JP2016058512A - Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same - Google Patents

Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2016058512A
JP2016058512A JP2014183079A JP2014183079A JP2016058512A JP 2016058512 A JP2016058512 A JP 2016058512A JP 2014183079 A JP2014183079 A JP 2014183079A JP 2014183079 A JP2014183079 A JP 2014183079A JP 2016058512 A JP2016058512 A JP 2016058512A
Authority
JP
Japan
Prior art keywords
gan film
epilayer
composite substrate
gan
film composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014183079A
Other languages
Japanese (ja)
Inventor
史典 三橋
Fuminori Mihashi
史典 三橋
祐介 善積
Yusuke Yoshizumi
祐介 善積
貴司 石塚
Takashi Ishizuka
貴司 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014183079A priority Critical patent/JP2016058512A/en
Publication of JP2016058512A publication Critical patent/JP2016058512A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an epitaxial layer-deposited GaN film composite substrate including an AlGaN epitaxial layer as an epitaxial layer less in occurrence of crack; and a method for manufacturing such a composite substrate.SOLUTION: An epitaxial layer-deposited GaN film composite substrate 2 comprises: a GaN film composite substrate 1 arranged by putting together a support substrate 11 and a GaN film 13; and an InGaN epitaxial layer 22 (0<y<1) and an AlGaN epitaxial layer 24 (0<x<1) which are arranged in turn on the side of the GaN film 13 of the GaN film composite substrate 1. An Al composition ratio x of the AlGaN epitaxial layer 24, and a thickness tμm satisfy the relation given by the following formula (1): x×t≥0.028.SELECTED DRAWING: Figure 1

Description

本発明は、AlxGa1-xNエピ層を含むエピ層付GaN膜複合基板およびその製造方法に関する。 The present invention relates to an epitaxial layer-attached GaN film composite substrate including an Al x Ga 1-x N epilayer and a method for manufacturing the same.

III族窒化物の半導体を用いた半導体デバイスは、種々の方法で形成されている。一つの方法は、III族窒化物基板上に少なくとも1層のIII族窒化物層をエピタキシャル成長させる方法である。しかし、かかる方法は、III族窒化物基板が非常に高価でるあるため、得られる半導体デバイスも非常に高価となる。   Semiconductor devices using Group III nitride semiconductors are formed by various methods. One method is a method of epitaxially growing at least one group III nitride layer on a group III nitride substrate. However, in this method, since the group III nitride substrate is very expensive, the resulting semiconductor device is also very expensive.

このため、III族窒化物とは化学組成が異なる支持基板上にIII族窒化物膜を配置した複合基板を用いて、かかる複合基板のIII族窒化物膜上に少なくとも1層のIII族窒化物層をエピタキシャル成長させる方法が好適に用いられている。   Therefore, by using a composite substrate in which a group III nitride film is arranged on a support substrate having a different chemical composition from the group III nitride, at least one group III nitride is formed on the group III nitride film of the composite substrate. A method of epitaxially growing the layer is preferably used.

たとえば、特開2010−182936号公報(特許文献1)は、支持基板と、窒化物半導体層と、支持基板と窒化物半導体層との間に形成された接合層とを含むと複合基板と、複合基板の窒化物半導体層上に設けられたエピタキシャル層と、を備えるエピタキシャル基板を開示する。   For example, Japanese Unexamined Patent Application Publication No. 2010-182936 (Patent Document 1) includes a composite substrate including a support substrate, a nitride semiconductor layer, and a bonding layer formed between the support substrate and the nitride semiconductor layer. An epitaxial substrate comprising an epitaxial layer provided on a nitride semiconductor layer of a composite substrate is disclosed.

また、特開2012−230969号公報(特許文献2)は、イオン注入分離法を用いて、GaNの熱膨脹係数に対する比が0.8以上1.2以下の熱膨脹係数を有する支持基板と、支持基板に貼り合わされたGaN層と、を含む複合基板を準備する工程と、複合基板のGaN層上に少なくとも1層のGaN系半導体層を成長させる工程と、複合基板の支持基板を溶解することにより除去する工程と、を含むGaN系半導体デバイスの製造方法を開示する。   Japanese Patent Laying-Open No. 2012-230969 (Patent Document 2) discloses that a support substrate having a thermal expansion coefficient of 0.8 to 1.2 by using an ion implantation separation method, and a support substrate A composite substrate including a GaN layer bonded to the substrate, a step of growing at least one GaN-based semiconductor layer on the GaN layer of the composite substrate, and removing the composite substrate by dissolving the support substrate And a method for manufacturing a GaN-based semiconductor device.

また、特開2003−060212号公報(特許文献3)は、窒化物系化合物半導体を用いたショットキーバリアダイオードであって、不純物含むシリコンまたはシリコン化合物からなりかつ低い抵抗率を有している基板と、基板の一方の主面上に配置されたバッファ層と、バッファ層の上に配置された窒化物系化合物半導体領域と、その半導体領域の表面にショットキーバリア接触された第1の電極と、基板の他方の主面にオーミック接触された第2の電極とを備え、上記バッファ層は、化学式AlxyGa1-x-yN(ここで、Mは、In(インジウム)とB(ボロン)とから選択された少なくとも1種の元素、xおよびyは、0<x≦1、0≦y<1、x+y≦1を満足させる数値)で示される材料からなる第1の層と、化学式AlabGa1-a-bN(ここで、Mは、In(インジウム)とB(ボロン)とから選択された少なくとも1種の元素、aおよびbは、0≦a≦1、0≦b<1、a+b≦1を満足させる数値)で示される材料とからなる第2の層との複合層からなるショットキーバリアダイオードおよびその製造方法を開示する。 Japanese Patent Laying-Open No. 2003-060212 (Patent Document 3) is a Schottky barrier diode using a nitride-based compound semiconductor, which is made of silicon containing impurities or a silicon compound and has a low resistivity. A buffer layer disposed on one main surface of the substrate, a nitride compound semiconductor region disposed on the buffer layer, and a first electrode in Schottky barrier contact with a surface of the semiconductor region , and a second electrode which is in ohmic contact with the other main surface of the substrate, the buffer layer, the chemical formula Al x M y Ga 1-xy N ( here, M is, in a (indium) B (boron And at least one element selected from the group consisting of a material represented by the following formula: 0 <x ≦ 1, 0 ≦ y <1, and x + y ≦ 1 Al a M b Ga 1-ab N (where M is at least one element selected from In (indium) and B (boron)), and a and b are 0 ≦ a ≦ 1, 0 ≦ b <1, Disclosed is a Schottky barrier diode comprising a composite layer with a second layer comprising a material represented by (a value satisfying a + b ≦ 1) and a method for producing the same.

特開2010−182936号公報JP 2010-182936 A 特開2012−230969号公報JP 2012-230969 A 特開2003−060212号公報JP 2003-060212 A

特開2010−182936号公報(特許文献1)および特開2012−230969号公報(特許文献2)においては、複合基板のGaN膜上にIII族窒化物層としてAlxGa1-xN層(0<x<1)を成長させると、AlxGa1-xN層にクラックが発生するという問題点があった。 In JP 2010-182936 A (Patent Document 1) and JP 2012-230969 A (Patent Document 2), an Al x Ga 1-x N layer (group III nitride layer) is formed on a GaN film of a composite substrate ( When 0 <x <1) was grown, there was a problem that cracks occurred in the Al x Ga 1-x N layer.

また、特開2003−060212号公報(特許文献3)は、支持基板がシリコンまたはシリコン化合物からなる場合に、その支持基板上に化学式AlxyGa1-x-yNで示される材料からなる第1の層と化学式AlabGa1-a-bNで示される材料とからなる第2の層との複合層を介在させて窒化物系化合物半導体を形成することにより、支持基板と窒化物系化合物半導体との間の熱膨脹係数の違いにより発生する歪みを抑制するものに過ぎない。 Further, JP 2003-060212 (Patent Document 3), when the supporting substrate made of silicon or silicon compound, a made of a material represented by the chemical formula Al x M y Ga 1-xy N on the support substrate And forming a nitride compound semiconductor by interposing a composite layer of a first layer and a second layer made of a material represented by the chemical formula Al a Mb Ga 1-ab N. It merely suppresses the strain generated by the difference in thermal expansion coefficient with the compound semiconductor.

したがって、上記の問題点を解決して、品質の高い半導体デバイスを製造するために、エピ層としてクラックの発生のないAlxGa1-xNエピ層を含むエピ層付GaN膜複合基板およびその製造方法を提供することを目的とする。 Therefore, in order to solve the above-mentioned problems and to manufacture a high-quality semiconductor device, an epitaxial layer-attached GaN film composite substrate including an Al x Ga 1-x N epilayer free from cracks as an epilayer and its An object is to provide a manufacturing method.

本発明のある態様にかかるエピ層付GaN膜複合基板は、支持基板とGaN膜とを貼り合わせたGaN膜複合基板と、GaN膜複合基板のGaN膜側から順に配置されたInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)と、を含み、
AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
An epilayer-attached GaN film composite substrate according to an aspect of the present invention includes a GaN film composite substrate obtained by bonding a support substrate and a GaN film, and an In y Ga 1− disposed in this order from the GaN film side of the GaN film composite substrate. y N epilayer (0 <y <1) and Al x Ga 1-x N epilayer (0 <x <1),
The Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer are expressed by the formula (1)
x × t x ≧ 0.028 (1)
Satisfy the relationship.

本発明の別の態様にかかるエピ層付GaN膜複合基板の製造方法は、支持基板とGaN膜とを貼り合わせたGaN膜複合基板を準備する工程と、GaN膜複合基板のGaN膜側に、少なくともInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)をこの順に形成することによりエピ層付GaN膜複合基板を形成する工程と、を備え、
AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
The manufacturing method of the epilayer-attached GaN film composite substrate according to another aspect of the present invention includes a step of preparing a GaN film composite substrate in which a support substrate and a GaN film are bonded together, and a GaN film composite substrate on the GaN film side. At least an In y Ga 1-y N epilayer (0 <y <1) and an Al x Ga 1-x N epilayer (0 <x <1) are formed in this order to form a GaN film composite substrate with an epilayer. And comprising the steps of:
The Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer are expressed by the formula (1)
x × t x ≧ 0.028 (1)
Satisfy the relationship.

上記によれば、エピ層としてクラックの発生のないAlxGa1-xNエピ層を含むエピ層付GaN膜複合基板およびその製造方法を提供することができる。 According to the above, it is possible to provide an epilayer-attached GaN film composite substrate including an Al x Ga 1-x N epilayer free from cracks as an epilayer and a method for manufacturing the same.

本発明のある態様にかかるエピ層付GaN膜複合基板の第1例を示す概略断面図である。It is a schematic sectional drawing which shows the 1st example of the GaN film | membrane composite substrate with an epi layer concerning a certain aspect of this invention. 本発明のある態様にかかるエピ層付GaN膜複合基板の第2例を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd example of the GaN film | membrane composite substrate with an epi layer concerning a certain aspect of this invention. 本発明のある態様にかかるエピ層付GaN膜複合基板の第3例を示す概略断面図である。It is a schematic sectional drawing which shows the 3rd example of the GaN film | membrane composite substrate with an epi layer concerning a certain aspect of this invention. 本発明のある態様にかかるエピ層付GaN膜複合基板の第4例を示す概略断面図である。It is a schematic sectional drawing which shows the 4th example of the GaN film | membrane composite substrate with an epi layer concerning a certain aspect of this invention. 本発明のある態様にかかるエピ層付GaN膜複合基板の第5例を示す概略断面図である。It is a schematic sectional drawing which shows the 5th example of the GaN film | membrane composite substrate with an epi layer concerning a certain aspect of this invention. 本発明外のエピ層付GaN膜複合基板のある例を示す概略断面図である。It is a schematic sectional drawing which shows a certain example of the GaN film | membrane composite substrate with an epi layer outside this invention. 本発明外のエピ層付GaN膜複合基板の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the GaN film | membrane composite substrate with an epi layer outside this invention. 本発明外のエピ層付GaN膜複合基板のさらに別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the GaN film | membrane composite substrate with an epi layer outside this invention. 本発明の別の態様にかかるエピ層付GaN膜複合基板の製造方法におけるGaN膜複合基板を準備する工程を示す概略断面図である。It is a schematic sectional drawing which shows the process of preparing the GaN film composite substrate in the manufacturing method of the GaN film composite substrate with an epi layer concerning another aspect of this invention. 本発明のある態様にかかるエピ層付GaN膜複合基板におけるAlxGa1-xNエピ層のAl組成比と臨界厚さとの関係を示すグラフである。Is a graph showing the relationship between the Al composition ratio and the critical thickness of the Al x Ga 1-x N epitaxial layer in the GaN film composite substrate with epitaxial layer according to an aspect of the present invention.

<本発明の実施形態の説明>
本発明のある実施形態にかかるエピ層付GaN膜複合基板は、支持基板とGaN膜とを貼り合わせたGaN膜複合基板と、GaN膜複合基板のGaN膜側から順に配置されたInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)と、を含み、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
<Description of Embodiment of the Present Invention>
An epilayer-attached GaN film composite substrate according to an embodiment of the present invention includes a GaN film composite substrate obtained by bonding a support substrate and a GaN film, and In y Ga 1 arranged in order from the GaN film side of the GaN film composite substrate. -y N epilayer (0 <y <1) and Al x Ga 1-x N epilayer (0 <x <1), Al composition ratio x and thickness of Al x Ga 1-x N epilayer T x μm is expressed by equation (1)
x × t x ≧ 0.028 (1)
Satisfy the relationship.

本実施形態のエピ層付GaN膜複合基板は、GaN膜複合基板のGaN膜側から、InyGa1-yNエピ層およびAlxGa1-xNエピ層がこの順に配置されていることから、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にかかる引張応力を、InyGa1-yNエピ層で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層にクラックが発生するのを抑制することができる。これにより、AlxGa1-xNエピ層にクラックを発生させることなく、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmが式(1)であるx×tx≧0.028の関係を満たす。すなわち、本実施形態のエピ層付GaN膜複合基板は、クラックの発生がない厚さが(0.028/x)μm以上のAlxGa1-xNエピ層を含む。 In the GaN film composite substrate with an epi layer of this embodiment, the In y Ga 1-y N epi layer and the Al x Ga 1-x N epi layer are arranged in this order from the GaN film side of the GaN film composite substrate. Therefore, the tensile stress applied to the Al x Ga 1-x N epilayer when forming the Al x Ga 1-x N epilayer can be reduced by the compressive stress generated in the In y Ga 1-y N epilayer. Therefore, the generation of cracks in the Al x Ga 1-x N epilayer can be suppressed. Accordingly, Al x Ga 1-x N epitaxial layer without causing cracks to, Al x Ga 1-x N Al composition ratio of the epitaxial layer x and thickness t x [mu] m is an expression (1) x × t The relationship x ≧ 0.028 is satisfied. That is, the epilayer-attached GaN film composite substrate of the present embodiment includes an Al x Ga 1-x N epilayer having a thickness of (0.028 / x) μm or more at which cracks do not occur.

本実施形態のエピ層付GaN膜複合基板は、InyGa1-yNエピ層のIn組成比yおよび厚さtyμmが、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たすことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にかかる引張応力を低減するのに適した圧縮応力を発生させるInyGa1-yNエピ層が形成されているため、AlxGa1-xNエピ層にクラックが発生するのをさらに抑制することができる。
In the GaN film composite substrate with an epi layer of the present embodiment, the In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer are the same as the Al composition ratio x of the Al x Ga 1-x N epilayer and Between thickness t x μm, formula (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
Can satisfy the relationship. Accordingly, Al x Ga 1-x N In y Ga 1-y N epitaxial for generating a compressive stress which is suitable for reducing the Al x Ga 1-x N epitaxial layer in accordance tensile stress during the formation of the epitaxial layer Since the layer is formed, the generation of cracks in the Al x Ga 1-x N epilayer can be further suppressed.

本実施形態のエピ層付GaN膜複合基板は、GaN膜の厚さtfを0.05μm以上50μm以下とすることができる。これにより、GaN膜複合基板のGaN膜の厚さtfに応じて、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にかかる引張応力を、InyGa1-yNエピ層で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層にクラックが発生するのを抑制することができる。 The epitaxial layer-attached GaN film composite substrate of this embodiment can have a GaN film thickness t f of 0.05 μm or more and 50 μm or less. Thus, according to the thickness t f of the GaN film of GaN film composite substrate, the Al x Ga 1-x N Al x Ga 1-x N epitaxial layer in accordance tensile stress during the formation of the epitaxial layer, an In y it is possible to reduce the compressive stress generated in the Ga 1-y N epitaxial layer, it is possible to suppress occurrence of cracks in the Al x Ga 1-x N epitaxial layer.

本実施形態のエピ層付GaN膜複合基板は、GaN膜とInyGa1-yNエピ層との間に配置されているGaNエピ層をさらに含むことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にクラックが発生するのを抑制するとともに、InyGa1-yNエピ層およびAlxGa1-xNエピ層のモフォロジーおよび結晶品質を高めることができる。 The epilayer-attached GaN film composite substrate of this embodiment can further include a GaN epilayer disposed between the GaN film and the In y Ga 1-y N epilayer. Thus, Al x with Ga 1-x N cracks Al x Ga 1-x N epitaxial layer during formation of the epitaxial layer can be inhibited from occurring, In y Ga 1-y N epitaxial layer and Al x Ga The morphology and crystal quality of the 1-x N epilayer can be enhanced.

本実施形態のエピ層付GaN膜複合基板は、GaN膜とInyGa1-yNエピ層との間に配置されているGaNエピ層に加えて、GaN膜とGaNエピ層との間に配置されているAlzGa1-zNエピ層(0<z<1)をさらに含み、AlzGa1-zNエピ層のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たすことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にクラックが発生するのを抑制するとともに、GaNエピ層、InyGa1-yNエピ層およびAlxGa1-xNエピ層のモフォロジーおよび結晶品質を高めることができる。
In addition to the GaN epilayer disposed between the GaN film and the In y Ga 1-y N epilayer, the epilayer - attached GaN film composite substrate according to the present embodiment is provided between the GaN film and the GaN epilayer. The Al z Ga 1-z N epilayer (0 <z <1) is further included, and the Al composition ratio z and the thickness t z μm of the Al z Ga 1-z N epilayer are expressed by the formula (3)
z × t z <0.028 (3)
Can satisfy the relationship. Thus, while suppressing occurrence of cracks in the Al x Ga 1-x N epitaxial layer during formation of the Al x Ga 1-x N epitaxial layer, GaN epi-layer, In y Ga 1-y N epitaxial layer And the morphology and crystal quality of the Al x Ga 1-x N epilayer can be enhanced.

本実施形態のエピ層付GaN膜複合基板は、InyGa1-yNエピ層とAlxGa1-xNエピ層との間に配置されているGaNエピ層をさらに含むことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にクラックが発生するのを抑制するとともに、AlxGa1-xNエピ層のモフォロジーおよび結晶品質を高めることができる。 The epilayer-attached GaN film composite substrate of the present embodiment can further include a GaN epilayer disposed between the In y Ga 1-y N epilayer and the Al x Ga 1-x N epilayer. Thus, while suppressing occurrence of cracks in the Al x Ga 1-x N epitaxial layer during formation of the Al x Ga 1-x N epitaxial layer, Al x Ga 1-x N epitaxial layer of morphology and crystallinity Quality can be improved.

本実施形態のエピ層付GaN膜複合基板は、InyGa1-yNエピ層とAlxGa1-xNエピ層との間に配置されているGaNエピ層に加えて、GaN膜とInyGa1-yNエピ層との間に配置されているAlzGa1-zNエピ層(0<z<1)をさらに含み、AlzGa1-zNエピ層のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たすことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にクラックが発生するのを抑制するとともに、InyGa1-yNエピ層、GaNエピ層およびAlxGa1-xNエピ層のモフォロジーおよび結晶品質を高めることができる。
In addition to the GaN epilayer disposed between the In y Ga 1-y N epilayer and the Al x Ga 1-x N epilayer, the epilayer-attached GaN film composite substrate of the present embodiment includes: An Al z Ga 1-z N epilayer (0 <z <1) disposed between the In y Ga 1-y N epilayer and an Al composition ratio of the Al z Ga 1-z N epilayer z and thickness t z μm are given by equation (3)
z × t z <0.028 (3)
Can satisfy the relationship. Thus, while suppressing occurrence of cracks in the Al x Ga 1-x N epitaxial layer during formation of the Al x Ga 1-x N epitaxial layer, In y Ga 1-y N epitaxial layer, GaN epi-layer And the morphology and crystal quality of the Al x Ga 1-x N epilayer can be enhanced.

本発明の別の実施形態にかかるエピ層付GaN膜複合基板の製造方法は、支持基板とGaN膜とを貼り合わせたGaN膜複合基板を準備する工程と、GaN膜複合基板のGaN膜側に、少なくともInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)をこの順に形成することによりエピ層付GaN膜複合基板を形成する工程と、を備え、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
An epilayer-attached GaN film composite substrate manufacturing method according to another embodiment of the present invention includes a step of preparing a GaN film composite substrate in which a support substrate and a GaN film are bonded together, and a GaN film composite substrate on the GaN film side. Forming an GaN film composite substrate with an epi layer by forming at least an In y Ga 1-y N epilayer (0 <y <1) and an Al x Ga 1-x N epilayer (0 <x <1) in this order. And an Al composition ratio x and a thickness t x μm of the Al x Ga 1-x N epilayer are expressed by the formula (1):
x × t x ≧ 0.028 (1)
Satisfy the relationship.

本実施形態のエピ層付GaN膜複合基板の製造方法は、GaN膜複合基板のGaN膜側から、InyGa1-yNエピ層およびAlxGa1-xNエピ層をこの順に形成することから、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にかかる引張応力を、InyGa1-yNエピ層で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層にクラックが発生するのを抑制することができる。これにより、AlxGa1-xNエピ層にクラックを発生させることなく、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmが式(1)であるx×tx≧0.028の関係を満たす。すなわち、本実施形態のエピ層付GaN膜複合基板の製造方法は、クラックの発生がない厚さが(0.028/x)μm以上のAlxGa1-xNエピ層を含むエピ層付GaN膜複合基板を製造することができる。 In the manufacturing method of the epitaxial layer-attached GaN film composite substrate of this embodiment, the In y Ga 1 -y N epi layer and the Al x Ga 1 -x N epi layer are formed in this order from the GaN film side of the GaN film composite substrate. Therefore, the tensile stress applied to the Al x Ga 1-x N epi layer when forming the Al x Ga 1-x N epi layer is reduced by the compressive stress generated in the In y Ga 1-y N epi layer. Therefore, the generation of cracks in the Al x Ga 1-x N epilayer can be suppressed. Accordingly, Al x Ga 1-x N epitaxial layer without causing cracks to, Al x Ga 1-x N Al composition ratio of the epitaxial layer x and thickness t x [mu] m is an expression (1) x × t The relationship x ≧ 0.028 is satisfied. That is, the manufacturing method of the epilayer-attached GaN film composite substrate according to the present embodiment has an epilayer including an Al x Ga 1-x N epilayer having a thickness of (0.028 / x) μm or more without occurrence of cracks. A GaN film composite substrate can be manufactured.

本実施形態のエピ層付GaN膜複合基板の製造方法は、InyGa1-yNエピ層のIn組成比yおよび厚さtyμmが、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たすことができる。これにより、AlxGa1-xNエピ層の形成の際にAlxGa1-xNエピ層にかかる引張応力を低減するのに適した圧縮応力を発生させるInyGa1-yNエピ層が形成することができるため、クラックの発生のないAlxGa1-xNエピ層を含むエピ層付GaN膜複合基板をより確実に製造することができる。
In the manufacturing method of the epitaxial layer-attached GaN film composite substrate of the present embodiment, the In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer are the same as the Al composition of the Al x Ga 1-x N epilayer. Between the ratio x and the thickness t x μm, the formula (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
Can satisfy the relationship. Accordingly, Al x Ga 1-x N In y Ga 1-y N epitaxial for generating a compressive stress which is suitable for reducing the Al x Ga 1-x N epitaxial layer in accordance tensile stress during the formation of the epitaxial layer Since the layer can be formed, the epitaxial layer-attached GaN film composite substrate including the Al x Ga 1-x N epilayer free of cracks can be more reliably manufactured.

<本発明の実施形態の詳細>
[実施形態1:エピ層付GaN膜複合基板]
図1〜図5を参照して、本実施形態のエピ層付GaN膜複合基板2は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたInyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)と、を含み、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
<Details of Embodiment of the Present Invention>
[Embodiment 1: GaN film composite substrate with epi layer]
1 to 5, the epilayer-attached GaN film composite substrate 2 of this embodiment includes a GaN film composite substrate 1 in which a support substrate 11 and a GaN film 13 are bonded together, and GaN of the GaN film composite substrate 1. In y Ga 1-y N epilayer 22 (0 <y <1) and Al x Ga 1-x N epilayer 24 (0 <x <1) arranged in this order from the film 13 side, Al x The Al composition ratio x and the thickness t x μm of the Ga 1-x N epilayer 24 are expressed by the formula (1)
x × t x ≧ 0.028 (1)
Satisfy the relationship.

本実施形態のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側から、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24がこの順に配置されていることから、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を、InyGa1-yNエピ層22で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。これにより、AlxGa1-xNエピ層24にクラックを発生させることなく、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmが式(1)であるx×tx≧0.028の関係を満たす。すなわち、本実施形態のエピ層付GaN膜複合基板2は、クラックの発生がない厚さが(0.028/x)μm以上のAlxGa1-xNエピ層24を含む。 In the GaN film composite substrate 2 with an epi layer of this embodiment, the In y Ga 1 -y N epi layer 22 and the Al x Ga 1 -x N epi layer 24 are arranged in this order from the GaN film 13 side of the GaN film composite substrate 1. since it was arranged, the Al x Ga 1-x N tensile according to Al x Ga 1-x N epitaxial layer 24 stress during formation of the epitaxial layer 24, occurs in in y Ga 1-y N epitaxial layer 22 Therefore, the generation of cracks in the Al x Ga 1-x N epilayer 24 can be suppressed. Thus, Al x Ga 1-x N epitaxial layer 24 without causing cracks, Al x Ga 1-x N epitaxial layer 24 of Al composition x and the thickness t x [mu] m is an expression (1) x The relationship of xt x ≧ 0.028 is satisfied. That is, the epitaxial layer-attached GaN film composite substrate 2 of the present embodiment includes the Al x Ga 1-x N epilayer 24 having a thickness of (0.028 / x) μm or more where cracks do not occur.

ここで、「エピ層」とは、GaN膜複合基板1のGaN膜13上またはその上形成された下地「エピ層」上に、エピタキシャル成長させることにより形成された層をいう。   Here, the “epi layer” refers to a layer formed by epitaxial growth on the GaN film 13 of the GaN film composite substrate 1 or on the underlying “epi layer” formed thereon.

図6を参照して、GaN膜複合基板1のGaN膜13上にAlxGa1-xNエピ層24(0<x<1)を形成する際には、AlxGa1-xN結晶(0<x<1)の格子定数はGaN結晶の格子定数より小さいために、AlxGa1-xNエピ層24に引張応力がかかる。このため、AlxGa1-xNエピ層24のAl組成比xと厚さtxμmとがx×tx<0.028のときにはAlxGa1-xNエピ層24にクラックが発生しないが、x×tx≧0.028のときには、AlxGa1-xNエピ層24にクラックが発生することを本発明者らは見出した。 Referring to FIG. 6, when an Al x Ga 1-x N epilayer 24 (0 <x <1) is formed on the GaN film 13 of the GaN film composite substrate 1, an Al x Ga 1-x N crystal is formed. Since the lattice constant of (0 <x <1) is smaller than that of GaN crystal, tensile stress is applied to the Al x Ga 1-x N epilayer 24. Therefore, cracks are generated in the Al x Ga 1-x N epitaxial layer 24 when the Al x Ga 1-x N epitaxial layer 24 Al composition ratio x and thickness t x [mu] m and is x × t x <0.028 However, the present inventors have found that cracks occur in the Al x Ga 1-x N epilayer 24 when x × t x ≧ 0.028.

そこで、本発明者らはInyGa1-yN結晶(0<y<1)の格子定数がGaN結晶の格子定数およびAlxGa1-xN結晶(0<x<1)の格子定数より大きいことに着目して、図1〜図5に示すように、GaN膜複合基板1のGaN膜13側から、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24をこの順に配置することにより、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を、InyGa1-yNエピ層22で発生する圧縮応力により低減して、AlxGa1-xNエピ層24にクラックが発生するのを抑制することに成功した。 Therefore, the present inventors have determined that the lattice constant of In y Ga 1-y N crystal (0 <y <1) is the lattice constant of GaN crystal and that of Al x Ga 1-x N crystal (0 <x <1). Focusing on the larger, as shown in FIGS. 1 to 5, from the GaN film 13 side of the GaN film composite substrate 1, an In y Ga 1 -y N epilayer 22 and an Al x Ga 1 -x N epilayer are formed. by placing the 24 in this order, Al x Ga 1-x N tensile according to Al x Ga 1-x N epitaxial layer 24 stress during formation of the epitaxial layer 24, in y Ga 1-y N epitaxial layer 22 It was succeeded in reducing the occurrence of cracks in the Al x Ga 1-x N epilayer 24 by reducing the compressive stress generated in the above.

図1〜図5を参照して、本実施形態のエピ層付GaN膜複合基板2は、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmが、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たすことが好ましい。InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmがAlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmとの間で式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たすことにより、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減するのに適した圧縮応力を発生させるIn組成比yおよび厚さtyμmを有するInyGa1-yNエピ層22が形成されているため、AlxGa1-xNエピ層24にクラックが発生するのをさらに抑制することができる。
With reference to FIGS. 1 to 5, the GaN film composite substrate 2 with an epi layer according to the present embodiment has an In composition ratio y and a thickness t y μm of an In y Ga 1-y N epilayer 22 of Al x Ga. Between the Al composition ratio x and the thickness t x μm of the 1-x N epilayer 24, the formula (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
It is preferable to satisfy the relationship. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are expressed by the equation (2) between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24. ) 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x , the Al x Ga 1-x N epilayer 24 is formed during the formation of the Al x Ga 1− Since the In y Ga 1-y N epi layer 22 having an In composition ratio y and a thickness t y μm that generates a compressive stress suitable for reducing the tensile stress applied to the x N epi layer 24 is formed, The generation of cracks in the Al x Ga 1-x N epilayer 24 can be further suppressed.

図1〜図5を参照して、本実施形態のエピ層付GaN膜複合基板2は、GaN膜13の厚さtfを0.05μm以上50μm以下とすることが好ましい。GaN膜複合基板のGaN膜13の厚さtfが0.05μm以上50μm以下であれば、そのGaN膜13の厚さtfに応じて、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を、InyGa1-yNエピ層22で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。 1 to 5, in the GaN film composite substrate 2 with an epi layer according to this embodiment, the thickness t f of the GaN film 13 is preferably 0.05 μm or more and 50 μm or less. If the thickness t f of the GaN film 13 of the GaN film composite substrate is 0.05 μm or more and 50 μm or less, the Al x Ga 1-x N epilayer 24 is formed according to the thickness t f of the GaN film 13. Since the tensile stress applied to the Al x Ga 1-x N epi layer 24 can be reduced by the compressive stress generated in the In y Ga 1-y N epi layer 22, the Al x Ga 1-x N epi layer The occurrence of cracks in 24 can be suppressed.

本実施形態のエピ層付GaN膜複合基板2におけるGaN膜複合基板1は、支持基板11とGaN膜13とを貼り合わせた複合基板である。GaN膜複合基板1は、支持基板11とGaN膜13との貼り合わせによる接合強度を高くする観点から、支持基板11とGaN膜13との間に介在する接合膜12をさらに含むことが好ましい。   The GaN film composite substrate 1 in the epilayer-attached GaN film composite substrate 2 of this embodiment is a composite substrate in which a support substrate 11 and a GaN film 13 are bonded together. The GaN film composite substrate 1 preferably further includes a bonding film 12 interposed between the support substrate 11 and the GaN film 13 from the viewpoint of increasing the bonding strength by bonding the support substrate 11 and the GaN film 13 together.

GaN膜複合基板1の支持基板11は、特に制限はないが、GaN膜複合基板1のGaN膜13上に品質の高いエピ層を形成する観点から、支持基板11の線熱膨張係数がGaN膜13の線熱膨張係数に対して0.8倍以上1.2倍以下が好ましく0.9倍以上1.1倍以下がより好ましく、たとえば、ムライト基板(3Al23・2SiO2〜2Al23・SiO2)、イットリア安定化ジルコニア−ムライト基板、モリブデン基板などが好ましい。支持基板11の厚さは、GaN膜13を支持できる厚さであれば特に制限はなく、たとえば、250μm以上2500μm以下である。 The support substrate 11 of the GaN film composite substrate 1 is not particularly limited, but from the viewpoint of forming a high quality epi layer on the GaN film 13 of the GaN film composite substrate 1, the linear thermal expansion coefficient of the support substrate 11 is a GaN film. The linear thermal expansion coefficient of 13 is preferably 0.8 times or more and 1.2 times or less, more preferably 0.9 times or more and 1.1 times or less. For example, a mullite substrate (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 · SiO 2 ), yttria stabilized zirconia-mullite substrate, molybdenum substrate and the like are preferable. The thickness of the support substrate 11 is not particularly limited as long as it can support the GaN film 13, and is, for example, 250 μm or more and 2500 μm or less.

GaN膜複合基板1のGaN膜13の厚さは、特に制限はないが、その上に品質の高いエピ層を形成するとともにGaN膜複合基板1のコストを低減する観点から、50nm以上10μm未満が好ましい。   The thickness of the GaN film 13 of the GaN film composite substrate 1 is not particularly limited, but from the viewpoint of forming a high quality epi layer on the GaN film composite substrate 1 and reducing the cost of the GaN film composite substrate 1, the thickness is 50 nm or more and less than 10 μm. preferable.

GaN膜複合基板1に含まれ得る接合膜12は、特に制限はないが、支持基板11とGaN膜13との貼り合わせによる接合強度を高くする観点から、SiO2膜、SiNx膜などが好ましい。 The bonding film 12 that can be included in the GaN film composite substrate 1 is not particularly limited, but an SiO 2 film, an SiN x film, or the like is preferable from the viewpoint of increasing the bonding strength by bonding the support substrate 11 and the GaN film 13 together. .

(第1例)
図1を参照して、本実施形態のエピ層付GaN膜複合基板2の第1例は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたInyGa1-yNエピ層22およびAlxGa1-xNエピ層24と、を含む。第1例のエピ層付GaN膜複合基板2は、たとえば、GaN膜複合基板1のGaN膜13上にInyGa1-yNエピ層22が配置され、InyGa1-yNエピ層22上にAlxGa1-xNエピ層24が配置されている。
(First example)
Referring to FIG. 1, a first example of the epilayer-attached GaN film composite substrate 2 of the present embodiment includes a GaN film composite substrate 1 in which a support substrate 11 and a GaN film 13 are bonded together, and a GaN film composite substrate 1. An In y Ga 1 -y N epilayer 22 and an Al x Ga 1 -x N epilayer 24 arranged in this order from the GaN film 13 side. In the first example GaN film composite substrate 2 with an epi layer, for example, an In y Ga 1 -y N epi layer 22 is disposed on the GaN film 13 of the GaN film composite substrate 1 and an In y Ga 1 -y N epi layer is formed. An Al x Ga 1-x N epilayer 24 is disposed on the substrate 22.

第1例のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側から、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24がこの順に配置されていることから、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を、InyGa1-yNエピ層22で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。 In the GaN film composite substrate 2 with the epi layer of the first example, the In y Ga 1 -y N epi layer 22 and the Al x Ga 1 -x N epi layer 24 are arranged in this order from the GaN film 13 side of the GaN film composite substrate 1. since it was arranged, the Al x Ga 1-x N tensile according to Al x Ga 1-x N epitaxial layer 24 stress during formation of the epitaxial layer 24, occurs in in y Ga 1-y N epitaxial layer 22 Therefore, the generation of cracks in the Al x Ga 1-x N epilayer 24 can be suppressed.

(第2例)
図2を参照して、本実施形態のエピ層付GaN膜複合基板2の第2例は、図1に示す第1例のエピ層付GaN膜複合基板2において、GaN膜13とInyGa1-yNエピ層22との間に配置されているGaNエピ層26をさらに含む。すなわち、第2例のエピ層付GaN膜複合基板2は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたGaNエピ層26、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24と、を含む。第2例のエピ層付GaN膜複合基板2は、たとえば、GaN膜複合基板1のGaN膜13上にGaNエピ層26が配置され、GaNエピ層26上にInyGa1-yNエピ層22が配置され、InyGa1-yNエピ層22上にAlxGa1-xNエピ層24が配置されている。
(Second example)
Referring to FIG. 2, a second example of the epitaxial layer with GaN film composite substrate 2 of the present embodiment, the epitaxial layer with GaN film composite substrate 2 of the first example shown in FIG. 1, the GaN film 13 and an In y Ga Further included is a GaN epi layer 26 disposed between the 1-y N epi layer 22. That is, the GaN film composite substrate 2 with the epi layer of the second example is arranged in order from the GaN film composite substrate 1 in which the support substrate 11 and the GaN film 13 are bonded together, and the GaN film composite substrate 1 from the GaN film 13 side. A GaN epi layer 26, an In y Ga 1 -y N epi layer 22, and an Al x Ga 1 -x N epi layer 24. In the GaN film composite substrate 2 with the epi layer of the second example, for example, a GaN epi layer 26 is disposed on the GaN film 13 of the GaN film composite substrate 1, and an In y Ga 1-y N epi layer is formed on the GaN epi layer 26. 22, and an Al x Ga 1-x N epilayer 24 is disposed on the In y Ga 1-y N epilayer 22.

第2例のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側からGaNエピ層26、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24がこの順に配置されているため、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。また、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24のモフォロジーおよび結晶品質を高めることができる。 The GaN film composite substrate 2 with the epi layer of the second example includes a GaN epi layer 26, an In y Ga 1 -y N epi layer 22 and an Al x Ga 1 -x N epi layer from the GaN film 13 side of the GaN film composite substrate 1. since 24 is disposed in this order, it is possible to reduce the Al x Ga 1-x N tensile stress exerted on the Al x Ga 1-x N epitaxial layer 24 during the formation of the epitaxial layer 24, Al x Ga The occurrence of cracks in the 1-x N epilayer 24 can be suppressed. Further, the morphology and crystal quality of the In y Ga 1-y N epilayer 22 and the Al x Ga 1-x N epilayer 24 can be improved.

(第3例)
図3を参照して、本実施形態のエピ層付GaN膜複合基板2の第3例は、図2に示す第2例のエピ層付GaN膜複合基板2において、GaN膜13とGaNエピ層26との間に配置されているAlzGa1-zNエピ層28(0<z<1)をさらに含み、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たす。すなわち、第3例のエピ層付GaN膜複合基板2は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたAlzGa1-zNエピ層28、GaNエピ層26、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24と、を含む。第3例のエピ層付GaN膜複合基板2は、たとえば、GaN膜複合基板1のGaN膜13上にAlzGa1-zNエピ層28が配置され、AlzGa1-zNエピ層28上にGaNエピ層26が配置され、GaNエピ層26上にInyGa1-yNエピ層22が配置され、InyGa1-yNエピ層22上にAlxGa1-xNエピ層24が配置されている。
(Third example)
Referring to FIG. 3, the third example of the epilayer-attached GaN film composite substrate 2 of the present embodiment is the same as the GaN film composite substrate 2 with the epilayer of the second example shown in FIG. Al z Ga 1-z N epi layer 28 which is arranged between the 26 (0 <z <1) further comprises, Al z Ga 1-z N Al composition ratio z and the thickness t z epilayer 28 μm is the formula (3)
z × t z <0.028 (3)
Satisfy the relationship. That is, the GaN film composite substrate 2 with the epi layer of the third example is arranged in order from the GaN film composite substrate 1 in which the support substrate 11 and the GaN film 13 are bonded together, and the GaN film 13 side of the GaN film composite substrate 1. An Al z Ga 1 -z N epi layer 28, a GaN epi layer 26, an In y Ga 1 -y N epi layer 22, and an Al x Ga 1 -x N epi layer 24. In the GaN film composite substrate 2 with the epi layer of the third example, for example, an Al z Ga 1 -z N epi layer 28 is disposed on the GaN film 13 of the GaN film composite substrate 1, and an Al z Ga 1 -z N epi layer is formed. A GaN epi layer 26 is disposed on the layer 28, an In y Ga 1 -y N epi layer 22 is disposed on the GaN epi layer 26, and an Al x Ga 1 -x N layer is disposed on the In y Ga 1 -y N epi layer 22. An epi layer 24 is disposed.

第3例のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側からAlzGa1-zNエピ層28、GaNエピ層26、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24がこの順に配置されているため、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。また、GaNエピ層26、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24のモフォロジーおよび結晶品質を高めることができる。ここで、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmが式(3)であるz×tz<0.028の関係を満たす必要があるのは、AlzGa1-zNエピ層28の形成の際AlzGa1-zNエピ層28にクラックが発生するのを抑制するためである。 The GaN film composite substrate 2 with the epi layer of the third example includes an Al z Ga 1 -z N epi layer 28, a GaN epi layer 26, an In y Ga 1 -y N epi layer from the GaN film 13 side of the GaN film composite substrate 1. 22 and Al x Ga 1-x N for epi layer 24 are disposed in this order, Al x Ga 1-x N in forming the epitaxial layer 24 according to the Al x Ga 1-x N epitaxial layer 24 tensile stress Therefore, the generation of cracks in the Al x Ga 1-x N epilayer 24 can be suppressed. Further, the morphology and crystal quality of the GaN epi layer 26, the In y Ga 1 -y N epi layer 22 and the Al x Ga 1 -x N epi layer 24 can be improved. Here, the Al composition ratio z and the thickness t z μm of the Al z Ga 1-z N epilayer 28 must satisfy the relationship of z × t z <0.028 in the formula (3). the z Ga 1-z Al in the formation of the N epitaxial layer 28 z Ga 1-z N epitaxial layer 28 is because cracks can be suppressed.

(第4例)
図4を参照して、本実施形態のエピ層付GaN膜複合基板2の第4例は、図1に示す第1例のエピ層付GaN膜複合基板2において、InyGa1-yNエピ層22とAlxGa1-xNエピ層24との間に配置されているGaNエピ層26をさらに含む。すなわち、第4例のエピ層付GaN膜複合基板2は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたInyGa1-yNエピ層22、GaNエピ層26およびAlxGa1-xNエピ層24と、を含む。第4例のエピ層付GaN膜複合基板2は、たとえば、GaN膜複合基板1のGaN膜13上にInyGa1-yNエピ層22が配置され、InyGa1-yNエピ層22上にGaNエピ層26が配置され、GaNエピ層26上にAlxGa1-xNエピ層24が配置されている。
(Fourth example)
Referring to FIG 4, a fourth example of the epitaxial layer with GaN film composite substrate 2 of the present embodiment, the epitaxial layer with GaN film composite substrate 2 of the first example shown in FIG. 1, In y Ga 1-y N Further included is a GaN epi layer 26 disposed between the epi layer 22 and the Al x Ga 1-x N epi layer 24. That is, the GaN film composite substrate 2 with the epi layer of the fourth example is arranged in order from the GaN film composite substrate 1 in which the support substrate 11 and the GaN film 13 are bonded together, and the GaN film composite substrate 1 from the GaN film 13 side. In y Ga 1-y N epilayer 22, GaN epilayer 26 and Al x Ga 1-x N epilayer 24. In the GaN film composite substrate 2 with the epi layer of the fourth example, for example, an In y Ga 1 -y N epi layer 22 is disposed on the GaN film 13 of the GaN film composite substrate 1 and an In y Ga 1 -y N epi layer is formed. A GaN epi layer 26 is disposed on the substrate 22, and an Al x Ga 1-x N epi layer 24 is disposed on the GaN epi layer 26.

第4例のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側からInyGa1-yNエピ層22、GaNエピ層26およびAlxGa1-xNエピ層24がこの順に配置されているため、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。また、AlxGa1-xNエピ層24のモフォロジーおよび結晶品質を高めることができる。 The GaN film composite substrate 2 with the epi layer of the fourth example includes an In y Ga 1 -y N epi layer 22, a GaN epi layer 26, and an Al x Ga 1 -x N epi layer from the GaN film 13 side of the GaN film composite substrate 1. since 24 is disposed in this order, it is possible to reduce the Al x Ga 1-x N tensile stress exerted on the Al x Ga 1-x N epitaxial layer 24 during the formation of the epitaxial layer 24, Al x Ga The occurrence of cracks in the 1-x N epilayer 24 can be suppressed. In addition, the morphology and crystal quality of the Al x Ga 1-x N epilayer 24 can be improved.

(第5例)
図5を参照して、本実施形態のエピ層付GaN膜複合基板2の第5例は、図4に示す第4例のエピ層付GaN膜複合基板2において、GaN膜13とInyGa1-yNエピ層22との間に配置されているAlzGa1-zNエピ層28(0<z<1)をさらに含み、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たす。すなわち、第5例のエピ層付GaN膜複合基板2は、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1と、GaN膜複合基板1のGaN膜13側から順に配置されたAlzGa1-zNエピ層28、InyGa1-yNエピ層22、GaNエピ層26およびAlxGa1-xNエピ層24と、を含む。第4例のエピ層付GaN膜複合基板2は、たとえば、GaN膜複合基板1のGaN膜13上にAlzGa1-zNエピ層28が配置され、AlzGa1-zNエピ層28上にInyGa1-yNエピ層22が配置され、InyGa1-yNエピ層22上にGaNエピ層26が配置され、GaNエピ層26上にAlxGa1-xNエピ層24が配置されている。
(Fifth example)
Referring to FIG. 5, the fifth example of the epitaxial layer with GaN film composite substrate 2 of the present embodiment, the epitaxial layer with GaN film composite substrate 2 of the fourth example shown in FIG. 4, the GaN film 13 and an In y Ga An Al z Ga 1-z N epi layer 28 (0 <z <1) arranged between the 1-y N epi layer 22 and an Al composition ratio of the Al z Ga 1-z N epi layer 28 z and thickness t z μm are given by equation (3)
z × t z <0.028 (3)
Satisfy the relationship. That is, the GaN film composite substrate 2 with the epi layer of the fifth example is disposed in order from the GaN film composite substrate 1 in which the support substrate 11 and the GaN film 13 are bonded together, and the GaN film 13 side of the GaN film composite substrate 1. An Al z Ga 1 -z N epi layer 28, an In y Ga 1 -y N epi layer 22, a GaN epi layer 26, and an Al x Ga 1 -x N epi layer 24. In the GaN film composite substrate 2 with the epi layer of the fourth example, for example, an Al z Ga 1 -z N epi layer 28 is disposed on the GaN film 13 of the GaN film composite substrate 1, and an Al z Ga 1 -z N epi layer is formed. An In y Ga 1 -y N epilayer 22 is disposed on the layer 28, a GaN epilayer 26 is disposed on the In y Ga 1 -y N epilayer 22, and an Al x Ga 1 -x N layer is disposed on the GaN epilayer 26. An epi layer 24 is disposed.

第5例のエピ層付GaN膜複合基板2は、GaN膜複合基板1のGaN膜13側からAlzGa1-zNエピ層28、InyGa1-yNエピ層22、GaNエピ層26およびAlxGa1-xNエピ層24がこの順に配置されているため、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。また、InyGa1-yNエピ層22、GaNエピ層26およびAlxGa1-xNエピ層24のモフォロジーおよび結晶品質を高めることができる。ここで、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmが式(3)であるz×tz<0.028の関係を満たす必要があるのは、AlzGa1-zNエピ層28の形成の際AlzGa1-zNエピ層28にクラックが発生するのを抑制するためである。 The GaN film composite substrate 2 with an epi layer of the fifth example includes an Al z Ga 1 -z N epi layer 28, an In y Ga 1 -y N epi layer 22, and a GaN epi layer from the GaN film 13 side of the GaN film composite substrate 1. 26 and Al x Ga 1-x N for epi layer 24 are disposed in this order, Al x Ga 1-x N in forming the epitaxial layer 24 according to the Al x Ga 1-x N epitaxial layer 24 tensile stress Therefore, the generation of cracks in the Al x Ga 1-x N epilayer 24 can be suppressed. In addition, the morphology and crystal quality of the In y Ga 1 -y N epilayer 22, the GaN epilayer 26 and the Al x Ga 1 -x N epilayer 24 can be improved. Here, the Al composition ratio z and the thickness t z μm of the Al z Ga 1-z N epilayer 28 must satisfy the relationship of z × t z <0.028 in the formula (3). the z Ga 1-z Al in the formation of the N epitaxial layer 28 z Ga 1-z N epitaxial layer 28 is because cracks can be suppressed.

[実施形態2:エピ層付GaN膜複合基板の製造方法]
図1〜図5および図9を参照して、本実施形態のエピ層付GaN膜複合基板2の製造方法は、特に制限はないが、効率よく品質の高いエピ層付GaN膜複合基板2を製造する観点から、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1を準備する工程(図9)と、GaN膜複合基板1のGaN膜側に、少なくともInyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成することによりエピ層付GaN膜複合基板2を形成する工程と、備え、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす。
[Embodiment 2: Manufacturing method of GaN film composite substrate with epi layer]
With reference to FIGS. 1 to 5 and FIG. 9, the manufacturing method of the epitaxial layer-attached GaN film composite substrate 2 of the present embodiment is not particularly limited. From the viewpoint of manufacturing, a step of preparing the GaN film composite substrate 1 in which the support substrate 11 and the GaN film 13 are bonded together (FIG. 9), and at least In y Ga 1 -y on the GaN film side of the GaN film composite substrate 1. Forming an epilayer-attached GaN film composite substrate 2 by forming an N epilayer 22 (0 <y <1) and an Al x Ga 1-x N epilayer 24 (0 <x <1) in this order; The Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 are given by the formula (1)
x × t x ≧ 0.028 (1)
Satisfy the relationship.

本実施形態のエピ層付GaN膜複合基板2の製造方法は、GaN膜複合基板1のGaN13膜側から、InyGa1-yNエピ層22およびAlxGa1-xNエピ層24をこの順に形成することから、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を、InyGa1-yNエピ層22で発生する圧縮応力により低減することができるため、AlxGa1-xNエピ層24にクラックが発生するのを抑制することができる。これにより、AlxGa1-xNエピ層24にクラックを発生させることなく、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmが式(1)であるx×tx≧0.028の関係を満たす。すなわち、本実施形態のエピ層付GaN膜複合基板2の製造方法は、クラックの発生がない厚さが(0.028/x)μm以上のAlxGa1-xNエピ層24を含むエピ層付GaN膜複合基板2を製造することができる。 The manufacturing method of the epilayer-attached GaN film composite substrate 2 of the present embodiment includes an In y Ga 1-y N epilayer 22 and an Al x Ga 1-x N epilayer 24 from the GaN 13 film side of the GaN film composite substrate 1. Since the layers are formed in this order, tensile stress applied to the Al x Ga 1-x N epilayer 24 during the formation of the Al x Ga 1-x N epilayer 24 is generated in the In y Ga 1-y N epilayer 22. Therefore, the generation of cracks in the Al x Ga 1-x N epilayer 24 can be suppressed. Thus, Al x Ga 1-x N epitaxial layer 24 without causing cracks, Al x Ga 1-x N epitaxial layer 24 of Al composition x and the thickness t x [mu] m is an expression (1) x The relationship of xt x ≧ 0.028 is satisfied. That is, the manufacturing method of the epitaxial layer-attached GaN film composite substrate 2 of the present embodiment includes an epitaxial layer including an Al x Ga 1-x N epi layer 24 having a thickness of (0.028 / x) μm or more without cracks. The layered GaN film composite substrate 2 can be manufactured.

本実施形態のエピ層付GaN膜複合基板2の製造方法は、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmが、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たすことが好ましい。InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmがAlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmとの間で式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たすことにより、AlxGa1-xNエピ層24の形成の際にAlxGa1-xNエピ層24にかかる引張応力を低減するのに適した圧縮応力を発生させるInyGa1-yNエピ層22を形成することができるため、クラックの発生のないAlxGa1-xNエピ層24を含むエピ層付GaN膜複合基板2をより確実に製造することができる。
In the manufacturing method of the epitaxial layer-attached GaN film composite substrate 2 of the present embodiment, the In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are such that the Al x Ga 1-x N epilayer 24 Between the Al composition ratio x and the thickness t x μm of the formula (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
It is preferable to satisfy the relationship. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are expressed by the equation (2) between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24. ) 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x , the Al x Ga 1-x N epilayer 24 is formed during the formation of the Al x Ga 1− Since the In y Ga 1 -y N epi layer 22 that generates compressive stress suitable for reducing the tensile stress applied to the x N epi layer 24 can be formed, the Al x Ga 1 -x free from cracks can be formed. The epilayer-attached GaN film composite substrate 2 including the N epilayer 24 can be more reliably manufactured.

(GaN膜複合基板を準備する工程)
図9を参照して、本実施形態のエピ層付GaN膜複合基板2の製造方法は、まず、支持基板11とGaN膜13とを貼り合わせたGaN膜複合基板1を準備する工程を備える。GaN膜複合基板1を準備する工程は、特に制限はないが、品質の高いGaN膜13を含むGaN膜複合基板1を効率よく準備する観点から、支持基板11の主面11m上に接合膜12aを形成するサブ工程(図9(A))と、GaN膜ドナー基板13Dの主面13n上に接合膜12bを形成するとともにGaN膜ドナー基板13Dの主面13nから所定の深さの位置にイオン注入領域13iを形成するサブ工程(図9(B))と、支持基板11に形成された接合膜12aとGaN膜ドナー基板13Dに形成された接合膜12bとを貼り合わせるサブ工程(図9(C))と、GaN膜ドナー基板13Dをイオン注入領域13iで分離することにより、支持基板11と、支持基板11上に配置された接合膜12と、接合膜12上に配置されたGaN膜13と、を含むGaN膜複合基板1を形成するサブ工程(図9(D))と、を含むことが好ましい。
(Process to prepare GaN film composite substrate)
Referring to FIG. 9, the manufacturing method of the epilayer-attached GaN film composite substrate 2 of the present embodiment includes a step of preparing a GaN film composite substrate 1 in which a support substrate 11 and a GaN film 13 are bonded together. The step of preparing the GaN film composite substrate 1 is not particularly limited, but from the viewpoint of efficiently preparing the GaN film composite substrate 1 including the high-quality GaN film 13, the bonding film 12a is formed on the main surface 11m of the support substrate 11. And forming a bonding film 12b on the main surface 13n of the GaN film donor substrate 13D, and forming ions at a predetermined depth from the main surface 13n of the GaN film donor substrate 13D. A sub-process for forming the implantation region 13i (FIG. 9B) and a sub-process for bonding the bonding film 12a formed on the support substrate 11 and the bonding film 12b formed on the GaN film donor substrate 13D (FIG. C)) and the GaN film donor substrate 13D are separated by the ion implantation region 13i, thereby supporting the support substrate 11, the bonding film 12 disposed on the support substrate 11, and the G disposed on the bonding film 12. And N film 13, the sub-step of forming a GaN film composite substrate 1 comprising (FIG. 9 (D)), it will be preferable to include.

図9(A)を参照して、GaN膜複合基板1の支持基板11は、上記のとおり、支持基板11の線膨張係数はGaN膜13の線膨脹係数に対して0.8倍以上1.2倍以下であることが好ましく、0.9倍以上1.1倍以下であることがより好ましく、たとえば、ムライト基板(3Al23・2SiO2〜2Al23・SiO2)、イットリア安定化ジルコニア−ムライト基板、モリブデン基板などが好ましい
図9(B)を参照して、GaN膜ドナー基板13Dは、GaN膜13を供給するためのGaN基板である。GaN膜ドナー基板13Dを形成する方法は、特に制限はないが、品質の高いGaN膜ドナー基板13Dを得る観点から、サファイア基板、GaAs基板、GaN基板などの下地基板上に、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法、MBE(分子線成長)法、昇華法などの気相法、高窒素圧溶液法、フラックス法などの液相法などが好ましい。
Referring to FIG. 9A, as described above, the support substrate 11 of the GaN film composite substrate 1 has a linear expansion coefficient of the support substrate 11 that is 0.8 times or more the linear expansion coefficient of the GaN film 13. It is preferably 2 times or less, more preferably 0.9 times or more and 1.1 times or less, for example, mullite substrate (3Al 2 O 3 .2SiO 2 to 2Al 2 O 3 .SiO 2 ), yttria stable A zirconia mullite substrate, a molybdenum substrate, or the like is preferable. Referring to FIG. 9B, the GaN film donor substrate 13D is a GaN substrate for supplying the GaN film 13. The method for forming the GaN film donor substrate 13D is not particularly limited. From the viewpoint of obtaining a high quality GaN film donor substrate 13D, an HVPE (hydride vapor phase) is formed on a base substrate such as a sapphire substrate, a GaAs substrate, or a GaN substrate. (Growth) method, MOCVD (Metal Organic Chemical Vapor Deposition) method, MBE (Molecular Beam Growth) method, gas phase method such as sublimation method, liquid phase method such as high nitrogen pressure solution method, flux method and the like are preferable.

図9(A)および(B)を参照して、接合膜12a,12b,12は、支持基板11とGaN膜13との接合強度を高めるために介在される膜であり、かかる接合強度を高める観点から、SiO2膜、SiNx膜などが好ましい。接合膜12a,12bを形成する方法は、品質の高い接合膜12a,12bを得る観点から、プラズマCVD(化学気相堆積)法、スパッタ法、真空蒸着法などが好ましい。 Referring to FIGS. 9A and 9B, the bonding films 12a, 12b, and 12 are films interposed to increase the bonding strength between the support substrate 11 and the GaN film 13, and increase the bonding strength. From the viewpoint, a SiO 2 film, a SiN x film, and the like are preferable. As a method of forming the bonding films 12a and 12b, a plasma CVD (chemical vapor deposition) method, a sputtering method, a vacuum evaporation method, and the like are preferable from the viewpoint of obtaining high-quality bonding films 12a and 12b.

図9(C)を参照して、支持基板11に形成された接合膜12aとGaN膜ドナー基板13Dに形成された接合膜12bとを貼り合わせる方法は、特に制限はなく、貼り合わせ面を洗浄しそのまま貼り合わせた後600℃〜1200℃程度に昇温して接合する直接接合法、貼り合わせ面を洗浄しプラズマやイオンなどで活性させた後に室温(たとえば25℃)〜400℃程度の低温で接合する表面活性化法などが好適である。かかる貼り合わせにより、接合膜12aと接合膜12bとが接合により一体化して接合膜12が形成され、支持基板11とGaN膜ドナー基板13Dとが接合膜12を介在させて接合される。   Referring to FIG. 9C, the method for bonding the bonding film 12a formed on the support substrate 11 and the bonding film 12b formed on the GaN film donor substrate 13D is not particularly limited, and the bonded surface is cleaned. Then, after bonding together, the temperature is raised to about 600 ° C. to 1200 ° C. for direct bonding, and after bonding surfaces are cleaned and activated with plasma, ions, etc., room temperature (for example, 25 ° C.) to low temperature of about 400 ° C. For example, a surface activation method in which bonding is performed with a metal is preferable. By bonding, the bonding film 12a and the bonding film 12b are integrated by bonding to form the bonding film 12, and the support substrate 11 and the GaN film donor substrate 13D are bonded with the bonding film 12 interposed.

図9(D)を参照して、GaN膜ドナー基板13Dをイオン注入領域13iで分離する方法は、GaN膜ドナー基板13Dのイオン注入領域13iに何らかのエネルギーを与える方法であれば特に制限はなく、イオン注入領域13iに、応力を加える方法、熱を加える方法、光を照射する方法、および超音波を印加する方法の少なくともいずれかの方法の少なくともいずれかの方法が可能である。このようにして、支持基板11とGaN膜13とが接合膜12を介在させて貼り合わされたGaN膜複合基板2が得られる。なお、GaN膜ドナー基板13DからGaN膜13が分離された残りのGaN膜ドナー基板13Drは再利用が可能である。   Referring to FIG. 9D, the method for separating the GaN film donor substrate 13D by the ion implantation region 13i is not particularly limited as long as it is a method for applying some energy to the ion implantation region 13i of the GaN film donor substrate 13D. At least one of a method of applying stress to the ion implantation region 13i, a method of applying heat, a method of irradiating light, and a method of applying ultrasonic waves is possible. In this way, the GaN film composite substrate 2 in which the support substrate 11 and the GaN film 13 are bonded together with the bonding film 12 interposed therebetween is obtained. The remaining GaN film donor substrate 13Dr from which the GaN film 13 is separated from the GaN film donor substrate 13D can be reused.

(エピ層付GaN膜複合基板を形成する工程)
図1〜図5を参照して、本実施形態のエピ層付GaN膜複合基板2の製造方法は、次に、GaN膜複合基板1のGaN膜13側に、少なくともInyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成することによりエピ層付GaN膜複合基板2を形成する工程を備える。ここで、InyGa1-yNエピ層22を形成する前にGaNエピ層26をさらに形成することができ、さらにGaNエピ層26を形成する前にAlzGa1-zNエピ層28(0<z<1)をさらに形成することができる。また、InyGa1-yNエピ層22を形成した後AlxGa1-xNエピ層24を形成する前にGaNエピ層26をさらに形成することができ、さらにInyGa1-yNエピ層22を形成する前にAlzGa1-zNエピ層28をさらに形成することができる。具体的には、実施形態1の第1例〜第5例のエピ層付GaN膜複合基板2を形成する工程は、以下のとおりである。
(Process of forming GaN film composite substrate with epi layer)
With reference to FIGS. 1 to 5, in the manufacturing method of the epitaxial layer-attached GaN film composite substrate 2 of this embodiment, next, at least In y Ga 1-y N is formed on the GaN film composite substrate 1 side of the GaN film composite substrate 1. A step of forming the epitaxial layer-attached GaN film composite substrate 2 by forming the epi layer 22 (0 <y <1) and the Al x Ga 1-x N epi layer 24 (0 <x <1) in this order is provided. Here, a GaN epi layer 26 can be further formed before the In y Ga 1 -y N epi layer 22 is formed, and an Al z Ga 1 -z N epi layer 28 is formed before the GaN epi layer 26 is further formed. (0 <z <1) can be further formed. Further, after the In y Ga 1 -y N epi layer 22 is formed and before the Al x Ga 1 -x N epi layer 24 is formed, a GaN epi layer 26 can be further formed, and the In y Ga 1 -y is further formed. An Al z Ga 1 -z N epi layer 28 can be further formed before the N epi layer 22 is formed. Specifically, the steps of forming the epilayer-attached GaN film composite substrate 2 of the first to fifth examples of the first embodiment are as follows.

(第1例)
図1を参照して、実施形態1の第1例のエピ層付GaN膜複合基板2を形成する工程においては、GaN膜複合基板1のGaN膜13側に、少なくともInyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成する。
(First example)
Referring to FIG. 1, in the step of forming the epitaxial layer-attached GaN film composite substrate 2 of the first example of Embodiment 1, at least In y Ga 1-y N is formed on the GaN film 13 side of the GaN film composite substrate 1. An epi layer 22 (0 <y <1) and an Al x Ga 1-x N epi layer 24 (0 <x <1) are formed in this order.

(第2例)
図2を参照して、実施形態1の第2例のエピ層付GaN膜複合基板2を形成する工程においては、GaN膜複合基板1のGaN膜13側に、少なくともGaNエピ層26、InyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成する。
(Second example)
Referring to FIG. 2, in the step of forming the epilayer-attached GaN film composite substrate 2 of the second example of Embodiment 1, at least the GaN epilayer 26, In y is formed on the GaN film 13 side of the GaN film composite substrate 1. A Ga 1-y N epi layer 22 (0 <y <1) and an Al x Ga 1-x N epi layer 24 (0 <x <1) are formed in this order.

(第3例)
図3を参照して、実施形態1の第3例のエピ層付GaN膜複合基板2を形成する工程においては、GaN膜複合基板1のGaN膜13側に、少なくともAlzGa1-zNエピ層28(0<z<1)、GaNエピ層26、InyGa1-yNエピ層22(0<y<1)およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成する。ここで、AlzGa1-zNエピ層28にクラックが発生するのを抑制する観点から、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmが式(3)であるz×tz<0.028の関係を満たす必要がある。
(Third example)
Referring to FIG. 3, in the step of forming the epitaxial layer-attached GaN film composite substrate 2 of the third example of Embodiment 1, at least Al z Ga 1 -z N is formed on the GaN film 13 side of the GaN film composite substrate 1. Epi layer 28 (0 <z <1), GaN epi layer 26, In y Ga 1-y N epi layer 22 (0 <y <1) and Al x Ga 1-x N epi layer 24 (0 <x <1 ) In this order. Here, Al z Ga 1-z N from the viewpoint of suppressing occurrence of cracks in the epitaxial layer 28, Al z Ga 1-z Al composition ratio of the N epitaxial layer 28 z and the thickness t z [mu] m has the formula (3 ) Z × t z <0.028.

(第4例)
図4を参照して、実施形態1の第4例のエピ層付GaN膜複合基板2を形成する工程においては、GaN膜複合基板1のGaN膜13側に、少なくともInyGa1-yNエピ層22(0<y<1)、GaNエピ層26およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成する。
(Fourth example)
Referring to FIG. 4, in the step of forming the epilayer-attached GaN film composite substrate 2 of the fourth example of Embodiment 1, at least In y Ga 1-y N is formed on the GaN film 13 side of the GaN film composite substrate 1. An epi layer 22 (0 <y <1), a GaN epi layer 26 and an Al x Ga 1-x N epi layer 24 (0 <x <1) are formed in this order.

(第5例)
図5を参照して、実施形態1の第5例のエピ層付GaN膜複合基板2を形成する工程においては、GaN膜複合基板1のGaN膜13側に、少なくともAlzGa1-zNエピ層28(0<z<1)、InyGa1-yNエピ層22(0<y<1)、GaNエピ層26およびAlxGa1-xNエピ層24(0<x<1)をこの順に形成する。ここで、AlzGa1-zNエピ層28にクラックが発生するのを抑制する観点から、AlzGa1-zNエピ層28のAl組成比zおよび厚さtzμmが式(3)であるz×tz<0.028の関係を満たす必要がある。
(Fifth example)
Referring to FIG. 5, in the step of forming the epitaxial layer-attached GaN film composite substrate 2 of the fifth example of Embodiment 1, at least Al z Ga 1-z N is formed on the GaN film 13 side of the GaN film composite substrate 1. Epi layer 28 (0 <z <1), In y Ga 1-y N epi layer 22 (0 <y <1), GaN epi layer 26 and Al x Ga 1-x N epi layer 24 (0 <x <1 ) In this order. Here, Al z Ga 1-z N from the viewpoint of suppressing occurrence of cracks in the epitaxial layer 28, Al z Ga 1-z Al composition ratio of the N epitaxial layer 28 z and the thickness t z [mu] m has the formula (3 ) Z × t z <0.028.

(実施例A1)
本実施例A1は、実施形態1の第3例のエピ層付GaN膜複合基板についての実施例である。
(Example A1)
Example A1 is an example of the epitaxial layer-attached GaN film composite substrate of the third example of the first embodiment.

1.GaN膜複合基板の準備
図3を参照して、支持基板11である厚さ350μmのムライト基板(Al23とSiO2とのモル比が3:2)と、その上に配置された接合膜12である厚さ0.5μmのSiO2膜と、その上に配置された厚さ0.2μmのGaN膜13と、を含む直径100mmのGaN膜複合基板1を準備した。
1. 3. Preparation of GaN Film Composite Substrate Referring to FIG. 3, a mullite substrate (thickness ratio of Al 2 O 3 and SiO 2 of 3: 2) having a thickness of 350 μm, which is a support substrate 11, and a junction disposed thereon A GaN film composite substrate 1 having a diameter of 100 mm including a SiO 2 film having a thickness of 0.5 μm as the film 12 and a GaN film 13 having a thickness of 0.2 μm disposed thereon was prepared.

上記のGaN膜複合基板1は、図9に示すように、支持基板11とイオン注入領域13iが形成されたGaN膜ドナー基板13DであるGaN基板とを接合膜12を介在させて貼り合わせた後、GaN膜ドナー基板13Dをイオン注入領域13iにおいてGaN膜13と残りのGaN膜ドナー基板13Drとに分離することにより得られた。   As shown in FIG. 9, the GaN film composite substrate 1 is bonded to a support substrate 11 and a GaN substrate, which is a GaN film donor substrate 13D in which an ion implantation region 13i is formed, with a bonding film 12 interposed therebetween. The GaN film donor substrate 13D was obtained by separating the GaN film donor substrate 13D into the GaN film 13 and the remaining GaN film donor substrate 13Dr in the ion implantation region 13i.

2.エピ層付GaN膜複合基板の形成
図3を参照して、MOCVD法により、GaN膜複合基板1のGaN膜13上に、厚さ0.05μmのAl組成比zが0.05のAlzGa1-zNエピ層28(z×tz=0.0025)、厚さ4.5μmのGaNエピ層26、および厚さ0.05μmでIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)をこの順に形成し、さらにInyGa1-yNエピ層22上にAl組成比xが異なるAlxGa1-xNエピ層24を形成することにより、エピ層付GaN膜複合基板2を形成した。
ここで、AlxGa1-xNエピ層24を形成する際のAl組成比xが、0.02、0.04、0.06、0.08、0.10、および0.12のとき、AlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、ノマルスキー顕微鏡によるノマルスキー像および/または蛍光顕微鏡による蛍光像から測定したところ、それぞれ2.25μm、1.13μm、0.75μm、0.56μm、0.45μm、および0.38μmであった。
2. Formation of epilayer-attached GaN film composite substrate Referring to FIG. 3, an Al z Ga having a thickness of 0.05 μm and an Al composition ratio z of 0.05 is formed on GaN film 13 of GaN film composite substrate 1 by MOCVD. 1-z N epi layer 28 (z × t z = 0.0025), GaN epi layer 26 having a thickness of 4.5 μm, and In y Ga 1− having a thickness of 0.05 μm and an In composition ratio y of 0.07 The y N epi layer 22 (y × t y = 0.0035) is formed in this order, and the Al x Ga 1 -x N epi layer 24 having a different Al composition ratio x is further formed on the In y Ga 1 -y N epi layer 22. As a result, an epitaxial layer-attached GaN film composite substrate 2 was formed.
Here, when the Al composition ratio x when forming the Al x Ga 1-x N epilayer 24 is 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12. The critical thickness at which cracks begin to occur in the Al x Ga 1-x N epilayer 24 (that is, the minimum thickness at which cracks occur) was measured from a Nomarski image and / or a fluorescence image using a fluorescence microscope. They were 2.25 μm, 1.13 μm, 0.75 μm, 0.56 μm, 0.45 μm, and 0.38 μm, respectively.

実施例A1のAlxGa1-xNエピ層24について、Al組成比と臨界厚さとの関係を図10にプロットしたところ、曲線EA1に示す関係が見られた。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.045の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。 Regarding the Al x Ga 1-x N epilayer 24 of Example A1, the relationship between the Al composition ratio and the critical thickness was plotted in FIG. 10, and the relationship shown by the curve EA1 was found. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.045, and x × t x ≧ 0 represented by the formula (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied.

(実施例A2)
本実施例A2は、実施例1と同様に、実施形態1の第3例のエピ層付GaN膜複合基板についての実施例であって、図3を参照して、In組成比yが0.07のInyGa1-yNエピ層22の厚さを1μmとしたこと(y×ty=0.07)以外は、実施例1と同様のエピ層構造を有するエピ層付GaN膜複合基板2を形成した。
ここで、AlxGa1-xNエピ層24を形成する際のAl組成比xが、0.02、0.04、0.06、0.08、0.10、および0.12のとき、AlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、それぞれ8.10μm、4.05μm、2.70μm、2.03μm、1.62μm、および1.35μmであった。
(Example A2)
This Example A2 is an example of the epitaxial layer-attached GaN film composite substrate of the third example of Embodiment 1 as in Example 1, and with reference to FIG. The GaN film composite with an epi layer having the same epi layer structure as in Example 1 except that the thickness of the In y Ga 1-y N epi layer 22 of 07 was set to 1 μm (y × t y = 0.07). A substrate 2 was formed.
Here, when the Al composition ratio x when forming the Al x Ga 1-x N epilayer 24 is 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12. The critical thickness at which cracks begin to occur in the Al x Ga 1-x N epilayer 24 (ie, the minimum thickness at which cracks occur) are 8.10 μm, 4.05 μm, 2.70 μm, 2.03 μm, 1 0.62 μm and 1.35 μm.

実施例A2のAlxGa1-xNエピ層24について、Al組成比と臨界厚さとの関係を図10にプロットしたところ、曲線EA2に示す関係が見られた。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.162)の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.43x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。 Regarding the Al x Ga 1-x N epilayer 24 of Example A2, the relationship between the Al composition ratio and the critical thickness was plotted in FIG. 10, and the relationship shown by the curve EA2 was found. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.162), and x × t x ≧ equation (1) The relationship of 0.028 was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.43x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied.

(比較例A)
図7を参照して、In組成比yが0.07のInyGa1-yNエピ層を形成しなかったこと以外は実施例A1と同様にしてエピ層付GaN膜複合基板を形成した。すなわち、MOCVD法により、GaN膜複合基板1のGaN膜13上に、厚さ0.05μmのAl組成比zが0.05のAlzGa1-zNエピ層28および厚さ4.5μmのGaNエピ層26(z×tz=0.0025)をこの順に形成し、さらにGaNエピ層26上にAl組成比xが異なるAlxGa1-xNエピ層24を形成することにより、エピ層付GaN膜複合基板2を形成した。
(Comparative Example A)
Referring to FIG. 7, an epitaxial layer-attached GaN film composite substrate was formed in the same manner as Example A1 except that the In y Ga 1-y N epilayer having an In composition ratio y of 0.07 was not formed. . That is, by MOCVD, an Al z Ga 1 -z N epilayer 28 having a thickness of 0.05 μm and an Al composition ratio z of 0.05 μm and a thickness of 4.5 μm are formed on the GaN film 13 of the GaN film composite substrate 1. A GaN epi layer 26 (z × t z = 0.0025) is formed in this order, and an Al x Ga 1-x N epi layer 24 having a different Al composition ratio x is formed on the GaN epi layer 26, thereby producing an epi. A layered GaN film composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAl組成比xが、0.02、0.04、0.06、0.08、0.10、および0.12のとき、AlxGa1-xNエピ層にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、それぞれ1.35μm、0.68μm、0.45μm、0.34μm、0.27μm、および0.23μmであった。 Here, when the Al composition ratio x when forming the Al x Ga 1-x N epilayer 24 is 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12. The critical thickness at which cracks start to occur in the Al x Ga 1-x N epilayer (that is, the minimum thickness at which cracks occur) are 1.35 μm, 0.68 μm, 0.45 μm, 0.34 μm,. 27 μm and 0.23 μm.

比較例AのAlxGa1-xNエピ層24について、Al組成比と臨界厚さとの関係を図10にプロットしたところ、曲線RAに示す関係が見られた。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.027の関係があり、式(1)であるx×tx≧0.028の関係を満たしていなかった。 Regarding the Al x Ga 1-x N epilayer 24 of Comparative Example A, the relationship between the Al composition ratio and the critical thickness was plotted in FIG. 10, and the relationship shown by the curve RA was found. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.027, and x × t x ≧ 0 expressed by Equation (1). .028 relationship was not satisfied.

(参考例A)
図8を参照して、直径100mmで厚さ850μmのサファイア基板31上に、MOCVD法により、厚さ3μmのGaNエピ層を形成し、さらにInyGa1-yNエピ層上にAl組成比xが異なるAlxGa1-xNエピ層を形成することにより、エピ層付GaN膜複合基板2Sを形成した。
(Reference Example A)
Referring to FIG. 8, a GaN epilayer having a thickness of 3 μm is formed by MOCVD on a sapphire substrate 31 having a diameter of 100 mm and a thickness of 850 μm, and an Al composition ratio is further formed on the In y Ga 1-y N epilayer. By forming Al x Ga 1-x N epilayers with different x , an epilayer-attached GaN film composite substrate 2S was formed.

ここで、AlxGa1-xNエピ層を形成する際のAl組成比xが、0.02、0.04、0.06、0.08、0.10、および0.12のとき、AlxGa1-xNエピ層にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、それぞれ6.08μm、3.04μm、2.03μm、1.52μm、1.22μm、および1.02μmであった。 Here, when the Al composition ratio x when forming the Al x Ga 1-x N epilayer is 0.02, 0.04, 0.06, 0.08, 0.10, and 0.12, The critical thickness at which cracks begin to occur in the Al x Ga 1-x N epilayer (ie, the minimum thickness at which cracks occur) are 6.08 μm, 3.04 μm, 2.03 μm, 1.52 μm, and 1.22 μm, respectively. And 1.02 μm.

参考例AのAlxGa1-xNエピ層24について、Al組成比と臨界厚さとの関係を図10にプロットしたところ、曲線SAに示す関係が見られた。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.122の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。 Regarding the Al x Ga 1-x N epilayer 24 of Reference Example A, the relationship between the Al composition ratio and the critical thickness was plotted in FIG. 10, and the relationship shown by the curve SA was found. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.122, and x × t x ≧ 0 expressed by Equation (1). .028 relationship was satisfied.

(比較例B)
図3および図7を参照して、本比較例Bは、実施形態1の第3例のエピ層付GaN膜複合基板2(図3)からInyGa1-yNエピ層22が除外されたエピ層付GaN膜複合基板2R(図7)についての比較例である。
(Comparative Example B)
3 and 7, in this comparative example B, the In y Ga 1-y N epilayer 22 is excluded from the epilayer - attached GaN film composite substrate 2 (FIG. 3) of the third example of the first embodiment. This is a comparative example of the epitaxial layer-attached GaN film composite substrate 2R (FIG. 7).

1.GaN膜複合基板の準備
図7を参照して、実施例A1と同様にして、支持基板11である厚さ350μmのムライト基板(Al23とSiO2とのモル比が3:2)と、その上に配置された接合膜12である厚さ0.5μmのSiO2膜と、その上に配置された厚さ0.2μmのGaN膜13と、を含む直径100mmのGaN膜複合基板1を準備した。
1. Preparation of GaN film composite substrate Referring to FIG. 7, in the same manner as in Example A1, a mullite substrate having a thickness of 350 μm (a molar ratio of Al 2 O 3 and SiO 2 of 3: 2) is used as support substrate 11. A GaN film composite substrate 1 having a diameter of 100 mm, including a SiO 2 film having a thickness of 0.5 μm, which is a bonding film 12 disposed thereon, and a GaN film 13 having a thickness of 0.2 μm disposed thereon. Prepared.

2.エピ層付GaN膜複合基板の形成
図7を参照して、GaN膜複合基板1のGaN膜13上に、MOCVD法により、厚さ0.05μmのAl組成比zが0.05のAlzGa1-zNエピ層28(z×tz=0.0025)および厚さ4.5μmのGaNエピ層26をこの順に形成し、さらにGaNエピ層26上にAl組成比xが0.08のAlxGa1-xNエピ層24をこの順に形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Referring to epi layer with GaN film composite molding 7 of the substrate, on the GaN film 13 of GaN film composite substrate 1 by MOCVD, Al composition ratio z of the thickness of 0.05μm is 0.05 Al z Ga A 1-z N epi layer 28 (z × t z = 0.0025) and a GaN epi layer 26 having a thickness of 4.5 μm are formed in this order, and an Al composition ratio x is 0.08 on the GaN epi layer 26. By forming the Al x Ga 1-x N epilayer 24 in this order, the epilayer-attached GaN film composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.34μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.027の関係があり、式(1)であるx×tx≧0.028の関係を満たしていなかった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed When measured in the same manner as in Example A1, it was 0.34 μm. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.027, and x × t x ≧ 0 expressed by Equation (1). .028 relationship was not satisfied.

(実施例B1)
本実施例B1は、実施形態1の第1例のエピ層付GaN膜複合基板についての実施例である。
(Example B1)
This Example B1 is an example of the GaN film composite substrate with an epi layer of the first example of the first embodiment.

1.GaN膜複合基板の準備
図1を参照して、実施例A1と同様にして、支持基板11である厚さ350μmのムライト基板(Al23とSiO2とのモル比が3:2)と、その上に配置された接合膜12である厚さ0.5μmのSiO2膜と、その上に配置された厚さ0.2μmのGaN膜13と、を含む直径100mmのGaN膜複合基板1を準備した。
1. Preparation of GaN Film Composite Substrate With reference to FIG. 1, in the same manner as in Example A1, a 350 μm thick mullite substrate (Molar ratio of Al 2 O 3 and SiO 2 is 3: 2) as a support substrate 11 A GaN film composite substrate 1 having a diameter of 100 mm, including a SiO 2 film having a thickness of 0.5 μm, which is a bonding film 12 disposed thereon, and a GaN film 13 having a thickness of 0.2 μm disposed thereon. Prepared.

2.エピ層付GaN膜複合基板の形成
図1を参照して、MOCVD法により、GaN膜複合基板1のGaN膜13上に厚さ0.05μmのIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)を形成し、さらにInyGa1-yNエピ層22上にAl組成比xが0.08のAlxGa1-xNエピ層24を形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Formation of epilayer-attached GaN film composite substrate Referring to FIG. 1, In y Ga 1 having a thickness of 0.05 μm and an In composition ratio y of 0.07 is formed on GaN film 13 of GaN film composite substrate 1 by MOCVD. -y N epitaxial layer 22 (y × t y = 0.0035 ) is formed, further in y Ga 1-y N epitaxial layer 22 on the Al composition ratio x of 0.08 of Al x Ga 1-x N epitaxial By forming the layer 24, the epitaxial layer-attached GaN film composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.56μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.045の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。また、実施例B1におけるAlxGa1-xNエピ層24の臨界厚さは、比較例BにおけるAlxGa1-xNエピ層24の臨界厚さより大きく、比較例Bと対比される後述の実施例B3におけるAlxGa1-xNエピ層24の臨界厚さと同等であった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed When measured in the same manner as in Example A1, it was 0.56 μm. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.045, and x × t x ≧ 0 represented by the formula (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24. , Y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied. In addition, the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B1 is larger than the critical thickness of the Al x Ga 1-x N epilayer 24 in Comparative Example B, which will be compared with Comparative Example B described later. This was equivalent to the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B3.

(実施例B2)
本実施例B2は、実施形態1の第2例のエピ層付GaN膜複合基板についての実施例である。
(Example B2)
Example B2 is an example of the epitaxial layer-attached GaN film composite substrate of the second example of the first embodiment.

1.GaN膜複合基板の準備
図2を参照して、実施例A1と同様のGaN膜複合基板1を準備した。
1. Preparation of GaN Film Composite Substrate With reference to FIG. 2, a GaN film composite substrate 1 similar to Example A1 was prepared.

2.エピ層付GaN膜複合基板の形成
図2を参照して、MOCVD法により、GaN膜複合基板1のGaN膜13上に、厚さが3μmのGaNエピ層26および厚さ0.05μmのIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)をこの順に形成し、さらにInyGa1-yNエピ層22上にAl組成比xが0.08のAlxGa1-xNエピ層24を形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Formation of epilayer-attached GaN film composite substrate Referring to FIG. 2, GaN epilayer 26 having a thickness of 3 μm and In composition having a thickness of 0.05 μm are formed on GaN film 13 of GaN film composite substrate 1 by MOCVD. in y Ga 1-y N epitaxial layer 22 of the ratio y is 0.07 (y × t y = 0.0035 ) was formed in this order, further in y Ga 1-y N Al composition ratio on the epitaxial layer 22 x By forming the Al x Ga 1-x N epilayer 24 having a thickness of 0.08, the epitaxial layer-attached GaN film composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.58μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.046の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。また、実施例B2におけるAlxGa1-xNエピ層24の臨界厚さは、実施例B1におけるAlxGa1-xNエピ層24の臨界厚さと同等であった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed When measured in the same manner as in Example A1, it was 0.58 μm. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.046, and x × t x ≧ 0 represented by the equation (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied. The critical thickness of the Al x Ga 1-x N epitaxial layer 24 in Example B2 was equivalent to the critical thickness of the Al x Ga 1-x N epitaxial layer 24 in the embodiment B1.

(実施例B3)
本実施例B3は、実施形態1の第3例のエピ層付GaN膜複合基板についての実施例である。
(Example B3)
Example B3 is an example of the epitaxial layer-attached GaN film composite substrate of the third example of the first embodiment.

1.GaN膜複合基板の準備
図3を参照して、実施例A1と同様のGaN膜複合基板1を準備した。
1. Preparation of GaN Film Composite Substrate With reference to FIG. 3, a GaN film composite substrate 1 similar to Example A1 was prepared.

2.エピ層付GaN膜複合基板の形成
図3を参照して、GaN膜複合基板1のGaN膜13上に、MOCVD法により、厚さ0.05μmのAl組成比zが0.05のAlzGa1-zNエピ層28(z×tz=0.0025)、厚さ4.5μmのGaNエピ層26、および厚さ0.05μmでIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)をこの順に形成し、さらにInyGa1-yNエピ層22上にAl組成比xが0.08のAlxGa1-xNエピ層24をこの順に形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Referring to form Figure 3 GaN film composite substrate epilayer, on the GaN film 13 of GaN film composite substrate 1 by MOCVD, Al composition ratio z of the thickness of 0.05μm is 0.05 Al z Ga 1-z N epi layer 28 (z × t z = 0.0025), GaN epi layer 26 having a thickness of 4.5 μm, and In y Ga 1− having a thickness of 0.05 μm and an In composition ratio y of 0.07 An y N epi layer 22 (y × t y = 0.0035) is formed in this order, and an Al x Ga 1-x N having an Al composition ratio x of 0.08 is further formed on the In y Ga 1 -y N epi layer 22. The epitaxial layer-attached GaN film composite substrate 2 was formed by forming the epitaxial layer 24 in this order.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.55μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.044の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。また、実施例B3におけるAlxGa1-xNエピ層24の臨界厚さは、対比される比較例BにおけるAlxGa1-xNエピ層24の臨界厚さより大きく、実施例B1におけるAlxGa1-xNエピ層24の臨界厚さと同等であった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed When measured in the same manner as in Example A1, it was 0.55 μm. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.044, and x × t x ≧ 0 expressed by Equation (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied. Further, the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B3 is larger than the critical thickness of the Al x Ga 1-x N epilayer 24 in the comparative example B to be compared, and the Al x Ga 1-x N epilayer 24 in the comparative example B is larger. It was equivalent to the critical thickness of the x Ga 1-x N epilayer 24.

(実施例B4)
本実施例B4は、実施形態1の第4例のエピ層付GaN膜複合基板についての実施例である。
(Example B4)
Example B4 is an example of the GaN film composite substrate with an epi layer of the fourth example of the first embodiment.

1.GaN膜複合基板の準備
図4を参照して、実施例A1と同様のGaN膜複合基板1を準備した。
1. Preparation of GaN Film Composite Substrate With reference to FIG. 4, a GaN film composite substrate 1 similar to Example A1 was prepared.

2.エピ層付GaN膜複合基板の形成
図4を参照して、MOCVD法により、GaN膜複合基板1のGaN膜13上に、厚さ0.05μmのIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)および厚さが3μmのGaNエピ層26(※15:比較例Bおよび実施例B3、B5におけるGaNエピ層の厚さは4.5μmであり、本実施例B4と厚さが異なっています。対比の観点からは、比較例Bおよび実施例B2〜B5の間で同じ厚さが好ましいと思料致します。同じ厚さのデータがありましたら、ご教示下さい。)をこの順に形成し、さらにGaNエピ層26上にAl組成比xが0.08のAlxGa1-xNエピ層24を形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Formation of epilayer-attached GaN film composite substrate Referring to FIG. 4, an In y Ga having a thickness of 0.05 μm and an In composition ratio of 0.07 is formed on GaN film 13 of GaN film composite substrate 1 by MOCVD. 1-y N epitaxial layer 22 (y × t y = 0.0035 ) and a thickness of 3μm of GaN epi-layer 26 (※ 15: thickness of the GaN epitaxial layer in Comparative example B and example B3, B5 4. The thickness is 5 μm, which is different from Example B4.From the viewpoint of comparison, I think that the same thickness is preferable between Comparative Example B and Examples B2 to B5. If there is, please tell us)) in this order, and further, an Al x Ga 1-x N epilayer 24 having an Al composition ratio x of 0.08 is formed on the GaN epilayer 26, thereby forming the GaN with epilayer A membrane composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.57μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.046の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。また、実施例B4におけるAlxGa1-xNエピ層24の臨界厚さは、実施例B1におけるAlxGa1-xNエピ層24の臨界厚さと同等であった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed It was 0.57 micrometer when measured similarly to Example A1. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.046, and x × t x ≧ 0 represented by the equation (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied. Further, the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B4 was equal to the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B1.

(実施例B5)
本実施例B5は、実施形態1の第5例のエピ層付GaN膜複合基板についての実施例である。
(Example B5)
Example B5 is an example of the epitaxial layer-attached GaN film composite substrate of the fifth example of the first embodiment.

1.GaN膜複合基板の準備
図5を参照して、実施例A1と同様のGaN膜複合基板1を準備した。
1. Preparation of GaN Film Composite Substrate With reference to FIG. 5, a GaN film composite substrate 1 similar to Example A1 was prepared.

2.エピ層付GaN膜複合基板の形成
図5を参照して、GaN膜複合基板1のGaN膜13上に、MOCVD法により、厚さ0.05μmのAl組成比zが0.05のAlzGa1-zNエピ層28(z×tz=0.0025)、厚さ0.05μmでIn組成比yが0.07のInyGa1-yNエピ層22(y×ty=0.0035)、および厚さ4.5μmのGaNエピ層26をこの順に形成し、さらにGaNエピ層26上にAl組成比xが0.08のAlxGa1-xNエピ層24をこの順に形成することにより、エピ層付GaN膜複合基板2を形成した。
2. Referring to formation Figure 5 GaN film composite substrate epilayer, on the GaN film 13 of GaN film composite substrate 1 by MOCVD, Al composition ratio z of the thickness of 0.05μm is 0.05 Al z Ga 1-z N epi layer 28 (z × t z = 0.0025), In y Ga 1-y N epi layer 22 (y × t y = 0) having a thickness of 0.05 μm and an In composition ratio y of 0.07 , And a 4.5 μm thick GaN epi layer 26 in this order, and an Al x Ga 1-x N epi layer 24 having an Al composition ratio x of 0.08 on the GaN epi layer 26 in this order. By forming, the epitaxial layer-attached GaN film composite substrate 2 was formed.

ここで、AlxGa1-xNエピ層24を形成する際のAlxGa1-xNエピ層24にクラックが発生し始める臨界厚さ(すなわちクラックが発生する最小厚さ)は、実施例A1と同様に測定したところ、0.55μmであった。すなわち、AlxGa1-xNエピ層24のAl組成比xおよび厚さtxμmは、x×tx≒0.044の関係があり、式(1)であるx×tx≧0.028の関係を満たしていた。また、InyGa1-yNエピ層22のIn組成比yおよび厚さtyμmは、AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、y×ty≒0.08x×txの関係があり、式(2)である0.01×x×tx≦y×ty≦2×x×txの関係を満たしていた。また、実施例B5におけるAlxGa1-xNエピ層24の臨界厚さは、実施例B1におけるAlxGa1-xNエピ層24の臨界厚さと同等であった。 Here, Al x Ga 1-x N critical thickness of Al x Ga 1-x N cracks in epi layer 24 when forming the epitaxial layer 24 begins to occur (the minimum thickness or generation of cracks) is performed When measured in the same manner as in Example A1, it was 0.55 μm. That is, the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer 24 have a relationship of x × t x ≈0.044, and x × t x ≧ 0 expressed by Equation (1). .028 relationship was satisfied. The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer 22 are between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer, There was a relationship of y × t y ≈0.08x × t x, and the relationship of 0.01 × x × t x ≦ y × t y ≦ 2 × x × t x which is the expression (2) was satisfied. Further, the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B5 was equal to the critical thickness of the Al x Ga 1-x N epilayer 24 in Example B1.

今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 GaN膜複合基板
2 エピ層付GaN膜複合基板
11 支持基板
11m,13n 主面
12,12a,12b 接合膜
13 GaN膜
13i イオン注入領域
13D,13Dr GaN膜ドナー基板
22 InyGa1-yNエピ層
24 AlxGa1-xNエピ層
26 GaNエピ層
28 AlzGa1-zNエピ層
31 サファイア基板。
1 GaN film composite substrate 2 epilayer GaN film composite substrate 11 supporting substrate 11m, 13n major surface 12, 12a, 12b bonding film 13 GaN film 13i ion implantation region 13D, 13Dr GaN film donor substrate 22 In y Ga 1-y N Epi layer 24 Al x Ga 1 -x N epi layer 26 GaN epi layer 28 Al z Ga 1 -z N epi layer 31 Sapphire substrate.

Claims (9)

支持基板とGaN膜とを貼り合わせたGaN膜複合基板と、前記GaN膜複合基板の前記GaN膜側から順に配置されたInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)と、を含み、
前記AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす、エピ層付GaN膜複合基板。
A GaN film composite substrate obtained by bonding a support substrate and a GaN film, an In y Ga 1-y N epilayer (0 <y <1) and Al x arranged in order from the GaN film side of the GaN film composite substrate. Ga 1-x N epilayer (0 <x <1), and
The Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer are expressed by the formula (1)
x × t x ≧ 0.028 (1)
A GaN film composite substrate with an epi layer that satisfies the above relationship.
前記InyGa1-yNエピ層のIn組成比yおよび厚さtyμmは、前記AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たす、請求項1に記載のエピ層付GaN膜複合基板。
The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer are expressed by the formula between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer. (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
The GaN film composite substrate with an epi layer according to claim 1, satisfying the relationship:
前記GaN膜の厚さtfが0.05μm以上50μm以下である請求項1または請求項2に記載のエピ層付GaN膜複合基板。 The GaN in the thickness t f is 0.05μm or more 50μm or less GaN film composite substrate with epitaxial layer according to claim 1 or claim 2 of the membrane. 前記GaN膜と前記InyGa1-yNエピ層との間に配置されているGaNエピ層をさらに含む請求項1から請求項3のいずれか1項に記載のエピ層付GaN膜複合基板。 The GaN film composite substrate with an epi layer according to any one of claims 1 to 3, further comprising a GaN epi layer disposed between the GaN film and the In y Ga 1-y N epi layer. . 前記GaN膜と前記GaNエピ層との間に配置されているAlzGa1-zNエピ層(0<z<1)をさらに含み、
前記AlzGa1-zNエピ層のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たす、請求項4に記載のエピ層付GaN膜複合基板。
An Al z Ga 1 -z N epi layer (0 <z <1) disposed between the GaN film and the GaN epi layer;
The Al composition ratio z and the thickness t z μm of the Al z Ga 1-z N epilayer are expressed by the formula (3).
z × t z <0.028 (3)
The GaN film composite substrate with an epi layer according to claim 4, satisfying the relationship:
前記InyGa1-yNエピ層と前記AlxGa1-xNエピ層との間に配置されているGaNエピ層をさらに含む請求項1から請求項3のいずれか1項に記載のエピ層付GaN膜複合基板。 4. The GaN epi layer according to claim 1, further comprising a GaN epi layer disposed between the In y Ga 1-y N epilayer and the Al x Ga 1-x N epilayer. 5. GaN film composite substrate with epi layer. 前記GaN膜と前記InyGa1-yNエピ層との間に配置されているAlzGa1-zNエピ層(0<z<1)をさらに含み、
前記AlzGa1-zNエピ層のAl組成比zおよび厚さtzμmは、式(3)
z×tz<0.028 (3)
の関係を満たす、請求項6に記載のエピ層付GaN膜複合基板。
An Al z Ga 1-z N epilayer (0 <z <1) disposed between the GaN film and the In y Ga 1-y N epilayer;
The Al composition ratio z and the thickness t z μm of the Al z Ga 1-z N epilayer are expressed by the formula (3).
z × t z <0.028 (3)
The GaN film composite substrate with an epi layer according to claim 6, satisfying the relationship:
支持基板とGaN膜とを貼り合わせたGaN膜複合基板を準備する工程と、
前記GaN膜複合基板の前記GaN膜側に、少なくともInyGa1-yNエピ層(0<y<1)およびAlxGa1-xNエピ層(0<x<1)をこの順に形成することによりエピ層付GaN膜複合基板を形成する工程と、を備え、
前記AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmは、式(1)
x×tx≧0.028 (1)
の関係を満たす、エピ層付GaN膜複合基板の製造方法。
Preparing a GaN film composite substrate obtained by bonding a support substrate and a GaN film;
At least an In y Ga 1-y N epilayer (0 <y <1) and an Al x Ga 1-x N epilayer (0 <x <1) are formed in this order on the GaN film side of the GaN film composite substrate. A step of forming a GaN film composite substrate with an epi layer by,
The Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer are expressed by the formula (1)
x × t x ≧ 0.028 (1)
The manufacturing method of the GaN film | membrane composite substrate with an epi layer which satisfy | fills these relationships.
前記InyGa1-yNエピ層のIn組成比yおよび厚さtyμmは、前記AlxGa1-xNエピ層のAl組成比xおよび厚さtxμmとの間で、式(2)
0.01×x×tx≦y×ty≦2×x×tx (2)
の関係を満たす、請求項8に記載のエピ層付GaN膜複合基板の製造方法。
The In composition ratio y and the thickness t y μm of the In y Ga 1-y N epilayer are expressed by the formula between the Al composition ratio x and the thickness t x μm of the Al x Ga 1-x N epilayer. (2)
0.01 × x × t x ≦ y × t y ≦ 2 × x × t x (2)
The manufacturing method of the GaN film | membrane composite substrate with an epi layer of Claim 8 which satisfy | fills the relationship of these.
JP2014183079A 2014-09-09 2014-09-09 Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same Pending JP2016058512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014183079A JP2016058512A (en) 2014-09-09 2014-09-09 Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014183079A JP2016058512A (en) 2014-09-09 2014-09-09 Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016058512A true JP2016058512A (en) 2016-04-21

Family

ID=55758860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014183079A Pending JP2016058512A (en) 2014-09-09 2014-09-09 Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016058512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115802B2 (en) 2016-06-20 2018-10-30 Advantest Corporation Manufacturing method for compound semiconductor device
JP2019201205A (en) * 2018-05-14 2019-11-21 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Method for processing wide band gap semiconductor wafer, method for forming plurality of thin film wide band gap semiconductor wafers, and wide band gap semiconductor wafer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140847A (en) * 1997-07-16 1999-02-12 Toshiba Corp Gallium nitride semiconductor device and manufacture thereof
JP2002176197A (en) * 2000-05-22 2002-06-21 Ngk Insulators Ltd Substrate for photonic device and its fabricating method
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2004179452A (en) * 2002-11-28 2004-06-24 Shin Etsu Handotai Co Ltd Hetero epitaxial wafer
JP2006339675A (en) * 2006-09-07 2006-12-14 Sharp Corp Nitride semiconductor laser element and semiconductor optical device
JP2010182936A (en) * 2009-02-06 2010-08-19 Sumitomo Electric Ind Ltd Composite substrate, epitaxial substrate, semiconductor device, and method of manufacturing composite substrate
JP2011029218A (en) * 2009-07-21 2011-02-10 Sharp Corp Nitride semiconductor light emitting element structure, and method of forming the same
JP2012230969A (en) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN-BASED SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2014003056A (en) * 2012-06-15 2014-01-09 Nagoya Institute Of Technology Semiconductor laminate structure and semiconductor element using the same
JP2014157977A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140847A (en) * 1997-07-16 1999-02-12 Toshiba Corp Gallium nitride semiconductor device and manufacture thereof
JP2002176197A (en) * 2000-05-22 2002-06-21 Ngk Insulators Ltd Substrate for photonic device and its fabricating method
JP2003060212A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Schottky barrier diode and manufacturing method therefor
JP2004179452A (en) * 2002-11-28 2004-06-24 Shin Etsu Handotai Co Ltd Hetero epitaxial wafer
JP2006339675A (en) * 2006-09-07 2006-12-14 Sharp Corp Nitride semiconductor laser element and semiconductor optical device
JP2010182936A (en) * 2009-02-06 2010-08-19 Sumitomo Electric Ind Ltd Composite substrate, epitaxial substrate, semiconductor device, and method of manufacturing composite substrate
JP2011029218A (en) * 2009-07-21 2011-02-10 Sharp Corp Nitride semiconductor light emitting element structure, and method of forming the same
JP2012230969A (en) * 2011-04-25 2012-11-22 Sumitomo Electric Ind Ltd GaN-BASED SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2014003056A (en) * 2012-06-15 2014-01-09 Nagoya Institute Of Technology Semiconductor laminate structure and semiconductor element using the same
JP2014157977A (en) * 2013-02-18 2014-08-28 Sumitomo Electric Ind Ltd Group iii nitride composite substrate, method for manufacturing the same, lamination group iii nitride composite substrate, group iii nitride semiconductor device and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115802B2 (en) 2016-06-20 2018-10-30 Advantest Corporation Manufacturing method for compound semiconductor device
JP2019201205A (en) * 2018-05-14 2019-11-21 インフィニオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Method for processing wide band gap semiconductor wafer, method for forming plurality of thin film wide band gap semiconductor wafers, and wide band gap semiconductor wafer
JP7381221B2 (en) 2018-05-14 2023-11-15 インフィニオン テクノロジーズ アクチエンゲゼルシャフト Methods of processing wide bandgap semiconductor wafers, methods of forming multiple thin film wide bandgap semiconductor wafers, and wide bandgap semiconductor wafers
US11887894B2 (en) 2018-05-14 2024-01-30 Infineon Technologies Ag Methods for processing a wide band gap semiconductor wafer using a support layer and methods for forming a plurality of thin wide band gap semiconductor wafers using support layers

Similar Documents

Publication Publication Date Title
TWI468562B (en) Method for manufacturing a thick epitaxial layer of gallium nitride on a silicon or similar substrate and layer obtained using said method
JP5836158B2 (en) III-nitride semiconductor structure with strain absorbing interlayer transition module
TWI437637B (en) Method for manufacturing gallium nitride single crystalline substrate using self-split
US8093077B2 (en) Method for manufacturing a layer of gallium nitride or gallium and aluminum nitride
JP5631034B2 (en) Nitride semiconductor epitaxial substrate
US9741560B2 (en) Method of growing nitride semiconductor layer
US8791468B2 (en) GaN film structure, method of fabricating the same, and semiconductor device including the same
JP5163045B2 (en) Epitaxial growth substrate manufacturing method and nitride compound semiconductor device manufacturing method
JP2007106665A (en) Gallium nitride device substrate containing lattice parameter altering element
US9419160B2 (en) Nitride semiconductor structure
JP2013517621A (en) Semiconductor light emitting device comprising a layer for compensating for thermal expansion of a substrate
JP2010232322A (en) Compound semiconductor substrate
JP6180401B2 (en) Epitaxial wafer, semiconductor element, epitaxial wafer manufacturing method, and semiconductor element manufacturing method
US20110143522A1 (en) Relaxation of strained layers
JP2017150064A (en) Compound semiconductor substrate, pellicle film, and production method of compound semiconductor substrate
JP2015018960A (en) Semiconductor device manufacturing method
JP2013247362A (en) Method for manufacturing thin film bonded substrate for semiconductor element
CN107004724B (en) Semiconductor device and method for manufacturing the same
JP2010062482A (en) Nitride semiconductor substrate, and method of manufacturing the same
JP2016058512A (en) Epitaxial layer-deposited gallium nitride film composite substrate and method for manufacturing the same
US20150123140A1 (en) Semipolar nitride semiconductor structure and method of manufacturing the same
JP2012033729A (en) Semiconductor layer bonded substrate manufacturing method and light-emitting device
KR101901932B1 (en) Substrate having heterostructure, nitride-based semiconductor light emitting device and method for manufacturing the same
JP2007161535A (en) Method for manufacturing semiconductor crystal substrate
JP2010192698A (en) Manufacturing method of ion implantation group iii nitride semiconductor substrate, group iii nitride semiconductor layer junction substrate, and group iii nitride semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703