JP5769920B2 - Soil improvement material - Google Patents

Soil improvement material Download PDF

Info

Publication number
JP5769920B2
JP5769920B2 JP2009246227A JP2009246227A JP5769920B2 JP 5769920 B2 JP5769920 B2 JP 5769920B2 JP 2009246227 A JP2009246227 A JP 2009246227A JP 2009246227 A JP2009246227 A JP 2009246227A JP 5769920 B2 JP5769920 B2 JP 5769920B2
Authority
JP
Japan
Prior art keywords
slag
mass
soil
content
steelmaking slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009246227A
Other languages
Japanese (ja)
Other versions
JP2011093946A (en
Inventor
高橋 克則
克則 高橋
博幸 當房
博幸 當房
藪田 和哉
和哉 藪田
政文 北辻
政文 北辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009246227A priority Critical patent/JP5769920B2/en
Publication of JP2011093946A publication Critical patent/JP2011093946A/en
Application granted granted Critical
Publication of JP5769920B2 publication Critical patent/JP5769920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、6価クロムやアンモニア等のような有害物質で汚染された土壌を改良するための土壌改良材に関するものである。   The present invention relates to a soil conditioner for improving soil contaminated with harmful substances such as hexavalent chromium and ammonia.

土壌は、置かれた環境や周辺の排水の影響或いは自然由来によって、有害物質に汚染される場合があり、その汚染の度合いが環境基準値を超える場合もある。例えば、6価クロムや砒素などの重金属類、トリクロロエチレン、ダイオキシン等の有機化合物に関して、土壌環境基準等において土壌中の上限値が定められている。
6価クロムは、還元して3価にすることによって溶解度が大幅に低減し、安全性を確保できることから、還元剤を混合することで溶出抑制を図る方法が広く知られており、具体的な方法としては、還元剤として硫酸第一鉄を用いる方法(例えば、特許文献1,2)、硫黄系還元剤を用いる方法(例えば、特許文献3,4)、鉄粉を用いる方法(例えば、特許文献5,6)などがある。
Soil may be contaminated with harmful substances due to the environment where it is placed, the drainage of the surrounding area, or the natural origin, and the degree of contamination may exceed the environmental standard value. For example, with respect to heavy metals such as hexavalent chromium and arsenic, and organic compounds such as trichlorethylene and dioxin, an upper limit value in the soil is defined in the soil environmental standards.
Since hexavalent chromium is reduced to trivalent, its solubility is greatly reduced and safety can be secured. Therefore, a method for suppressing elution by mixing a reducing agent is widely known. As a method, a method using ferrous sulfate as a reducing agent (for example, Patent Documents 1 and 2), a method using a sulfur-based reducing agent (for example, Patent Documents 3 and 4), a method using iron powder (for example, a patent) There are references 5, 6).

特開平09−85224号公報JP 09-85224 A 特開2001−121109号公報JP 2001-121109 A 特開平10−324547号公報JP-A-10-324547 特開2000−093934号公報JP 2000-093934 A 特開2001−198567号公報JP 2001-198567 A 特開2004−141812号公報JP 2004-141812 A 特開2003−206172号公報JP 2003-206172 A 特開2005−74280号公報Japanese Patent Laid-Open No. 2005-74280 特開2000−37676号公報JP 2000-37676 A 特開2004−130240号公報JP 2004-130240 A 特開2004−331759号公報JP 2004-331759 A 特開2005−152781号公報JP 2005-152781 A

上述した従来技術のなかで、還元剤として硫酸第一鉄を用いる方法は、速効性は高いものの、効果がすぐに失われてしまう欠点がある。また、硫黄系還元剤を用いる方法は、比較的長期の還元性能が維持されるが、速効性を確保するためには、材料の粒度や特性を特定の限られた範囲にする必要性がある。また、還元剤として鉄粉を用いる方法は、還元剤として同じ鉄系の硫酸第一鉄を用いる方法に較べて長期的な還元効果が期待できるものの、実際上の問題として、スラリー状にして混合することによる地盤の軟弱化等の問題がある。これは、鉄粉と土壌の混合条件に十分留意しないと、均質混合が難しいためである。   Among the above-described conventional techniques, the method using ferrous sulfate as the reducing agent has a drawback that the effect is lost immediately, although the rapid effect is high. In addition, the method using a sulfur-based reducing agent maintains a relatively long-term reduction performance, but it is necessary to make the particle size and characteristics of the material within a specific limited range in order to ensure quick action. . In addition, the method using iron powder as the reducing agent can be expected to have a long-term reduction effect compared to the method using the same ferrous ferrous sulfate as the reducing agent. There is a problem such as softening of the ground due to doing. This is because homogeneous mixing is difficult unless attention is paid to the mixing conditions of iron powder and soil.

本発明者らは、上述したような従来の土壌改良材の問題に鑑み、優れた還元作用を発揮して適切な土壌改良を行うことができ、且つ特別な施工条件を必要としない材料について、以下のような検討を行った。
まず、本発明者らは、鉄粉などが持つ還元作用を有効に発揮させるためには、簡便な混合でも均質性を確保できることが重要ではないかと考え、細かい鉄を含み、且つ土壌との比重差が小さい材料について探索した結果、製鋼スラグが適した材料であるとの結論を得た。
In view of the problems of the conventional soil improvement materials as described above, the present inventors can perform an appropriate soil improvement by exhibiting an excellent reducing action, and for materials that do not require special construction conditions, The following examination was conducted.
First, in order to effectively exhibit the reducing action of iron powder and the like, the present inventors consider that it is important to ensure homogeneity even with simple mixing, and contain fine iron and have a specific gravity with soil. As a result of searching for materials having a small difference, it was concluded that steelmaking slag is a suitable material.

従来、製鋼スラグを有害物質の無害化技術に利用したものとして、特許文献7〜9に示されるようなものがある。これらのうち、特許文献7に示されるのは脱硫スラグを含む固化材であるが、この固化材は脱硫スラグに含まれる硫黄による還元能力を期待したものであり、酸化鉄や鉄粉の作用効果については不明である。また、特許文献8に示されるのは、製鋼スラグとアルカノールアミンを含有する有害物質捕集材であるが、同文献(段落0024)では、製鋼スラグのみを用いると、種々の妨害性のアニオンの濃度が高い環境下では、捕集材としての効果が期待できないとしている。また、特許文献9に示されるのは、重金属を含む廃棄物を転炉スラグ等の製鋼スラグを用いて安定化処理する方法であるが、この方法では、温水環境下で共存させるなど特殊な処理場と温度場が要求されており、また、土壌のような比表面積が大きい対象についての有効性は明確ではない。   Conventionally, as shown in Patent Documents 7 to 9, steelmaking slag is used for detoxifying technology for harmful substances. Among these, what is shown in Patent Document 7 is a solidified material containing desulfurized slag, and this solidified material is expected to have a reducing ability due to sulfur contained in the desulfurized slag, and the effect of iron oxide and iron powder. Is unknown. Further, Patent Document 8 shows a harmful substance collecting material containing steelmaking slag and alkanolamine. However, in the same document (paragraph 0024), when only steelmaking slag is used, various interfering anions are used. It is said that the effect as a collecting material cannot be expected in a high concentration environment. Further, Patent Document 9 shows a method for stabilizing waste containing heavy metals using steelmaking slag such as converter slag. In this method, special treatment such as coexistence in a hot water environment is provided. Field and temperature fields are required, and the effectiveness for objects with a large specific surface area such as soil is not clear.

一方、特許文献10,11に記載の技術では、有害物質低減材を構成するカルシウムフェライト系材料が用いられている。この技術で使用されるカルシウムフェライト系材料は、CaOとFeの化合物からなっており、換言すれば、鉄系の原料として3価のFe源を用いるものである。この技術の本質は、有害重金属を不溶化するものであり、還元効果は期待できない。また、特許文献11では転炉スラグが用いられているが、その役割は潜在水硬性材料としてのものである。 On the other hand, in the techniques described in Patent Documents 10 and 11, a calcium ferrite material constituting a harmful substance reducing material is used. The calcium ferrite material used in this technique is composed of a compound of CaO and Fe 2 O 3 , in other words, a trivalent Fe source is used as an iron-based material. The essence of this technique is to insolubilize harmful heavy metals, and a reduction effect cannot be expected. Further, in Patent Document 11, converter slag is used, but its role is as a latent hydraulic material.

このような技術の改善策として、特許文献12には、高炉徐冷スラグと製鋼スラグとからなる有害物質低減材が示されており、この技術は、高炉徐冷スラグにより還元効果を発揮させ、製鋼スラグのFeとAlで有害重金属を不溶化するというものである。しかし、同文献において製鋼スラグであるとしている、FeとAlの合計濃度が高い酸化性のスラグは、一般に知られている製鋼スラグの組成とかなり異なったものである。例えば、代表的な製鋼スラグの組成を表1に示すが、脱炭炉スラグ、脱リンスラグではFeとAlの比率は低く、2CaO・Fe、4CaO・Al・Feが最大限生成したと仮定しても、FeとAlの合計濃度が20質量%を超えることはない。また、電気炉スラグはAlの割合が比較的高く、FeとAlの合計濃度は高めになるものの、FeやCaOは少ないため、2CaO・Fe、4CaO・Al・Feが最大限生成したとしても、FeとAlの合計濃度は脱炭炉スラグや脱リンスラグと同程度である。加えて、実際のスラグでは、2CaO・SiOやMgO、スピネル等との固溶物もあり、そのような生成量にはならない。したがって、特許文献12に示されるようなFeとAlの合計濃度が高いスラグを得るには、精錬工程で発生した製鋼スラグに特別な処理(例えば、熱処理などで酸化させる)を加えてFeを増やす必要がある。また、特許文献12が使用する有害物質低減材は、その反応機構から明らかなように、一般的な鉄鋼製造プロセスで発生する製鋼スラグが有する金属FeやFeOの反応を有効に活用するものではない。したがってまた、特許文献12には、スラグのFeとAlの合計量の記載しかなく、トータルFe、FeO、金属Feの各含有量は全く不明である。 As a measure for improving such technology, Patent Document 12 shows a harmful substance reducing material composed of blast furnace slow cooling slag and steelmaking slag, and this technology exhibits a reduction effect by blast furnace slow cooling slag, In this method, harmful heavy metals are insolubilized with Fe 2 O 3 and Al 2 O 3 of steelmaking slag. However, the oxidizing slag having a high total concentration of Fe 2 O 3 and Al 2 O 3 , which is said to be steelmaking slag in the same document, is quite different from the composition of generally known steelmaking slag. For example, the composition of typical steelmaking slag is shown in Table 1. In the decarburization furnace slag and dephosphorization slag, the ratio of Fe 2 O 3 and Al 2 O 3 is low, 2CaO · Fe 2 O 3 , 4CaO · Al 2 O. Even if it is assumed that 3 · Fe 2 O 3 is generated to the maximum extent, the total concentration of Fe 2 O 3 and Al 2 O 3 does not exceed 20 mass%. Moreover, although the ratio of Al 2 O 3 is relatively high in the electric furnace slag and the total concentration of Fe 2 O 3 and Al 2 O 3 is high, Fe 2 O 3 and CaO are small, so 2CaO · Fe 2 O Even if 3 , 4CaO.Al 2 O 3 .Fe 2 O 3 is produced to the maximum extent, the total concentration of Fe 2 O 3 and Al 2 O 3 is comparable to decarburization furnace slag and dephosphorization slag. In addition, in actual slag, there is a solid solution with 2CaO · SiO 2 , MgO, spinel, etc., and such a generated amount is not obtained. Therefore, in order to obtain a slag having a high total concentration of Fe 2 O 3 and Al 2 O 3 as shown in Patent Document 12, the steelmaking slag generated in the refining process is specially treated (for example, oxidized by heat treatment or the like). To increase Fe 2 O 3 . Moreover, the harmful substance reducing material used in Patent Document 12 does not effectively utilize the reaction of metal Fe or FeO contained in steelmaking slag generated in a general steelmaking process, as is apparent from the reaction mechanism. . Therefore, Patent Document 12 only describes the total amount of Fe 2 O 3 and Al 2 O 3 in the slag, and the contents of total Fe, FeO, and metal Fe are completely unknown.

Figure 0005769920
Figure 0005769920

したがって本発明の目的は、発生後特別な処理を施すことなく常温まで冷却した製鋼スラグを利用した土壌改良材であって、製鋼スラグの還元作用によって6価クロム等の有害物質の有害性を低減し、土壌の環境安全性を効果的に改善できる土壌改良材を提供することにある。   Therefore, an object of the present invention is a soil improvement material using steelmaking slag cooled to room temperature without performing any special treatment after generation, and reduces the harmfulness of harmful substances such as hexavalent chromium by the reducing action of steelmaking slag. And providing a soil conditioner that can effectively improve the environmental safety of the soil.

本発明者らは、上記課題を解決すべく検討を重ねた結果、以下のような知見を得た。すなわち、製鋼スラグが有する金属FeやFeOは還元機能を十分有しているが、置かれた環境とアニオン類の影響によって還元等の能力が低下し、また土壌の種類によっても、元素の吸着効果によって、その効果が大きく変動してしまう。したがって、これを抑制することができれば、製鋼スラグだけを添加した場合でも有効な還元効果が発現できる。具体的には、トータルFeおよびFeOの含有量とCaO/SiOを所定レベル以上とした製鋼スラグを用いることにより、スラグから十分な量のCa分を供給して、妨害性アニオンの効果を適切に抑制しつつ、鉄および酸化鉄による還元作用を十分に発揮させることができる。 As a result of repeated studies to solve the above problems, the present inventors have obtained the following knowledge. In other words, metal Fe and FeO possessed by steelmaking slag have a sufficient reducing function, but the ability to reduce, etc. is reduced by the influence of the environment and anions, and the effect of adsorption of elements also depends on the type of soil. Depending on the situation, the effect will vary greatly. Therefore, if this can be suppressed, an effective reduction effect can be exhibited even when only steelmaking slag is added. Specifically, by using a steel slag which the content and CaO / SiO 2 of total Fe and FeO to a predetermined level or higher, by supplying a Ca content sufficient amount of slag, the proper effects of interfering anions It is possible to sufficiently exhibit the reducing action of iron and iron oxide while suppressing the above.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]土壌と混合して使用される土壌改良材であって、トータルFe含有量が20質量%以上、FeO含有量が10質量%以上、CaO/SiO(質量比)が2以上、5未満である製鋼スラグからなることを特徴とする土壌改良材。
[2]上記[1]の土壌改良材において、製鋼スラグの金属Fe含有量が1質量%以上であることを特徴とする土壌改良材。
The present invention has been made on the basis of such findings and has the following gist.
[1] A soil improvement material used by mixing with soil, wherein the total Fe content is 20% by mass or more, the FeO content is 10% by mass or more, and the CaO / SiO 2 (mass ratio) is 2 or more, 5 A soil improvement material comprising steelmaking slag that is less than.
[2] The soil improvement material according to [1], wherein the metal Fe content of the steelmaking slag is 1% by mass or more.

[3]上記[1]または[2]の土壌改良材において、さらに、未エージングの高炉徐冷スラグを含むことを特徴とする土壌改良材。
[4]上記[3]の土壌改良材において、未エージングの高炉徐冷スラグは、粒径10mm以下の割合が90mass%以上である粒度を有することを特徴とする土壌改良材。
[5]上記[3]または[4]の土壌改良材において、未エージングの高炉徐冷スラグは、水:スラグ=10:1の質量部割合で水と混合し、200rpmで6時間振とう後、ろ過したときのチオ硫酸イオンの浸出量が30mg/L以上となるスラグであることを特徴とする土壌改良材。
[6]上記[1]〜[5]のいずれかの土壌改良材において、製鋼スラグの比重が3〜4であることを特徴とする土壌改良材。
[3] The soil conditioner according to the above [1] or [2], further comprising unaged blast furnace chilled slag.
[4] The soil improvement material according to [3], wherein the unaged blast furnace chilled slag has a particle size in which a ratio of a particle size of 10 mm or less is 90 mass% or more.
[5] In the soil improvement material of [3] or [4] above, unaged blast furnace chilled slag is mixed with water at a mass part ratio of water: slag = 10: 1, and shaken at 200 rpm for 6 hours. A soil conditioner characterized by being a slag that has a leaching amount of thiosulfate ions of 30 mg / L or more when filtered.
[6] The soil improvement material according to any one of [1] to [5], wherein the specific gravity of the steelmaking slag is 3 to 4.

本発明の土壌改良材は、製鋼スラグまたは製鋼スラグ+高炉徐冷スラグだけからなる土壌改良材でありながら、製鋼スラグまたは製鋼スラグ+高炉徐冷スラグの還元作用によって6価クロム等の有害物質の有害性を低減し、土壌の環境安全性を効果的に改善することができる。   Although the soil improvement material of the present invention is a soil improvement material consisting only of steelmaking slag or steelmaking slag + blast furnace chilled slag, harmful substances such as hexavalent chromium are reduced by the reduction action of steelmaking slag or steelmaking slag + blast furnace chilled slag. It can reduce the harmfulness and can effectively improve the environmental safety of the soil.

製鋼スラグのトータルFe含有量と6価クロム還元率との関係を示すグラフGraph showing the relationship between the total Fe content of steelmaking slag and the hexavalent chromium reduction rate 製鋼スラグのFeO含有量と6価クロム還元率との関係を示すグラフGraph showing the relationship between the FeO content of steelmaking slag and the hexavalent chromium reduction rate 製鋼スラグの金属Fe含有量およびトータルFe含有量と6価クロム還元率との関係を示すグラフGraph showing the relationship between metal Fe content and total Fe content of steelmaking slag and hexavalent chromium reduction rate 製鋼スラグのCaO/SiO(質量比)とCa溶出量との関係を示すグラフGraph showing the relationship between CaO / SiO 2 (mass ratio) and Ca elution amount of steelmaking slag 製鋼スラグのCaO/SiO(質量比)と6価クロム還元率との関係を示すグラフGraph showing the relationship between CaO / SiO 2 (mass ratio) of steelmaking slag and hexavalent chromium reduction rate

本発明の土壌改良材は、トータルFe含有量が15質量%以上、好ましくは20質量%以上、FeO含有量が10質量%以上、CaO/SiO(質量比)が2以上5未満、好ましくは3以上5未満の製鋼スラグからなるものである。
このように所定レベル以上のトータルFe含有量とFeO含有量を有し、且つCaO/SiO(質量比)が2以上、好ましくは3以上の製鋼スラグを土壌改良材として用いることにより、土壌の表面水や間隙水が製鋼スラグと接触した際にCa分が供給され、妨害性アニオンの効果を適切に抑制することができ、鉄および酸化鉄による還元能力を十分に発揮させることが可能となる。また、セメント等による粘土質等の土壌改良では、セメントから供給されるCaが粘土鉱物の表面や層間に吸着されてしまい、Caによる効果が十分に得られないという問題があるが、製鋼スラグにより十分なCaを供給することによって、効果を維持できることも判った。
The soil improvement material of the present invention has a total Fe content of 15% by mass or more, preferably 20% by mass or more, an FeO content of 10% by mass or more, and a CaO / SiO 2 (mass ratio) of 2 to less than 5, preferably It consists of 3 or more and less than 5 steelmaking slag.
Thus, by using a steelmaking slag having a total Fe content and a FeO content of a predetermined level or more and having a CaO / SiO 2 (mass ratio) of 2 or more, preferably 3 or more as a soil improver, When surface water or interstitial water comes into contact with steelmaking slag, Ca content is supplied, the effect of interfering anions can be appropriately suppressed, and the ability to reduce by iron and iron oxide can be fully exhibited. . Moreover, in soil improvement such as clay with cement etc., there is a problem that Ca supplied from cement is adsorbed between the surface of clay minerals and between layers, and the effect of Ca cannot be sufficiently obtained. It was also found that the effect can be maintained by supplying sufficient Ca.

製鋼スラグのトータルFe含有量が15質量%未満、FeO含有量が10質量%未満では、土壌との接触比が十分確保できないこと、土壌種類の影響で効果が不安定になるケースがあることから、いずれの場合も鉄および酸化鉄による還元作用が十分に得られない。また、このような観点から、より好ましいトータルFe含有量は20質量%以上である。
また、製鋼スラグは、金属Fe含有量が1質量%以上、望ましくは3質量%以上であることが好ましく、このような量の金属Feを含有することにより、還元作用をより高めることができる。
製鋼スラグは、上述したFeOと金属Fe以外に、水酸化鉄や3価の鉄酸化物などを含んでいてもよい。
If the total Fe content of the steelmaking slag is less than 15% by mass and the FeO content is less than 10% by mass, the contact ratio with the soil cannot be secured sufficiently, and the effect may be unstable due to the influence of the soil type. In either case, the reduction action by iron and iron oxide cannot be sufficiently obtained. From such a viewpoint, the more preferable total Fe content is 20% by mass or more.
Further, the steelmaking slag has a metal Fe content of 1% by mass or more, preferably 3% by mass or more. By containing such an amount of metal Fe, the reduction action can be further enhanced.
Steelmaking slag may contain iron hydroxide, trivalent iron oxide, etc. in addition to the above-described FeO and metal Fe.

図1〜図3に、製鋼スラグのトータルFe含有量、FeO含有量、金属Fe含有量と6価クロム還元率との関係を調査した結果を示す。これらの試験では、クロム標準液を用いて、6価クロム濃度を0.5mg/Lに調整し、これを土壌に10質量%添加した。この土壌質量:1に対して製鋼スラグを質量比で0.5の割合で混合し、これを1日静置した後、環境庁告示第46号法で6価クロム溶出試験を行い、6価クロム還元率(還元後の6価クロム量/還元前の6価クロム量)を調べた。   1 to 3 show the results of investigating the relationship between the total Fe content, the FeO content, the metal Fe content, and the hexavalent chromium reduction rate of steelmaking slag. In these tests, the hexavalent chromium concentration was adjusted to 0.5 mg / L using a chromium standard solution, and 10% by mass of this was added to the soil. Steel soil slag was mixed at a mass ratio of 0.5 with respect to this soil mass: 1 and allowed to stand for one day. Then, a hexavalent chromium elution test was conducted by the Environmental Agency Notification Method No. 46. The chromium reduction rate (the amount of hexavalent chromium after reduction / the amount of hexavalent chromium before reduction) was examined.

図1の試験では、精錬炉における撹拌条件を変えてトータルFe含有量が異なる製鋼スラグを生成させた。この製鋼スラグのCaO/SiO(質量比)は3.2〜4.2、金属Fe含有量は2質量%であり、FeO含有量はトータルFeの75質量%がFeOとなるように調整した。また、図2の試験では、トータルFe含有量が18〜20質量%、金属Fe含有量が1.5質量%、CaO/SiO(質量比)が3.8〜4.2の製鋼スラグの冷却時酸化条件を変更して、FeO含有量の異なる製鋼スラグを生成させた。さらに、図3の試験では、トータルFe含有量が20質量%、FeO含有量が10〜15質量%の製鋼スラグについて、磁選の条件を変えることで所定の金属Fe含有量になるように調整した。 In the test of FIG. 1, steelmaking slag having different total Fe contents was generated by changing the stirring conditions in the smelting furnace. This steelmaking slag has a CaO / SiO 2 (mass ratio) of 3.2 to 4.2, a metal Fe content of 2 mass%, and the FeO content was adjusted so that 75 mass% of the total Fe becomes FeO. . Moreover, in the test of FIG. 2, the total Fe content is 18 to 20% by mass, the metal Fe content is 1.5% by mass, and the CaO / SiO 2 (mass ratio) is 3.8 to 4.2. Steelmaking slag having different FeO contents was generated by changing the oxidation conditions during cooling. Furthermore, in the test of FIG. 3, the steelmaking slag having a total Fe content of 20% by mass and a FeO content of 10 to 15% by mass was adjusted to have a predetermined metal Fe content by changing the magnetic separation conditions. .

図1および図2によれば、トータルFe含有量が15質量%以上、FeO含有量が10質量%以上の製鋼スラグを用いることで、60%以上の6価クロム還元率が得られることが判る。さらに、トータルFe含有量が20質量%以上になると、80%以上の6価クロム還元率が得られ、より好ましいことが判る。また、図3によれば、特に金属Fe含有量が1質量%以上、好ましくは3質量%以上の製鋼スラグを用いることにより、より高い6価クロム還元率が得られることが判る。   According to FIG. 1 and FIG. 2, it is understood that a hexavalent chromium reduction rate of 60% or more can be obtained by using a steelmaking slag having a total Fe content of 15% by mass or more and an FeO content of 10% by mass or more. . Furthermore, it can be seen that when the total Fe content is 20% by mass or more, a hexavalent chromium reduction rate of 80% or more is obtained, which is more preferable. Moreover, according to FIG. 3, it can be seen that a higher hexavalent chromium reduction rate can be obtained by using a steelmaking slag having a metal Fe content of 1% by mass or more, preferably 3% by mass or more.

なお、トータルFe含有量の上限は特に規定するものではないが、金属Feの比重が7.8、FeOの比重が5.7であり、土壌の比重は火山灰で2.4、非火山灰で2.6程度であることから判るように、製鋼スラグ中のトータルFe含有量が多すぎるとスラグと土壌との比重差が大きく、混合時に分離しやすくなり、均質な混合が難しくなったり、処理にばらつきが生じるという問題が発生しやすい。したがって、土壌との比重差が小さい方が好ましく、製鋼スラグの比重は3〜4となるような成分比率であることが好ましい。この点から、Feの酸化状態にもよるが、トータルFe含有量は30質量%以下であることが好ましく、26質量%以下であることがさらに好ましい。製鋼スラグの比重が3〜4程度であれば、土壌と比重が近いことから、安定した混合・還元特性を得ることが可能となる。   The upper limit of the total Fe content is not particularly specified, but the specific gravity of metal Fe is 7.8, the specific gravity of FeO is 5.7, the specific gravity of soil is 2.4 for volcanic ash and 2 for non-volcanic ash. .6 As can be seen from the fact that there is too much total Fe content in steelmaking slag, the difference in specific gravity between slag and soil is large, making it easier to separate during mixing, making it difficult to achieve homogeneous mixing, The problem of variations is likely to occur. Therefore, the one where the specific gravity difference with soil is smaller is preferable, and it is preferable that the specific gravity of steelmaking slag is a component ratio which will be 3-4. From this point, although depending on the oxidation state of Fe, the total Fe content is preferably 30% by mass or less, and more preferably 26% by mass or less. If the specific gravity of steelmaking slag is about 3-4, since the specific gravity is close to soil, it becomes possible to obtain stable mixing / reduction characteristics.

製鋼スラグの塩基度、すなわちCaO/SiO(質量比)が2未満では、Ca溶出量が急激に低下し、周辺の妨害性のアニオンによる影響を吸収しきれない場合がある。この観点から、より好ましいCaO/SiO(質量比)は3以上である。一方、製鋼スラグのCaO/SiO(質量比)が5以上では、還元効果に及ぼす影響はないものの、スラグ中の遊離CaOが残存する量が多いことになり、土壌の体積安定性が低下するため望ましくない。 If the basicity of the steelmaking slag, that is, CaO / SiO 2 (mass ratio) is less than 2, the amount of Ca elution is drastically reduced, and the influence of surrounding disturbing anions may not be absorbed. From this viewpoint, a more preferable CaO / SiO 2 (mass ratio) is 3 or more. On the other hand, when the CaO / SiO 2 (mass ratio) of the steelmaking slag is 5 or more, although there is no influence on the reduction effect, the amount of free CaO in the slag will remain, and the volume stability of the soil will decrease. Therefore, it is not desirable.

図4に、製鋼スラグのCaO/SiO(質量比)とCa溶出量との関係を調査した結果を示す。この試験では、トータルFe含有量が20質量%、FeO含有量が15質量%、金属Fe含有量が1.0質量%の製鋼スラグについて、CaO/SiO(質量比)を1.2〜4.2の範囲で変化させ、Ca溶出量を調査した。Ca溶出量は、製鋼スラグ1質量部に対して水を10質量部添加し、200rpmで6時間振とうした後、メンブランフィルターでろ過したろ液を用いて評価した。
図4によれば、製鋼スラグからのCa溶出量は、スラグのCaO/SiO(質量比)が2以上となると急増し、特に3以上となると顕著に増加している。このように十分なCa溶出量が確保されることにより、妨害性のアニオンや吸着による効果の低下が防止され、FeOや金属Feによる還元効果を有効に発揮することが可能となる。
Figure 4 shows the results of investigating the relationship between CaO / SiO 2 (weight ratio) and Ca elution of steelmaking slag. In this test, CaO / SiO 2 (mass ratio) was 1.2-4 for steelmaking slag having a total Fe content of 20% by mass, a FeO content of 15% by mass, and a metal Fe content of 1.0% by mass. The amount of Ca elution was investigated by changing the range of .2. The amount of Ca elution was evaluated using a filtrate filtered with a membrane filter after adding 10 parts by mass of water to 1 part by mass of steelmaking slag and shaking at 200 rpm for 6 hours.
According to FIG. 4, the Ca elution amount from the steelmaking slag increases rapidly when the CaO / SiO 2 (mass ratio) of the slag becomes 2 or more, and particularly increases when it becomes 3 or more. By securing a sufficient Ca elution amount in this way, it is possible to prevent a decrease in the effect due to the disturbing anions and adsorption, and to effectively exhibit the reduction effect due to FeO or metal Fe.

図5に、トータルFe含有量が22質量%、FeO含有量が20質量%、金属Fe含有量が1.0質量%であって、CaO/SiO(質量比)が異なる製鋼スラグを用いて、6価クロム低減効果(6価クロムの還元率)を調査した結果を示す。この試験では、クロム標準液を用いて、6価クロム濃度を0.5mg/Lに調整し、これを土壌に10質量%添加した。この土壌質量:1に対して製鋼スラグを質量比で0.5の割合で混合し、これを1日静置した後、環境庁告示第46号法で6価クロム溶出試験を行い、6価クロム還元率(還元後の6価クロム量/還元前の6価クロム量)を調べた。
図5によれば、製鋼スラグのCaO/SiO(質量比)によって6価クロムの還元効果が変化し、CaO/SiO(質量比)が2以上で有効な還元効果が得られ、特に3以上で顕著な還元効果が得られている。
FIG. 5 shows a steelmaking slag having a total Fe content of 22 mass%, an FeO content of 20 mass%, a metal Fe content of 1.0 mass%, and different CaO / SiO 2 (mass ratio). The results of examining the hexavalent chromium reduction effect (reduction rate of hexavalent chromium) are shown. In this test, the hexavalent chromium concentration was adjusted to 0.5 mg / L using a chromium standard solution, and 10% by mass was added to the soil. Steel soil slag was mixed at a mass ratio of 0.5 with respect to this soil mass: 1 and allowed to stand for one day. Then, a hexavalent chromium elution test was conducted by the Environmental Agency Notification Method No. 46. The chromium reduction rate (the amount of hexavalent chromium after reduction / the amount of hexavalent chromium before reduction) was examined.
According to FIG. 5, the reduction effect of hexavalent chromium by the steelmaking slag CaO / SiO 2 (weight ratio) changes, CaO / SiO 2 (weight ratio) is effective reducing effect is obtained in 2 or more, particularly 3 The remarkable reduction effect is acquired by the above.

本発明で使用される製鋼スラグとしては、例えば、転炉スラグ(脱炭スラグ)、溶銑予備処理スラグ(脱燐スラグ、脱硫スラグ、脱珪スラグなど)、電気炉スラグなどが挙げられるが、これらに限定されるものではない。
製鋼スラグの粒度も特に限定されるものではないが、還元反応に関与する接触面やCa溶出の促進のための比表面積を確保するという観点から、通常、最大粒径が10mm以下に破砕若しくは篩分けにより粒度調整されたものが望ましい。
本発明で規定する製鋼スラグの組成条件は、例えば、CaO/SiO(質量比)については、精錬中の副原料(石灰、珪石等)の調整などにより、また、トータルFe含有量、FeO含有量および金属Fe含有量については、製鉄操業時の酸化鉄の添加条件や酸素吹きの条件の調整、磁選条件の調整、冷却条件の調整などにより、それぞれ実現することができる。
Examples of the steelmaking slag used in the present invention include converter slag (decarburization slag), hot metal pretreatment slag (dephosphorization slag, desulfurization slag, desiliconization slag, etc.), electric furnace slag, etc. It is not limited to.
The particle size of the steelmaking slag is not particularly limited, but is usually crushed or sieved to a maximum particle size of 10 mm or less from the viewpoint of securing a contact surface involved in the reduction reaction and a specific surface area for promoting Ca elution. Those whose particle size is adjusted by dividing are desirable.
The composition conditions of the steelmaking slag specified in the present invention include, for example, CaO / SiO 2 (mass ratio) by adjusting the auxiliary raw materials (lime, silica, etc.) during refining, and the total Fe content, FeO content The amount and the metal Fe content can be realized by adjusting iron oxide addition conditions and oxygen blowing conditions during ironmaking operations, adjusting magnetic separation conditions, adjusting cooling conditions, and the like.

本発明の土壌改良材は、上述したような組成の製鋼スラグに、さらに、未エージングの高炉徐冷スラグを混合したものでもよい。改良の対象となる土壌は、条件によって反応性が異なり、特に酸性側になる土壌では金属Fe、FeOによる還元反応が有効に作用しにくくなる場合がある。このような土壌に対して、製鋼スラグに未エージングの高炉徐冷スラグを混合した土壌改良材を適用した場合、多硫化物やチオ硫酸などの還元性材料が供給され、安定した還元能力が発揮される。   The soil improvement material of the present invention may be obtained by further mixing unaged blast furnace chilled slag with steelmaking slag having the above-described composition. The soil to be improved has different reactivity depending on the conditions. In particular, in the soil on the acidic side, the reduction reaction by the metal Fe and FeO may not be effective. When such a soil is applied with a soil improvement material in which steelmaking slag is mixed with unaged blast furnace chilled slag, reducing materials such as polysulfide and thiosulfuric acid are supplied, and stable reduction capability is demonstrated. Is done.

ここで、高炉徐冷スラグのエージングとは、JIS−A5015「鉄鋼スラグ路盤材」に規定されるものであり、未エージングの高炉徐冷スラグとは、破砕後のエージング期間が6ヶ月に満たないものである。
このように高炉徐冷スラグとして未エージングのものを用いるのは、未エージングの高炉徐冷スラグからは多硫化物やチオ硫酸イオンが浸出するのに対し、大気中でエージングを進めた高炉徐冷スラグでは表面から硫化物の酸化が進み、硫酸塩(SO 2−)に変わり、還元能力が大きく低下してしまうためである。
Here, aging of blast furnace slow cooling slag is defined in JIS-A5015 “Steel Slag Subbase Material”, and unaged blast furnace slow cooling slag has an aging period after crushing of less than 6 months. Is.
As described above, unaged blast furnace slag is used for blast furnace chilled slag that has been aged in the atmosphere while polysulfides and thiosulfate ions are leached from unaged blast furnace chilled slag. This is because in the slag, the oxidation of sulfide proceeds from the surface and changes to sulfate (SO 4 2− ), and the reducing ability is greatly reduced.

高炉徐冷スラグの粒度は特に限定されるものではないが、表面積が大きいほど還元性物質が土壌に供給されやすくなる。このため粒径10mm以下の割合が90質量%以上、より望ましくは、粒径5mm以下の割合が90質量%以上である粒度を有することが好ましい。
未エージングの高炉徐冷スラグは、還元能力は高いものがより望ましい。特に、水:スラグ=10:1の質量部割合で水と混合し、200rpmで6時間振とう後、ろ過したときのチオ硫酸イオンの浸出量が30mg/L以上となる高炉徐冷スラグを用いることが好ましい。チオ硫酸イオンは、還元剤として知られるイオンであるが、高炉徐冷スラグに含まれる硫黄成分が一部酸化された状態で溶出してくる。チオ硫酸イオンの浸出量が30mg/L未満の高炉徐冷スラグでも効果は期待できるが、妨害性のアニオンなどの影響に対して安定した還元効果を得るためには、チオ硫酸イオンの浸出量が30mg/L以上のものが望ましい。
The particle size of the blast furnace slow-cooled slag is not particularly limited, but the reducing material is more easily supplied to the soil as the surface area increases. For this reason, it is preferable to have a particle size in which the ratio of the particle size of 10 mm or less is 90% by mass or more, more desirably, the ratio of the particle size of 5 mm or less is 90% by mass or more.
The non-aging blast furnace slow cooling slag preferably has a high reducing ability. In particular, a blast furnace slow-cooled slag is used that is mixed with water at a mass part ratio of water: slag = 10: 1, shaken at 200 rpm for 6 hours, and filtered to have a thiosulfate ion leaching amount of 30 mg / L or more. It is preferable. The thiosulfate ion is an ion known as a reducing agent, and is eluted in a state in which the sulfur component contained in the blast furnace slow cooling slag is partially oxidized. Although the effect can be expected even with blast furnace slow cooling slag having a leaching amount of thiosulfate ions of less than 30 mg / L, in order to obtain a stable reduction effect against the influence of interfering anions, the leaching amount of thiosulfate ions is Those of 30 mg / L or more are desirable.

製鋼スラグに対する高炉徐冷スラグの配合量は特に限定しないが、pHが4未満になるような土壌に適用する場合には、製鋼スラグ+高炉徐冷スラグ中で20質量%以上配合するのが望ましい。高炉徐冷スラグの配合量の上限は特にないが、余剰Sが発生すると、低pH土壌では極微量ではあるものの硫化水素が発生する可能性があり、このため、好ましくは製鋼スラグ+高炉徐冷スラグ中で50質量%未満であることが望ましい。
本発明の土壌改良材は、6価クロム以外にも、アンモニアやPCB、トリクロロエチレンといった有機塩素化合物等の浄化効果も期待できる。
The blending amount of the blast furnace slow cooling slag with respect to the steelmaking slag is not particularly limited, but when applied to soil where the pH is less than 4, it is desirable to blend 20 mass% or more in the steelmaking slag + blast furnace slow cooling slag. . There is no particular upper limit on the amount of blast furnace slow cooling slag, but if surplus S is generated, hydrogen sulfide may be generated although it is extremely small in low pH soil. For this reason, steelmaking slag + blast furnace slow cooling is preferable. It is desirable that it is less than 50% by mass in the slag.
In addition to hexavalent chromium, the soil improvement material of the present invention can be expected to have a purification effect on organic chlorine compounds such as ammonia, PCB, and trichlorethylene.

本実施例では、製鋼スラグとして、脱炭スラグと脱燐スラグを用いた。高炉徐冷スラグは、高炉から出されたスラグを放流・徐冷して得られたスラグである。各スラグをヤードに放流して冷却後、クラッシャーで破砕し、条件にあわせて粒度を整えて使用した。
製鋼スラグの組成のうち、金属Fe含有量は磁選の条件を選択することで調整し、FeO含有量は製鉄操業時の酸化鉄の添加条件や酸素吹きの条件を選択することで調整し、トータルFe含有量は磁選条件(磁場の強さ、距離など)を選択することで調整し、それぞれ分析値をもとに適用した。また、CaO/SiO(質量比)は、副原料添加量を管理し、得られたスラグを選択することで調整し、分析値をもとに適用した。
In this example, decarburized slag and dephosphorized slag were used as the steelmaking slag. Blast furnace slow-cooled slag is slag obtained by discharging and slowly cooling slag discharged from the blast furnace. Each slag was discharged to the yard, cooled, crushed with a crusher, and used after adjusting the particle size according to the conditions.
Of the composition of steelmaking slag, the metal Fe content is adjusted by selecting magnetic separation conditions, and the FeO content is adjusted by selecting iron oxide addition conditions and oxygen blowing conditions during ironmaking operations. The Fe content was adjusted by selecting magnetic separation conditions (magnetic field strength, distance, etc.), and each was applied based on the analysis value. In addition, CaO / SiO 2 (mass ratio) was adjusted by controlling the amount of auxiliary raw material added and selecting the obtained slag, and applied based on the analysis value.

土壌改良材の添加量を3質量%とした条件で、環境庁告示46号法による溶出試験方法に基づく溶出試験を行い、6価クロムの溶出量を測定した。対象の土壌としては、6価クロムの溶出抑制効果を阻害すると言われる火山灰質粘性土のセメント改良土を用いた。試験は、土壌に土壌改良材を3質量%添加して十分撹拌した後、3日間静置してから溶出試験を行った。その結果を、土壌改良材の構成とともに表2に示す。
なお、表2に示す溶出試験の評価は以下の通りである。
○:6価クロムの検出下限値(0.03mg/L)未満
△:6価クロムの溶出値が0.03mg/L以上、0.05mg/L以下
×:6価クロムの溶出値が0.05mg/L超
表2によれば、本発明の土壌改良材では、いずれも6価クロムの溶出量が基準値以下に抑えられている。
An elution test based on the elution test method by the Environment Agency Notification No. 46 method was conducted under the condition that the amount of the soil improvement material added was 3% by mass, and the elution amount of hexavalent chromium was measured. As the target soil, a cement-modified soil of volcanic ash clay that is said to inhibit the elution suppression effect of hexavalent chromium was used. In the test, 3 mass% of the soil conditioner was added to the soil, and after sufficient stirring, the sample was allowed to stand for 3 days and then the dissolution test was performed. The results are shown in Table 2 together with the structure of the soil improvement material.
The evaluation of the dissolution test shown in Table 2 is as follows.
○: Less than the lower limit of detection of hexavalent chromium (0.03 mg / L) Δ: The elution value of hexavalent chromium is 0.03 mg / L or more and 0.05 mg / L or less ×: The elution value of hexavalent chromium is 0.00. More than 05 mg / L According to Table 2, in the soil improvement material of the present invention, the elution amount of hexavalent chromium is suppressed to a reference value or less.

Figure 0005769920
Figure 0005769920

Claims (6)

土壌と混合して使用される土壌改良材であって、トータルFe含有量が20質量%以上、FeO含有量が10質量%以上、CaO/SiO(質量比)が2以上、5未満である製鋼スラグからなることを特徴とする土壌改良材。 A soil improvement material used by mixing with soil, wherein the total Fe content is 20% by mass or more, the FeO content is 10% by mass or more, and the CaO / SiO 2 (mass ratio) is 2 or more and less than 5. A soil conditioner made of steel slag. 製鋼スラグの金属Fe含有量が1質量%以上であることを特徴とする請求項1に記載の土壌改良材。   The soil improvement material according to claim 1, wherein the metal Fe content of the steelmaking slag is 1% by mass or more. さらに、未エージングの高炉徐冷スラグを含むことを特徴とする請求項1または2に記載の土壌改良材。   The soil improvement material according to claim 1 or 2, further comprising unaged blast furnace chilled slag. 未エージングの高炉徐冷スラグは、粒径10mm以下の割合が90mass%以上である粒度を有することを特徴とする請求項3に記載の土壌改良材。   The soil improvement material according to claim 3, wherein the unaged blast furnace chilled slag has a particle size in which a ratio of a particle size of 10 mm or less is 90 mass% or more. 未エージングの高炉徐冷スラグは、水:スラグ=10:1の質量部割合で水と混合し、200rpmで6時間振とう後、ろ過したときのチオ硫酸イオンの浸出量が30mg/L以上となるスラグであることを特徴とする請求項3または4に記載の土壌改良材。   Unaged blast furnace slow-cooled slag is mixed with water at a mass part ratio of water: slag = 10: 1, shaken at 200 rpm for 6 hours, and the leaching amount of thiosulfate ions when filtered is 30 mg / L or more. The soil improvement material according to claim 3, wherein the soil improvement material is a slag. 製鋼スラグの比重が3〜4であることを特徴とする請求項1〜5のいずれかに記載の土壌改良材。   The specific gravity of steelmaking slag is 3-4, The soil improvement material in any one of Claims 1-5 characterized by the above-mentioned.
JP2009246227A 2009-10-27 2009-10-27 Soil improvement material Active JP5769920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246227A JP5769920B2 (en) 2009-10-27 2009-10-27 Soil improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246227A JP5769920B2 (en) 2009-10-27 2009-10-27 Soil improvement material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015051355A Division JP5940701B2 (en) 2015-03-13 2015-03-13 Soil improvement material

Publications (2)

Publication Number Publication Date
JP2011093946A JP2011093946A (en) 2011-05-12
JP5769920B2 true JP5769920B2 (en) 2015-08-26

Family

ID=44111238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246227A Active JP5769920B2 (en) 2009-10-27 2009-10-27 Soil improvement material

Country Status (1)

Country Link
JP (1) JP5769920B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031270B2 (en) * 2011-06-27 2016-11-24 Jfeスチール株式会社 Methods for reducing harmful elements
JP6084429B2 (en) * 2011-10-31 2017-02-22 Jfeスチール株式会社 Selenium reducing material and selenium reducing method
JP6032013B2 (en) * 2013-01-08 2016-11-24 新日鐵住金株式会社 Soft soil improvement material, soft soil improvement method using the same, and soft ground improvement method
JP6041006B2 (en) * 2014-02-28 2016-12-07 Jfeスチール株式会社 Reduction material for civil engineering materials
JP6519018B2 (en) * 2015-10-07 2019-05-29 Jfeスチール株式会社 Roadbed material and its construction method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459889A (en) * 1990-06-28 1992-02-26 Izumiyama Seido Kk Production of soil conditioner from slag
JP3476192B2 (en) * 2002-08-26 2003-12-10 シビルケミカルエンジニアリング株式会社 Steelmaking dust slurry purification method and soil purification agent
JP4014518B2 (en) * 2003-03-05 2007-11-28 電気化学工業株式会社 Soil improvement material
JP4264523B2 (en) * 2003-11-25 2009-05-20 電気化学工業株式会社 Hazardous substance reducing material and method for reducing harmful substances
JP4529174B2 (en) * 2004-07-20 2010-08-25 Jfeエンジニアリング株式会社 Soil improvement material
JP2006055724A (en) * 2004-08-19 2006-03-02 Nippon Steel Corp Method for soil restoration
JP4692064B2 (en) * 2005-04-28 2011-06-01 Jfeスチール株式会社 Reduction treatment agent and reduction treatment method
JP4818092B2 (en) * 2006-07-28 2011-11-16 新日本製鐵株式会社 Method for suppressing elution of fluorine in steelmaking slag

Also Published As

Publication number Publication date
JP2011093946A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
Zhang et al. Immobilization potential of Cr (VI) in sodium hydroxide activated slag pastes
RU2046112C1 (en) Method for chemical stabilization of dangerous heavy metal-bearing wastes
Barca et al. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe
JP5769920B2 (en) Soil improvement material
Bulut et al. Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement
JP5092203B2 (en) Method for suppressing elution of fluorine and heavy metals from waste
JP3299174B2 (en) Method for treating chromium oxide-containing material
JP5940701B2 (en) Soil improvement material
JP4692064B2 (en) Reduction treatment agent and reduction treatment method
JP4725302B2 (en) Method for treating eluted component-containing substance, stabilizing material and method for producing the same
JP3877584B2 (en) Hexavalent chromium reducing agent
JP4130762B2 (en) Heavy metal stabilization treatment method
JP2002248444A (en) Method for treating waste containing chromium oxide
JP4967131B2 (en) Waste disposal method
JP2872586B2 (en) Reforming method of stainless steel slag
JP2017023993A (en) Treating agent and treating method for hexavalent chromium, roadbed material, and method for construction of the material
JP6041006B2 (en) Reduction material for civil engineering materials
JP3877583B2 (en) Hexavalent chromium reducing material
JP4388845B2 (en) Detoxification method for chromium-containing steel slag
JP4682118B2 (en) Stabilization method of fluorine eluted from steel slag
JP5337956B2 (en) Method for treating chromium oxide-containing material
US6053857A (en) Immobilization of thallium during electric arc furnace dust treatment
JP4304110B2 (en) Detoxification method for chromium-containing steel slag
JP2006102643A (en) Calcium sulfide heavy metal solidifying agent, its production method, method for producing soil modification material and method for treating object to be treated
JP2008168289A (en) Detoxification method of heavy metal-containing basic waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150624

R150 Certificate of patent or registration of utility model

Ref document number: 5769920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250