JP2016058607A - Radio wave transmission system - Google Patents

Radio wave transmission system Download PDF

Info

Publication number
JP2016058607A
JP2016058607A JP2014185011A JP2014185011A JP2016058607A JP 2016058607 A JP2016058607 A JP 2016058607A JP 2014185011 A JP2014185011 A JP 2014185011A JP 2014185011 A JP2014185011 A JP 2014185011A JP 2016058607 A JP2016058607 A JP 2016058607A
Authority
JP
Japan
Prior art keywords
refrigerant
radio wave
temperature
path
wave transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014185011A
Other languages
Japanese (ja)
Other versions
JP6293625B2 (en
Inventor
研介 青木
Kensuke Aoki
研介 青木
亮介 八木
Ryosuke Yagi
亮介 八木
久野 勝美
Katsumi Kuno
勝美 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014185011A priority Critical patent/JP6293625B2/en
Priority to PCT/JP2015/065913 priority patent/WO2016038947A1/en
Publication of JP2016058607A publication Critical patent/JP2016058607A/en
Application granted granted Critical
Publication of JP6293625B2 publication Critical patent/JP6293625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio wave transmission system capable of preventing malfunction.SOLUTION: A radio wave transmission system according to an embodiment includes: a radio wave transmitter; a cooler; a coolant path; a pump; and a heat exchange unit. The radio wave transmitter is installed indoors and is to be cooled by a coolant. The cooler is installed outdoors and is for cooling the coolant. The radio transmitter and the cooler are connected through the coolant path in which the coolant flows. The pump is installed on the coolant path and is for circulating the coolant. The heat exchange unit includes a heat storage member and is for performing heat exchange between the coolant and the heat storage member. A first coolant path having the heat exchange unit and a second coolant path bypassing the heat exchange unit branch from the coolant path at an indoor point downstream of the cooler in a coolant's flow direction. The first coolant path and the second coolant path are joined at a point upstream of the radio wave transmitter in the flow direction.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、電波送信システムに関する。   Embodiments described herein relate generally to a radio wave transmission system.

従来、例えばテレビ放送用の電波送信機を冷却水等の冷媒により冷却する、水冷方式の電波送信システムが知られている。水冷方式の電波送信システムは、電波送信機と、冷却器と、電波送信機を冷却する冷媒と、冷媒が通流する配管と、冷媒を循環させるポンプと、を備えている。一般に、電波送信機は屋内に設置され、冷却器は屋外に設置される。   Conventionally, for example, a water-cooled radio wave transmission system that cools a radio wave transmitter for television broadcasting using a coolant such as cooling water is known. The water-cooled radio wave transmission system includes a radio wave transmitter, a cooler, a refrigerant that cools the radio wave transmitter, a pipe through which the refrigerant flows, and a pump that circulates the refrigerant. Generally, the radio wave transmitter is installed indoors and the cooler is installed outdoors.

ところで、冬季など屋外の温度が極端に低いときに電波送信システムを起動させて冷媒を循環させると、屋外の配管内で低温となった冷媒が屋内の電波送信機に流入する。このとき、電波送信システムは、電波送信機の急激な温度低下による結露により、動作不良が発生する可能性があった。   By the way, when the radio wave transmission system is activated and the refrigerant is circulated when the outdoor temperature is extremely low such as in winter, the refrigerant having a low temperature in the outdoor pipe flows into the indoor radio wave transmitter. At this time, the radio wave transmission system may malfunction due to condensation due to a rapid temperature drop of the radio wave transmitter.

特開平5−136587号公報JP-A-5-136687 特表2011−522408号公報Special table 2011-522408 gazette 特開2013−213598号公報JP 2013-213598 A

本発明が解決しようとする課題は、動作不良を防止できる電波送信システムを提供することである。   The problem to be solved by the present invention is to provide a radio wave transmission system capable of preventing malfunction.

実施形態の電波送信システムは、電波送信機と、冷却器と、冷媒経路と、ポンプと、熱交換部と、を持つ。電波送信機は、屋内に設置され、冷媒により冷却される。冷却器は、屋外に設置され、冷媒を冷却する。冷媒経路は、電波送信機と冷却器とを接続し、冷媒が通流する。ポンプは、冷媒経路に設けられ、冷媒を循環させる。熱交換部は、蓄熱部材を有し、冷媒と蓄熱部材との熱交換を行う。冷媒経路は、屋内であって冷却器よりも冷媒の通流方向の下流側において、第一冷媒経路と、第二冷媒経路と、に分岐される。第一冷媒経路は、熱交換部を持つ。第二冷媒経路は、熱交換部をバイパスする。第一冷媒経路と第二冷媒経路とは、電波送信機よりも通流方向の上流側において合流される。   The radio wave transmission system of the embodiment includes a radio wave transmitter, a cooler, a refrigerant path, a pump, and a heat exchange unit. The radio wave transmitter is installed indoors and is cooled by a refrigerant. The cooler is installed outdoors and cools the refrigerant. The refrigerant path connects the radio wave transmitter and the cooler, and the refrigerant flows therethrough. The pump is provided in the refrigerant path and circulates the refrigerant. A heat exchange part has a heat storage member and performs heat exchange with a refrigerant and a heat storage member. The refrigerant path is branched into a first refrigerant path and a second refrigerant path indoors and downstream of the cooler in the flow direction of the refrigerant. The first refrigerant path has a heat exchange part. The second refrigerant path bypasses the heat exchange unit. The first refrigerant path and the second refrigerant path are merged upstream of the radio wave transmitter in the flow direction.

実施形態の電波送信システムを示すブロック図。The block diagram which shows the electromagnetic wave transmission system of embodiment.

以下、実施形態の電波送信システムを、図面を参照して説明する。
図1は、実施形態の電波送信システム1を示すブロック図である。なお、図1において、二点鎖線により囲まれた領域は屋内を示しており、二点鎖線により囲まれた領域の外側は屋外を示している。
図1に示すように、電波送信システム1は、電波送信機2と、冷却器3と、冷媒経路4と、ポンプ5と、熱交換部6と、制御ユニット7と、を備えている。
Hereinafter, a radio wave transmission system according to an embodiment will be described with reference to the drawings.
FIG. 1 is a block diagram illustrating a radio wave transmission system 1 according to an embodiment. In FIG. 1, an area surrounded by a two-dot chain line indicates indoors, and an outside of the area surrounded by the two-dot chain lines indicates outdoor.
As shown in FIG. 1, the radio wave transmission system 1 includes a radio wave transmitter 2, a cooler 3, a refrigerant path 4, a pump 5, a heat exchange unit 6, and a control unit 7.

電波送信機2は、屋内に設置される。電波送信機2は、例えばテレビ放送用の電波を送信する。電波送信機2は、トランジスタやダイオード等の高周波用半導体デバイスが実装された基板21を有している。基板21に実装された高周波用半導体デバイスは、電波送信機2の動作時に発熱する。発熱した電波送信機2は、内部を通流する不凍液等の冷媒により冷却される。電波送信機2の内部には、後述の制御ユニット7(請求項の「制御部」に相当。)が設けられている。   The radio wave transmitter 2 is installed indoors. The radio wave transmitter 2 transmits radio waves for television broadcasting, for example. The radio wave transmitter 2 has a substrate 21 on which high-frequency semiconductor devices such as transistors and diodes are mounted. The high-frequency semiconductor device mounted on the substrate 21 generates heat when the radio wave transmitter 2 operates. The generated radio wave transmitter 2 is cooled by a refrigerant such as antifreeze flowing through the inside. Inside the radio wave transmitter 2, a control unit 7 (corresponding to a “control unit” in the claims), which will be described later, is provided.

冷却器3は、屋外に設置される。冷却器3は、電波送信機2の熱を吸収した冷媒の放熱を行うためのものであって、例えば冷却ファンを備えたラジエータ等が採用される。
冷媒経路4は、例えばパイプ状の部材により形成されており、内部を冷媒が通流可能となっている。冷媒経路4は、全体として環状に形成されており、電波送信機2と冷却器3とを接続している。なお、以下の説明では、冷媒経路4における冷媒の通流方向の上流側を単に「上流側」といい、冷媒経路4における冷媒の通流方向の下流側を単に「下流側」ということがある。
The cooler 3 is installed outdoors. The cooler 3 is for radiating heat of the refrigerant that has absorbed the heat of the radio wave transmitter 2, and for example, a radiator having a cooling fan is employed.
The refrigerant path 4 is formed by, for example, a pipe-like member, and the refrigerant can flow therethrough. The refrigerant path 4 is formed in an annular shape as a whole, and connects the radio wave transmitter 2 and the cooler 3. In the following description, the upstream side in the refrigerant flow direction in the refrigerant path 4 may be simply referred to as “upstream side”, and the downstream side in the refrigerant flow direction in the refrigerant path 4 may be simply referred to as “downstream side”. .

冷媒経路4は、第一接続路41と、第二接続路42とを備えている。
第一接続路41は、電波送信機2と冷却器3とを接続しており、電波送信機2から排出された冷媒を冷却器3に流入させる。第一接続路41のうち、電波送信機2との接続部41aは、室内に配置される。第一接続路41のうち、冷却器3との接続部41bは、室外に配置される。
The refrigerant path 4 includes a first connection path 41 and a second connection path 42.
The first connection path 41 connects the radio wave transmitter 2 and the cooler 3, and allows the refrigerant discharged from the radio wave transmitter 2 to flow into the cooler 3. Of the first connection path 41, the connection part 41a with the radio wave transmitter 2 is arranged indoors. The connection part 41b with the cooler 3 among the 1st connection paths 41 is arrange | positioned outdoors.

第二接続路42は、電波送信機2と冷却器3とを接続しており、冷却器3から排出された冷媒を電波送信機2に流入させる。
第二接続路42は、冷却器3よりも下流側において、分岐部43により第一冷媒経路45と第二冷媒経路46とにより分岐される。
第一冷媒経路45は、後述の熱交換部6を有する。
第二冷媒経路46は、第一冷媒経路45を挟んで電波送信機2および冷却器3とは反対側に設けられている。第二冷媒経路46は、第一冷媒経路45および熱交換部6を迂回(バイパス)するように設けられている。
The second connection path 42 connects the radio wave transmitter 2 and the cooler 3 and allows the refrigerant discharged from the cooler 3 to flow into the radio wave transmitter 2.
The second connection path 42 is branched by the first refrigerant path 45 and the second refrigerant path 46 by the branch portion 43 on the downstream side of the cooler 3.
The first refrigerant path 45 has a heat exchanging unit 6 described later.
The second refrigerant path 46 is provided on the opposite side of the radio wave transmitter 2 and the cooler 3 across the first refrigerant path 45. The second refrigerant path 46 is provided so as to bypass (bypass) the first refrigerant path 45 and the heat exchange unit 6.

冷媒は、分岐部43により所定の比率に分割されて、第一冷媒経路45と第二冷媒経路46とを通流する。分岐部43による冷媒の分割比率は、例えば分岐部43における第一冷媒経路45の断面積と、第二冷媒経路46の断面積との比率により決定される。
また、冷媒は、第一冷媒経路45と第二冷媒経路46とを通流した後、合流部44により所定の比率で混合されて電波送信機2に流入する。合流部44による冷媒の混合比率は、例えば合流部44における第一冷媒経路45の断面積と、第二冷媒経路46の断面積との比率により決定される。
The refrigerant is divided into a predetermined ratio by the branch part 43 and flows through the first refrigerant path 45 and the second refrigerant path 46. The division ratio of the refrigerant by the branch part 43 is determined by, for example, the ratio of the cross-sectional area of the first refrigerant path 45 and the cross-sectional area of the second refrigerant path 46 in the branch part 43.
In addition, the refrigerant flows through the first refrigerant path 45 and the second refrigerant path 46, and then is mixed at a predetermined ratio by the merging portion 44 and flows into the radio wave transmitter 2. The mixing ratio of the refrigerant by the merging portion 44 is determined, for example, by the ratio of the cross-sectional area of the first refrigerant path 45 and the cross-sectional area of the second refrigerant path 46 in the merging portion 44.

第二接続路42のうち、冷却器3との接続部42aは、屋外に配置される。第二接続路42における冷却器3との接続部42aには、屋外冷媒温度検出センサ31(請求項の「屋外冷媒温度検出手段」に相当。)が設けられている。屋外冷媒温度検出センサ31は、冷却器3よりも下流側であって、屋外における第二接続路42内の冷媒の温度を検出する。   The connection part 42a with the cooler 3 among the 2nd connection paths 42 is arrange | positioned outdoors. An outdoor refrigerant temperature detection sensor 31 (corresponding to “outdoor refrigerant temperature detection means” in the claims) is provided at a connection portion 42 a with the cooler 3 in the second connection path 42. The outdoor refrigerant temperature detection sensor 31 is downstream of the cooler 3 and detects the temperature of the refrigerant in the second connection path 42 outdoors.

第二接続路42のうち、分岐部43、第一冷媒経路45、第二冷媒経路46、合流部44および電波送信機2との接続部42bは、屋内に配置される。
電波送信機2内であって、基板21よりも冷媒の通流方向の下流側の部分には、基板部冷媒温度検出センサ23(請求項の「基板温度検出手段」に相当。)が設けられている。本実施形態の基板部冷媒温度検出センサ23は、例えば電波送信機2内において、基板21よりも下流側における冷媒経路4の配管内に設けられている。

基板部冷媒温度検出センサ23は、電波送信機2における冷媒の出口から流出する直前の冷媒の温度Tin(以下、「基板部冷媒温度Tin」という。)を検出する。
ここで、基板21の温度をT(以下、「基板温度T」という。)とし、電波送信機2に流入する直前の冷媒の温度をT(以下、「流入冷媒温度T」という。)としたとき、基板部冷媒温度Tin、基板温度Tおよび流入冷媒温度Tは、電波送信システム1の起動時および起動直後において、略同一となっている。電波送信システム1は、基板部冷媒温度Tinに応じて、結露を引き起こす要因となる流入冷媒温度Tおよび基板温度Tを推定して基板21における結露の発生を抑制し、冷媒の流量を制御する。なお、基板温度Tは、電波送信システム1の起動時および起動直後において流入冷媒温度Tと略同一であるが、電波送信システム1の起動後、措定時間が経過すると、高周波用半導体デバイス等の発熱により漸次上昇する。
Of the second connection path 42, the branch part 43, the first refrigerant path 45, the second refrigerant path 46, the joining part 44, and the connection part 42 b with the radio wave transmitter 2 are disposed indoors.
A substrate portion refrigerant temperature detection sensor 23 (corresponding to “substrate temperature detection means” in the claims) is provided in a portion of the radio wave transmitter 2 downstream of the substrate 21 in the flow direction of the refrigerant. ing. The board | substrate part refrigerant | coolant temperature detection sensor 23 of this embodiment is provided in piping of the refrigerant | coolant path | route 4 in the radio | wireless transmitter 2 in the downstream from the board | substrate 21, for example.

The substrate part refrigerant temperature detection sensor 23 detects the temperature T in of the refrigerant immediately before flowing out from the refrigerant outlet in the radio wave transmitter 2 (hereinafter referred to as “substrate part refrigerant temperature T in ”).
Here, the temperature of the substrate 21 is T s (hereinafter referred to as “substrate temperature T s ”), and the temperature of the refrigerant immediately before flowing into the radio wave transmitter 2 is referred to as T r (hereinafter referred to as “inflow refrigerant temperature T r ”). .)), The substrate part refrigerant temperature T in , the substrate temperature T s, and the inflow refrigerant temperature Tr are substantially the same when the radio wave transmission system 1 is activated and immediately after activation. The radio wave transmission system 1 estimates the inflow refrigerant temperature Tr and the substrate temperature T s that cause dew condensation in accordance with the substrate part refrigerant temperature Tin, suppresses the occurrence of dew condensation on the substrate 21, and reduces the refrigerant flow rate. Control. The substrate temperature T s is substantially the same as the inflow refrigerant temperature Tr at the time of starting and immediately after the start of the radio wave transmission system 1, but when the set time elapses after the radio wave transmission system 1 is started, the high-frequency semiconductor device or the like The temperature gradually rises due to heat generation.

ポンプ5は、冷媒経路4の第二冷媒経路46であって、合流部44と電波送信機2との間に設けられている。ポンプ5は、例えば不図示のインペラと、インペラを回転させる不図示のモータとを備えている。モータとしては、例えばブラシレスモータが好適である。
ポンプ5は、インペラが回転することにより、吸入口5aから冷媒を吸入し、排出口5bから冷媒を排出する。冷媒は、ポンプ5によって圧送されて、所定の流量で冷媒経路4内を循環する。
The pump 5 is a second refrigerant path 46 of the refrigerant path 4, and is provided between the junction 44 and the radio wave transmitter 2. The pump 5 includes, for example, an impeller (not shown) and a motor (not shown) that rotates the impeller. For example, a brushless motor is suitable as the motor.
As the impeller rotates, the pump 5 sucks the refrigerant from the suction port 5a and discharges the refrigerant from the discharge port 5b. The refrigerant is pumped by the pump 5 and circulates in the refrigerant path 4 at a predetermined flow rate.

熱交換部6は、第一冷媒経路45に設けられている。熱交換部6は、冷媒が一時的に貯留される貯留部6aと、貯留部6aを覆う蓄熱部材61と、蓄熱部材61を覆う断熱部材62と、により形成されている。
貯留部6aは、壁面により囲われて形成されており、所定の容積を有する。貯留部6aは、冷媒を一時的に貯留する。
蓄熱部材61は、貯留部6aの壁面の表面に取り付けられる。蓄熱部材61の材料としては、例えば無機水和物系の材料である酢酸ナトリウム水和物や硫酸ナトリウム水和物、有機物系の材料であるパラフィン等が好適に用いられる。
The heat exchange unit 6 is provided in the first refrigerant path 45. The heat exchange unit 6 is formed by a storage unit 6 a in which refrigerant is temporarily stored, a heat storage member 61 that covers the storage unit 6 a, and a heat insulating member 62 that covers the heat storage member 61.
The reservoir 6a is surrounded by a wall surface and has a predetermined volume. The storage unit 6a temporarily stores the refrigerant.
The heat storage member 61 is attached to the surface of the wall surface of the storage part 6a. As the material of the heat storage member 61, for example, sodium acetate hydrate or sodium sulfate hydrate which is an inorganic hydrate material, paraffin which is an organic material, or the like is preferably used.

蓄熱部材61は、固液相変化にともない潜熱を放出および貯留する。具体的に蓄熱部材61は、流入した冷媒により冷却され、所定温度まで冷媒の温度が低下したときに、液体から固体に相変化するとともに、潜熱を放出する。また、蓄熱部材61は、放出された潜熱を冷媒が吸収し、所定温度よりも冷媒の温度が上昇したとき、固体から液体に相変化するとともに、潜熱を貯留する。
断熱部材62は、蓄熱部材61の表面に取り付けられる。断熱部材62は、例えばウレタンやポリスチレン等を材料とする発泡系断熱材料が好適に用いられる。
The heat storage member 61 releases and stores latent heat as the solid-liquid phase changes. Specifically, the heat storage member 61 is cooled by the refrigerant that has flowed in, and changes its phase from liquid to solid and releases latent heat when the temperature of the refrigerant drops to a predetermined temperature. The heat storage member 61 absorbs the released latent heat, and when the temperature of the refrigerant rises above a predetermined temperature, the heat storage member 61 changes from a solid to a liquid and stores latent heat.
The heat insulating member 62 is attached to the surface of the heat storage member 61. As the heat insulating member 62, for example, a foam heat insulating material made of urethane, polystyrene, or the like is preferably used.

熱交換部6の内部には、熱交換部冷媒温度検出センサ63(請求項の「熱交換部冷媒温度検出手段」に相当。)が設けられている。熱交換部冷媒温度検出センサ63は、熱交換部6の内部に貯留された冷媒の温度を検出するセンサである。熱交換部冷媒温度検出センサ63としては、例えば熱電対やサーミスタ等が好適である。熱交換部冷媒温度検出センサ63は、制御ユニット7と電気的に接続されており、検出した温度の情報を制御ユニット7に対して電気信号として伝達する。   Inside the heat exchanging section 6, a heat exchanging section refrigerant temperature detecting sensor 63 (corresponding to “heat exchanging section refrigerant temperature detecting means”) is provided. The heat exchange part refrigerant temperature detection sensor 63 is a sensor that detects the temperature of the refrigerant stored in the heat exchange part 6. As the heat exchange part refrigerant temperature detection sensor 63, for example, a thermocouple or a thermistor is suitable. The heat exchanger refrigerant temperature detection sensor 63 is electrically connected to the control unit 7 and transmits information on the detected temperature to the control unit 7 as an electrical signal.

制御ユニット7は、電波送信機2の内部に設けられている。制御ユニット7は、屋外冷媒温度検出センサ31や基板部冷媒温度検出センサ23、熱交換部冷媒温度検出センサ63等により検出された各温度の情報を基に、ポンプ5のインペラ(すなわちモータ)の回転数を制御することにより冷媒の流量を制御する。制御ユニット7は、例えばモータ駆動用ドライバのスイッチング周波数を変更することにより、モータの回転数および冷媒の流量を制御する。   The control unit 7 is provided inside the radio wave transmitter 2. The control unit 7 controls the impeller (that is, the motor) of the pump 5 based on information on each temperature detected by the outdoor refrigerant temperature detection sensor 31, the substrate part refrigerant temperature detection sensor 23, the heat exchange part refrigerant temperature detection sensor 63, and the like. The flow rate of the refrigerant is controlled by controlling the rotation speed. The control unit 7 controls the rotational speed of the motor and the flow rate of the refrigerant, for example, by changing the switching frequency of the driver for driving the motor.

電波送信システム1は、起動後に冷媒の流量制御(以下、単に「流量制御」という。)を行う。まず、制御ユニット7は、屋外冷媒温度検出センサ31により検出された屋外冷媒温度Tおよび熱交換部冷媒温度検出センサ63により検出された熱交換部冷媒温度Tmixが、基板部冷媒温度Tinに対して、それぞれ所定の判定温度以上か否かを判定する。判定温度は、基板21に結露が発生する条件に対応して決定される。基板部冷媒温度Tinに対する、屋外冷媒温度Tおよび熱交換部冷媒温度Tmixの判定温度は、例えばデータテーブル化されている。 The radio wave transmission system 1 performs refrigerant flow rate control (hereinafter simply referred to as “flow rate control”) after activation. First, the control unit 7, an outdoor refrigerant temperature detected by the detection sensor 31 the outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature detected by the detection sensor 63 heat exchange unit refrigerant temperature T mix is, the substrate unit refrigerant temperature T in On the other hand, it is determined whether or not the temperature is higher than a predetermined determination temperature. The determination temperature is determined in accordance with a condition in which condensation occurs on the substrate 21. With respect to the substrate unit refrigerant temperature T in, determining the temperature of the outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature T mix are, for example, a data table.

屋外冷媒温度Tおよび熱交換部冷媒温度Tmixが、それぞれ判定温度よりも低い場合には、電波送信機2に流入する冷媒の温度(すなわち流入冷媒温度T)が下限温度以下であると考えられる。電波送信機2に下限温度以下の冷媒が急激に流入すると、基板21には、結露が発生するおそれがある。したがって、制御ユニット7は、屋外冷媒温度Tおよび熱交換部冷媒温度Tmixがそれぞれ判定温度よりも低い場合には、電波送信機2に流入する冷媒の流量が定格よりも低い所定値となるように、ポンプ5を駆動する。これにより、電波送信システム1は、低温の冷媒が急激に電波送信機2に流入するのを抑制できるので、結露の発生を抑制し、電波送信機2の動作不良を防止できる。 Outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature T mix is lower than the respective determination temperatures, the temperature of the refrigerant flowing into the radio transmitter 2 (i.e. inflow refrigerant temperature T r) is less than the lower limit temperature Conceivable. If a refrigerant having a temperature equal to or lower than the lower limit temperature suddenly flows into the radio wave transmitter 2, condensation may occur on the substrate 21. Accordingly, the control unit 7, when the outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature T mix is lower than the respective determination temperatures, the flow rate of refrigerant flowing into the radio transmitter 2 is a predetermined value lower than the rated Thus, the pump 5 is driven. As a result, the radio wave transmission system 1 can suppress the low-temperature refrigerant from abruptly flowing into the radio wave transmitter 2, thereby suppressing the occurrence of condensation and preventing the radio wave transmitter 2 from malfunctioning.

これに対して、屋外冷媒温度Tおよび熱交換部冷媒温度Tmixが判定温度以上である場合には、冷媒が急激に流入しても、基板21には、結露が発生しない。したがって、屋外冷媒温度Tおよび熱交換部冷媒温度Tmixが判定温度以上である場合、制御ユニット7は、電波送信機2に流入する冷媒の流量が定格となるように、ポンプ5を駆動する。これにより、制御ユニット7は、電波送信システム1の起動に速やかに電波送信機2を冷却できる。 On the contrary, when the outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature T mix is determined temperature or higher, even if the refrigerant is abruptly flows, the substrate 21, dew condensation does not occur. Therefore, if the outdoor refrigerant temperature T o and the heat exchange unit refrigerant temperature T mix is determined temperature or higher, the control unit 7, the flow rate of refrigerant flowing into the radio transmitter 2 so that the rated driving the pump 5 . Thereby, the control unit 7 can cool the radio wave transmitter 2 promptly upon activation of the radio wave transmission system 1.

ここで、電波送信システム1の流量制御において、上述の通り、基板部冷媒温度をTin(K)とする。また、電波送信機2に流入する冷媒の流量をM(kg/s)とする。また、熱交換部冷媒温度をTmix(K)とする。また、合流部44における冷媒の流量に対する第一冷媒経路45からの冷媒の流量の比をαとする。また、屋外冷媒温度をT(K)とする。また、電波送信機2の基板21が結露を発生するときのエネルギ変化量をF(kJ/s)とする。また、冷媒の比熱をC(kJ/kg・K)とする。このとき、制御ユニット7は、次式を満足するように電波送信機2に流入する冷媒の流量Mを制御する。 Here, in the flow rate control of the radio wave transmission system 1, as described above, the substrate portion refrigerant temperature is set to T in (K). Further, the flow rate of the refrigerant flowing into the radio wave transmitter 2 is assumed to be M (kg / s). Moreover, let the heat exchange part refrigerant | coolant temperature be Tmix (K). Further, the ratio of the flow rate of the refrigerant from the first refrigerant path 45 to the flow rate of the refrigerant in the junction 44 is α. Also, let the outdoor refrigerant temperature be T o (K). Further, the amount of energy change when the substrate 21 of the radio wave transmitter 2 generates dew condensation is assumed to be F (kJ / s). The specific heat of the refrigerant is C p (kJ / kg · K). At this time, the control unit 7 controls the flow rate M of the refrigerant flowing into the radio wave transmitter 2 so as to satisfy the following equation.

Figure 2016058607
Figure 2016058607

(1)式により、制御ユニット7は、熱交換部冷媒温度Tmix、屋外冷媒温度Tおよび基板部冷媒温度Tinの相対関係に基づき流量制御を行う。具体的に制御ユニット7は、(1)式においてαTmix+(1−α)Tで表される合流部44における冷媒の温度が、基板部冷媒温度Tinよりも低い場合であって、かつ合流部44における冷媒の温度と基板部冷媒温度Tinとの温度差が大きいほど、冷媒の流量Mが小さくなるように制御する。また、制御ユニット7は、合流部44における冷媒の温度が、基板部冷媒温度Tinよりも低い場合であって、かつ合流部44における冷媒の温度と基板部冷媒温度Tinとの温度差が小さいほど、冷媒の流量Mが大きくなるように制御する。このように、制御ユニット7は、第一冷媒経路45と第二冷媒経路46との合流部44と、電波送信機2における冷媒の出口との間における冷媒の温度に対応して、冷媒の流量Mを制御する。このとき、制御ユニット7は、ポンプ5の回転数を制御することにより、電波送信機2に流入する冷媒の流量Mを制御する。 (1) by equation control unit 7 performs flow control on the basis of the relative relationship of the heat exchange unit refrigerant temperature T mix, outdoor refrigerant temperature T o and the substrate unit refrigerant temperature T in. Specifically, the control unit 7 is a .alpha.T mix + (1-alpha) the temperature of the refrigerant in the merging part 44 represented by T o is lower than the substrate portion the refrigerant temperature T in the equation (1), In addition, the flow rate M of the refrigerant is controlled to be smaller as the temperature difference between the refrigerant temperature in the junction 44 and the substrate refrigerant temperature Tin is larger. Further, the control unit 7, the temperature of the refrigerant in the merging portion 44, the temperature difference between the temperature and the substrate unit refrigerant temperature T in of the refrigerant at a lower than the substrate portion refrigerant temperature T in, and the confluent portion 44 Control is performed so that the flow rate M of the refrigerant increases as the value decreases. Thus, the control unit 7 corresponds to the refrigerant temperature between the junction 44 of the first refrigerant path 45 and the second refrigerant path 46 and the outlet of the refrigerant in the radio wave transmitter 2. M is controlled. At this time, the control unit 7 controls the flow rate M of the refrigerant flowing into the radio wave transmitter 2 by controlling the rotation speed of the pump 5.

本実施形態によれば、電波送信システム1は、熱交換部6を有する第一冷媒経路45と、熱交換部6をバイパスする第二冷媒経路46と、を持つ。また、第一冷媒経路45と第二冷媒経路46とは、電波送信機2よりも上流側において合流部44により合流される。この構成によれば、電波送信システム1の起動時において、屋外で低温となった冷媒と、熱交換部6に貯留されて屋外の冷媒よりも高温となった冷媒とを混合して電波送信機2に流入させることができる。これにより、電波送信システム1は、低温の冷媒が急激に電波送信機2に流入するのを抑制できるので、結露の発生を抑制し、電波送信機2の動作不良を防止できる。   According to the present embodiment, the radio wave transmission system 1 has the first refrigerant path 45 having the heat exchange unit 6 and the second refrigerant path 46 that bypasses the heat exchange unit 6. Further, the first refrigerant path 45 and the second refrigerant path 46 are merged by the merging portion 44 on the upstream side of the radio wave transmitter 2. According to this configuration, when the radio wave transmission system 1 is activated, the radio wave transmitter is obtained by mixing the refrigerant having a low temperature outdoors and the refrigerant stored in the heat exchange unit 6 and having a higher temperature than the outdoor refrigerant. 2 can be introduced. As a result, the radio wave transmission system 1 can suppress the low-temperature refrigerant from abruptly flowing into the radio wave transmitter 2, thereby suppressing the occurrence of condensation and preventing the radio wave transmitter 2 from malfunctioning.

また、制御ユニット7は、ポンプ5の回転数を制御することにより、電波送信機2に流入する冷媒の流量Mを制御できる。したがって、制御ユニット7は、例えばポンプ5のモータ駆動用ドライバのスイッチング周波数を変更することにより、ポンプ5の回転数および電波送信機2に流入する冷媒の流量Mを簡単に制御することができる。   Further, the control unit 7 can control the flow rate M of the refrigerant flowing into the radio wave transmitter 2 by controlling the rotation speed of the pump 5. Therefore, the control unit 7 can easily control the rotational speed of the pump 5 and the flow rate M of the refrigerant flowing into the radio wave transmitter 2 by changing the switching frequency of the motor driving driver of the pump 5, for example.

以上説明した少なくともひとつの実施形態によれば、電波送信システムは、熱交換部を有する第一冷媒経路と、熱交換部をバイパスする第二冷媒経路と、を持つ。また、第一冷媒経路と第二冷媒経路とは、電波送信機よりも上流側において合流部により合流される。この構成によれば、電波送信システムの起動時において、屋外で低温となった冷媒と、熱交換部に貯留されて屋外の冷媒よりも高温となった冷媒とを混合して電波送信機に流入させることができる。これにより、電波送信システムは、低温の冷媒が急激に電波送信機に流入するのを抑制できるので、結露の発生を抑制し、電波送信機の動作不良を防止できる。   According to at least one embodiment described above, the radio wave transmission system has a first refrigerant path having a heat exchange part and a second refrigerant path that bypasses the heat exchange part. Further, the first refrigerant path and the second refrigerant path are merged by the merging portion on the upstream side of the radio wave transmitter. According to this configuration, at the time of starting the radio wave transmission system, the refrigerant having a low temperature outdoors and the refrigerant stored in the heat exchange unit and having a temperature higher than that of the outdoor refrigerant are mixed and flowed into the radio wave transmitter. Can be made. Thus, the radio wave transmission system can suppress the low temperature refrigerant from abruptly flowing into the radio wave transmitter, thereby suppressing the occurrence of condensation and preventing the radio wave transmitter from malfunctioning.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…電波送信システム 2…電波送信機 3…冷却器 4…冷媒経路 5…ポンプ 6…熱交換部 7…制御ユニット(制御部) 21…基板 23…基板部冷媒温度検出センサ(基板温度検出手段) 31…屋外冷媒温度検出センサ(屋外冷媒温度検出手段) 44…合流部 45…第一冷媒経路 46…第二冷媒経路 61…蓄熱部材 63…熱交換部冷媒温度検出センサ(熱交換部冷媒温度検出手段) DESCRIPTION OF SYMBOLS 1 ... Radio wave transmission system 2 ... Radio wave transmitter 3 ... Cooler 4 ... Refrigerant path 5 ... Pump 6 ... Heat exchange part 7 ... Control unit (control part) 21 ... Substrate 23 ... Substrate part refrigerant temperature detection sensor (Substrate temperature detection means) 31 ... Outdoor refrigerant temperature detection sensor (outdoor refrigerant temperature detection means) 44 ... Junction section 45 ... First refrigerant path 46 ... Second refrigerant path 61 ... Heat storage member 63 ... Heat exchange section refrigerant temperature detection sensor (Heat exchange section refrigerant temperature) Detection means)

Claims (5)

屋内に設置され、冷媒により冷却される電波送信機と、
屋外に設置され、前記冷媒を冷却する冷却器と、
前記電波送信機と前記冷却器とを接続し、前記冷媒が通流する冷媒経路と、
前記冷媒経路に設けられ、前記冷媒を循環させるポンプと、
蓄熱部材を有し、前記冷媒と前記蓄熱部材との熱交換を行う熱交換部と、
を備え、
前記冷媒経路は、前記屋内であって前記冷却器よりも前記冷媒の通流方向の下流側において、前記熱交換部を有する第一冷媒経路と、前記熱交換部をバイパスする第二冷媒経路と、に分岐され、
前記第一冷媒経路と前記第二冷媒経路とは、前記電波送信機よりも前記通流方向の上流側において合流される電波送信システム。
A radio wave transmitter installed indoors and cooled by a refrigerant;
A cooler installed outdoors and for cooling the refrigerant;
A refrigerant path that connects the radio wave transmitter and the cooler and through which the refrigerant flows;
A pump provided in the refrigerant path for circulating the refrigerant;
A heat exchange member having a heat storage member, and performing heat exchange between the refrigerant and the heat storage member;
With
The refrigerant path includes a first refrigerant path having the heat exchanging part and a second refrigerant path bypassing the heat exchanging part, which are indoors and downstream of the cooler in the flow direction of the refrigerant. Branch to
The radio wave transmission system in which the first refrigerant path and the second refrigerant path are merged upstream of the radio wave transmitter in the flow direction.
前記第一冷媒経路と前記第二冷媒経路との合流部と前記電波送信機における前記冷媒の出口との間における前記冷媒の温度に対応して、前記冷媒の流量を制御する制御部を備えた請求項1に記載の電波送信システム。   A controller that controls a flow rate of the refrigerant in correspondence with a temperature of the refrigerant between a junction between the first refrigerant path and the second refrigerant path and an outlet of the refrigerant in the radio wave transmitter; The radio wave transmission system according to claim 1. 前記熱交換部内の前記冷媒の温度を検出する熱交換部冷媒温度検出手段と、
前記屋外における前記冷媒の温度を検出する屋外冷媒温度検出手段と、
を備え、
前記制御部は、前記熱交換部冷媒温度検出手段により検出された熱交換部冷媒温度と、前記屋外冷媒温度検出手段により検出された屋外冷媒温度とに対応して、前記冷媒の流量を制御する請求項2に記載の電波送信システム。
Heat exchange part refrigerant temperature detection means for detecting the temperature of the refrigerant in the heat exchange part;
Outdoor refrigerant temperature detection means for detecting the temperature of the refrigerant in the outdoors;
With
The control unit controls the flow rate of the refrigerant according to the heat exchange unit refrigerant temperature detected by the heat exchange unit refrigerant temperature detection unit and the outdoor refrigerant temperature detected by the outdoor refrigerant temperature detection unit. The radio wave transmission system according to claim 2.
前記電波送信機に設けられた基板の温度を検出するための基板温度検出手段を有し、
前記基板温度検出手段により検出された前記電波送信機内の基板部冷媒温度をTinとし、
前記電波送信機に流入する前記冷媒の流量をMとし、
前記熱交換部冷媒温度をTmixとし、
前記合流部における前記冷媒の流量に対する前記第一冷媒経路からの前記冷媒の流量の比をαとし、
前記屋外冷媒温度をTとし、
前記電波送信機の前記基板が結露を発生するときのエネルギ変化量をFとし、
前記冷媒の比熱をCとしたとき、
前記制御部は、
Figure 2016058607
を満足するように、前記電波送信機に流入する前記冷媒の流量を制御する請求項3に記載の電波送信システム。
Having substrate temperature detecting means for detecting the temperature of the substrate provided in the radio wave transmitter;
The substrate portion refrigerant temperature of the radio wave transmitter which is detected by the substrate temperature detecting means and T in,
The flow rate of the refrigerant flowing into the radio wave transmitter is M,
The heat exchange section refrigerant temperature is T mix ,
The ratio of the flow rate of the refrigerant from the first refrigerant path to the flow rate of the refrigerant at the junction is α,
The outdoor refrigerant temperature and T o,
The amount of energy change when the substrate of the radio wave transmitter generates condensation is F,
When the specific heat of the coolant was C p,
The controller is
Figure 2016058607
The radio wave transmission system according to claim 3, wherein the flow rate of the refrigerant flowing into the radio wave transmitter is controlled so as to satisfy the above.
前記制御部は、前記ポンプの回転数を制御することにより、前記冷媒の流量を制御する請求項2から4のいずれか1項に記載の電波送信システム。   5. The radio wave transmission system according to claim 2, wherein the control unit controls a flow rate of the refrigerant by controlling a rotation speed of the pump.
JP2014185011A 2014-09-11 2014-09-11 Radio transmission system Active JP6293625B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014185011A JP6293625B2 (en) 2014-09-11 2014-09-11 Radio transmission system
PCT/JP2015/065913 WO2016038947A1 (en) 2014-09-11 2015-06-02 Radio transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185011A JP6293625B2 (en) 2014-09-11 2014-09-11 Radio transmission system

Publications (2)

Publication Number Publication Date
JP2016058607A true JP2016058607A (en) 2016-04-21
JP6293625B2 JP6293625B2 (en) 2018-03-14

Family

ID=55458710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185011A Active JP6293625B2 (en) 2014-09-11 2014-09-11 Radio transmission system

Country Status (2)

Country Link
JP (1) JP6293625B2 (en)
WO (1) WO2016038947A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121356B (en) * 2019-11-19 2021-06-11 万洲电气股份有限公司 Industrial circulating cooling water energy-saving system and method based on central cooling system
US11509032B2 (en) 2020-10-16 2022-11-22 Raytheon Technologies Corporation Radio frequency waveguide system including control remote node thermal cooling
CN112261841A (en) * 2020-10-23 2021-01-22 中国电子科技集团公司第二十九研究所 Electronic equipment cooling liquid supply system and method based on phase change capsule heat storage and temperature control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280774A (en) * 2000-03-30 2001-10-10 Toshiba Corp Cooling system for electric apparatus
JP2004332988A (en) * 2003-05-06 2004-11-25 Mitsubishi Electric Corp Inverter device
JP2006317144A (en) * 2005-05-13 2006-11-24 Lg Electronics Inc Heat regenerative type cooling system, and operation method therefor
JP2008281290A (en) * 2007-05-11 2008-11-20 Kansai Electric Power Co Inc:The Heat storage system and heat storage type air conditioner using the same
JP2009229014A (en) * 2008-03-24 2009-10-08 Denso Corp Refrigeration cycle device with cold accumulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164178A (en) * 1992-11-27 1994-06-10 Mitsubishi Electric Corp Cooling apparatus
US6215682B1 (en) * 1998-09-18 2001-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor power converter and its applied apparatus
JP2010186821A (en) * 2009-02-10 2010-08-26 Frontiers Co Ltd Liquid-circulating cooling module with cooling material
JP2012174906A (en) * 2011-02-22 2012-09-10 Toshiba Corp Cooling device
JP5771168B2 (en) * 2012-08-28 2015-08-26 株式会社東芝 Heat storage device, air conditioner and heat storage method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280774A (en) * 2000-03-30 2001-10-10 Toshiba Corp Cooling system for electric apparatus
JP2004332988A (en) * 2003-05-06 2004-11-25 Mitsubishi Electric Corp Inverter device
JP2006317144A (en) * 2005-05-13 2006-11-24 Lg Electronics Inc Heat regenerative type cooling system, and operation method therefor
JP2008281290A (en) * 2007-05-11 2008-11-20 Kansai Electric Power Co Inc:The Heat storage system and heat storage type air conditioner using the same
JP2009229014A (en) * 2008-03-24 2009-10-08 Denso Corp Refrigeration cycle device with cold accumulator

Also Published As

Publication number Publication date
WO2016038947A1 (en) 2016-03-17
JP6293625B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
EP1571532A2 (en) Redundant liquid cooling system and electronic apparatus having the same therein
JP6293625B2 (en) Radio transmission system
JP2006224879A (en) Vehicle cooling system
US20160047394A1 (en) Electric water pump with coolant passage
US8505324B2 (en) Independent free cooling system
CN111376672B (en) Thermal management system, method and vehicle
CN108705956A (en) A kind of the electric machine controller temperature control system and method for electric vehicle
US20100058999A1 (en) Cooling system for a vehicle subsystem and a vehicle incorporating such a system
JPWO2019017297A1 (en) Phase change cooling device and phase change cooling method
JP2008128809A (en) Temperature adjustment device for testing
EP3902986A1 (en) Vehicle heat exchange system
RU2015154401A (en) CIRCULATION PUMP UNIT AND HELIOTHERMIC INSTALLATION
WO2016031089A1 (en) Drive system
JP2004332744A (en) Cooling system of hybrid electric car
JP2019163900A (en) Hot water heating device
JP2010173445A (en) Cooling system for hybrid vehicle
JP2013205955A (en) Temperature control system and temperature control method
KR100746763B1 (en) Temperature control system and vehicle seat temperature control system
JP2011162115A (en) Cooling device of hybrid vehicle
US20220354022A1 (en) Systems and methods for cooling a fluid circuit for cooling a rack of servers
JP6896456B2 (en) Cooling system
FR3033035B1 (en) COOLING SYSTEM FOR A CLIMATE CONTROL CIRCUIT OF A MOTOR VEHICLE AND USE OF THE COOLING SYSTEM
EP3162600A1 (en) Vehicle cooling system
JP2015059705A (en) Cooling device
JP2006258069A (en) Cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R150 Certificate of patent or registration of utility model

Ref document number: 6293625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150