pipe;
A second treated water is generated by adsorbing an organic substance, a surfactant, or a fluorescent solution and a developer contained in the waste water of the permeate water wash stored in the permeate water drainage tank to the activated carbon of the reaction tank. Process,
Lead to the microfiltration device (MF membrane device) connected to the reaction tank, and use the MF membrane device to remove the organic matter, surfactant, fluorescent solution, and developer contained in the first treated water (or drainage from the osmotic water washing). A third step of recovering the adsorbed activated carbon and separating the bacteria to produce second treated water;
A fourth step of sending the second treated water separated by the MF membrane device to the MF treated water tank via a pipe, adding sulfuric acid or caustic soda to generate third treated water;
A fifth step of leading to an activated carbon tower connected to the MF treated water tank and generating a fourth treated water that does not contain organic matter, surfactant, or fluorescent solution, and developer;
Further, a sixth step of guiding the high-concentration fifth treated water separated by the MF membrane device to the MF concentrated water tank through the pipe,
A seventh process in which the fourth treated water separated by the activated carbon tower is led to the reverse osmosis membrane treated water tank via the pipe and first returned to the drain tank;
The reverse osmosis membrane treated water tank is connected to a reverse osmosis membrane filtration device (RO membrane device) via a pipe, and the fourth treated water is separated by the RO membrane device, and the clarified water generated by the separation treatment is treated with the reverse osmosis membrane treatment. 8th and 9th steps for second return to the aquarium for recycling or release;
A tenth step of guiding the high-concentration fifth treated water led to the MF concentrated water tank to a dehydrator via a pipe to achieve volume reduction of sludge and returning to the drainage tank of the osmotic water washing;
It is a method of draining waste water of permeate water washing containing a fluorescent solution and a developer generated in a penetrant flaw inspection, and that the treated water of waste water of permeate water wash can be generated into reusable clear water, and clear water The feature is that almost the entire amount can be reused (recycled). Further, since no settling tank, agglomeration tank, etc. are provided, there are practical benefits such as ease of processing / work / maintenance and cost reduction, or speeding up of work / maintenance.

Claims (7)

浸透探傷検査で発生する浸透液水洗の排水(廃液)処理装置であり、
浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)と活性炭を備えた反応槽で処理した第1処理水を、配管を介して接続した精密濾過装置(MF膜装置)に導き、このMF膜装置で分離した第2処理水を、配管を介して活性炭塔に導くとともに、当該MF膜装置で分離した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く構成とし、
前記活性炭塔において、前記第2処理水に硫酸、並びに苛性ソーダを添加した後に、当該活性炭塔には、配管を介して逆浸透膜処理水槽を接続するとともに、この活性炭塔で処理した第4処理水を、当該逆浸透膜処理水槽を経由して逆浸透膜濾過装置(RO膜装置)に導く構成であって、当該RO膜装置で生成した清澄水を、リサイクル可能、又は放流可能とし、
前記MF濃縮水槽に導いた高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を可能とする構成とした浸透探傷検査で発生する浸透液水洗の排水処理装置。
It is a drainage (waste liquid) treatment device for osmotic water washing generated by osmotic flaw detection,
The first treated water treated in the drainage tank of osmotic water washing (raw water tank storing the effluent of osmotic water washing) and the reaction tank equipped with activated carbon is led to a microfiltration device (MF membrane device) connected via a pipe. The second treated water separated by the MF membrane device is guided to the activated carbon tower via a pipe, and the high-concentration fifth treated water separated by the MF membrane device is led to the MF concentrated water tank via the pipe. age,
In the activated carbon tower, after adding sulfuric acid and caustic soda to the second treated water, a reverse osmosis membrane treated water tank is connected to the activated carbon tower via a pipe, and the fourth treated water treated in the activated carbon tower. Is configured to guide the reverse osmosis membrane filtration device (RO membrane device) via the reverse osmosis membrane treated water tank, and the clarified water generated by the RO membrane device can be recycled or discharged.
Waste water treatment device for osmotic water washing generated by osmotic flaw detection, wherein the high-concentration fifth treated water led to the MF concentrated water tank is guided to a dehydrator through a pipe to reduce the volume of sludge. .
前記RO膜装置は、合成高分子系のスパイラル型エレメントでなる逆浸透膜を用いて、脱塩を行い、塩分濃度低下を可能とする構成とした請求項1に記載の浸透探傷検査で発生する浸透液水洗の排水処理装置。   The RO membrane apparatus is generated by a penetrant inspection according to claim 1, wherein a reverse osmosis membrane made of a synthetic polymer spiral element is used to perform desalting to reduce a salt concentration. Drainage treatment equipment for osmotic water washing. 前記MF膜装置は、ポリフッ化ビニリデン(PolyVinylidene DiFluoride、PVDF)を素材とする公称孔径0.1〜0.03μmの中空糸膜モジュールを用いて、前記活性炭を回収する構成とした請求項1又は2に記載の浸透探傷検査で発生する浸透液水洗の排水処理装置。   The said MF membrane apparatus is set as the structure which collect | recovers the said activated carbons using the hollow fiber membrane module with a nominal hole diameter of 0.1-0.03 micrometer made from polyvinylidene fluoride (PolyVinylidene DiFluoride, PVDF) as a raw material. Wastewater treatment equipment for osmotic water washing generated by the penetrant inspection described in 1. 前記反応槽への活性炭の搬入は、スクリューフィーダを介して、間欠的に自動供給する構成とした請求項1から3のいずれか一項に記載の浸透探傷検査で発生する浸透液水洗の排水処理装置。   The activated carbon is carried into the reaction vessel by intermittent automatic supply via a screw feeder. 4. Drainage treatment of osmotic water washing generated by osmotic flaw detection according to any one of claims 1 to 3. apparatus. 浸透探傷検査で発生する浸透液水洗の排水(廃液)処理方法であり、
この浸透液水洗の排水を、ポンプと配管とで浸透液水洗の排水槽(浸透液水洗の排水を貯留した原水槽)に導く第1工程と、
この浸透液水洗の排水槽に貯留された浸透液水洗の排水に含まれる有機物、界面活性剤、又は蛍光液、現像(剤)を、反応槽の活性炭に吸着して、第1処理水を生成する第2工程と、
この反応槽に接続した精密濾過装置(MF膜装置)に導き、MF膜装置で、前記第1処理水(又は、浸透液水洗の排水)にある前記有機物、前記界面活性剤、又は前記蛍光液、現像(剤)を吸着した活性炭を回収するとともに、雑菌を濾過処理して、第2処理水を生成する第3工程と、
このMF膜装置で分離処理した第2処理水を、配管を介してMF処理水槽に送り、硫酸並びに苛性ソーダを添加し、第3処理水を生成する第4工程と、
このMF処理水槽に接続した活性炭塔に導き、前記有機物、前記界面活性剤、又は前記蛍光液、現像(剤)を含まない第4処理水を生成する第5工程と、
また、前記MF膜装置で分離処理した高濃度の第5処理水を、配管を介してMF濃縮水槽に導く第6工程と、
前記活性炭塔で分離処理した第4処理水を、配管を介して逆浸透膜処理水槽に導く第7工程と、
この逆浸透膜処理水槽を、配管を介して逆浸透膜濾過装置(RO膜装置)に接続し、当該RO膜装置で前記第4処理水を、分離処理して生成された清澄水を、リサイクル、又は放流する第8・9工程と、
前記MF濃縮水槽に導いた前記高濃度の第5処理水を、配管を介して脱水機に導き、スラッジの減容化を達成する第10工程と、
でなる浸透探傷検査で発生する浸透液水洗の排水処理方法。
It is a drainage (waste liquid) treatment method for osmotic water washing that occurs in osmotic inspection.
A first step of guiding the drainage of the osmotic water washing to the drainage tank of the osmotic water washing (raw water tank storing the drainage of the osmotic water washing) with a pump and a pipe;
The organic matter, surfactant, or fluorescent solution and development (agent) contained in the drainage of the osmotic water washing stored in the osmotic water washing drainage tank are adsorbed to the activated carbon in the reaction tank to generate the first treated water. A second step of
The organic substance, the surfactant, or the fluorescent liquid in the first treated water (or drainage of the osmotic water washing) is guided to a microfiltration device (MF membrane device) connected to the reaction tank. , A third step of collecting the activated carbon adsorbing the development (agent) and filtering the bacteria to produce second treated water;
A fourth step in which the second treated water separated by the MF membrane device is sent to an MF treated water tank via a pipe, sulfuric acid and caustic soda are added, and third treated water is generated;
A fifth step that leads to an activated carbon tower connected to the MF treated water tank, and generates a fourth treated water that does not contain the organic matter, the surfactant, or the fluorescent solution, and development (agent);
A sixth step of guiding the high-concentration fifth treated water separated by the MF membrane device to an MF concentrated water tank via a pipe;
A seventh step of guiding the fourth treated water separated by the activated carbon tower to a reverse osmosis membrane treated water tank via a pipe;
This reverse osmosis membrane treated water tank is connected to a reverse osmosis membrane filtration device (RO membrane device) via a pipe, and the fourth treated water is separated by the RO membrane device, and the clarified water produced by recycling is recycled. Or the eighth and ninth steps to be discharged;
A tenth step of guiding the high-concentration fifth treated water led to the MF concentrated water tank to a dehydrator through a pipe to achieve volume reduction of sludge;
A drainage treatment method for osmotic water washing that occurs in penetration testing.
前記MF濃縮水槽の第5処理水に、濾過助剤を添加し、前記脱水機の濾布の脱水性を確保可能とする構成とした請求項5に記載の浸透探傷検査で発生する浸透液水洗の排水処理方法。   The osmotic water washing generated in the penetrant inspection according to claim 5, wherein a filter aid is added to the fifth treated water of the MF concentrated water tank so that the dehydrating property of the filter cloth of the dehydrator can be secured. Wastewater treatment method. 前記RO膜装置で前記第4処理水を分離処理して生成した清澄水を、RO透過水槽に貯留するとともに、分離処理した濃縮水を、RO濃縮水槽に貯留する構成とし、
前記清澄水を、リサイクルし、また、濃縮水を、さらに排水処理する構成とした請求項5に記載の浸透探傷検査で発生する浸透液水洗の排水処理方法。
The clarified water produced by separating the fourth treated water in the RO membrane device is stored in the RO permeated water tank, and the separated concentrated water is stored in the RO concentrated water tank.
The drainage processing method of the osmotic water washing which generate | occur | produces by the osmosis | permeation flaw test | inspection of Claim 5 made into the structure which recycles the said clarified water and further drained the concentrated water.
JP2014186818A 2014-09-12 2014-09-12 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection Active JP5852199B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014186818A JP5852199B1 (en) 2014-09-12 2014-09-12 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014186818A JP5852199B1 (en) 2014-09-12 2014-09-12 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection

Publications (2)

Publication Number Publication Date
JP5852199B1 JP5852199B1 (en) 2016-02-03
JP2016059829A true JP2016059829A (en) 2016-04-25

Family

ID=55238005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014186818A Active JP5852199B1 (en) 2014-09-12 2014-09-12 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection

Country Status (1)

Country Link
JP (1) JP5852199B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745980A (en) * 2016-12-15 2017-05-31 北京锦龙科技有限公司 A kind of multi-cavity type integration concentrated water treatment reactor
JP6468384B1 (en) * 2018-03-14 2019-02-13 栗田工業株式会社 Water treatment equipment
CN108593671A (en) * 2018-07-05 2018-09-28 江苏德意高航空智能装备股份有限公司 Environment-friendly type no touch fluorescent penetrant spraying system
CN112897720A (en) * 2021-01-19 2021-06-04 中煤科工集团重庆研究院有限公司 Mining drilling flushing fluid slag-water separation and wastewater recycling system and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5684683A (en) * 1979-12-07 1981-07-10 Kawasaki Steel Corp Treatment of color check waste liquid of steel material
JPS5721996A (en) * 1980-07-11 1982-02-04 Ebara Infilco Co Ltd Treating method for waste liquid containing reducible substance
JPS62140998U (en) * 1986-02-28 1987-09-05
JPH0975910A (en) * 1995-09-18 1997-03-25 Kurita Water Ind Ltd Recovering and regenerating method of waste water
JPH10274628A (en) * 1997-03-31 1998-10-13 Eishin Kagaku Kk Method for treating liquid penetrant inspection waste water
JP2007229605A (en) * 2006-02-28 2007-09-13 National Institute Of Advanced Industrial & Technology Method and system for recovering dyestuff for nondestructive test of ceramics
JP5050605B2 (en) * 2007-03-27 2012-10-17 栗田工業株式会社 Organic substance processing method and organic substance processing apparatus
JP5576208B2 (en) * 2010-08-11 2014-08-20 株式会社アイ・エヌ・シー・エンジニアリング Waste water treatment apparatus and waste water treatment method
JP5825807B2 (en) * 2011-03-14 2015-12-02 株式会社アイ・エヌ・シー・エンジニアリング Waste water treatment apparatus and waste water treatment method

Also Published As

Publication number Publication date
JP5852199B1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP5852199B1 (en) Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection
JP5756241B1 (en) Wastewater treatment equipment for treated water as a substitute for hexavalent chromium and its method
CN106103349A (en) Method for treating water
CN101219836A (en) System and technique for processing oily wastewater with high saline salinity
CN105645625A (en) High-efficiency high-recovery-rate reverse osmosis dense water recycling treatment method and system
CN105923704A (en) Forward osmosis draw fluid recycling method, wastewater treatment method and treatment device
JPWO2011158559A1 (en) Membrane module cleaning method
JP2016128142A (en) Rejection rate improving method of semipermeable membrane
CN101525191B (en) Coking wastewater membrane method treating process
WO2013047466A1 (en) Membrane module cleaning method
KR101973737B1 (en) Method for production of sludge dewatering cake in ceramic membrane filtration process using submerged membrane
JP5904123B2 (en) Method and apparatus for cleaning and separating mixed materials
JP2011104504A (en) Washing method of water treatment facility
JP2011041907A (en) Water treatment system
CN205892904U (en) A integration equipment for automaticallying process sewage
KR101791307B1 (en) Apparatus for purifying water and method for purifying water using the same
JP2013034938A (en) Method for washing membrane module
KR100550976B1 (en) Treatment system and method for water discharged from a sewage treatment works
CN204550172U (en) A kind of pH regulator that utilizes improves the system reclaiming waste emulsion ultrafiltration efficiency
CN205999228U (en) Garbage percolation liquid treating system
CN106673246A (en) Waste liquid treatment and direct discharging system
JP2017176951A (en) Method for cleaning separation membrane module
JP2011062576A (en) Method and system for reusing alkaline electrolytic water
CN205635173U (en) Wastewater treatment device
JPH06170365A (en) Method for purifying water in tap water system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151203

R150 Certificate of patent or registration of utility model

Ref document number: 5852199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250