JP2016054948A - Method of treating hexavalent chromium-containing substance - Google Patents

Method of treating hexavalent chromium-containing substance Download PDF

Info

Publication number
JP2016054948A
JP2016054948A JP2014184026A JP2014184026A JP2016054948A JP 2016054948 A JP2016054948 A JP 2016054948A JP 2014184026 A JP2014184026 A JP 2014184026A JP 2014184026 A JP2014184026 A JP 2014184026A JP 2016054948 A JP2016054948 A JP 2016054948A
Authority
JP
Japan
Prior art keywords
hexavalent chromium
sulfur
reducing agent
treating
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014184026A
Other languages
Japanese (ja)
Other versions
JP6437769B2 (en
Inventor
敦夫 西村
Atsuo Nishimura
敦夫 西村
坂本 芳久
Yoshihisa Sakamoto
芳久 坂本
富子 齋藤
Tomiko Saito
富子 齋藤
健一 坂上
Kenichi Sakagami
健一 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2014184026A priority Critical patent/JP6437769B2/en
Publication of JP2016054948A publication Critical patent/JP2016054948A/en
Application granted granted Critical
Publication of JP6437769B2 publication Critical patent/JP6437769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the elution of hexavalent chromium from a massive hexavalent chromium-containing substance for the long term.SOLUTION: A hexavalent chromium-containing substance and a reductant comprising 30-98.5 wt.% of carbon and 1.5-10 wt.% of sulfur are subjected to heat treatment.SELECTED DRAWING: Figure 1

Description

本発明は、6価クロム含有物質を無害化する方法であり、特に6価クロム含有スラグやコンクリート廃材などの6価クロムを含有する塊状の物質から、6価クロムの溶出を防止することが可能な、6価クロム含有物質の処理方法に関する。   The present invention is a method for detoxifying hexavalent chromium-containing substances, and in particular, elution of hexavalent chromium can be prevented from massive substances containing hexavalent chromium such as hexavalent chromium-containing slag and concrete waste. The present invention also relates to a method for treating a hexavalent chromium-containing substance.

フェロクロム、ステンレス鋼、クロム含有合金鋼等、クロムを含有する合金を製造する際に多量に生成するスラグはクロム酸化物を含んでおり、その一部が6価クロムとなり溶出することがある。また、中性化したコンクリート廃材、或いは破砕したコンクリートを含む廃材等からは6価クロムが溶出することが、報告されている。   Slag produced in large quantities when producing an alloy containing chromium, such as ferrochrome, stainless steel, and chromium-containing alloy steel, contains chromium oxide, and some of it may become hexavalent chromium and be eluted. In addition, it has been reported that hexavalent chromium is eluted from neutralized concrete waste materials or waste materials containing crushed concrete.

これらのスラグやコンクリートを路盤材、土木材、埋戻し材等に使用する場合には、スラグやコンクリートからの6価クロムの溶出量を、環境庁告示46号「土壌の汚染に係わる環境基準について」に定める基準値(0.05mg/l)以下に抑制する必要がある。   When these slags and concrete are used for roadbed materials, earthen timber, backfill materials, etc., the amount of hexavalent chromium leaching from the slags and concretes is determined by the Environment Agency Notification No. 46 “Environmental Standards Concerning Soil Contamination”. The reference value (0.05 mg / l) or less defined in “

この基準値を達成するために、様々な処理方法が実施されている。その一つは、クロム酸化物含有物質に硫黄や酸化数が+5価以下の硫黄を含む水溶液を接触させて、6価クロムを還元する方法である(特許文献1)。クロム酸化物含有物質と水溶液の接触は、水溶液にクロム酸化物含有物質を浸漬する方法や、クロム酸化物含有物質に水溶液を散布する方法等によって行われる。この方法は簡単に処理できるという利点がある。   Various processing methods have been implemented to achieve this reference value. One of them is a method of reducing hexavalent chromium by bringing a chromium oxide-containing substance into contact with an aqueous solution containing sulfur or sulfur having an oxidation number of +5 or less (Patent Document 1). The contact between the chromium oxide-containing substance and the aqueous solution is performed by a method of immersing the chromium oxide-containing substance in the aqueous solution, a method of spraying the aqueous solution on the chromium oxide-containing substance, or the like. This method has the advantage of being easy to handle.

また、溶融状態にあるステンレススラグに改質剤を混合させて、6価クロムの生成を防止する方法がある。改質剤として金属の硫酸塩やFeO系物質(特許文献2)、あるいはアルミ灰とマグネシア系物質(特許文献3)などが用いられる。   There is also a method of preventing the production of hexavalent chromium by mixing a modifier with stainless steel slag in a molten state. As the modifier, metal sulfate, FeO-based material (Patent Document 2), aluminum ash and magnesia-based material (Patent Document 3) or the like is used.

また、6価クロムを含有する物質に、還元剤として石炭またはコークスを加え、ロータリーキルンで加熱して6価クロムを還元する方法がある(特許文献4)。この方法では、6価クロム含有物質と還元剤を混合し、平均粒径が15μm以下になるように粉砕し、得られた粉砕物に水を加えて成形し、次いで焼成することで、人工骨材を得ている。   Further, there is a method in which coal or coke is added as a reducing agent to a substance containing hexavalent chromium and heated in a rotary kiln to reduce hexavalent chromium (Patent Document 4). In this method, a hexavalent chromium-containing substance and a reducing agent are mixed, pulverized so that the average particle size is 15 μm or less, water is added to the obtained pulverized product, and then fired to obtain an artificial bone. I have the material.

特開平10−324547JP-A-10-324547 特開平10−067545JP 10-0667545 A 特開平6−171993JP-A-6-171993 特開平11−130492JP-A-11-130492

しかしながら、クロム酸化物含有物質に硫黄や酸化数が+5価以下の硫黄を含む水溶液を接触させる方法では、溶出した6価クロムやクロム酸化物含有物質の表面だけを還元しているので、時間の経過とともにクロム酸化物含有物質の内部に残留した6価クロムが再溶出する可能性がある。また、クロム酸化物含有物質にひびが入ったり、割れたりした場合は、6価クロムが溶出する。溶融状態のスラグを改質する方法では、改質剤の添加によりスラグ容積が増大するという問題が生じる。また、既に冷却固化したスラグを処理するには、スラグを高温に加熱し再溶融する必要があり、コストが高くなってしまう。還元剤として石炭やコークスを使用する方法では、還元効果を高めるために、6価クロム含有物質と還元剤を粉砕する必要がある。さらに、人工骨材として利用するためには、ペレット状に成形する必要があり、コストが高くなるという問題が生じる。   However, in the method of contacting the chromium oxide-containing material with an aqueous solution containing sulfur or sulfur having an oxidation number of +5 or less, only the surface of the eluted hexavalent chromium or chromium oxide-containing material is reduced. With the passage of time, hexavalent chromium remaining inside the chromium oxide-containing material may be re-eluted. Further, when the chromium oxide-containing material is cracked or cracked, hexavalent chromium is eluted. In the method of modifying the molten slag, there is a problem that the volume of the slag increases due to the addition of the modifier. Moreover, in order to process the slag which has already been cooled and solidified, it is necessary to re-melt the slag by heating it to a high temperature, which increases the cost. In the method using coal or coke as the reducing agent, it is necessary to grind the hexavalent chromium-containing substance and the reducing agent in order to enhance the reduction effect. Furthermore, in order to use it as an artificial aggregate, it is necessary to form it into a pellet form, resulting in a problem of increased cost.

本発明は塊状の6価クロム含有物質を低コストで処理する方法であり、長期間にわたって6価クロムの溶出を抑制することが可能な、6価クロム含有物質の処理方法を提供することを目的とする。   The present invention is a method for treating a massive hexavalent chromium-containing substance at a low cost, and an object of the present invention is to provide a method for treating a hexavalent chromium-containing substance capable of suppressing elution of hexavalent chromium over a long period of time. And

本発明によれば、下記(1)〜(11)に係る発明が提供される。
(1)6価クロム含有物質と還元剤とを加熱処理する6価クロム含有物質の処理方法であって、還元剤が30〜98.5重量%の炭素と1.5〜10重量%の硫黄を含むことを特徴とする6価クロム含有物質の処理方法。
(2)前記還元剤は、炭素と硫黄を含有する物質であることを特徴とする、(1)に記載の6価クロム含有物質の処理方法。
(3)前記炭素と硫黄を含有する物質は、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、硫黄含有プラスティックの中から選ばれた1つ以上であることを特徴とする、(2)に記載の6価クロム含有物質の処理方法。
(4)前記還元剤は、炭素を含有する物質と硫黄を含有する物質との混合物であることを特徴とする、(1)に記載の6価クロム含有物質の処理方法。
(5)前記炭素を含有する物質は、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、プラスティック、紙、ペーパースラッジ、木材の中から選ばれた1つ以上であることを特徴とする、(4)に記載の6価クロム含有物質の処理方法。
(6)前記硫黄を含有する物質は、自然硫黄、硫酸塩、石膏の中から選ばれた1つ以上であることを特徴とする、(4)に記載の6価クロム含有物質の処理方法。
(7)加熱処理する温度が1000℃以上、6価クロム含有物質の融点未満であることを特徴とする、(1)〜(6)のいずれかに記載の6価クロム含有物質の処理方法。
(8)加熱処理する時間が30分以上、2時間以下であることを特徴とする、(1)〜(7)のいずれかに記載の6価クロム含有物質の処理方法。
(9)前記6価クロム含有物質の粒径が50mm以下であることを特徴とする、(1)〜(8)のいずれかに記載の6価クロム含有物質の処理方法。
(10)前記還元剤の粒径が5mm以下であることを特徴とする、(1)〜(9)のいずれかに記載の6価クロム含有物質の処理方法。
(11)(還元剤の重量)/(6価クロム含有物質の重量)の値が0.5〜2の範囲であることを特徴とする、(1)〜(10)のいずれかに記載の6価クロム含有物質の処理方法。
According to the present invention, the inventions according to the following (1) to (11) are provided.
(1) A method for treating a hexavalent chromium-containing substance by heat-treating a hexavalent chromium-containing substance and a reducing agent, wherein the reducing agent is 30 to 98.5% by weight of carbon and 1.5 to 10% by weight of sulfur. A method for treating a hexavalent chromium-containing substance, comprising:
(2) The method for treating a hexavalent chromium-containing material according to (1), wherein the reducing agent is a material containing carbon and sulfur.
(3) The substance containing carbon and sulfur is one or more selected from coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, and sulfur-containing plastic. The processing method of the hexavalent chromium containing substance as described in (2).
(4) The method for treating a hexavalent chromium-containing substance according to (1), wherein the reducing agent is a mixture of a substance containing carbon and a substance containing sulfur.
(5) The carbon-containing substance is at least one selected from coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, plastic, paper, paper sludge, and wood. The method for treating a hexavalent chromium-containing substance according to (4), which is characterized in that
(6) The method for treating a hexavalent chromium-containing substance according to (4), wherein the sulfur-containing substance is one or more selected from natural sulfur, sulfate, and gypsum.
(7) The method for treating a hexavalent chromium-containing material according to any one of (1) to (6), wherein the heat treatment temperature is 1000 ° C. or higher and lower than the melting point of the hexavalent chromium-containing material.
(8) The method for treating a hexavalent chromium-containing substance according to any one of (1) to (7), wherein the heat treatment time is 30 minutes or more and 2 hours or less.
(9) The method for treating a hexavalent chromium-containing material according to any one of (1) to (8), wherein a particle size of the hexavalent chromium-containing material is 50 mm or less.
(10) The method for treating a hexavalent chromium-containing substance according to any one of (1) to (9), wherein a particle diameter of the reducing agent is 5 mm or less.
(11) A value of (weight of reducing agent) / (weight of hexavalent chromium-containing substance) is in a range of 0.5 to 2, according to any one of (1) to (10) A method for treating hexavalent chromium-containing material.

本発明によれば、6価クロム含有物質から6価クロムが溶出するのを、長期間にわたって抑制することが可能となる。また、塊状の6価クロム含有物質を低コストで処理することができる。   According to the present invention, it is possible to suppress elution of hexavalent chromium from a hexavalent chromium-containing substance over a long period of time. In addition, massive hexavalent chromium-containing materials can be processed at low cost.

6価クロム溶出試験の結果を示すグラフGraph showing the results of hexavalent chromium dissolution test

以下、本発明の実施の形態について詳細に説明する。
本発明の実施形態は、6価クロム含有物質と還元剤とを混合して加熱処理する方法であって、還元剤が30〜98.5重量%の炭素と1.5〜10重量%の硫黄を含むことを特徴とする。従来、6価クロムの還元剤として、炭素や硫黄が単独に使われてきた。しかし、炭素と硫黄の双方を含んだ還元剤を用いて6価クロム含有物質を加熱処理することにより、6価クロム含有物質から6価クロムが溶出するのを抑制する効果は相乗効果的に高まる。
Hereinafter, embodiments of the present invention will be described in detail.
An embodiment of the present invention is a method in which a hexavalent chromium-containing substance and a reducing agent are mixed and heat-treated, wherein the reducing agent is 30 to 98.5% by weight of carbon and 1.5 to 10% by weight of sulfur. It is characterized by including. Conventionally, carbon or sulfur has been used alone as a reducing agent for hexavalent chromium. However, the effect of suppressing the elution of hexavalent chromium from the hexavalent chromium-containing material is synergistically increased by heat-treating the hexavalent chromium-containing material using a reducing agent containing both carbon and sulfur. .

還元剤中の炭素の含有量は、30〜98.5重量%の範囲であることが好ましい。炭素の含有量が高い方が、還元剤の使用量を少なくすることができるのでより好ましい。より好ましい炭素の含有量は、50重量%以上であり、さらに好ましくは70重量%以上である。還元剤中の硫黄の含有量は、1.5〜10重量%の範囲であることが好ましい。硫黄の含有量が1.5重量%よりも低い場合は、還元効果が不十分となり、処理したスラグを長期間保管している間に6価クロムの溶出が生じる虞がある。硫黄の含有量が高い方が、還元効果が高くなるのでより好ましい。より好ましい硫黄の含有量は3重量%以上である。硫黄の含有量が10重量%よりも高い場合は、亜硫酸ガスの発生量が多くなるので好ましくない。還元剤が60〜97重量%の炭素と3〜10重量%の硫黄を含むことがより好ましい。   The carbon content in the reducing agent is preferably in the range of 30 to 98.5% by weight. A higher carbon content is more preferable because the amount of reducing agent used can be reduced. The carbon content is more preferably 50% by weight or more, and still more preferably 70% by weight or more. The sulfur content in the reducing agent is preferably in the range of 1.5 to 10% by weight. When the sulfur content is lower than 1.5% by weight, the reduction effect is insufficient, and hexavalent chromium may be eluted while the treated slag is stored for a long time. A higher sulfur content is more preferable because the reduction effect is higher. A more preferable sulfur content is 3% by weight or more. If the sulfur content is higher than 10% by weight, the amount of sulfurous acid gas generated is increased, which is not preferable. More preferably, the reducing agent comprises 60-97 wt% carbon and 3-10 wt% sulfur.

還元剤は、炭素と硫黄の両方を含む物質であってもよいし、炭素を含む物質と硫黄を含む物質の混合物であってもよい。ここでいう混合物とは、炭素を含む物質と硫黄を含む物質とが均一に混ざり合ったものである必要はなく、炭素を含む物質と硫黄を含む物質を合わせたものでもよい。   The reducing agent may be a substance containing both carbon and sulfur, or may be a mixture of a substance containing carbon and a substance containing sulfur. The mixture here does not need to be a material in which a substance containing carbon and a substance containing sulfur are uniformly mixed, and may be a combination of a substance containing carbon and a substance containing sulfur.

炭素と硫黄の両方を含む物質としては、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、硫黄含有プラスティック等が挙げられる。これらの物質中には、1.5〜10重量%の硫黄が含まれていることが必要である。硫黄含有プラスティックとしては、チオール樹脂、スルホシキド樹脂、スルホン樹脂等がある。   Examples of the substance containing both carbon and sulfur include coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, and sulfur-containing plastic. It is necessary that these substances contain 1.5 to 10% by weight of sulfur. Examples of the sulfur-containing plastic include a thiol resin, a sulfoxide resin, and a sulfone resin.

炭素を含有する物質としては、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、プラスティック、紙、ペーパースラッジ、木材等が挙げられる。これらの物質中には硫黄が含まれていても構わないし、含まれていなくても構わない。硫黄を含有する物質と合わせて、還元剤中の硫黄の含有量が1.5〜10重量%となるように調整すればよい。石炭の炭素含有量は80%以上で、泥炭の炭素含有量は70%程度である。また、木材の炭素含有量はおよそ50%である。   Examples of the carbon-containing substance include coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, plastic, paper, paper sludge, and wood. These substances may or may not contain sulfur. What is necessary is just to adjust so that content of sulfur in a reducing agent may become 1.5 to 10 weight% in combination with the substance containing sulfur. The carbon content of coal is 80% or more, and the carbon content of peat is about 70%. The carbon content of the wood is approximately 50%.

硫黄を含有する物質としては、自然硫黄、硫酸塩、石膏等が挙げられる。石膏は石膏ボードでもよいし、紙が付いた石膏ボード廃材でもよい。また、SOxを含有する排ガスを水酸化カルシウムで吸収除害する際に生成する石膏(硫酸カルシウム)を使用することができる。硫酸塩や石膏等の硫黄酸化物から構成された物質を還元剤として用いる場合、硫黄酸化物は加熱処理中に炭素により還元されて、6価クロムを還元する作用を呈する。   Examples of the substance containing sulfur include natural sulfur, sulfate, gypsum and the like. The gypsum may be a gypsum board or a waste gypsum board with paper. Moreover, gypsum (calcium sulfate) produced when absorbing and detoxifying exhaust gas containing SOx with calcium hydroxide can be used. When a substance composed of sulfur oxides such as sulfates and gypsum is used as a reducing agent, the sulfur oxides are reduced by carbon during the heat treatment and exhibit the action of reducing hexavalent chromium.

加熱処理する温度は、1000℃以上で6価クロム含有物質の融点未満であることが好ましい。加熱処理する温度が1000℃未満の場合は、還元効果が不十分となり、処理されたスラグを長期間保管している間に6価クロムの溶出が生じる虞がある。更に長期間にわたって、6価クロムの溶出量を環境基準以下に抑制するためには、加熱処理する温度は1100℃以上であることが好ましい。また、加熱処理する温度が1500℃を超えると、6価クロム含有物質や還元剤が融着し始めるので、1500℃以下であることが好ましい。エネルギーコストの面からも、加熱処理する温度は1500℃以下であることが好ましい。   The temperature for the heat treatment is preferably 1000 ° C. or higher and lower than the melting point of the hexavalent chromium-containing substance. When the temperature for the heat treatment is less than 1000 ° C., the reduction effect is insufficient, and hexavalent chromium may be eluted while the treated slag is stored for a long time. Further, in order to suppress the elution amount of hexavalent chromium below the environmental standard over a long period of time, the temperature for the heat treatment is preferably 1100 ° C. or higher. Moreover, since the hexavalent chromium containing material and the reducing agent start to be fused when the temperature for heat treatment exceeds 1500 ° C., the temperature is preferably 1500 ° C. or lower. Also from the viewpoint of energy cost, the temperature for the heat treatment is preferably 1500 ° C. or less.

加熱処理する時間は、加熱処理温度や6価クロム含有物質の大きさに依存するが、30分〜2時間であることが好ましい。加熱処理する時間が30分未満の場合は、還元効果が不十分となり、処理されたスラグを長期間保管している間に6価クロムの溶出が生じる虞がある。また、エネルギーコストの面から、加熱処理する時間は2時間以下であることが好ましい。   The heat treatment time depends on the heat treatment temperature and the size of the hexavalent chromium-containing substance, but is preferably 30 minutes to 2 hours. When the heat treatment time is less than 30 minutes, the reduction effect is insufficient, and hexavalent chromium may be eluted while the treated slag is stored for a long time. Moreover, it is preferable that the heat processing time is 2 hours or less from the viewpoint of energy cost.

加熱処理の方法は特に問わず、処理する6価クロム含有物質の量、形状等を踏まえ適切な加熱炉を選定すれば良い。また、連続的に処理しても良いし、バッチ式に処理しても
良い。加熱方法についても、バーナーによる内燃焼式、ヒーターによる電気加熱等が利用できるが、ロータリーキルン等の内燃焼式の方がコスト的に優れている。
The heating method is not particularly limited, and an appropriate heating furnace may be selected based on the amount, shape, etc. of the hexavalent chromium-containing material to be processed. Moreover, you may process continuously and may process in a batch type. Regarding the heating method, an internal combustion type using a burner, electric heating using a heater, or the like can be used, but an internal combustion type such as a rotary kiln is superior in cost.

6価クロム含有物質の粒径は50mm以下であることが好ましい。これは、最も大きい粒子が直径50mmということで、全ての6価クロム含有物質が50mmのサイズの網目を通るということである。6価クロム含有物質の粒径が50mmを超えると、6価クロム含有物質の内部まで還元できずに、長期間保管している間に6価クロムの溶出が生じる虞がある。6価クロム含有物質の粒径は30mm以下であることがより好ましい。6価クロム含有物質の粒径は小さくても処理は可能であるが、取扱いの容易さの点から1mm以上であることが好ましい。   The particle size of the hexavalent chromium-containing material is preferably 50 mm or less. This means that the largest particles have a diameter of 50 mm, and all hexavalent chromium-containing materials pass through a 50 mm size mesh. If the particle size of the hexavalent chromium-containing material exceeds 50 mm, the hexavalent chromium-containing material cannot be reduced to the inside, and hexavalent chromium may be eluted during long-term storage. The particle size of the hexavalent chromium-containing substance is more preferably 30 mm or less. The hexavalent chromium-containing substance can be processed even if the particle size is small, but it is preferably 1 mm or more from the viewpoint of ease of handling.

還元剤の粒径は5mm以下であることが好ましい。還元剤の粒径が5mmより大きい場合、6価クロム含有物質の露出面積が大きくなり、還元効果が不十分になる可能性がある。還元剤の粒径は小さくても処理は可能であるが、取扱いの容易さの点から0.5mm以上であることが好ましい。   The particle size of the reducing agent is preferably 5 mm or less. When the particle size of the reducing agent is larger than 5 mm, the exposed area of the hexavalent chromium-containing substance is increased, and the reduction effect may be insufficient. Although the treatment is possible even if the particle size of the reducing agent is small, it is preferably 0.5 mm or more from the viewpoint of ease of handling.

6価クロム含有物質と還元剤との比率は、還元剤に含有される炭素や硫黄の量に影響されるが、(還元剤の重量)/(6価クロム含有物質の重量)の値が0.5〜2の範囲であることが好ましい。上記値が0.5より小さいと、加熱処理中に6価クロム含有物質と還元剤が接触する面積が小さくなり、還元効果が不十分になる可能性が有る。また、還元された3価クロムが再酸化されて6価クロムになる虞がある。上記値が2よりも大きい場合は、6価クロム含有物質の処理量が少なくなり、効率が悪くなる。   The ratio between the hexavalent chromium-containing substance and the reducing agent is influenced by the amount of carbon and sulfur contained in the reducing agent, but the value of (weight of reducing agent) / (weight of hexavalent chromium-containing substance) is 0. Preferably it is in the range of 5-2. If the above value is smaller than 0.5, the area where the hexavalent chromium-containing substance and the reducing agent come into contact with each other during the heat treatment becomes small, and the reduction effect may be insufficient. Further, the reduced trivalent chromium may be reoxidized to hexavalent chromium. When the said value is larger than 2, the processing amount of a hexavalent chromium containing material will decrease and efficiency will worsen.

加熱処理後の冷却時にも注意が必要である。加熱処理において還元剤の炭素と硫黄が完全に消費されてしまうと、冷却中に3価クロムが再び酸化されて6価クロムになる。そのため、加熱処理が終了した時点で、還元剤中の炭素または硫黄が残留する様に、6価クロム含有物質と還元剤との比率を調整することが好ましい。あるいは、加熱処理後は不活性ガス雰囲気中で冷却するか、水等によって急冷してもよい。   Care must also be taken when cooling after heat treatment. When the reducing agent carbon and sulfur are completely consumed in the heat treatment, the trivalent chromium is oxidized again during the cooling to become hexavalent chromium. Therefore, it is preferable to adjust the ratio of the hexavalent chromium-containing substance and the reducing agent so that carbon or sulfur in the reducing agent remains when the heat treatment is completed. Alternatively, after the heat treatment, it may be cooled in an inert gas atmosphere or quenched with water or the like.

加熱処理されたスラグと還元剤は分離されて、還元剤は炭素含有量と硫黄含有量を調整された後、再利用される。スラグと還元剤の分離には、スクリーン法や比重分離法等が利用できる。   The heat-treated slag and the reducing agent are separated, and the reducing agent is reused after adjusting the carbon content and the sulfur content. A screen method, a specific gravity separation method, or the like can be used to separate the slag and the reducing agent.

以下、本発明を実施例に基づいて具体的に説明する。しかし、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples. However, the present invention is not limited to the examples.

(実施例1)
6価クロムを含有するスラグを破砕し、スクリーニングにより粒径10〜30mmのスラグを選別した。次に還元剤として、粒径4mm以下、炭素含有量が74.5重量%で、硫黄含有量が7.8重量%である石油コークスを準備した。スラグ50gと石油コークス50gを混合し、混合物をアルミナ坩堝に充填し、アルミナ坩堝を電気炉内にセットした。次に電気炉内に100ml/分の窒素ガスを流しながら昇温し、炉内の温度が1100℃に到達してから炉内の温度を4時間保持した後、室温まで冷却した。冷却後、スラグと還元剤を分離し、スラグを水洗した後、粒径2mm以下に粉砕した。粉砕したスラグから、環境庁告示46号溶出試験の方法により6価クロムを溶出させて、検液を作製した。環境庁告示46号溶出試験では溶出時間は6時間であるが、長期間の溶出量を評価するため、溶出時間を6時間(0.25日)、5日、10日、20日、30日、50日、100日とした検液を作製した。検液中の6価クロム濃度の分析には、ジフェニルカルバジド発色法を用いた。以上の様にして分析した6価クロムの溶出量を表1と図1に示す。溶出量は、検液1リットル中の6価クロムのmg量で表され、環境基準値は0.05mg/l以下である。
(Example 1)
Slag containing hexavalent chromium was crushed, and slag having a particle size of 10 to 30 mm was selected by screening. Next, petroleum coke having a particle size of 4 mm or less, a carbon content of 74.5% by weight, and a sulfur content of 7.8% by weight was prepared as a reducing agent. 50 g of slag and 50 g of petroleum coke were mixed, the mixture was filled in an alumina crucible, and the alumina crucible was set in an electric furnace. Next, the temperature was raised while flowing 100 ml / min of nitrogen gas into the electric furnace, and after the temperature in the furnace reached 1100 ° C., the temperature in the furnace was maintained for 4 hours, and then cooled to room temperature. After cooling, the slag and the reducing agent were separated, and the slag was washed with water and then pulverized to a particle size of 2 mm or less. Hexavalent chromium was eluted from the pulverized slag by the method of dissolution test No. 46 of the Environment Agency to prepare a test solution. Although the dissolution time is 6 hours in the Environmental Agency Notification No. 46 dissolution test, the dissolution time is 6 hours (0.25 days), 5 days, 10 days, 20 days, and 30 days in order to evaluate the long-term dissolution amount. Samples were prepared for 50 days and 100 days. A diphenylcarbazide coloring method was used for analysis of hexavalent chromium concentration in the test solution. The elution amount of hexavalent chromium analyzed as described above is shown in Table 1 and FIG. The elution amount is expressed in mg of hexavalent chromium in 1 liter of the test solution, and the environmental standard value is 0.05 mg / l or less.

(比較例1)
還元剤として、炭素含有量が99.5重量%で硫黄含有量が0.1重量%未満である高純度炭素を用いた以外は、実施例1と同一の条件で6価クロムの溶出量の分析を行った。
(Comparative Example 1)
As the reducing agent, the amount of elution of hexavalent chromium was the same as in Example 1 except that high-purity carbon having a carbon content of 99.5% by weight and a sulfur content of less than 0.1% by weight was used. Analysis was carried out.

(比較例2)
固体の還元剤を使用せず、電気炉内に窒素ガスの代わりに100ml/分の水素ガスを流すことで、水素ガスによる還元を行った。これ以外の条件は、実施例1と同一の条件で6価クロムの溶出量の分析を行った。
(Comparative Example 2)
Reduction with hydrogen gas was performed by flowing 100 ml / min of hydrogen gas in the electric furnace instead of nitrogen gas without using a solid reducing agent. Except for this, the elution amount of hexavalent chromium was analyzed under the same conditions as in Example 1.

(比較例3)
6価クロムを含有するスラグを電気炉で処理せずに、6価クロムの溶出量の分析を行った。
(Comparative Example 3)
The elution amount of hexavalent chromium was analyzed without treating slag containing hexavalent chromium in an electric furnace.

比較例1〜3の分析結果を、実施例1と共に表1及び図1に示す。
炭素と硫黄を含む還元剤で処理した実施例1は、100日後でも6価クロムの溶出は認められなかった。炭素のみを含む還元剤で処理した比較例1は、5日までは溶出量は環境基準値(0.05mg/l)以下であったが、10日以降は環境基準値以上になった。水素で還元した比較例2は、10日までは溶出量は環境基準値以下であったが、20日以降は環境基準値以上になった。処理をしなかった比較例3は、6時間後で既に溶出量が環境基準値を超え、その後時間の経過と共に溶出量が増加した。
The analysis results of Comparative Examples 1 to 3 are shown in Table 1 and FIG.
In Example 1 treated with a reducing agent containing carbon and sulfur, elution of hexavalent chromium was not observed even after 100 days. In Comparative Example 1 treated with a reducing agent containing only carbon, the elution amount was not more than the environmental standard value (0.05 mg / l) until the 5th day, but became the environmental standard value or more after the 10th day. In Comparative Example 2 reduced with hydrogen, the elution amount was not more than the environmental standard value until the 10th day, but became the environmental standard value or more after the 20th day. In Comparative Example 3 which was not treated, the elution amount already exceeded the environmental standard value after 6 hours, and the elution amount increased with the passage of time thereafter.

Figure 2016054948
Figure 2016054948

(実施例2)
実施例1と同じ6価クロムを含有するスラグを破砕し、スクリーニングにより粒径10〜30mmのスラグを選別した。還元剤として、粒径4mm以下、炭素含有量が87.5重量%で、硫黄含有量が8.5重量%である石油コークスを準備した。スラグ500gと石油コークス500gを混合し、混合物をアルミナ坩堝に充填した。アルミナ坩堝にアルミナ製の蓋をして電気炉内にセットした。その後、電気炉内の雰囲気を空気にしたままで昇温し、炉内の温度を1000℃で1時間保持した後、室温まで冷却した。冷却後、スラグと還元剤を分離し、スラグを水洗した後、粒径2mm以下に粉砕した。実施例1と同一方法で6価クロムの溶出量を分析した。
(Example 2)
The same slag containing hexavalent chromium as in Example 1 was crushed, and slag having a particle size of 10 to 30 mm was selected by screening. As a reducing agent, petroleum coke having a particle size of 4 mm or less, a carbon content of 87.5% by weight, and a sulfur content of 8.5% by weight was prepared. 500 g of slag and 500 g of petroleum coke were mixed, and the mixture was filled in an alumina crucible. The alumina crucible was covered with an alumina lid and set in an electric furnace. Thereafter, the temperature in the electric furnace was raised while keeping the atmosphere in air, and the temperature in the furnace was maintained at 1000 ° C. for 1 hour, and then cooled to room temperature. After cooling, the slag and the reducing agent were separated, and the slag was washed with water and then pulverized to a particle size of 2 mm or less. The elution amount of hexavalent chromium was analyzed by the same method as in Example 1.

(実施例3)
電気炉の温度を1100℃で1時間保持した以外は、実施例2と同一の条件で6価クロムの溶出量の分析を行った。
(Example 3)
The elution amount of hexavalent chromium was analyzed under the same conditions as in Example 2 except that the temperature of the electric furnace was maintained at 1100 ° C. for 1 hour.

(実施例4)
電気炉の温度を1250℃で1時間保持した以外は、実施例2と同一の条件で6価クロムの溶出量の分析を行った。
Example 4
The elution amount of hexavalent chromium was analyzed under the same conditions as in Example 2 except that the temperature of the electric furnace was maintained at 1250 ° C. for 1 hour.

(実施例5)
電気炉の温度を1500℃で1時間保持した以外は、実施例2と同一の条件で6価クロムの溶出量の分析を行った。
(Example 5)
The elution amount of hexavalent chromium was analyzed under the same conditions as in Example 2 except that the temperature of the electric furnace was maintained at 1500 ° C. for 1 hour.

実施例2〜5の分析結果を表2に示す。還元処理をするために保持した温度(処理温度)が1000℃である実施例2の場合、10日までは6価クロムの溶出が認められなかったが、20日後に6価クロムの溶出が認められた。100日後には溶出量は0.04mg/lまで上昇したが、環境基準値以下であった。処理温度を高くするに従って溶出量は減少し、処理温度が1250℃以上(実施例4及び5)では、100日後でも6価クロムの溶出は認められなかった。また、1500℃で処理したスラグでは、表面の一部に変形が見られた。   The analysis results of Examples 2 to 5 are shown in Table 2. In the case of Example 2 where the temperature maintained for the reduction treatment (treatment temperature) was 1000 ° C., elution of hexavalent chromium was not observed until 10 days, but elution of hexavalent chromium was observed after 20 days. It was. After 100 days, the elution amount increased to 0.04 mg / l, but was below the environmental standard value. As the treatment temperature was increased, the elution amount decreased. When the treatment temperature was 1250 ° C. or higher (Examples 4 and 5), elution of hexavalent chromium was not observed even after 100 days. Moreover, in the slag processed at 1500 degreeC, the deformation | transformation was seen in a part of surface.

Figure 2016054948
Figure 2016054948

(実施例6〜17)
実施例1と同じ6価クロムを含有するスラグを破砕し、粒径10〜20mmと粒径20〜30mmの2種類のスラグをスクリーニングした。還元剤として次の2種類を準備した。一つは、粒径4mm以下、炭素含有量が87.5重量%で、硫黄含有量が8.4重量%である石油コークスである。もう一つは、粒径1mm以下、炭素含有量が63.7重量%で、硫黄含有量が3.1重量%である石油コークス燃焼集塵灰である。表3に示すスラグ粒径、還元剤及び処理温度の組み合わせで還元処理を行った。表3に示す条件以外は、実施例2と同一条件で還元処理を行い、6価クロムの溶出量を分析した。
(Examples 6 to 17)
The same slag containing hexavalent chromium as in Example 1 was crushed, and two types of slag having a particle size of 10 to 20 mm and a particle size of 20 to 30 mm were screened. The following two types were prepared as reducing agents. One is petroleum coke having a particle size of 4 mm or less, a carbon content of 87.5% by weight, and a sulfur content of 8.4% by weight. The other is petroleum coke combustion dust ash having a particle size of 1 mm or less, a carbon content of 63.7% by weight, and a sulfur content of 3.1% by weight. Reduction treatment was performed using a combination of the slag particle size, the reducing agent, and the treatment temperature shown in Table 3. Except for the conditions shown in Table 3, reduction treatment was performed under the same conditions as in Example 2, and the elution amount of hexavalent chromium was analyzed.

分析結果を表3に示す。還元剤として石油コークスを用いた実施例6では、100日後でも6価クロムの溶出が認められなかったが、還元剤として石油コークス燃焼集塵灰を用いた実施例9では、100日後に僅かであるが6価クロムの溶出が認められた。硫黄含有量が高い還元剤の方が、6価クロムの溶出を抑制する効果が高いという結果になった。また、実施例10、11では、処理温度が実施例9よりも高かったため、100日後でも6価クロムの溶出は認められなかった。   The analysis results are shown in Table 3. In Example 6 using petroleum coke as the reducing agent, elution of hexavalent chromium was not observed even after 100 days, but in Example 9 using petroleum coke combustion dust ash as the reducing agent, it was slightly after 100 days. Although there was elution of hexavalent chromium. As a result, the reducing agent having a higher sulfur content has a higher effect of suppressing elution of hexavalent chromium. In Examples 10 and 11, the treatment temperature was higher than that in Example 9, and thus no elution of hexavalent chromium was observed even after 100 days.

実施例6と実施例12との比較、実施例9と実施例15との比較では、スラグ粒径が小さい方が、6価クロムの溶出を抑制する効果が高いという結果になった。   In the comparison between Example 6 and Example 12 and the comparison between Example 9 and Example 15, the smaller the slag particle size, the higher the effect of suppressing the elution of hexavalent chromium.

Figure 2016054948
Figure 2016054948

(実施例18〜21及び比較例4)
実施例1と同じ6価クロムを含有するスラグを破砕し、スクリーニングにより粒径10〜30mmのスラグを選別した。還元剤として、粒径1mm以下、炭素含有量が63.7重量%で、硫黄含有量が3.1重量%である石油コークス燃焼集塵灰を準備した。表4に示す量のスラグと還元剤(石油コークス燃焼集塵灰)を混合し、混合物をアルミナ坩堝に充填した。アルミナ坩堝にアルミナ製の蓋をして電気炉内にセットした。その後、電気炉内の雰囲気を空気にしたままで昇温し、炉内の温度を1200℃で1時間保持した後、室温まで冷却した。冷却後、スラグと還元剤を分離し、スラグを水洗した後、粒径2mm以下に粉砕した。実施例1と同一方法で6価クロムの溶出量を分析した。
(Examples 18 to 21 and Comparative Example 4)
The same slag containing hexavalent chromium as in Example 1 was crushed, and slag having a particle size of 10 to 30 mm was selected by screening. As a reducing agent, petroleum coke combustion dust collection ash having a particle size of 1 mm or less, a carbon content of 63.7% by weight, and a sulfur content of 3.1% by weight was prepared. The amount of slag shown in Table 4 and a reducing agent (petroleum coke combustion dust ash) were mixed, and the mixture was filled in an alumina crucible. The alumina crucible was covered with an alumina lid and set in an electric furnace. Thereafter, the temperature in the electric furnace was increased while keeping the atmosphere in air, and the temperature in the furnace was maintained at 1200 ° C. for 1 hour, and then cooled to room temperature. After cooling, the slag and the reducing agent were separated, and the slag was washed with water and then pulverized to a particle size of 2 mm or less. The elution amount of hexavalent chromium was analyzed by the same method as in Example 1.

分析結果を表4に示す。還元剤/スラグ比が0.4である比較例4では、50日後に溶出量が環境基準値に達し、その後環境基準値を超えた。還元剤/スラグ比が0.5以上である実施例18〜21では、100後でも溶出量は環境基準値以下であった。   The analysis results are shown in Table 4. In Comparative Example 4 in which the reducing agent / slag ratio was 0.4, the elution amount reached the environmental standard value after 50 days, and then exceeded the environmental standard value. In Examples 18 to 21 in which the reducing agent / slag ratio was 0.5 or more, even after 100, the elution amount was not more than the environmental standard value.

Figure 2016054948
Figure 2016054948

(実施例22〜25及び比較例5)
実施例1と同じ6価クロムを含有するスラグを破砕し、スクリーニングにより粒径10〜30mmのスラグを選別した。還元剤として、粒径1mm以下、炭素含有量が63.7重量%で、硫黄含有量が3.1重量%である石油コークス燃焼集塵灰を準備した。スラグ500gと石油コークス500gを混合し、混合物をアルミナ坩堝に充填した。アルミナ坩堝にアルミナ製の蓋をして電気炉内にセットした。その後、電気炉内の雰囲気を空気にしたままで昇温し、表5に示す処理時間だけ炉内の温度を1200℃に保持した。冷却後、スラグと還元剤を分離し、スラグを水洗した後、粒径2mm以下に粉砕した。実施例1と同一方法で6価クロムの溶出量を分析した。
(Examples 22 to 25 and Comparative Example 5)
The same slag containing hexavalent chromium as in Example 1 was crushed, and slag having a particle size of 10 to 30 mm was selected by screening. As a reducing agent, petroleum coke combustion dust collection ash having a particle size of 1 mm or less, a carbon content of 63.7% by weight, and a sulfur content of 3.1% by weight was prepared. 500 g of slag and 500 g of petroleum coke were mixed, and the mixture was filled in an alumina crucible. The alumina crucible was covered with an alumina lid and set in an electric furnace. Thereafter, the temperature in the electric furnace was increased while keeping the atmosphere in air, and the temperature in the furnace was maintained at 1200 ° C. for the treatment time shown in Table 5. After cooling, the slag and the reducing agent were separated, and the slag was washed with water and then pulverized to a particle size of 2 mm or less. The elution amount of hexavalent chromium was analyzed by the same method as in Example 1.

分析結果を表5に示す。処理時間が20分である比較例5は、100日後に溶出量が環境基準値に達した。処理時間が30分以上である実施例22〜25は、100日後でも溶出量は環境基準値以下であった。   The analysis results are shown in Table 5. In Comparative Example 5 in which the treatment time was 20 minutes, the elution amount reached the environmental standard value after 100 days. In Examples 22 to 25 in which the treatment time was 30 minutes or more, the elution amount was not more than the environmental standard value even after 100 days.

Figure 2016054948
Figure 2016054948

(実施例26〜29及び比較例6)
実施例1と同じ6価クロムを含有するスラグを破砕し、スクリーニングにより粒径10〜30mmのスラグを選別した。還元剤として、粒径5mm以下、炭素含有量が72.9重量%で、硫黄含有量が0.5重量%である石炭と、粒径1mm以下の2水石膏(CaSO・2HO)を準備した。スラグ500g、石炭500g及び表6の硫黄添加量になる重量の2水石膏を混合した。硫黄添加量とは、混合した2水石膏中の硫黄の重量である。混合した2水石膏の重量が26.8gであるとき、硫黄添加量は5gになる。硫黄含有量は、石炭と2水石膏を合わせた全還元剤中の硫黄の含有量である。混合物をアルミナ坩堝に充填し、アルミナ坩堝にアルミナ製の蓋をして電気炉内にセットした。その後、電気炉内の雰囲気を空気にしたままで昇温し、炉内の温度を1200℃で1時間保持した後、室温まで冷却した。冷却後、スラグと還元剤を分離し、スラグを水洗した後、粒径2mm以下に粉砕した。実施例1と同一方法で6価クロムの溶出量を分析した。
(Examples 26 to 29 and Comparative Example 6)
The same slag containing hexavalent chromium as in Example 1 was crushed, and slag having a particle size of 10 to 30 mm was selected by screening. As a reducing agent, coal having a particle size of 5 mm or less, a carbon content of 72.9% by weight, and a sulfur content of 0.5% by weight, and dihydrate gypsum (CaSO 4 .2H 2 O) having a particle size of 1 mm or less. Prepared. 500 g of slag, 500 g of coal, and dihydrate gypsum having a weight corresponding to the sulfur addition amount shown in Table 6 were mixed. The amount of sulfur added is the weight of sulfur in the mixed dihydrate gypsum. When the weight of the mixed dihydrate gypsum is 26.8 g, the sulfur addition amount is 5 g. Sulfur content is the content of sulfur in the total reducing agent that combines coal and dihydrate gypsum. The mixture was filled in an alumina crucible, and the alumina crucible was covered with an alumina lid and set in an electric furnace. Thereafter, the temperature in the electric furnace was increased while keeping the atmosphere in air, and the temperature in the furnace was maintained at 1200 ° C. for 1 hour, and then cooled to room temperature. After cooling, the slag and the reducing agent were separated, and the slag was washed with water and then pulverized to a particle size of 2 mm or less. The elution amount of hexavalent chromium was analyzed by the same method as in Example 1.

分析結果を表6に示す。硫黄含有量が0.5重量%である比較例6では、30日後には溶出量が環境基準値を超えた。硫黄含有量が1.4重量%である実施例26では、100日後には溶出量が0.04mg/lまで上昇したが、環境基準値以下であった。硫黄含有量が2.3重量%以上である実施例27〜29では100日後でも溶出は認められなかった。また、この実験結果は、加熱処理の間に2水石膏がCaSに還元され、6価クロムを還元する作用を呈した事をしめしている。   The analysis results are shown in Table 6. In Comparative Example 6 in which the sulfur content was 0.5% by weight, the elution amount exceeded the environmental standard value after 30 days. In Example 26 having a sulfur content of 1.4% by weight, the elution amount increased to 0.04 mg / l after 100 days, but was below the environmental standard value. In Examples 27 to 29 having a sulfur content of 2.3% by weight or more, no elution was observed even after 100 days. In addition, this experimental result indicates that dihydrate gypsum was reduced to CaS during the heat treatment, and the hexavalent chromium was reduced.

Figure 2016054948
Figure 2016054948

Claims (11)

6価クロム含有物質と還元剤とを加熱処理する6価クロム含有物質の処理方法であって、還元剤が30〜98.5重量%の炭素と1.5〜10重量%の硫黄を含むことを特徴とする6価クロム含有物質の処理方法。   A method for treating a hexavalent chromium-containing material by heat-treating the hexavalent chromium-containing material and the reducing agent, wherein the reducing agent contains 30 to 98.5% by weight of carbon and 1.5 to 10% by weight of sulfur. A method for treating a hexavalent chromium-containing substance. 前記還元剤は、炭素と硫黄を含有する物質であることを特徴とする、請求項1に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing material according to claim 1, wherein the reducing agent is a material containing carbon and sulfur. 前記炭素と硫黄を含有する物質は、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、硫黄含有プラスティックの中から選ばれた1つ以上であることを特徴とする、請求項2に記載の6価クロム含有物質の処理方法。   The carbon and sulfur-containing material is one or more selected from coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, and sulfur-containing plastics. 3. A method for treating a hexavalent chromium-containing substance according to 2. 前記還元剤は、炭素を含有する物質と硫黄を含有する物質との混合物であることを特徴とする、請求項1に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing substance according to claim 1, wherein the reducing agent is a mixture of a substance containing carbon and a substance containing sulfur. 前記炭素を含有する物質は、石炭、褐炭、亜炭、泥炭、石油コークス、石油コークス燃焼灰、ゴム、プラスティック、紙、ペーパースラッジ、木材の中から選ばれた1つ以上であることを特徴とする、請求項4に記載の6価クロム含有物質の処理方法。   The carbon-containing material is one or more selected from coal, lignite, lignite, peat, petroleum coke, petroleum coke combustion ash, rubber, plastic, paper, paper sludge, and wood. The processing method of the hexavalent chromium containing material of Claim 4. 前記硫黄を含有する物質は、自然硫黄、硫酸塩、石膏の中から選ばれた1つ以上であることを特徴とする、請求項4に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing material according to claim 4, wherein the sulfur-containing material is one or more selected from natural sulfur, sulfate, and gypsum. 加熱処理する温度が1000℃以上、6価クロム含有物質の融点未満であることを特徴とする、請求項1〜6のいずれか一項に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing material according to any one of claims 1 to 6, wherein the temperature for the heat treatment is 1000 ° C or higher and lower than the melting point of the hexavalent chromium-containing material. 加熱処理する時間が30分以上、2時間以下であることを特徴とする、請求項1〜7のいずれか一項に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing substance according to any one of claims 1 to 7, wherein the heat treatment time is 30 minutes or more and 2 hours or less. 前記6価クロム含有物質の粒径が50mm以下であることを特徴とする、請求項1〜8のいずれか一項に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing material according to any one of claims 1 to 8, wherein the hexavalent chromium-containing material has a particle size of 50 mm or less. 前記還元剤の粒径が5mm以下であることを特徴とする、請求項1〜9のいずれか一項に記載の6価クロム含有物質の処理方法。   The method for treating a hexavalent chromium-containing material according to any one of claims 1 to 9, wherein a particle size of the reducing agent is 5 mm or less. (還元剤の重量)/(6価クロム含有物質の重量)の値が0.5〜2の範囲であることを特徴とする、請求項1〜10のいずれか一項に記載の6価クロム含有物質の処理方法。
11. The hexavalent chromium according to claim 1, wherein a value of (weight of reducing agent) / (weight of hexavalent chromium-containing substance) is in a range of 0.5 to 2. 11. Treatment method for contained substances.
JP2014184026A 2014-09-10 2014-09-10 Method for treating hexavalent chromium-containing material Active JP6437769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014184026A JP6437769B2 (en) 2014-09-10 2014-09-10 Method for treating hexavalent chromium-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014184026A JP6437769B2 (en) 2014-09-10 2014-09-10 Method for treating hexavalent chromium-containing material

Publications (2)

Publication Number Publication Date
JP2016054948A true JP2016054948A (en) 2016-04-21
JP6437769B2 JP6437769B2 (en) 2018-12-12

Family

ID=55756297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014184026A Active JP6437769B2 (en) 2014-09-10 2014-09-10 Method for treating hexavalent chromium-containing material

Country Status (1)

Country Link
JP (1) JP6437769B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252176A (en) * 1975-10-24 1977-04-26 Kenjiro Takeshita Method of making cr sludge harmless
JPH06269764A (en) * 1993-03-22 1994-09-27 Shibata Hario Glass Kk Detoxicating treatment for solid waste containing hexavalent chromium
JPH10244242A (en) * 1997-03-05 1998-09-14 Okayama Ceramics Gijutsu Shinko Zaidan Process of removing hexavalent chromium from heat-resistant substance containing hexavalent chromium
JPH11169814A (en) * 1997-12-12 1999-06-29 Chubu Electric Power Co Inc Treatment of hexavalent chromium containing waste
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2001009414A (en) * 1999-06-29 2001-01-16 Shinagawa Refract Co Ltd Detoxification treatment system for used chromium- containing refractory material
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2008273749A (en) * 2006-11-30 2008-11-13 Taiheiyo Material Kk Artificial aggregate and its manufacturing method
JP2009132565A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Method of manufacturing artificial aggregate
JP2009132564A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Method of manufacturing artificial aggregate
CN102107205A (en) * 2009-12-23 2011-06-29 湖南布鲁斯凯环保科技发展有限公司 Method for harmlessly processing chromium slags

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252176A (en) * 1975-10-24 1977-04-26 Kenjiro Takeshita Method of making cr sludge harmless
JPH06269764A (en) * 1993-03-22 1994-09-27 Shibata Hario Glass Kk Detoxicating treatment for solid waste containing hexavalent chromium
JPH10244242A (en) * 1997-03-05 1998-09-14 Okayama Ceramics Gijutsu Shinko Zaidan Process of removing hexavalent chromium from heat-resistant substance containing hexavalent chromium
JPH11169814A (en) * 1997-12-12 1999-06-29 Chubu Electric Power Co Inc Treatment of hexavalent chromium containing waste
JP2000086322A (en) * 1998-09-17 2000-03-28 Taiheiyo Cement Corp Hexavalent chromium leach reducing agent for hydraulic material, and method for reducing hexavalent chromium leach
JP2001009414A (en) * 1999-06-29 2001-01-16 Shinagawa Refract Co Ltd Detoxification treatment system for used chromium- containing refractory material
JP2001132930A (en) * 1999-11-05 2001-05-18 Mitsubishi Heavy Ind Ltd Method and device for changing incineration ash to resource
JP2008273749A (en) * 2006-11-30 2008-11-13 Taiheiyo Material Kk Artificial aggregate and its manufacturing method
JP2009132565A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Method of manufacturing artificial aggregate
JP2009132564A (en) * 2007-11-30 2009-06-18 Taiheiyo Material Kk Method of manufacturing artificial aggregate
CN102107205A (en) * 2009-12-23 2011-06-29 湖南布鲁斯凯环保科技发展有限公司 Method for harmlessly processing chromium slags

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
村上邦利ほか: "ARC測定結果の安全対策への応用", 安全工学, vol. 28, no. 5, JPN6018028927, 1989, pages 304 - 311, ISSN: 0003845803 *
長谷良悦: "機器分析法とJIS分析法による石炭・コークスの元素分析国内共同実験(I)", 燃料協会誌, vol. 第67巻, 第6号, JPN6018028926, 1988, pages 418 - 429, ISSN: 0003845802 *

Also Published As

Publication number Publication date
JP6437769B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
CN104624621A (en) Reparation medicament applied to arsenic polluted soil and using method
CN107057705B (en) Heavy metal contaminated soil remediation material, preparation method and application
CN108714425A (en) A kind of desulfurization catalyst of flue gas and the application in new dry process rotary kiln dore furnace flue gas desulfurization
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
Setiawan et al. Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study
CN110484715B (en) Desulfurization ash treatment method
Uliasz-Bocheńczyk et al. CO 2 mineral sequestration with the use of ground granulated blast furnace slag
Shekhar Samanta et al. An overview of precious metal recovery from steel industry slag: recovery strategy and utilization
Butnariu et al. Research on the Recycling of Pulverulent Waste from the Ferous and Non-Ferrous Industry in Order tu Reduced the Pollution
JP5769920B2 (en) Soil improvement material
JP5915202B2 (en) Insolubilization method
Tu et al. Collaborative resource utilization of hazardous chromium ore processing residue (COPR) and C-bearing dust during limonitic laterite sintering process
JP6437769B2 (en) Method for treating hexavalent chromium-containing material
JPH10324547A (en) Treatment of chromium oxide-containing material
KR102113558B1 (en) Manufacturing process of various metals and derivatives derived from copper and sulfur
JP7376244B2 (en) Water quality improvement material and its manufacturing method
JP2006305464A (en) Reduction agent and reduction method
CN106500106B (en) A method of detoxified using sintering technology leached-out chromium residue
JP5337956B2 (en) Method for treating chromium oxide-containing material
JP5940701B2 (en) Soil improvement material
JP2017136557A (en) Method of manufacturing civil engineering material
CN106430196B (en) A kind of method that Mn oxide gas-based reduction prepares manganess carbide
Khalid et al. A Novel Approach to Heavy Metal Immobilization in Municipal Solid Waste Incineration Fly Ash: Investigating the Use of Chicken Eggshell Waste and CaO Addition
JP3850205B2 (en) Method for preventing heavy metal elution from molten fly ash and / or burned fly ash
JP6885155B2 (en) Cement clinker manufacturing method and cement manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181115

R150 Certificate of patent or registration of utility model

Ref document number: 6437769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350