JP2016051899A - Coil component - Google Patents

Coil component Download PDF

Info

Publication number
JP2016051899A
JP2016051899A JP2015153929A JP2015153929A JP2016051899A JP 2016051899 A JP2016051899 A JP 2016051899A JP 2015153929 A JP2015153929 A JP 2015153929A JP 2015153929 A JP2015153929 A JP 2015153929A JP 2016051899 A JP2016051899 A JP 2016051899A
Authority
JP
Japan
Prior art keywords
particles
magnetic material
metal magnetic
resin
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015153929A
Other languages
Japanese (ja)
Other versions
JP6522462B2 (en
Inventor
小川 秀樹
Hideki Ogawa
秀樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2015153929A priority Critical patent/JP6522462B2/en
Priority to KR1020150111430A priority patent/KR20160026685A/en
Priority to TW104126422A priority patent/TWI605477B/en
Priority to US14/839,799 priority patent/US9685263B2/en
Priority to CN201510547731.2A priority patent/CN105390231B/en
Priority to CN201711163511.5A priority patent/CN107845481B/en
Publication of JP2016051899A publication Critical patent/JP2016051899A/en
Priority to KR1020170037324A priority patent/KR101751780B1/en
Priority to US15/595,575 priority patent/US10748694B2/en
Application granted granted Critical
Publication of JP6522462B2 publication Critical patent/JP6522462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15325Amorphous metallic alloys, e.g. glassy metals containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/045Fixed inductances of the signal type  with magnetic core with core of cylindric geometry and coil wound along its longitudinal axis, i.e. rod or drum core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coil component having a composite magnetic material improving the wettability of alloy particle surface and resin, excellent in liquidity, and capable of increasing the filling rate of alloy particles even if a high pressure is not applied while molding.SOLUTION: A coil component is composed of a composite magnetic material containing metal magnetic particles where the oxygen ratio of the surface of alloy particles is 50% or less, and resin, and a coil. Preferably, the oxygen ratio is 30-40%.SELECTED DRAWING: None

Description

本発明は金属磁性粒子と樹脂とを含む複合磁性材料、複合磁性材料が所定の固形形状を成している磁性体および磁性体を構成要素とするコイル部品に関する。   The present invention relates to a composite magnetic material including metal magnetic particles and a resin, a magnetic body in which the composite magnetic material has a predetermined solid shape, and a coil component including the magnetic body as constituent elements.

携帯機器をはじめとする電子機器では高性能化が進んでいるため、使用される部品にも高い性能が要求されている。さらに、電子機器に搭載される部品点数は増加傾向にあることから、部品の小型化の動きは更に高まっている。特に、これまでフェライトを用いることが多かった、例えば3mm以下のような小型部品でも高い性能が求められ、金属磁性材料を用いる検討がされている。   Since electronic devices such as portable devices have been improved in performance, high performance is also required for the components used. Furthermore, since the number of components mounted on electronic equipment is increasing, the trend of downsizing of components is further increased. In particular, high performance is demanded even for small parts such as 3 mm or less, which have been frequently used so far, and studies using metal magnetic materials are underway.

金属磁性材料を使ったコイル部品として、特許文献1に記載されるように、合金粉末の圧粉体中にコイルを埋め込む方法がある。特許文献1の技術では、粒径が比較的小さい合金粉末を使うことで損失を低くする検討がされている。しかし、単純に粒径を小さくすると比表面積は大きくなることから、成形性は低下する方向となってしまう。よって、結果的には、高い成形圧を掛けて圧粉体を形成していた。   As a coil component using a metal magnetic material, as described in Patent Document 1, there is a method of embedding a coil in a green compact of an alloy powder. In the technique of Patent Document 1, studies are made to reduce the loss by using an alloy powder having a relatively small particle size. However, if the particle size is simply reduced, the specific surface area increases, and the moldability tends to decrease. Therefore, as a result, a green compact was formed by applying a high molding pressure.

特開2013−145866号公報JP 2013-145866 A

しかし、従来の方法では、特許文献1の実施例に示されるように、例えば600MPaという非常に高い成形圧力を要しており、このような圧力ではコイルに掛かるストレスが無視できない。特に、細い導線を用いたコイルは変形しやすかったり、断線を生じ易かったりする。このように、高い成形圧力を前提とすることから、使用可能な導線の選択肢が限られる要因になっていた。また、高い圧力を掛けることで合金粒子には応力が掛かり、透磁率が下がってしまうことがあった。また、別の方法として、金属磁性粒子の表面処理などがある。例えば、カップリング剤を用いることで、金属磁性粒子は濡れ性が良くなり、安定した複合磁性材料を得ることができる。しかし、この方法でも、カップリング剤の存在する分、合金粒子の充填率を下げる原因となっていた。   However, in the conventional method, as shown in the example of Patent Document 1, a very high forming pressure of, for example, 600 MPa is required, and the stress applied to the coil cannot be ignored at such a pressure. In particular, a coil using a thin conductive wire is easily deformed or easily broken. As described above, since a high molding pressure is premised, the choices of usable conductors are limited. In addition, stress is applied to the alloy particles by applying a high pressure, and the magnetic permeability may be lowered. Another method includes surface treatment of metal magnetic particles. For example, by using a coupling agent, the metal magnetic particles have improved wettability, and a stable composite magnetic material can be obtained. However, this method also causes a decrease in the filling rate of alloy particles due to the presence of the coupling agent.

このようなことから、高い圧力に頼ること無く磁性体を形成することが小型化を進める上では重要である。本発明は、成形時に高い圧力が不要である複合磁性材料の提供、ならびに、そのような複合磁性材料を有するコイル部品を提供することを課題とする。   For this reason, forming a magnetic material without relying on high pressure is important for further miniaturization. An object of the present invention is to provide a composite magnetic material that does not require a high pressure during molding, and to provide a coil component having such a composite magnetic material.

高い圧力を不要とする磁性体の形成方法としては、金属磁性粒子と樹脂の複合磁性材料を用い、この樹脂を溶解させるような温間成形が挙げられる。温間成形では樹脂の割合を増やすことが必要であり、圧粉成形のように金属磁性粒子の充填率を高めることが難しかった。このため、本発明者は金属磁性粒子以外の添加物の割合を増やさないという前提で検討を行った。この結果、金属磁性粒子表面の酸化状態が、磁性粒子と樹脂の複合磁性材料の流動性に影響を及ぼし、充填性を高めることを見出した。具体的には、金属磁性粒子表面の酸素は少なく樹脂との相性が良くなり、金属磁性粒子を混合した複合磁性材料としての粘度物性が低くなる。つまり、この磁性粒子と樹脂の複合磁性材料の粘度物性を低くすることで、流動性が良くなり、高い充填が可能となることが見出された。   As a method for forming a magnetic body that does not require high pressure, there is a warm molding in which a composite magnetic material of metal magnetic particles and a resin is used and this resin is dissolved. In warm molding, it is necessary to increase the proportion of the resin, and it is difficult to increase the filling rate of the metal magnetic particles as in compacting. For this reason, this inventor examined on the assumption that the ratio of additives other than a metal magnetic particle is not increased. As a result, it has been found that the oxidation state on the surface of the metal magnetic particles affects the fluidity of the composite magnetic material of magnetic particles and resin, and improves the filling property. Specifically, the amount of oxygen on the surface of the metal magnetic particles is small, the compatibility with the resin is improved, and the viscosity properties as a composite magnetic material mixed with the metal magnetic particles are lowered. That is, it has been found that by reducing the viscosity property of the composite magnetic material of magnetic particles and resin, the fluidity is improved and high filling is possible.

上記知見を出発点にさらに鋭意検討した結果、本発明者は以下のような本発明を完成した。
(1)合金粒子と樹脂とを含む複合磁性材料と、コイルとで構成されるコイル部品であって、前記合金粒子の表面の酸素比率が50%以下である、コイル部品。
(2)前記酸素比率が30〜40%である(1)のコイル部品。
(3)(1)または(2)のいずれかのコイル部品であって、複合磁性材料に埋め込まれたコイルを有するコイル部品。
(4)(1)または(2)のいずれかのコイル部品であって、複合磁性材料の内側に形成されたコイルを有するコイル部品。
As a result of further diligent examination based on the above findings, the present inventor completed the present invention as follows.
(1) A coil component comprising a composite magnetic material containing alloy particles and a resin and a coil, wherein the oxygen ratio of the surface of the alloy particles is 50% or less.
(2) The coil component according to (1), wherein the oxygen ratio is 30 to 40%.
(3) A coil component according to any one of (1) and (2), comprising a coil embedded in a composite magnetic material.
(4) The coil component according to any one of (1) and (2), wherein the coil component has a coil formed inside the composite magnetic material.

本発明によれば、合金粒子表面の酸素比率が50%以下の合金粒子を用いることによって、合金粒子表面と樹脂の濡れ性がよくなる。この複合磁性材料の粘度抵抗が小さくなり、このことで流動性がよく、低い圧力、または圧力を掛けない場合であっても合金粒子の充填を高くすることができ、粒子内部に応力が掛かることなく透磁率の低下を解消できる。このように、この金属磁性粒子と樹脂と複合化することで、高い抵抗と高い特性のコイル部品を得ることができる。好適態様によれば、複合磁性材料は、酸素比率が30〜40%である合金粒子を用いることで樹脂量を増やすことなく、安定した充填が可能となり、磁性体の肉厚が例えば0.2mm程度の薄い場合であっても高い充填率を維持できる。特に、これまで以上に製品高さの低い小型部品を作ることができる。   According to the present invention, the use of alloy particles having an oxygen ratio of 50% or less on the surface of the alloy particles improves the wettability between the surface of the alloy particles and the resin. The viscosity resistance of this composite magnetic material is reduced, which results in good fluidity, can increase the filling of alloy particles even when low pressure or no pressure is applied, and stress is applied inside the particles. The decrease in permeability can be eliminated. Thus, by combining the metal magnetic particles and the resin, a coil component having high resistance and high characteristics can be obtained. According to a preferred embodiment, the composite magnetic material can be stably filled without increasing the amount of resin by using alloy particles having an oxygen ratio of 30 to 40%, and the thickness of the magnetic material is 0.2 mm, for example. Even if it is thin, a high filling rate can be maintained. In particular, it is possible to make small parts with a lower product height than ever.

本発明のコイル部品は、樹脂と合金粒子とを含む複合磁性材料によるものである。
合金粒子は、酸化されていない金属部分において磁性が発現するように構成されてなる材料であり、例えば、酸化されていない合金粒子、あるいはそれら粒子の周囲に酸化物等が設けられてなる粒子などが挙げられる。具体的には、合金粒子製造の公知の方法を採用してもよいし、例えば、エプソンアトミックス(株)社製PF−20F、日本アトマイズ加工(株)社製SFR−FeSiCrなどとして市販されているものを用いることもできる。ただし、これまでの合金粒子は、鉄(Fe元素)を50〜90wt%前後含み、鉄(Fe元素)以外の元素の割合も10wt%以上含むものが多い。これは、絶縁を高くする場合や、コアロスを良くする場合などのため、クロム(Cr)やケイ素(Si)などの元素の割合を高くすることが多かった。このようなことから、従来のような組成では合金粒子表面は酸化しやすい性質を利用したり、また熱処理することによって合金粒子表面を酸化させる方法などにより粒子表面の絶縁性を高くすることが検討されていた。このため、これらの合金粒子は、合金粒子表面の酸素比率が高く、複合磁性材料としての粘度抵抗が高くなってしまい、圧力を掛けない用途には向かないものであった。
The coil component of the present invention is made of a composite magnetic material containing a resin and alloy particles.
An alloy particle is a material configured to exhibit magnetism in a metal portion that is not oxidized, for example, an alloy particle that is not oxidized, or a particle in which an oxide or the like is provided around the particle. Is mentioned. Specifically, a known method for producing alloy particles may be employed, and for example, commercially available as Epson Atmix Co., Ltd. PF-20F, Nippon Atomizing Co., Ltd. SFR-FeSiCr, etc. You can also use what you have. However, many of the alloy particles so far contain about 50 to 90 wt% of iron (Fe element) and 10 wt% or more of elements other than iron (Fe element). This is because the ratio of elements such as chromium (Cr) and silicon (Si) is often increased because the insulation is increased or the core loss is improved. For this reason, it is considered to use the property that the alloy particle surface is easily oxidized with the conventional composition, or to increase the insulation of the particle surface by a method of oxidizing the alloy particle surface by heat treatment, etc. It had been. For this reason, these alloy particles have a high oxygen ratio on the surface of the alloy particles, increase the viscosity resistance as a composite magnetic material, and are not suitable for applications where no pressure is applied.

このため、合金粒子の組成として、Fe元素の含有率は高いことが好ましい。非晶質の合金粒子ではFe元素の含有率は77wt%であり、結晶質の合金粒子ではFe元素の含有率は92.5wt%以上であり、不純物としてMn、P、S、Moなどの元素が含まれても良い。また、非晶質合金粒子のFe元素の含有率は79.5wt%以下であり、結晶質合金粒子のFe元素の含有率は95.5wt%以下であり、これにより絶縁性を確保しやすくなる。また、Fe元素以外にAl、CrなどFeより酸化しやすい物質を含んでいてもよい。Fe元素以外の元素としては、Si、Al、Cr、Ni、Mo、Coのいずれかの合計が5〜10wt%であることが望ましい。これにより合金粒子表面の過剰な酸化が抑えられ、安定した酸素比率とすることができる。例えば、ガスアトマイズ法で作られた粉末や水アトマイズ法で作られた粉末では還元雰囲気で熱処理することで、酸素比率の調整を行うことができる。このとき、合金粒子表面の酸素が少な過ぎると抵抗が下がってしまい、抵抗値を確保するために、樹脂量を増やすなど金属磁性粒子以外のものの割合を増やすことが必要になり、結果的には充填率を下げることになってしまう。よって、酸素比率はイオン比率で30%以上となるよう調整することが好ましい。合金粒子は、例えば、結晶質合金系ではFeSiCr、FeSiAl、FeNi、非晶質合金系ではFeSiCrBC、FeSiBCなどがある。   For this reason, it is preferable that the content of the Fe element is high as the composition of the alloy particles. The amorphous alloy particles have a content of Fe element of 77 wt%, and the crystalline alloy particles have a content of Fe element of 92.5 wt% or more. Elements such as Mn, P, S, and Mo are used as impurities. May be included. In addition, the Fe element content of the amorphous alloy particles is 79.5 wt% or less, and the Fe element content of the crystalline alloy particles is 95.5 wt% or less, which makes it easy to ensure insulation. . In addition to the Fe element, a substance that is more easily oxidized than Fe, such as Al and Cr, may be included. As elements other than the Fe element, the total of any of Si, Al, Cr, Ni, Mo, and Co is preferably 5 to 10 wt%. Thereby, excessive oxidation of the alloy particle surface can be suppressed, and a stable oxygen ratio can be obtained. For example, in a powder made by a gas atomization method or a powder made by a water atomization method, the oxygen ratio can be adjusted by heat treatment in a reducing atmosphere. At this time, if there is too little oxygen on the surface of the alloy particles, the resistance will decrease, and in order to secure a resistance value, it will be necessary to increase the proportion of things other than metal magnetic particles such as increasing the amount of resin, as a result The filling rate will be lowered. Therefore, the oxygen ratio is preferably adjusted to be 30% or more in terms of ion ratio. The alloy particles include, for example, FeSiCr, FeSiAl, FeNi in a crystalline alloy system, and FeSiCrBC, FeSiBC in an amorphous alloy system.

また、これらの2つ以上の合金粒子を混合させた材料や、Fe粒子を混合した材料などが挙げられ、これらの粒子は粒子径や組成を組み合わせて、必要な特性を得られるものが好適に用いられる。より好適には、これらの金属磁性粒子の形状は、より好適には球形が望ましい。これは粒子表面積の小さい方が粒子表面の酸素量を少なくでき、しかも粒子表面から酸素の存在する範囲を最小限でき、粒子内の金属部分の割合を大きくできる。または、粒子表面の表面粗さについても同様であり、なめらかな粒子表面であることが望ましく、好ましくは表面粗さRaが1nm〜100nmである。   Moreover, the material which mixed these 2 or more alloy particles, the material which mixed Fe particle | grains, etc. are mentioned, These particles can combine the particle diameter and a composition, and can obtain the required characteristic suitably. Used. More preferably, the shape of the metal magnetic particles is more preferably spherical. As the particle surface area is smaller, the amount of oxygen on the particle surface can be reduced, the range in which oxygen is present from the particle surface can be minimized, and the proportion of the metal portion in the particle can be increased. The same applies to the surface roughness of the particle surface, and it is desirable that the particle surface be smooth, and the surface roughness Ra is preferably 1 nm to 100 nm.

合金粒子の酸素比率は、二次イオン質量分析法(TOF−SIMS:Time of Flight Secondary Ion Mass Spectrometry、アルバック・ファイ社製TRIFT−II)で測定される。TOF−SIMSでは、試料(合金粒子)表層にパルス状の一次イオンビームを照射し、そのイオンと試料表面の分子・原子レベルでの衝突による試料表層が撹拌されることにより発生する二次イオンを飛行時間型質量分析計(アルバック・ファイ社製TRIFT−II)で検出することで、固体成分の定性、定量が行われる。定量された酸素イオン濃度は検出された二次イオンの総量に占める酸素比率に相当する。   The oxygen ratio of the alloy particles is measured by secondary ion mass spectrometry (TOF-SIMS: Time of Flight Secondary Ion Mass Spectrometry, TRIFT-II manufactured by ULVAC-PHI). In TOF-SIMS, secondary ions generated by irradiating a sample (alloy particle) surface layer with a pulsed primary ion beam and stirring the sample surface layer due to collision of the ions and the surface of the sample at the molecular / atomic level are generated. By detecting with a time-of-flight mass spectrometer (TRIFT-II manufactured by ULVAC-PHI), qualitative and quantitative determination of solid components is performed. The quantified oxygen ion concentration corresponds to the ratio of oxygen to the total amount of secondary ions detected.

本発明では、合金粒子表面の酸素比率が50%以下としたものである。より好ましくは30〜40%としたものである。合金粒子表面の酸素比率は、合金粒子表層から内部に向かって深さごとに存在する酸素比率の変化を捉えることによって得られ数値を示しているものである。検出は、ガリウムの一次イオンビームを加速電圧15kV、パルス幅13nsecのイオンビームパルス電流600pA、照射時間60sec、照射角40度(二次イオン検出器に対する角度)の条件設定で照射し、検出される二次イオンから試料表層に存在する各成分のイオン数を検出し、各成分のイオン数を元に、ここでは酸素比率を求めている。試料表層から内側に向かって存在する酸素比率を求めるためには、試料表層のエッチングが必要であり、このエッチングはガリウムのスパッタイオンを加速電圧15kVで、イオンビーム電流600pAの条件設定で連続照射し行われる。検出とエッチングは、それぞれ交互に60secの時間で行い、0分(スパッタイオンを照射するエッチング前)〜30分の1分間隔のエッチング時間ごとに検出が行われることとなり、つまりは合金表層から深さごとの成分を検出することができる。また、それぞれのイオン照射範囲は1〜5μmの範囲で行った。測定する金属磁性粒子はこの範囲に収まるように行った。また、この測定は金属磁性粒子の段階でも可能であるが、例えば有機成分を含むような磁性体で行う場合には、有機成分などの金属磁性粒子由来の成分以外の成分が重量比で20%を超えないこととした。これにより、磁性体であっても破断面の観察により、金属磁性粒子表面としての測定ができる。   In the present invention, the oxygen ratio on the alloy particle surface is 50% or less. More preferably, it is 30 to 40%. The oxygen ratio on the surface of the alloy particles is a numerical value obtained by capturing the change in the oxygen ratio existing at each depth from the surface of the alloy particle toward the inside. Detection is performed by irradiating a primary ion beam of gallium with an acceleration voltage of 15 kV, an ion beam pulse current of 600 pA with a pulse width of 13 nsec, an irradiation time of 60 sec, and an irradiation angle of 40 degrees (angle with respect to the secondary ion detector). The number of ions of each component existing on the sample surface layer is detected from the secondary ions, and the oxygen ratio is obtained here based on the number of ions of each component. In order to obtain the ratio of oxygen existing from the surface of the sample toward the inside, it is necessary to etch the surface of the sample. This etching is performed by continuously irradiating sputtered gallium ions at an acceleration voltage of 15 kV and an ion beam current of 600 pA. Done. Detection and etching are alternately performed for 60 seconds, and detection is performed every 0 minutes (before etching with irradiation with sputter ions) to 1/30 minute etching time, that is, from the surface of the alloy. It is possible to detect a specific component. Moreover, each ion irradiation range was performed in the range of 1-5 micrometers. The measurement was performed so that the metal magnetic particles to be measured fall within this range. In addition, this measurement can be performed at the stage of the metal magnetic particles. For example, when the measurement is performed with a magnetic material containing an organic component, the component other than the component derived from the metal magnetic particle such as the organic component is 20% by weight. It was decided not to exceed. Thereby, even if it is a magnetic body, it can measure as a metal magnetic particle surface by observation of a fracture surface.

それぞれ検出される二次イオンの酸素比率はスパッタイオンを照射したエッチングの時間が累積で10分以内、好ましくは1分〜5分の間で最大となる。ここでは、エッチングの累積時間10分以内を合金粒子表面とした。本発明の合金粒子は、エッチングの累積時間10分以内の範囲において酸素比率の最大値が得られることから粒子表面とする方が酸素比率を正しく評価できる。   The oxygen ratio of each secondary ion detected becomes the maximum within 10 minutes, preferably between 1 minute and 5 minutes, during the cumulative etching time when the sputter ions are irradiated. Here, the etching time within 10 minutes was defined as the alloy particle surface. In the alloy particles of the present invention, since the maximum value of the oxygen ratio is obtained within a range of 10 minutes or less of the etching time, the oxygen ratio can be correctly evaluated by using the particle surface.

結論として、「合金粒子表面の酸素比率」は、上記のようにエッチング前後の1分ごとに酸素比率をもとめたときの、エッチング開始から10分までの前記比率のうちの最大値を指す。   In conclusion, the “oxygen ratio on the surface of the alloy particles” refers to the maximum value of the ratio from the start of etching to 10 minutes when the oxygen ratio is obtained every minute before and after etching as described above.

すなわち、合金粒子表面の酸素比率が設計されている。これにより、粒子表面は樹脂の濡れ性が良く、複合磁性材料の粘度抵抗を小さくする。これは、合金粒子表面の酸素量を少なくすることで、合金粒子表面の水酸基を少なくでき、水分子の膜を減少できることから疎水系樹脂と金属界面の相溶性が増し合金粒子表面と樹脂の濡れ性がよくなる。この複合磁性材料の粘度抵抗が小さくなり、このことで流動性がよく、低い圧力、または圧力を掛けない場合であっても合金粒子の充填を高くすることができ、粒子内部に応力が掛かることなく透磁率の低下を解消できる。このことで流動性が高まり、低い圧力で高い充填を実現できる。また、合金粒子表面の酸素比率は、合金粒子表層から10分の範囲に酸素比率のピーク点を持ち、ここにはFe元素以外の元素のピーク点も存在する。Fe元素以外の元素は、合金粒子の組成により決まり、Si、Al、Cr、Ni、Mo、Coが挙げられる。これは、合金粒子表面の酸素とFe元素以外の存在によって絶縁性が担保され、かつ過剰な酸化を抑制することにつながっている。これにより、樹脂と複合化した場合に高い抵抗と高い磁性特性を得ることができる。酸素比率は50%以下であり、好ましくは30〜40%である。このように酸素比率を50%以下とすることで、粒子表層(エッチング前)の酸素比率を25%以下とすることができ、粒子表面の酸素比率は低く抑えられる。更に、酸素比率を40%以下にすれば、粒子表層(エッチング前)の酸素比率を20%以下にできる。好ましくは、20個以上の金属磁性粒子における酸素比率の最大となる検出開始からの時間の平均値は10分以内である。好ましくは、20個以上の金属磁性粒子における酸素比率の平均値は50%以下である。ここでのTOF−SIMSの条件については、Fe元素を77wt%以上含む金属磁性粒子にエッチングのスパッタイオンを照射した場合の金属磁性粒子表層の削られる速さはFe元素以外の成分の異なる金属磁性粒子であっても、全て5%以内の範囲に収まっており、ほぼ一定である。また、金属表層の削られた量については、検出された二次イオンを体積に換算し、換算した体積を一次イオンの照射面積で割ることで、金属表層面から削られた深さを求めることができる。   That is, the oxygen ratio of the alloy particle surface is designed. Thereby, the particle surface has good wettability of the resin, and the viscosity resistance of the composite magnetic material is reduced. This is because by reducing the amount of oxygen on the surface of the alloy particles, the hydroxyl groups on the surface of the alloy particles can be reduced and the film of water molecules can be reduced, so the compatibility between the hydrophobic resin and the metal interface is increased, and the surface of the alloy particles and the resin are wetted. Sexuality improves. The viscosity resistance of this composite magnetic material is reduced, which results in good fluidity, can increase the filling of alloy particles even when low pressure or no pressure is applied, and stress is applied inside the particles. The decrease in permeability can be eliminated. This enhances fluidity and can achieve high filling with low pressure. Further, the oxygen ratio on the surface of the alloy particles has a peak point of the oxygen ratio in a range of 10 minutes from the surface layer of the alloy particle, and there are also peak points of elements other than the Fe element. Elements other than the Fe element are determined by the composition of the alloy particles, and include Si, Al, Cr, Ni, Mo, and Co. This is because the insulating properties are ensured by the presence of oxygen other than oxygen and Fe elements on the surface of the alloy particles, and excessive oxidation is suppressed. Thereby, when combined with resin, high resistance and high magnetic properties can be obtained. The oxygen ratio is 50% or less, preferably 30 to 40%. By setting the oxygen ratio to 50% or less in this way, the oxygen ratio of the particle surface layer (before etching) can be set to 25% or less, and the oxygen ratio on the particle surface can be kept low. Furthermore, if the oxygen ratio is 40% or less, the oxygen ratio of the particle surface layer (before etching) can be 20% or less. Preferably, the average value of the time from the start of detection at which the oxygen ratio in the 20 or more metal magnetic particles is maximum is within 10 minutes. Preferably, the average value of the oxygen ratio in 20 or more metal magnetic particles is 50% or less. Regarding the conditions of TOF-SIMS here, when the metal magnetic particles containing 77 wt% or more of Fe element are irradiated with sputter ions for etching, the speed at which the surface layer of the metal magnetic particle is scraped is different from the metal magnetism having different components other than Fe element. Even particles are all within a range of 5% and are almost constant. Also, for the amount of metal surface scraped, convert the detected secondary ions to volume, and calculate the depth scraped from the metal surface by dividing the converted volume by the primary ion irradiation area. Can do.

本発明の複合磁性材料には、上記のような合金粒子が含まれることが必要であり、好ましくは複合磁性材料に含まれる全金属磁性粒子の体積割合で80vol%以上の合金粒子の酸素比率が、30〜40%を有する。これにより、充填率を高くでき、コイル部品としてのインダクタンスを高くできる。   The composite magnetic material of the present invention needs to contain the alloy particles as described above, and preferably the oxygen ratio of the alloy particles of 80 vol% or more in the volume ratio of the total metal magnetic particles contained in the composite magnetic material. 30 to 40%. Thereby, a filling rate can be made high and the inductance as a coil component can be made high.

本発明の複合磁性材料には、上記のような合金粒子が含まれることが必要であり、好ましくは複合磁性材料に含まれる合金粒子の平均粒径が2〜20μmを有する。これにより、高い充填率の複合磁性材料であってもコアロスを抑制できる。   The composite magnetic material of the present invention needs to contain the alloy particles as described above. Preferably, the average particle size of the alloy particles contained in the composite magnetic material is 2 to 20 μm. Thereby, even if it is a composite magnetic material with a high filling rate, a core loss can be suppressed.

好ましくは、複合磁性材料には、第1の金属磁性粒子と第2の金属磁性粒子とが含まれ、第1の金属磁性粒子と第2の金属磁性粒子とでは平均粒径が相違する。本発明では、少なくとも第1の金属磁性粒子は非晶質合金である。少なくとも一方の合金粒子を非晶質合金粒子とする。これにより、コアロスを抑えることができる。また、他方の合金粒子を一方の合金粒子より、平均粒径の小さい非晶質合金粒子とする。これにより、より充填率を高めることができる。特に、それぞれの平均粒径の割合を5倍以上とすることにより、最も充填率を高くできる。また、他方として、Fe粒子を用いる場合にも、平均粒径の割合は5倍以上とすることで、充填率を高く、更に電流特性を良くすることができる。また、第1及び第2のいずれの金属磁性粒子とも異なるFe含有比率を呈する第3(以降)の金属磁性粒子が含まれていてもよい。   Preferably, the composite magnetic material includes first metal magnetic particles and second metal magnetic particles, and the first metal magnetic particles and the second metal magnetic particles have different average particle sizes. In the present invention, at least the first metal magnetic particle is an amorphous alloy. At least one of the alloy particles is an amorphous alloy particle. Thereby, core loss can be suppressed. The other alloy particle is an amorphous alloy particle having an average particle size smaller than that of the one alloy particle. Thereby, a filling rate can be raised more. In particular, the filling rate can be maximized by setting the ratio of the respective average particle diameters to 5 times or more. On the other hand, when Fe particles are used, the ratio of the average particle diameter is set to 5 times or more, so that the filling rate can be increased and the current characteristics can be further improved. Moreover, the 3rd (or subsequent) metal magnetic particle which exhibits Fe content ratio different from any of the 1st and 2nd metal magnetic particles may be contained.

本発明の複合磁性材料に含まれる樹脂の種類は特に限定されず、電子部品等に用いられる樹脂を適宜用いることができ、好ましくは熱硬化樹脂であり、例えばエポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、などが挙げられる。この複合磁性材料は圧力に頼らないことから熱を掛けることで磁性体を形成するものである。特に熱を掛けたときの粘度を低くできれば良く、樹脂の溶解温度を50〜200℃のものであれば良い。また、被覆導線を用いるコイルの場合には50〜150℃であれば、被覆導線に特別な処置をすることなく、品質的な影響を防止できる。上記の点から、ひとつの例としてノボラック型のエポキシ樹脂が挙げられる。また、絶縁性の確保と電気的特性の向上との両立の観点から、複合磁性材料には樹脂が好ましくは5〜10wt%含まれる。なお、樹脂は10wt%より多くすることで、複合磁性材料の流動は良くなる。しかし、金属磁性粒子の充填率としては逆に低下してしまい、10wt%より少ないことが好ましい。   The type of the resin contained in the composite magnetic material of the present invention is not particularly limited, and a resin used for an electronic component or the like can be used as appropriate, and is preferably a thermosetting resin, such as an epoxy resin, a polyester resin, a polyimide resin, Etc. Since this composite magnetic material does not rely on pressure, a magnetic material is formed by applying heat. In particular, it is only necessary to reduce the viscosity when heat is applied, and any resin having a melting temperature of 50 to 200 ° C. may be used. In the case of a coil using a coated conducting wire, if it is 50 to 150 ° C., the quality influence can be prevented without taking any special treatment on the coated conducting wire. From the above point, as an example, a novolac type epoxy resin can be mentioned. In addition, from the viewpoint of ensuring both insulation and improving electrical characteristics, the composite magnetic material preferably contains 5 to 10 wt% of resin. In addition, the flow of the composite magnetic material is improved by making the resin more than 10 wt%. However, the filling rate of the metal magnetic particles decreases conversely and is preferably less than 10 wt%.

本明細書では、上述した金属磁性粒子と樹脂とを含む組成物を、その形態は問わない概念として複合磁性材料と呼ぶ。例えば、複合磁性材料の樹脂は硬化していてもよいし未硬化であってもよい。複合磁性材料における樹脂が硬化していてそれによって複合磁性材料全体もまた一定形状の固形形状を成すとき、そのような状態の複合磁性材料を「磁性体」と呼ぶ。磁性体もまた本発明の一実施態様である。   In the present specification, the above-described composition containing the metal magnetic particles and the resin is referred to as a composite magnetic material as a concept of any form. For example, the resin of the composite magnetic material may be cured or uncured. When the resin in the composite magnetic material is cured, and thus the entire composite magnetic material also forms a certain solid shape, the composite magnetic material in such a state is called a “magnetic body”. A magnetic material is also an embodiment of the present invention.

本発明では、磁性体を得る際に、換言すると、硬化せしめる際に、圧力を要さない。例えば、上述した金属磁性粒子と未硬化の熱硬化樹脂とを金型に注入して、樹脂の硬化温度より高温に供することによって樹脂を硬化させて、それを以って、複合磁性材料自体もまた一定形状に固まることにより本発明の磁性体を得ることができる。これにより金属磁性粒子に歪みを生じることがなく、特性低下を抑制できる。複合磁性材料から磁性体を得る方法については、樹脂における従来の硬化技術などを適宜参照することができる。   In the present invention, no pressure is required in obtaining the magnetic material, in other words, in curing. For example, the above-described metal magnetic particles and uncured thermosetting resin are injected into a mold, and the resin is cured by applying it to a temperature higher than the curing temperature of the resin. Moreover, the magnetic body of this invention can be obtained by hardening to a fixed shape. As a result, the metal magnetic particles are not distorted, and the characteristic deterioration can be suppressed. For a method for obtaining a magnetic material from a composite magnetic material, conventional curing techniques for resins can be referred to as appropriate.

本発明の磁性体はコイル部品の一部として有用である。本発明の磁性体の外側又は内側に絶縁被覆導線などによってコイル部を形成することにより本発明のコイル部品を得ることができる。コイル部品の詳細な構成や製法については特に限定は無く、従来技術などを適宜参照することができる。   The magnetic body of the present invention is useful as a part of a coil component. The coil component of the present invention can be obtained by forming a coil portion with an insulation coated conductor or the like on the outside or inside of the magnetic body of the present invention. There is no particular limitation on the detailed configuration and manufacturing method of the coil component, and the prior art can be referred to as appropriate.

以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments described in these examples.

<実施例1>
以下の要領でコイル部品を製造した。
製品サイズ:2.5×2.0×1.2mm
磁性体の最小肉厚:0.25mm
金属磁性粒子:FeSiCr(Feが92.5wt%、Siが4wt%、Crが3.5wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製し、500℃の還元雰囲気中で1時間の熱処理を行った。この金属磁性粒子を結晶質合金粒子cとした。)
樹脂:エポキシ樹脂3wt%
空芯コイル:ポリイミド被膜付き平角線(0.3×0.1mm)、α巻きにて周回数9.5t
成形:金型内部に空芯コイルを配置し、モールド成形にて複合磁性材料を150℃の金型に注入、仮硬化して磁性体を形成。
硬化:仮硬化の磁性体を金型から取り出し、200℃にて硬化
端子電極:空芯コイルの端部を研磨で磁性体から露出させ、Agをスパッタリングし、Ag入り導電性ペーストを付け、Ni、Snのめっき処理
<Example 1>
Coil parts were manufactured in the following manner.
Product size: 2.5 × 2.0 × 1.2mm
Minimum thickness of magnetic material: 0.25mm
Metallic magnetic particles: FeSiCr (Fe is 92.5 wt%, Si is 4 wt%, Cr is 3.5 wt%, and a powder having an average particle diameter of 15 μm is prepared by a water atomization method in the atmosphere, and the atmosphere is reduced to 500 ° C. The metal magnetic particles were designated as crystalline alloy particles c.)
Resin: Epoxy resin 3wt%
Air-core coil: Rectangular wire with polyimide coating (0.3 x 0.1 mm), α winding and 9.5 t
Molding: An air-core coil is placed inside the mold, and a composite magnetic material is injected into the mold at 150 ° C. by molding and temporarily cured to form a magnetic body.
Curing: Temporarily cured magnetic body is taken out from the mold and cured at 200 ° C. Terminal electrode: The end of the air-core coil is exposed from the magnetic body by polishing, Ag is sputtered, and a conductive paste containing Ag is applied. , Sn plating treatment

上記の手順は、以下の通り行ったものである。
コイルを作製し、金型の中央と空芯コイルの中心が一致するように配置する。ここに、事前に金属磁性粒子と樹脂を混合しておいた複合磁性材料を150℃に加熱し、この複合磁性材料を150℃に加熱した金型に注入し、磁性体の元が得られる。この後、更に200℃で樹脂を硬化し、磁性体となる。この磁性体に必要な処理(カット、研磨、防錆処理)を行い、最後に端子電極を形成し、コイル部品を得る。また、ここでの成形時の圧力は15MPaであり、従来の圧力に対し非常に低いものであった。
The above procedure was performed as follows.
A coil is produced and arranged so that the center of the mold coincides with the center of the air-core coil. Here, the composite magnetic material in which the metal magnetic particles and the resin are mixed in advance is heated to 150 ° C., and the composite magnetic material is injected into a mold heated to 150 ° C., thereby obtaining the source of the magnetic substance. Thereafter, the resin is further cured at 200 ° C. to obtain a magnetic body. Necessary treatments (cutting, polishing, rust prevention treatment) are performed on the magnetic body, and finally a terminal electrode is formed to obtain a coil component. Moreover, the pressure at the time of shaping | molding here was 15 MPa, and was very low with respect to the conventional pressure.

<比較例1>
金属磁性粒子として上記還元雰囲気中での熱処理を行わないFeSiCrを用いたこと以外は、実施例1と同様にしてコイル部品を得た。この金属磁性粒子を結晶質合金粒子aとした。
<Comparative Example 1>
A coil component was obtained in the same manner as in Example 1 except that FeSiCr not subjected to the heat treatment in the reducing atmosphere was used as the metal magnetic particle. The metal magnetic particles were designated as crystalline alloy particles a.

<比較例2>
金属磁性粒子以外は、実施例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiAlCrで、Feが90wt%、Siが5wt%、Alが4wt%、Crが1wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製し、500℃の還元雰囲気中で1時間の熱処理を行った。この金属磁性粒子を結晶質合金粒子bとした。
<Comparative Example 2>
A coil component was obtained in the same manner as in Example 1 except for the metal magnetic particles. The metal magnetic particles are FeSiAlCr, Fe is 90 wt%, Si is 5 wt%, Al is 4 wt%, Cr is 1 wt%, and a powder having an average particle diameter of 15 μm is prepared by a water atomization method in the atmosphere. Heat treatment was performed for 1 hour in a reducing atmosphere. The metal magnetic particles were designated as crystalline alloy particles b.

<比較例3>
金属磁性粒子以外は、実施例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiCrBCで、Feが70wt%、Siが8wt%、Crが5wt%、Bが15wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子dとした。
<Comparative Example 3>
A coil component was obtained in the same manner as in Example 1 except for the metal magnetic particles. The metal magnetic particles are FeSiCrBC, Fe is 70 wt%, Si is 8 wt%, Cr is 5 wt%, B is 15 wt%, and C is 2 wt%. did. The metal magnetic particles were used as amorphous alloy particles d.

<実施例2>
金属磁性粒子以外は、実施例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiCrBCで、Feが77wt%、Siが6wt%、Crが4wt%、Bが13wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子eとした。
<Example 2>
A coil component was obtained in the same manner as in Example 1 except for the metal magnetic particles. The metal magnetic particles are FeSiCrBC, Fe of 77 wt%, Si of 6 wt%, Cr of 4 wt%, B of 13 wt%, and C of 2 wt%, and a powder having an average particle size of 15 μm is prepared by a water atomization method in the atmosphere. did. The metal magnetic particles were designated as amorphous alloy particles e.

<実施例3>
金属磁性粒子以外は、実施例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiBCで、Feが79.5wt%、Siが5wt%、Bが13.5wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子fとした。
<Example 3>
A coil component was obtained in the same manner as in Example 1 except for the metal magnetic particles. The metal magnetic particles were FeSiBC, Fe was 79.5 wt%, Si was 5 wt%, B was 13.5 wt%, and C was 2 wt%. A powder having an average particle diameter of 15 μm was produced by a water atomization method in the atmosphere. . The metal magnetic particles were designated as amorphous alloy particles f.

<実施例4>
金属磁性粒子以外は、実施例1と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを6:4の割合となるように混合し、複合磁性材料とした。
<Example 4>
A coil component was obtained in the same manner as in Example 1 except for the metal magnetic particles. As the metal magnetic particles, the amorphous alloy particles f used in Example 3 and the amorphous alloy particles e used in Example 2 having an average particle size of 10 μm different from the particle size are used, and the ratio is 6: 4. It mixed so that it might become, and it was set as the composite magnetic material.

<実施例5>
ここでは、製品高さを1.0mm、磁性体の最小肉厚を0.2mmに変更し、実施例4と同様の複合磁性材料により、コイル部品を得た。
<Example 5>
Here, the product height was changed to 1.0 mm and the minimum thickness of the magnetic material was changed to 0.2 mm, and a coil component was obtained using the same composite magnetic material as in Example 4.

<実施例6>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを8:2の割合となるように混合し、複合磁性材料とした。
<Example 6>
A coil component was obtained in the same manner as in Example 5 except for the metal magnetic particles. As the metal magnetic particles, amorphous alloy particles f used in Example 3 and amorphous alloy particles e used in Example 2 having an average particle size of 10 μm, which is different from the particle size, are used in a ratio of 8: 2. It mixed so that it might become, and it was set as the composite magnetic material.

<実施例7>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを9:1の体積割合となるように混合し、複合磁性材料とした。
<Example 7>
A coil component was obtained in the same manner as in Example 5 except for the metal magnetic particles. As the metal magnetic particles, the amorphous alloy particles f used in Example 3 and the amorphous alloy particles e used in Example 2 having an average particle size of 10 μm different from the particle size are used, and each has a volume of 9: 1. The mixture was mixed to obtain a composite magnetic material.

<実施例8>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径2μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
<Example 8>
A coil component was obtained in the same manner as in Example 5 except for the metal magnetic particles. As the metal magnetic particles, amorphous alloy particles f used in Example 3 and average particle diameters 2 μm different from those of amorphous alloy particles e used in Example 2 were used, and each had a volume of 8: 2. The mixture was mixed to obtain a composite magnetic material.

<実施例9>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径1.5μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
<Example 9>
A coil component was obtained in the same manner as in Example 5 except for the metal magnetic particles. As the metal magnetic particles, the amorphous alloy particles f used in Example 3 and the average particle size 1.5 μm different from the amorphous alloy particles e used in Example 2 were used. The composite magnetic material was obtained by mixing so that the volume ratio was.

<実施例10>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、Fe粒子(Feが99.6wt%、Fe以外は不純物)の平均粒径1.5μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
<Example 10>
A coil component was obtained in the same manner as in Example 5 except for the metal magnetic particles. As the metal magnetic particles, the amorphous alloy particles f used in Example 3 and the average particle size of Fe particles (Fe is 99.6 wt%, impurities other than Fe) are 1.5 μm, and each of them is 8: 2. The composite magnetic material was obtained by mixing so as to have a volume ratio.

複合磁性材料に含まれる金属磁性粒子のSIMS測定結果は以下のとおりである。

金属磁性粒子 表面の酸素比率
結晶質合金粒子a 53%
結晶質合金粒子b 52%
結晶質合金粒子c 48%
非晶質合金粒子d 51%
非晶質合金粒子e 40%
非晶質合金粒子f 30%
Fe粒子 31%
The SIMS measurement results of the metal magnetic particles contained in the composite magnetic material are as follows.

Metal oxygen particles Oxygen ratio on the surface Crystalline alloy particles a 53%
Crystalline alloy particle b 52%
Crystalline alloy particle c 48%
Amorphous alloy particles d 51%
Amorphous alloy particles e 40%
Amorphous alloy particles f 30%
Fe particles 31%

上記において、「表面の酸素比率」は、上述したSIMS測定における酸素比率の最大値(ただし、エッチング時間0〜10分までの1分ごとの測定における最大値)である。
上記SIMSの測定は、それぞれの複合磁性材料ごとに20個の粒子について行った。上記はそれらの結果の平均値である。
In the above, “surface oxygen ratio” is the maximum value of the oxygen ratio in the SIMS measurement described above (however, the maximum value in the measurement every minute from 0 to 10 minutes of etching time).
The SIMS measurement was performed on 20 particles for each composite magnetic material. The above is the average of those results.

複合磁性材料の樹脂量、及びコイル部品のインダクタンスは以下のとおりである。

充填率 インダクタンス
実施例1 74.0vol% 1.02μH
比較例1 70.3vol% 0.8μH
比較例2 71.2vol% 0.85μH
比較例3 71.3vol% 0.86μH
実施例2 75.2vol% 1.1μH
実施例3 75.4vol% 1.12μH
実施例4 75.8vol% 1.15μH
実施例5 75.5vol% 1.04μH
実施例6 76.4vol% 1.1μH
実施例7 76.1vol% 1.07μH
実施例8 77.3vol% 1.1μH
実施例9 75.5vol% 1.02μH
実施例10 75.5vol% 1.02μH
The resin amount of the composite magnetic material and the inductance of the coil component are as follows.

Filling factor Inductance Example 1 74.0 vol% 1.02 μH
Comparative Example 1 70.3 vol% 0.8 μH
Comparative Example 2 71.2 vol% 0.85 μH
Comparative Example 3 71.3 vol% 0.86 μH
Example 2 75.2 vol% 1.1 μH
Example 3 75.4 vol% 1.12 μH
Example 4 75.8 vol% 1.15 μH
Example 5 75.5 vol% 1.04 μH
Example 6 76.4 vol% 1.1 μH
Example 7 76.1 vol% 1.07 μH
Example 8 77.3 vol% 1.1 μH
Example 9 75.5 vol% 1.02 μH
Example 10 75.5 vol% 1.02 μH

上記において、「樹脂量」は複合磁性材料の製造の際に添加した樹脂量であり、「充填率」は、磁性体断面の金属磁性粒子の占める割合を顕微鏡観察像から求めたものである。「インダクタンス」は、LCRメータを用いて求めた1MHzでのコイル部品のインダクタンス値を示している。   In the above, the “resin amount” is the amount of resin added during the production of the composite magnetic material, and the “filling rate” is the ratio of the metal magnetic particles in the cross section of the magnetic material determined from a microscopic observation image. “Inductance” indicates an inductance value of the coil component at 1 MHz obtained using an LCR meter.

比較例は、いずれも充填率が低く、コイル周辺に充填不足に伴う欠陥(導線の露出)が存在している。この結果、電気的特性においても実施例と比較し、低い値を示す結果となっており、いずれもコイル部品としては十分なものであった。この結果のように、これまでは磁性体の厚みの薄い部分を形成することができなかった。これに対し、実施例においては、充填に伴う欠陥を生じること無く、厚み0.25mm、更には0.2mmの磁性体を得ることができる。これにより、高い圧力で形成していた圧粉ではできないような薄型化に対応でき、部品の小型化が可能となる。   In all the comparative examples, the filling rate is low, and a defect (exposed conductor) due to insufficient filling exists around the coil. As a result, the electrical characteristics were lower than those of the examples, and both were sufficient as coil components. As shown in this result, it has been impossible to form a thin portion of the magnetic material until now. On the other hand, in an Example, the magnetic body of thickness 0.25mm and also 0.2mm can be obtained, without producing the defect accompanying filling. As a result, it is possible to cope with the thinning that cannot be achieved with the compacted powder formed at a high pressure, and it is possible to reduce the size of the component.

<実施例11>
この実施例は、ドラムコアに巻線を施し、巻線の外側に複合磁性材料を形成するもので行った。
製品サイズ:2.5×2.0×1.2mm
ドラムコア:FeSiCr(Feが90wt%、Siが6wt%、Crが4wt%とし、大気中で1時間の熱処理を行った。)
複合磁性材料:上述の非晶質合金粒子eを用いた。
コイル:ポリイミド被膜付き導線(平角線0.3×0.1mm)、α巻きにて周回数9.5t
成形:ゴム型内部に巻線をしたドラムコアを配置し、複合磁性材料をゴム型に注入、仮硬化して磁性体を形成。
硬化:仮硬化の磁性体を金型から取り出し、200℃にて硬化
端子電極:ドラムコアの鍔の外側面にTi、Agをスパッタリングし、Ag入り導電性ペーストを付け、Ni、Snのめっき処理
<Example 11>
In this embodiment, the drum core is wound and a composite magnetic material is formed outside the winding.
Product size: 2.5 × 2.0 × 1.2mm
Drum core: FeSiCr (Fe was 90 wt%, Si was 6 wt%, Cr was 4 wt%, and heat treatment was performed for 1 hour in the atmosphere.)
Composite magnetic material: The above amorphous alloy particles e were used.
Coil: Conductive wire with polyimide coating (flat wire 0.3 x 0.1 mm), 9.5 turns with α winding
Molding: A drum core wound around a rubber mold is placed, and a composite magnetic material is injected into the rubber mold and temporarily cured to form a magnetic body.
Curing: Temporarily hardened magnetic material is taken out from the mold and cured at 200 ° C. Terminal electrode: Ti and Ag are sputtered on the outer surface of the drum core ridge, Ag-containing conductive paste is applied, and Ni and Sn are plated

上記の手順は、以下の通り行ったものである。
ドラムコアをFeSiCrの磁性材料を成形、熱処理を行い作成する。次に、ドラムコアの鍔の外側の面に端子電極を形成し、ドラムコアの軸の外側に巻線をした導線を端子電極に接続する。最後に、巻線したドラムコアをゴム型の配置し、コイルの外側に事前に金属磁性粒子と樹脂を混合しておいた複合磁性材料を50℃に加熱し、コイルの外側に複合磁性材料を形成、更にゴム型から得られたコイル部品を取り出し、更に200℃で樹脂を硬化し、コイル部品を得る。また、ここでの成形時の圧力は5MPaであり、従来の圧力に対し非常に低いものであった。
The above procedure was performed as follows.
The drum core is formed by forming a magnetic material of FeSiCr and performing heat treatment. Next, a terminal electrode is formed on the outer surface of the drum core collar, and a conducting wire wound outside the drum core shaft is connected to the terminal electrode. Finally, the wound drum core is placed in a rubber mold, and the composite magnetic material, in which metal magnetic particles and resin are mixed in advance on the outside of the coil, is heated to 50 ° C to form the composite magnetic material on the outside of the coil. Further, the coil component obtained from the rubber mold is taken out, and the resin is further cured at 200 ° C. to obtain the coil component. Moreover, the pressure at the time of shaping | molding here was 5 Mpa, and was a very low thing with respect to the conventional pressure.

上記と同様に、コイル部品の評価を行った結果、1.15μHのインダクタンスと74.5vol%の充填率が測定され、電流特性が良好であった。また、充填に伴うような欠陥を生じること無く、安定した部品を作ることができる。
このように、本発明の複合磁性材料を用いることで、これまでにないような、磁性体の薄型化や、小型で高性能な部品の製造が可能になる。
As described above, the coil component was evaluated. As a result, an inductance of 1.15 μH and a filling rate of 74.5 vol% were measured, and current characteristics were good. In addition, stable parts can be made without causing defects such as those associated with filling.
As described above, by using the composite magnetic material of the present invention, it is possible to make the magnetic material thinner and to manufacture a small and high-performance component than ever before.

また、電気的特性以外の評価を以下に示す。
複合磁性材料はそれぞれ断面より評価できる。金属磁性粒子の充填率は、走査型電子顕微鏡(SEM)を用い、SEM像(3000倍)を取得し、画像処理を行う。これにより得られた断面に存在する金属磁性粒子と、金属磁性粒子以外のそれぞれの面積から、金属磁性粒子の面積の割合を充填率としている。断面において金属磁性粒子の断別は酸素の有無により行え、断面に見える粒子の大きさ(最大の長さ)で1μm以上のものを金属磁性粒子と見なして行った。これは金属磁性粒子の粒径で1μmより小さいものは磁気的な特性への影響が小さいことから、この範囲としたものである。
Moreover, evaluations other than electrical characteristics are shown below.
Each composite magnetic material can be evaluated from the cross section. The filling rate of the metal magnetic particles is obtained by using a scanning electron microscope (SEM) to obtain an SEM image (3000 times) and performing image processing. The ratio of the area of the metal magnetic particles is defined as the filling rate from the area of the metal magnetic particles present in the cross section obtained in this way and the area other than the metal magnetic particles. Separation of the metal magnetic particles in the cross section can be performed by the presence or absence of oxygen, and the particle size (maximum length) that can be seen in the cross section is 1 μm or more as metal magnetic particles. This is in this range because the particle size of the metal magnetic particles smaller than 1 μm has little influence on the magnetic properties.

金属磁性粒子における鉄(Fe元素)の含有比率はSEM−EDXにより測定することもできる。複合磁性材料の断面のSEM像(3000倍)を取得し、マップングにより同じ組成の粒子を選択し、20個以上の金属磁性粒子に鉄(Fe元素)の含有比率より平均値を求める。また、マッピングにより、組成の異なるものが存在すれば、異なる組成の金属磁性粒子を混合したものと判断できる。更に、金属磁性粒子の粒径は複合磁性材料の断面のSEM像(約3000倍)を取得し、測定部分における平均的な大きさの粒子を300個以上選び出して、それらのSEM像における面積を測定し、粒子が球体であると仮定して粒径を算出する。また、得られた粒径の分布から、ピーク点が2つ存在すれば、異なる平均粒径の金属磁性粒子を混合と判断できる。それぞれの測定は、複合磁性材料で形成された磁性体の断面の中央部分を選択して行っている。また、いずれも、断面に見える粒子の大きさで1μm以上のものを対象に行っている。   The content ratio of iron (Fe element) in the metal magnetic particles can also be measured by SEM-EDX. An SEM image (3,000 times) of a cross section of the composite magnetic material is obtained, particles having the same composition are selected by mapping, and an average value is obtained from the content ratio of iron (Fe element) in 20 or more metal magnetic particles. Moreover, if there exists a thing with a different composition by mapping, it can be judged that the metal magnetic particle of a different composition was mixed. Furthermore, as for the particle size of the metal magnetic particles, an SEM image (about 3000 times) of the cross section of the composite magnetic material is obtained, and 300 or more particles having an average size in the measurement part are selected, and the area in the SEM image is determined. Measure and calculate the particle size assuming that the particles are spheres. Further, from the obtained particle size distribution, if there are two peak points, it can be determined that metal magnetic particles having different average particle sizes are mixed. Each measurement is performed by selecting the central portion of the cross section of the magnetic body formed of the composite magnetic material. In both cases, the size of particles visible in the cross section is 1 μm or more.

Claims (4)

合金粒子と樹脂とを含む複合磁性材料と、コイルとで構成されるコイル部品であって、
前記合金粒子の表面の酸素比率は50%以下である、コイル部品。
A coil component composed of a composite magnetic material containing alloy particles and a resin, and a coil,
The coil part whose oxygen ratio of the surface of the said alloy particle is 50% or less.
前記酸素比率が30〜40%である請求項1記載のコイル部品。   The coil component according to claim 1, wherein the oxygen ratio is 30 to 40%. 請求項1または2のいずれか1項記載のコイル部品であって、複合磁性材料に埋め込まれたコイルを有するコイル部品。   The coil component according to claim 1, wherein the coil component has a coil embedded in a composite magnetic material. 請求項1または2のいずれか1項記載のコイル部品であって、複合磁性材料の内側に形成されたコイルを有するコイル部品。   The coil component according to claim 1, wherein the coil component has a coil formed inside the composite magnetic material.
JP2015153929A 2014-08-30 2015-08-04 Coil parts Active JP6522462B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015153929A JP6522462B2 (en) 2014-08-30 2015-08-04 Coil parts
KR1020150111430A KR20160026685A (en) 2014-08-30 2015-08-07 Coil component
TW104126422A TWI605477B (en) 2014-08-30 2015-08-13 Coil parts
US14/839,799 US9685263B2 (en) 2014-08-30 2015-08-28 Coil component
CN201510547731.2A CN105390231B (en) 2014-08-30 2015-08-31 Coil component
CN201711163511.5A CN107845481B (en) 2014-08-30 2015-08-31 Coil component
KR1020170037324A KR101751780B1 (en) 2014-08-30 2017-03-24 Coil component
US15/595,575 US10748694B2 (en) 2014-08-30 2017-05-15 Coil component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014176673 2014-08-30
JP2014176673 2014-08-30
JP2015153929A JP6522462B2 (en) 2014-08-30 2015-08-04 Coil parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018230478A Division JP6688373B2 (en) 2014-08-30 2018-12-09 Coil parts

Publications (2)

Publication Number Publication Date
JP2016051899A true JP2016051899A (en) 2016-04-11
JP6522462B2 JP6522462B2 (en) 2019-05-29

Family

ID=55403274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153929A Active JP6522462B2 (en) 2014-08-30 2015-08-04 Coil parts

Country Status (5)

Country Link
US (2) US9685263B2 (en)
JP (1) JP6522462B2 (en)
KR (2) KR20160026685A (en)
CN (2) CN105390231B (en)
TW (1) TWI605477B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088264A1 (en) * 2016-11-08 2018-05-17 アルプス電気株式会社 Inductance element and method for manufacturing same
JP6458853B1 (en) * 2017-12-14 2019-01-30 Tdk株式会社 Powder magnetic core and inductor element
JP2020155673A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020155669A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020155674A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020155670A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2021057577A (en) * 2019-09-30 2021-04-08 Tdk株式会社 Soft magnetic metal powder, powder magnetic core, and magnetic component
WO2023100528A1 (en) * 2021-12-03 2023-06-08 三菱製鋼株式会社 Soft magnetic alloy powder and production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6522462B2 (en) * 2014-08-30 2019-05-29 太陽誘電株式会社 Coil parts
CN109192430B (en) * 2018-08-31 2020-11-17 北京科技大学广州新材料研究院 Preparation method for improving high-frequency effective magnetic conductivity of metal soft magnetic powder core and product
WO2020054857A1 (en) * 2018-09-13 2020-03-19 日立金属株式会社 FeSiCrC ALLOY POWDER AND MAGNETIC CORE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061231A (en) * 2010-11-15 2011-03-24 Sumitomo Electric Ind Ltd Soft magnetic composite material, and core for reactor
JP2012144810A (en) * 2012-04-06 2012-08-02 Seiko Epson Corp Soft magnetic powder, powder magnetic core, and magnetic element
JP2012199568A (en) * 2011-03-04 2012-10-18 Sumitomo Electric Ind Ltd Green compact, production method of green compact, reactor, converter, and power converter
JP2012238828A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
JP2014072482A (en) * 2012-10-01 2014-04-21 Ntn Corp Magnetic core and production method therefor

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620577A (en) * 1969-12-09 1971-11-16 North American Rockwell Brake control system
JP2000348917A (en) 1999-06-02 2000-12-15 Seiko Epson Corp Magnet powder, manufacture of thereof, and bonded magnet
JP3294841B2 (en) * 2000-09-19 2002-06-24 住友特殊金属株式会社 Rare earth magnet and manufacturing method thereof
US6790296B2 (en) * 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP5288226B2 (en) 2005-09-16 2013-09-11 日立金属株式会社 Magnetic alloys, amorphous alloy ribbons, and magnetic parts
JP4849545B2 (en) 2006-02-02 2012-01-11 Necトーキン株式会社 Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder, and magnetic core and inductance component using the same
CN101377975A (en) * 2007-11-23 2009-03-04 横店集团东磁股份有限公司 Integral inductor and preparation method thereof
JP5145923B2 (en) 2007-12-26 2013-02-20 パナソニック株式会社 Composite magnetic material
EP2131373B1 (en) * 2008-06-05 2016-11-02 TRIDELTA Weichferrite GmbH Soft magnetic material and method for producing objects from this soft magnetic material
CN102282633B (en) * 2009-01-20 2014-05-14 日立金属株式会社 Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP4961454B2 (en) * 2009-05-12 2012-06-27 株式会社日立製作所 Rare earth magnet and motor using the same
WO2011016275A1 (en) * 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
JP5130270B2 (en) * 2009-09-30 2013-01-30 株式会社日立製作所 Magnetic material and motor using the same
JP4866971B2 (en) 2010-04-30 2012-02-01 太陽誘電株式会社 Coil-type electronic component and manufacturing method thereof
US8723634B2 (en) * 2010-04-30 2014-05-13 Taiyo Yuden Co., Ltd. Coil-type electronic component and its manufacturing method
US9190195B2 (en) * 2010-06-09 2015-11-17 Sintokogio, Ltd. Fe-group-based soft magnetic powder
TWI441929B (en) * 2011-01-17 2014-06-21 Alps Green Devices Co Ltd Fe-based amorphous alloy powder, and a powder core portion using the Fe-based amorphous alloy, and a powder core
JP2012238841A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP5032711B1 (en) * 2011-07-05 2012-09-26 太陽誘電株式会社 Magnetic material and coil component using the same
JP5926011B2 (en) * 2011-07-19 2016-05-25 太陽誘電株式会社 Magnetic material and coil component using the same
CN102268605B (en) * 2011-08-11 2013-10-16 广东省钢铁研究所 Method for preparing iron silicon soft magnetic alloy
JP5710427B2 (en) * 2011-08-31 2015-04-30 株式会社東芝 Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP5930643B2 (en) * 2011-09-29 2016-06-08 太陽誘電株式会社 Soft magnetic alloy body and electronic component using the same
JP5974803B2 (en) 2011-12-16 2016-08-23 Tdk株式会社 Soft magnetic alloy powder, green compact, dust core and magnetic element
JP6522462B2 (en) * 2014-08-30 2019-05-29 太陽誘電株式会社 Coil parts
JP6215163B2 (en) * 2014-09-19 2017-10-18 株式会社東芝 Method for producing composite magnetic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061231A (en) * 2010-11-15 2011-03-24 Sumitomo Electric Ind Ltd Soft magnetic composite material, and core for reactor
JP2012199568A (en) * 2011-03-04 2012-10-18 Sumitomo Electric Ind Ltd Green compact, production method of green compact, reactor, converter, and power converter
JP2012238828A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component using the same
JP2012144810A (en) * 2012-04-06 2012-08-02 Seiko Epson Corp Soft magnetic powder, powder magnetic core, and magnetic element
JP2014072482A (en) * 2012-10-01 2014-04-21 Ntn Corp Magnetic core and production method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11195651B2 (en) 2016-11-08 2021-12-07 Alps Alpine Co., Ltd. Inductance element
JPWO2018088264A1 (en) * 2016-11-08 2019-07-04 アルプスアルパイン株式会社 Inductance element and method of manufacturing the same
WO2018088264A1 (en) * 2016-11-08 2018-05-17 アルプス電気株式会社 Inductance element and method for manufacturing same
JP6458853B1 (en) * 2017-12-14 2019-01-30 Tdk株式会社 Powder magnetic core and inductor element
JP2019106495A (en) * 2017-12-14 2019-06-27 Tdk株式会社 Dust core and inductor element
JP7277194B2 (en) 2019-03-22 2023-05-18 日本特殊陶業株式会社 dust core
JP2020155674A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020155670A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP2020155669A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP7222771B2 (en) 2019-03-22 2023-02-15 日本特殊陶業株式会社 dust core
JP7229825B2 (en) 2019-03-22 2023-02-28 日本特殊陶業株式会社 dust core
JP2020155673A (en) * 2019-03-22 2020-09-24 日本特殊陶業株式会社 Powder-compact magnetic core
JP7277193B2 (en) 2019-03-22 2023-05-18 日本特殊陶業株式会社 dust core
JP2021057577A (en) * 2019-09-30 2021-04-08 Tdk株式会社 Soft magnetic metal powder, powder magnetic core, and magnetic component
WO2023100528A1 (en) * 2021-12-03 2023-06-08 三菱製鋼株式会社 Soft magnetic alloy powder and production method therefor
JP2023082966A (en) * 2021-12-03 2023-06-15 三菱製鋼株式会社 Soft magnetic alloy powder and method for manufacturing same
JP7326410B2 (en) 2021-12-03 2023-08-15 三菱製鋼株式会社 SOFT MAGNETIC ALLOY POWDER AND METHOD FOR MANUFACTURING SAME

Also Published As

Publication number Publication date
CN107845481B (en) 2020-11-24
US9685263B2 (en) 2017-06-20
CN105390231A (en) 2016-03-09
US10748694B2 (en) 2020-08-18
KR20170037914A (en) 2017-04-05
US20170250021A1 (en) 2017-08-31
JP6522462B2 (en) 2019-05-29
CN107845481A (en) 2018-03-27
TW201618132A (en) 2016-05-16
TWI605477B (en) 2017-11-11
KR101751780B1 (en) 2017-06-28
KR20160026685A (en) 2016-03-09
CN105390231B (en) 2017-12-08
US20160064136A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
JP6522462B2 (en) Coil parts
TWI606474B (en) Coil component and its manufacturing method, electronic machine
JP7283031B2 (en) dust core
JP7222220B2 (en) Magnetic core and coil parts
TW201225116A (en) Coil-type electronic component and its manufacturing method
CN107799279B (en) Dust core
JP2020164899A (en) Composite magnetic material and inductor using the same
JP5372481B2 (en) Powder magnetic core and manufacturing method thereof
WO2010113681A1 (en) Composite magnetic material and magnetic element
JP6536381B2 (en) Soft magnetic powder, magnetic core, method of manufacturing soft magnetic powder, and method of manufacturing magnetic core
CN108573786B (en) Dust core
JP2016162764A (en) Magnetic powder mixed resin material
JP6191855B2 (en) Soft magnetic metal powder and high frequency powder magnetic core
JP6688373B2 (en) Coil parts
JP7069849B2 (en) Powder magnetic core
JP6429055B1 (en) Soft magnetic metal powder, dust core and magnetic parts
JP2020072182A (en) Magnetic core and coil component
JP2016184641A (en) Soft magnetic metal dust core, and reactor or inductor
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
JP7222664B2 (en) dust core
JP2021040083A (en) Resin magnetic core
JP2022035559A (en) Composite magnetic body
JP7563087B2 (en) Magnetic compact and inductor
JP7533164B2 (en) Composite magnetic thermosetting molded body, coil component obtained by using said composite magnetic thermosetting molded body, and manufacturing method thereof
JP2020136647A (en) Magnetic core and magnetic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6522462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250