JP2016052622A - 還元性硫黄化合物を含む排水の処理方法 - Google Patents

還元性硫黄化合物を含む排水の処理方法 Download PDF

Info

Publication number
JP2016052622A
JP2016052622A JP2014179130A JP2014179130A JP2016052622A JP 2016052622 A JP2016052622 A JP 2016052622A JP 2014179130 A JP2014179130 A JP 2014179130A JP 2014179130 A JP2014179130 A JP 2014179130A JP 2016052622 A JP2016052622 A JP 2016052622A
Authority
JP
Japan
Prior art keywords
wastewater
sulfur
aeration
treatment
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014179130A
Other languages
English (en)
Other versions
JP6425469B2 (ja
Inventor
俊介 新井
Shunsuke Arai
俊介 新井
藍 吉屋
Ai Yoshiya
藍 吉屋
亨 西内
Toru Nishiuchi
亨 西内
優 奥貫
Masaru Okunuki
優 奥貫
大 大山
Dai Oyama
大 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014179130A priority Critical patent/JP6425469B2/ja
Publication of JP2016052622A publication Critical patent/JP2016052622A/ja
Application granted granted Critical
Publication of JP6425469B2 publication Critical patent/JP6425469B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】環境に対する負荷が小さいことに加えて、排水処理を短時間で立ち上げることができ、排水の処理効率が高く、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができる排水の処理方法を提供する。【解決手段】曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法である。排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用い、硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用い、曝気槽中で、排水のpHを5以上、8以下に維持しながら、固定化細菌を流動させ、流動床方式で曝気処理を行う。【選択図】なし

Description

本発明は、硫黄酸化細菌を用いて、還元性硫黄化合物を含む排水を処理する排水の処理方法に関する。
硫化水素、単体硫黄、チオ硫酸塩等の還元性硫黄化合物を含む排水は、写真工業、石油精製工業、金属精錬工業、その他の化学工業等の各種化学工業を営む工場、或いは鉱山等から排出される。前記還元性硫黄化合物を含む排水は、化学的酸素要求量(chemical oxygen demand:COD)が高いため、浄化処理を行った後に下水に放流する必要がある。
従来、前記還元性硫黄化合物を含む排水の処理方法としては、例えば、次亜塩素酸ソーダ、過酸化水素等の酸化剤を用いて、前記還元性硫黄化合物を酸化し、前記排水を処理する方法(化学的処理方法)が知られている。前記化学的処理方法は、前記排水に前記酸化剤を投入すればよく、比較的簡便に前記排水を処理することができるという利点がある。しかし、前記化学的処理方法は、1)前記酸化剤が高価であるために、処理コストが高くなる、2)前記酸化剤が残留した処理水が下水に放流されるおそれがある、という問題がある。特に近年、化学物質に対する規制が強化される傾向にあり、環境に対する負荷が小さい処理方法が切望されている。
そこで、硫黄酸化細菌を用いて、前記還元性硫黄化合物を酸化し、排水を処理する方法(生物学的処理方法)が注目されている。生物学的処理方法としては、例えば、活性汚泥法等が挙げられる。しかし、活性汚泥法は、大容量の沈殿槽を使用する必要があり、前記沈殿槽を設置可能な広大な敷地がない工場等では実施することができないという問題があった。
前記問題を解決する方策として、前記硫黄酸化細菌を担体に固定して固定化細菌とし、前記固定化細菌を前記排水中に投入し、前記排水中において前記硫黄酸化細菌を高濃度に維持することにより、前記排水の処理効率を向上させる方法が提案されている。例えば、前記硫黄酸化細菌をサドル型セラミックス担体に固定して固定化細菌とし、前記固定化細菌をバイオリアクターの内部に充填して固定床型のバイオリアクターを構成し、前記固定床型のバイオリアクターを用いて硫化水素含有廃水を処理する生物学的処理方法が提案されている(特許文献1)。この方法においては、下水、産業廃棄物の活性汚泥から、不揮発性の還元性硫黄化合物を含有する廃水を用いて馴養した硫黄酸化細菌を用いている。
また、前記硫黄酸化細菌を高炉水砕スラグ微粉、硫酸カルシウム微粉、炭酸カルシウム微粉等に固定して固定化細菌とし、前記固定化細菌を用いて還元性硫黄化合物含有排水を処理する方法が提案されている(特許文献2)。この方法においては、都市下水等の有機性排水処理場から採取した活性汚泥から、硫化物イオン等の揮発性硫黄化合物を含まないチオ硫酸が主体の排水によって増殖させた、硫黄酸化機能を有するシュードモナス属の細菌を用いている。
特許第2582695号公報 特許第3241565号公報
特許文献1または2に記載の方法は、活性汚泥法と比較して排水の処理効率が向上する点において有効な方法と言える。しかし、これら方法には、以下に掲げるような未解決の課題が残されていた。
1)硫黄酸化細菌が担体に定着し、安定的に排水を処理することができるまで(則ち、排水処理を立ち上げるまで)に長時間を要する。
2)排水の水理学的滞留時間(Hydraulic retention time:HRT。「曝気時間」とも言う。)を長くとる必要があり、排水の処理効率の面で不十分である。
3)還元性硫黄化合物に加えてカルシウムイオンを高濃度で含む排水を処理した場合、固定化細菌に炭酸カルシウムが沈着し、経時的に処理能力が低下する場合がある。
本発明は、前記課題に鑑みてなされたものである。則ち、本発明は、環境に対する負荷が小さいことに加えて、排水処理を短時間で立ち上げることができ、排水の処理効率が高く、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができる排水の処理方法を提供するものである。
本発明者は前記課題について鋭意検討を行った。その結果、硫黄酸化細菌をポリウレタン樹脂製の流動担体に固定して固定化細菌とし、流動床方式で曝気処理を行うことにより前記課題を解決可能であることに想到し、本発明を完成するに至った。即ち、本発明によれば、以下に示す排水の処理方法が提供される。
[1]排水の処理方法:
本発明によれば、曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法であって、前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用い、前記硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用い、前記曝気槽中で、前記排水のpHを5以上、8以下に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行うことを特徴とする排水の処理方法;が提供される。
本発明の排水の処理方法は、
前記硫黄酸化細菌として、ハロチオバチルス属に属するSAB−1株を用いること;
前記硫黄酸化細菌を含む培地を、前記硫黄酸化細菌の濃度が103cfu/mL以上となるように、前記曝気槽に添加し、前記曝気槽に、前記流動担体を投入して曝気処理を行うことにより、前記硫黄酸化細菌を前記流動担体の表面に固定し、前記固定化細菌を得ること;
曝気量を2m3/m3・hr以上に維持しながら、前記曝気処理を行うこと;
前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、カルシウムイオンの濃度が100mg/L以上、の排水を用いること;が好ましい。
本発明の処理方法は、環境に対する負荷が小さいことに加えて、排水処理を短時間で立ち上げることができ、排水の処理効率が高く、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができる。
本発明の処理方法を実施するための処理装置を模式的に示す側面図である。 回分試験におけるCOD値を示すグラフである。 通水試験におけるCOD値を示すグラフである。 固定化細菌に付着したSS量を示すグラフである。
以下、本発明の実施形態について図面を参照しながら詳細に説明する。但し、本発明は下記の実施形態に限定されず、その発明特定事項を有する全ての対象を含むものである。
本発明の排水の処理方法は、曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法である。
[1]排水:
「排水」とは、曝気処理に供される水を意味する。本発明においては、前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用いる。なお、以下の説明において、曝気処理を施された後の水を「処理水」と称する場合がある。
[1−1]還元性硫黄化合物:
還元性硫黄化合物とは、二酸化硫黄(SO2)よりも還元性が高い(則ち、硫黄の酸化数が+4より小さい)硫黄化合物を意味する。例えば、硫化水素(H2S)、単体硫黄(S)、チオ硫酸塩(チオ硫酸イオン<S23 2->を含む塩)等が挙げられる。
本発明においては、前記排水中の還元性硫黄化合物の濃度は特に限定されない。但し、前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、300mg/L以下の排水を用いることが好ましい。
[1−2]カルシウムイオン:
本発明においては、前記排水中のカルシウムイオンの濃度も特に限定されない。但し、前記排水として、カルシウムイオンの濃度が100mg/L以上、1,000mg/L以下の排水を用いることが好ましい。
[1−3]具体的な排水の種類:
還元性硫黄化合物、及びカルシウムイオンを含む排水の種類は特に限定されない。例えば、写真工業、石油精製工業、金属精錬工業、その他の化学工業等の各種化学工業を営む工場、或いは鉱山等から排出される排水、特に製鉄所から排出される排水等が挙げられる。
前記排水は、還元性硫黄化合物の濃度がCOD換算で30〜300mg/L程度、カルシウムイオンの濃度が100〜1,000mg/L程度であり、還元性硫黄化合物、カルシウムイオンとも濃度が高い点に特徴がある。また、前記排水は、pHが12〜13程度と高いアルカリ性を示すことがあるため、後述するようなpH調整を行った後に、曝気処理に供することが好ましい。
[2]硫黄酸化細菌:
本発明の処理方法は、硫黄酸化細菌を用いて排水を処理する生物学的処理方法である。硫黄酸化細菌とは、硫黄または無機硫黄化合物を酸化して獲得したエネルギーにより生活する細菌を意味する。硫黄酸化細菌を用いることによって、排水中の還元性硫黄化合物(H2S、S、S23 2-等)を硫酸イオン(SO4 2-)に酸化することができ、排水のCOD値を低減することができる。このような処理方法は、環境に対する負荷が小さい点において好ましい。
本発明においては、硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用いる。前記硫黄酸化細菌を流動担体に固定することにより、後述する流動床方式で曝気処理を行うことが可能となる。
[2−1]SAB−1株:
本発明においては、硫黄酸化細菌の菌種は特に限定されない。但し、前記硫黄酸化細菌として、ハロチオバチルス属に属するSAB−1株を用いることが好ましい。前記SAB−1株は、グラム陰性の独立栄養細菌であり、その16SrDNAについてBLAST相同性検索をした結果、ハロチオバチルス(Halothiobacillus)属に属する菌株であることが判明している。また、前記SAB−1株は、2013年2月20日(寄託日)付けで、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託書が受領され、受託番号「NITE P−1543」が付与された菌株である。前記SAB−1株は、他の菌株と比較して流動担体に定着し易く、安定的に排水を処理することができるまで(則ち、排水処理を立ち上げるまで)の時間を短縮することができる。
[2−2]流動担体:
「流動担体」とは、排水中で流動させながら用いる担体を意味する。則ち、曝気槽中に固定して用いる固定担体とは異なるものである。
本発明においては、ポリウレタン樹脂製の流動担体を用いる。流動床方式においては、流動担体(ひいては固定化細菌)の流動性が処理効率に直結する。ポリウレタン樹脂製の流動担体は、炭酸カルシウムが沈着し難く、また、沈着した炭酸カルシウムが剥離され易い。従って、ポリウレタン樹脂製の流動担体は、流動担体の流動性を維持することができ、カルシウムイオンを高濃度で含む排水を処理した場合でも、経時的に処理能力が低下することがなく、安定的に排水を処理することができる点において好ましい。一方、セラミックス製の流動担体は、原材料中のカルシウム化合物が炭酸カルシウムの沈着を促進する場合がある。また、ポリウレタン樹脂以外の樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂)製の流動担体は、セラミックス製の流動担体と比較すれば、炭酸カルシウムが沈着し難く、また、沈着した炭酸カルシウムが剥離され易いものの、その効果はポリウレタン樹脂製の流動担体には及ばない。
「ポリウレタン樹脂」とは、ウレタン結合を有する樹脂の総称である。通常は、ポリイソシアナートと、ポリオールとの縮合物であるが、ポリイソシアナートと、ポリアミン、又はポリカルボン酸との縮合物も含まれる。例えば、重量平均分子量3,000のアルキレンオキサイド付加ポリエーテルポリオールと、トリレンジイソシアネート(2,4−トリレンジイソシアネートや2,6−トリレンジイソシアネートなど)との縮合物等を挙げることができる。
排水中での流動性を有する限り、流動担体の形状や構造は特に限定されない。例えば、立方体状、粒状、チューブ状等の形状が挙げられる。中でも、一辺が5〜20mmの立方体状の担体が好ましい。より具体的には、商品名「AQ−1」(関東イノアック製、一辺10mmの立方体状、空孔率97%、セル数47個/25mm、セル径0.6mm、真比重1.136g/cm3)等を挙げることができる。
硫黄酸化細菌は、流動担体の表面に固定される。従って、比表面積が大きい形状の方が硫黄酸化細菌の固定量を増やすことができ、好ましい。例えば、スポンジ状、網状のような多孔体、表面に突起や凹部が形成された形状等が挙げられる。流動担体の比表面積は特に限定されない。但し、500m2/m3以上の範囲とすることが好ましい。500m2/m3以上とすると、硫黄酸化細菌の固定量を増加させることができる。上限は特に限定されないが、5,000m2/m3以下、好ましくは4,000m2/m3以下、更に好ましくは3,000m2/m3以下の範囲である。
また、排水の処理効率や処理速度を維持する観点から、流動担体の表面積は、曝気槽の容量に対して一定の範囲内にあることが好ましい。具体的には、曝気槽の容積1m3あたり50m2以上であることが好ましい。50m2以上とすると、排水の処理効率や処理速度を維持することができる。上限は特に限定されないが、1,000m2以下、好ましくは800m2以下、更に好ましくは600m2以下の範囲である。
本発明においては、前記固定化細菌を得るための方法については特に限定されない。但し、前記硫黄酸化細菌を前培養する等して、前記硫黄酸化細菌を108cfu/mL以上、1012cfu/mL以下の範囲で含む培地を用意することが好ましい。また、前記硫黄酸化細菌を含む培地を、前記硫黄酸化細菌の濃度が103cfu/mL以上の範囲となるように、前記曝気槽に添加し、前記曝気槽に、前記流動担体を投入して曝気処理を行うことにより、前記硫黄酸化細菌を前記流動担体の表面に固定し(則ち、生物膜を形成し)、前記固定化細菌を得ることが好ましい。
培地における前記硫黄酸化細菌の濃度を108cfu/mL以上とすることにより、曝気層中における前記硫黄酸化細菌の濃度を106cfu/mL以上に調整することができる。また、曝気槽中における前記硫黄酸化細菌の濃度を103cfu/mL以上、好ましくは104cfu/mL以上とすることにより、排水の処理効率や処理速度を維持することができる。上限は特に限定されないが、108cfu/mL以下、好ましくは107cfu/mL以下の範囲である。
[3]曝気処理:
本発明においては、曝気槽中で、前記排水のpHを5以上、8以下(好ましくは6以上、7以下)に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行う。このような方法は、前記排水と前記硫黄酸化細菌との接触効率を高めることができ、固定床方式よりも排水の処理効率を向上させることができる。
[3−1]流動床方式:
本発明において、前記固定化細菌を流動させる方法は、特に限定されない。専ら曝気により行ってもよいし、撹拌を併用してもよい。前記固定化細菌の流動状態は、例えば、後述する曝気量等により調整することができる。曝気槽の容量は、処理対象である排水の量や設置スペースに応じて適宜決定すればよい。
[3−2]pH:
前記排水のpHを5以上、好ましくは6以上とすることにより、水に対する硫化水素の溶解度が上がり、還元性硫黄化合物に由来する硫化水素ガスが放出される不具合を防止することができる。一方、前記排水のpHを8以下(酸性から弱塩基性域)、好ましくは7以下(酸性域から中性域)とすることにより、曝気の際に供給される空気中の二酸化炭素(酸性物質)が排水中に溶け込み難くなる。これにより、排水中のカルシウムイオンと二酸化炭素が反応して炭酸カルシウムが形成され、前記炭酸カルシウムが流動担体に沈着する不具合を防止することができ、流動担体の流動性(排水を処理する能力)を維持することができる。このような構成は、製鉄所から排出される排水等、カルシウムイオンを多く含む排水を処理する場合に、特に有効である。
本発明においては、前記排水を前記曝気槽に投入する前に、前記排水の中和処理を行い、そのpHを5以上、8以下に調整することも好ましい。前記のように、製鉄所から排出される排水等は、pHが12〜13程度と高いアルカリ性を示すことがある。このような場合には、中和槽において、前記排水に塩酸や硫酸等の中和剤を添加し、本発明の処理方法を適用する前に、予めpHを前記範囲に調整しておくことが好ましい。なお、排水等のpHは、例えば、ガラス電極法によりpHを測定するpHセンサー(商品名「ポータブルイオン・pH計 IM−32P」、東亜ディーケーケー製)を用いて検出することができる。
[3−3]酸化還元電位(Oxidation-reduction Potential;ORP):
本発明においては、曝気処理を行う際の前記排水の酸化還元電位は特に限定されない。但し、酸化還元電位を−60mV以上(更に好ましくは−50mV以上)に維持しながら、前記曝気処理を行うことが好ましい。酸化還元電位の上限は特に限定されないが、+150mV以下(更に好ましくは+0mV以下)とすることが好ましい。なお、ORPは、白金電極法によりORPを測定するORPセンサー(商品名「ポータブルORP計 RM−30P」、東亜ディーケーケー製)を用いて測定することができる。
[3−4]曝気量:
本発明においては、曝気処理を行う際の曝気量は特に限定されない。但し、曝気量を2m3/m3・hr以上、10m3/m3・hr以下に維持しながら、前記曝気処理を行うことが好ましい。曝気量を2m3/m3・hr以上とすることにより、曝気槽中で排水が適度に流動し、排水と固定化細菌が良好に接触するため、十分な処理能力が確保される。一方、曝気量を10m3/m3・hr以下とすることにより、固定化細菌の流動が過剰となり、流動担体の表面に形成された生物膜が剥離したり、脱落したりする不具合を有効に防止することができる。
[3−5]処理フロー:
曝気処理は、例えば以下のような処理フローにより行うことができる。以下、図1に示す処理装置の例により具体的に説明する。
(1)排水タンク1中の排水を送液ポンプ2により中和槽3に送液する。
(2)中和槽3中の排水のpHをpHセンサー5により確認する。
(3)排水のpHが5以上、8以下の範囲を外れている場合には、中和槽3中の排水を撹拌機4により撹拌しながら、HClタンク7中の塩酸を送液ポンプ6により中和槽3に送液し、排水のpHを5以上、8以下に調整する。
(4)中和槽3中のpH調整された排液を曝気槽18に移す。
(5)曝気槽18中の排水に、流動担体、及び硫黄酸化細菌の培地を投入する。
(6)ブロワー17から散気管8を通じて曝気槽18中に空気を送り込み、曝気処理を行う。これにより、流動担体の表面に硫黄酸化細菌が固定された固定化細菌が得られ、排水の曝気処理が行われる。この際、pHセンサー12、ORPセンサー15、及びDOセンサー16(DO:Dissolved Oxygen。溶存酸素量)により、排水の状態を随時確認する。排水のpHが5以上、8以下の範囲を外れた場合には、HClタンク11中の塩酸を送液ポンプ10により曝気槽18に送液し、或いは、NaOHタンク14中の水酸化ナトリウム水溶液を送液ポンプ13により曝気槽18に送液し、排水のpHを5以上、8以下に調整する。
(7)曝気処理を施された後の処理水は放水口22から放水する。
以下、実施例および比較例により、本発明の処理方法を更に具体的に説明する。なお、以下の実施例等においては、図1に示す構成の処理装置を使用した。曝気槽18の容量は520L、中和槽3の容量は24Lとした。
<回分試験>
以下の実施例1、比較例1及び2においては、回分試験により処理方法の評価を行った。「回分試験」とは、試験開始時に曝気槽を排水で満たし、以後、新たな排水を曝気槽に導入することなく、曝気処理を行い、処理水の水質を評価する試験である。
[実施例1]
実施例1においては、排水として、製鉄所から排出された工場排水を使用した。この排水は、還元性硫黄化合物に由来する成分として、S2-、S23 2-を含み、Ca2+も多量に含むものである。その水質は表1に示す通りであった。なお、表中、「S23 2-−S」は、チオ硫酸態硫黄を示し、「SO4 2-−S」は、硫酸態硫黄を示し、「T−S」は、全硫黄を示す。
Figure 2016052622
前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。次いで、曝気槽18中に流動担体を投入した。前記流動担体としては、ポリウレタン製の流動担体(商品名「AQ−1」、関東イノアック製)を用いた。前記流動担体は、10mm×10mm×10mmの立方体状で、比表面積が3,000m2/m3のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。
更に、曝気槽18中に、予め前培養したSAB−1株の培地を投入した。前記培地は、前記SAB−1株を1010cfu/mLの濃度で含む培地であった。前記培地を、前記SAB−1株の濃度が107cfu/mLとなるように、曝気槽18に投入し、曝気処理を行った。曝気槽18中の排水は、pHが6以上、7以下、酸化還元電位(ORP)を−50mV以上、+0mV以下となるように制御した。また、曝気量は2m3/m3・hr以上、6m3/m3・hr以下に制御した。曝気処理の過程で流動担体の表面に前記SAB−1株および無機物が徐々に付着し、生物膜が形成された。則ち、流動担体の表面に前記SAB−1株が固定された固定化細菌を得た。
曝気処理を開始した後、定期的に処理水のCOD値を測定し、COD値の経時変化を確認した。その結果を図2に示す。図2に示すように、曝気処理を開始した後、処理水のCOD値は下がり続け、曝気処理を開始してから約1時間で10mg/L程度に下がり、定常状態となった。
[比較例1]
曝気槽18中に、予め前培養したSAB−1株の培地を投入することに代えて、都市下水の下水処理場の活性汚泥混合液を投入したこと以外は実施例1と同様にして、曝気処理を行った。前記活性汚泥は、前記活性汚泥の濃度が1,000mg/Lとなるように、曝気槽18に投入した。実施例1と同様に、COD値の経時変化を確認した結果を図2に示す。図2に示すように、処理水のCOD値は、実施例1よりも低下するのが遅く、実施例1の約20倍の20時間後に定常状態に達した。
[比較例2]
曝気槽18中に流動担体を投入することに代えて、固定担体を投入したこと以外は実施例1と同様にして、曝気処理を行った。前記固定担体としては、ポリプロピレン製の固定担体を用いた。前記固定担体は、波のピッチ(波の頂部と頂部の間隔)が320mm、板の厚みが4mmの波板状で、比表面積が100m2/m3のものであった。前記固定担体は、曝気槽18の容量1m3あたり表面積が60m2となるように曝気槽18中に投入した。実施例1と同様に、COD値の経時変化を確認した結果を図2に示す。図2に示すように、処理水のCOD値は、実施例1よりも低下するのが遅く、実施例1の約3倍の3時間後に定常状態に達した。
以上の結果より、SAB−1株を固定した固定化細菌を使用し、流動床方式で曝気処理することにより、排水処理を短時間で立ち上げることができると言える。
<通水試験>
以下の実施例2、比較例3においては、通水試験により処理方法の評価を行った。「通水試験」とは、処理装置の系内に排水を連続的に導入しながら曝気処理を行い、処理水の水質を評価する試験である。前記通水試験においては、曝気処理を施された水(処理水)は、処理装置の系外に連続的に排出される。
[実施例2]
実施例1と同様の条件で48時間の回分試験を行った後、続けて通水試験を行った。則ち、実施例1で得た固定化細菌をそのまま使用した。連続的に導入する排水としては、製鉄所から排出された工場排水を使用した。その水質は表2に示す通りであった。
Figure 2016052622
実施例1の回分試験と同様に、前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。曝気槽18における排水の水理学的滞留時間(HRT)を初めは12時間とし、1日ごとに、6時間、4時間、2時間、1時間と短縮し、その後は、HRTを1時間に固定して1週間、通水を行った。曝気処理を開始した後、定期的に処理水のCOD値を測定し、COD値の経時変化を確認した。その結果を図3に示す。図3に示すように、HRTを1時間とした5日後以降も、COD値は10mg/L以下で推移し、安定して水処理をすることができた。
[比較例3]
比較例1と同様の条件で48時間の回分試験を行った後、続けて通水試験を行ったこと以外は比較例2と同様にして、曝気処理を行った。実施例2と同様に、COD値の経時変化を確認した結果を図3に示す。図3に示すように、HRTを1時間とした5日後以降はCOD値が上昇し、19〜37mg/Lで推移した。
以上の結果より、SAB−1株を固定した固定化細菌を使用し、流動床方式で曝気処理することにより、排水の処理効率を向上させることができ、安定的に排水を処理することができると言える。
<担体の材質の評価>
以下の実施例3、比較例4〜6おいては、流動担体の材質について評価を行った。
[実施例3]
実施例3においては、排水として、製鉄所から排出された工場排水を使用した。その水質は前記表1に示す通りであった。
前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。次いで、曝気槽18中に流動担体を投入した。前記流動担体としては、実施例1で使用したのと同じポリウレタン製の流動担体(商品名「AQ−1」、関東イノアック製)を用いた。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。
更に、曝気槽18中に、予め前培養したSAB−1株の培地を投入した。前記培地は、前記SAB−1株を1010cfu/mLの濃度で含む培地であった。前記培地を、前記SAB−1株の濃度が107cfu/mLとなるように、曝気槽18に投入し、曝気処理を行った。曝気槽18中の排水は、pHが6以上、7以下となるように制御した。そして、実施例1と同様の条件で48時間の回分試験を行った。
その後、前記表2に示す排水の導入を開始した。この際、曝気槽18中のORPが+100mV以上となるように、前記排水の導入量を制御しながら、HRTが1時間になるまで、排水の導入量を徐々に増加させた。この間、流動担体にはSAB−1株、及びカルシウムに由来する無機物が徐々に付着し、生物膜が形成された。則ち、流動担体の表面に前記SAB−1株が固定された固定化細菌を得た。曝気処理を開始した後、1日から20日までの処理水の平均CODは9mg/Lであった。
曝気処理を開始して1週間後からHRTを1時間として2ヶ月間通水した後、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。なお、流動担体の生物膜から微生物を単離し、16S RNA解析を行ったところ、主にSAB−1株が存在していることが確認された。
Figure 2016052622
[比較例4]
ポリウレタン製の流動担体に代えて、ポリエステル製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、直径8mmの粒状のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは13mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
[比較例5]
ポリウレタン製の流動担体に代えて、ポリプロピレン製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、10mm×10mm×10mmの立方体状のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは13mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
[比較例6]
ポリウレタン製の流動担体に代えて、ポリエチレン製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、10mm×10mm×10mmの立方体状ものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは11mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
以上の結果より、ポリウレタン製の流動担体を使用することにより、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができると言える。また、ポリウレタン製の流動担体は、無機成分由来のSS量が最も少なく、有機成分由来のSS量が最も多い。則ち、カルシウムの沈着が少なく、SAB−1株を多量に固定することができたため、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができたと考えられる。
一方、ポリウレタン以外の樹脂からなる流動担体は、無機成分由来のSS量が多く、その結果として、有機成分由来のSS量が少なくなっている。これは、カルシウムの沈着が多いために、SAB−1株を多量に固定することができなかったためと考えられる。
本発明の処理方法は、還元性硫黄化合物、及びカルシウムイオンを含む排水を処理する際に利用することができる。特に敷地面積が狭く、大規模な沈殿槽を設置することができない工場等において特に好適に利用することができる。
1:排水タンク、2:送液ポンプ、3:中和槽、4:攪拌機、5:pHセンサー、6:送液ポンプ、7:HClタンク、8:散気管、10:送液ポンプ、11:HClタンク、12:pHセンサー、13:送液ポンプ、14:NaOHタンク、15:ORPセンサー、16:DOセンサー、17:ブロワー、18:曝気槽、22:放水口。
NITE P−1543

Claims (5)

  1. 曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法であって、
    前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用い、
    前記硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用い、
    前記曝気槽中で、前記排水のpHを5以上、8以下に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行うことを特徴とする排水の処理方法。
  2. 前記硫黄酸化細菌として、ハロチオバチルス属に属するSAB−1株を用いる請求項1に記載の処理方法。
  3. 前記硫黄酸化細菌を含む培地を、前記硫黄酸化細菌の濃度が103cfu/mL以上となるように、前記曝気槽に添加し、
    前記曝気槽に、前記流動担体を投入して曝気処理を行うことにより、前記硫黄酸化細菌を前記流動担体の表面に固定し、前記固定化細菌を得る請求項1に記載の処理方法。
  4. 曝気量を2m3/m3・hr以上に維持しながら、前記曝気処理を行う請求項1乃至3のいずれか1項に記載の処理方法。
  5. 前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、カルシウムイオンの濃度が100mg/L以上の排水を用いる請求項1乃至4のいずれか1項に記載の処理方法。
JP2014179130A 2014-09-03 2014-09-03 還元性硫黄化合物を含む排水の処理方法 Active JP6425469B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179130A JP6425469B2 (ja) 2014-09-03 2014-09-03 還元性硫黄化合物を含む排水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179130A JP6425469B2 (ja) 2014-09-03 2014-09-03 還元性硫黄化合物を含む排水の処理方法

Publications (2)

Publication Number Publication Date
JP2016052622A true JP2016052622A (ja) 2016-04-14
JP6425469B2 JP6425469B2 (ja) 2018-11-21

Family

ID=55744530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179130A Active JP6425469B2 (ja) 2014-09-03 2014-09-03 還元性硫黄化合物を含む排水の処理方法

Country Status (1)

Country Link
JP (1) JP6425469B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170447A (zh) * 2020-01-15 2020-05-19 浙江永续环境工程有限公司 一种基于复合脱硫菌的流动床生物膜反应器
CN116813153A (zh) * 2023-08-25 2023-09-29 技源生物科技(山东)有限公司 一种处理酸性废水的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251194A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 還元性硫黄化合物含有排水の処理方法
JP2582695B2 (ja) * 1991-12-02 1997-02-19 新日本製鐵株式会社 硫化水素含有廃水の生物学的処理方法
JP3241565B2 (ja) * 1995-05-30 2001-12-25 新日本製鐵株式会社 微生物による還元性硫黄化合物含有排水の処理方法
JP2002018479A (ja) * 2000-07-03 2002-01-22 Nippon Steel Corp 水からの窒素の除去方法
JP2003103280A (ja) * 2001-09-28 2003-04-08 National Agricultural Research Organization 排水の脱色方法および装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582695B2 (ja) * 1991-12-02 1997-02-19 新日本製鐵株式会社 硫化水素含有廃水の生物学的処理方法
JPH07251194A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 還元性硫黄化合物含有排水の処理方法
JP3241565B2 (ja) * 1995-05-30 2001-12-25 新日本製鐵株式会社 微生物による還元性硫黄化合物含有排水の処理方法
JP2002018479A (ja) * 2000-07-03 2002-01-22 Nippon Steel Corp 水からの窒素の除去方法
JP2003103280A (ja) * 2001-09-28 2003-04-08 National Agricultural Research Organization 排水の脱色方法および装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170447A (zh) * 2020-01-15 2020-05-19 浙江永续环境工程有限公司 一种基于复合脱硫菌的流动床生物膜反应器
CN111170447B (zh) * 2020-01-15 2021-11-02 浙江永续环境工程有限公司 一种基于复合脱硫菌的流动床生物膜反应器
CN116813153A (zh) * 2023-08-25 2023-09-29 技源生物科技(山东)有限公司 一种处理酸性废水的方法
CN116813153B (zh) * 2023-08-25 2023-11-10 技源生物科技(山东)有限公司 一种处理酸性废水的方法

Also Published As

Publication number Publication date
JP6425469B2 (ja) 2018-11-21

Similar Documents

Publication Publication Date Title
Dapena-Mora et al. Monitoring the stability of an Anammox reactor under high salinity conditions
Cao et al. Nitrite production in a partial denitrifying upflow sludge bed (USB) reactor equipped with gas automatic circulation (GAC)
Hu et al. Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation
Barana et al. Nitrogen and organic matter removal in an intermittently aerated fixed-bed reactor for post-treatment of anaerobic effluent from a slaughterhouse wastewater treatment plant
Li et al. Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor
Aslan et al. Influence of salinity on partial nitrification in a submerged biofilter
CA2704655C (en) Wastewater treatment process and plant comprising controlling the dissolved oxygen concentration
Guillén et al. Long-term performance of the Anammox process under low nitrogen sludge loading rate and moderate to low temperature
JP4625508B2 (ja) 硝酸塩廃液処理方法及び装置
Liu et al. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
Wen et al. Enhancing simultaneous nitritation and anammox in recirculating biofilters: effects of unsaturated zone depth and alkalinity dissolution of packing materials
Suárez et al. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors
Qiu et al. Achieving a novel polysulfide-involved sulfur-based autotrophic denitrificationprocess for high-rate nitrogen removal in elemental sulfur-packed bed reactors
Fulazzaky et al. Mass transfer kinetics of phosphorus biosorption by aerobic granules
Anjali et al. Development of enhanced SNAD process in a down-flow packed bed reactor for removal of higher concentrations of NH4–N and COD
Zheng et al. Effect of blending landfill leachate with activated sludge on the domestic wastewater treatment process
Sierra-Alvarez et al. Removal of copper in an integrated sulfate reducing bioreactor− crystallization reactor system
Bhuvanesh et al. Start-up and performance of a hybrid anoxic reactor for biological denitrification
JP6344216B2 (ja) 排水の生物学的処理方法
JP6425469B2 (ja) 還元性硫黄化合物を含む排水の処理方法
Yang et al. Synergistic removal of nutrient pollutants and pharmaceutical and personal care products (PPCPs) from contaminated groundwater: macro-and microelements and microorganisms
WO2015132283A1 (en) Apparatus comprising trace element dosage and method for treating raw water in biofilter
Zielińska et al. Iron-containing carriers stimulate nitrogen conversions in one-stage reactors treating N-rich digester supernatant
JP6181386B2 (ja) 還元性硫黄化合物含有排水の処理方法及び生物処理槽

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250