JP2016051737A - Method for introducing impurity and method for manufacturing semiconductor element - Google Patents

Method for introducing impurity and method for manufacturing semiconductor element Download PDF

Info

Publication number
JP2016051737A
JP2016051737A JP2014174567A JP2014174567A JP2016051737A JP 2016051737 A JP2016051737 A JP 2016051737A JP 2014174567 A JP2014174567 A JP 2014174567A JP 2014174567 A JP2014174567 A JP 2014174567A JP 2016051737 A JP2016051737 A JP 2016051737A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
impurity
impurity element
semiconductor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174567A
Other languages
Japanese (ja)
Other versions
JP6372881B2 (en
Inventor
池上 浩
Hiroshi Ikegami
浩 池上
晃裕 池田
Akihiro Ikeda
晃裕 池田
種正 浅野
Tanemasa Asano
種正 浅野
研一 井口
Kenichi Iguchi
研一 井口
中澤 治雄
Haruo Nakazawa
治雄 中澤
康和 関
Yasukazu Seki
康和 関
徹 村松
Toru Muramatsu
徹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Fuji Electric Co Ltd
Original Assignee
Kyushu University NUC
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Fuji Electric Co Ltd filed Critical Kyushu University NUC
Priority to JP2014174567A priority Critical patent/JP6372881B2/en
Publication of JP2016051737A publication Critical patent/JP2016051737A/en
Application granted granted Critical
Publication of JP6372881B2 publication Critical patent/JP6372881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid such problems that, in performing laser doping, a compound salt other than an impurity element and a solvent constituent material are adsorbed to the surface of a semiconductor substrate to cause contamination and are taken in a crystalline layer of a semiconductor substrate.SOLUTION: A method for introducing impurities includes the steps of (i) forming a liquid phase of molecules of an impurity element using an impurity liquid 1, on the surface of a semiconductor substrate 2, and (ii) irradiating the surface of the semiconductor substrate 2 with a laser beam 6 via the liquid phase of molecules of the impurity element. In the method, the impurity element is introduced to a part of the inside of the semiconductor substrate 2.SELECTED DRAWING: Figure 1

Description

本発明は不純物導入方法及び半導体素子の製造方法に関する。   The present invention relates to an impurity introducing method and a semiconductor device manufacturing method.

パワー半導体としてシリコンカーバイド(SiC)、特に4Hのシリコンカーバイド(4H−SiC)を用いた半導体素子が期待されている。4H−SiCの半導体素子は、通常、所望の濃度でエピタキシャル成長させた4H−SiC結晶層が形成された半導体基板に、リン(P)やアルミニウム(Al)等の不純物元素のイオンをドーピングして製造される。具体的には、例えば、加速させた不純物元素のイオンを半導体基板に照射することで注入するとともに、その後、イオンが注入された半導体基板の結晶構造の回復及び不純物元素の活性化のために半導体基板を加熱する処理(アニール)が行われる。   A semiconductor element using silicon carbide (SiC), particularly 4H silicon carbide (4H-SiC) is expected as a power semiconductor. 4H-SiC semiconductor elements are usually manufactured by doping ions of an impurity element such as phosphorus (P) or aluminum (Al) onto a semiconductor substrate on which a 4H-SiC crystal layer epitaxially grown at a desired concentration is formed. Is done. Specifically, for example, the semiconductor substrate is implanted by irradiating accelerated impurity element ions to the semiconductor substrate, and then the semiconductor is used to recover the crystal structure of the semiconductor substrate into which the ions are implanted and to activate the impurity element. A process of heating the substrate (annealing) is performed.

ここで半導体基板が4H−SiCの場合、4H−SiCの(0001)面((000−1)面)に対して高ドーズ(例えば1015/cm程度以上)のイオン注入を行うにあたり、半導体基板を事前に300〜800度程度に昇温させる加熱処理を行う必要がある。事前の加熱処理が無い場合、4H−SiCの再結晶化及び不純物元素の活性化が有効に行われないからである。 Here, when the semiconductor substrate is 4H—SiC, a high dose (eg, about 10 15 / cm 2 or more) ion implantation is performed on the (0001) plane ((000-1) plane) of 4H—SiC. It is necessary to perform heat treatment for raising the temperature of the substrate to about 300 to 800 degrees in advance. This is because 4H-SiC recrystallization and impurity element activation are not effectively performed without prior heat treatment.

また半導体基板がSiCの場合のアニールは、1600〜1800度程度と、シリコン(Si)の場合より高温で行われる。この高温アニールによって半導体素子の表面からSiが脱落することや、マイグレーションにより半導体素子の表面が荒れることが知られている。そこで、半導体素子の表面に窒化アルミニウム(AlN)や炭素(C)等の保護膜を形成した上でアニールするという方法があるが、保護膜の形成及び除去のための処理工程が増加し、処理コストが増大するという問題がある。またアルミニウム(Al)や炭素(C)による周辺の汚染という問題も懸念される。また半導体基板がSiの場合のアニールであっても、活性化させる不純物元素によっては800度以上の高温で行われることがある。すなわち、半導体素子の製造においては、高温処理が用いられることが多い一方、高温処理が半導体基板の特性変動や製造プロセスへの制約等様々な影響を与えるという問題がある。   Further, annealing when the semiconductor substrate is SiC is performed at a temperature of about 1600 to 1800 degrees, which is higher than that when silicon (Si) is used. It is known that Si is removed from the surface of the semiconductor element by this high temperature annealing, and the surface of the semiconductor element is roughened by migration. Therefore, there is a method of annealing after forming a protective film such as aluminum nitride (AlN) or carbon (C) on the surface of the semiconductor element, but the number of processing steps for forming and removing the protective film is increased. There is a problem that the cost increases. There is also concern about the problem of contamination of the periphery due to aluminum (Al) and carbon (C). Further, even when the semiconductor substrate is Si, annealing may be performed at a high temperature of 800 ° C. or more depending on the impurity element to be activated. That is, in the manufacture of semiconductor elements, high-temperature processing is often used, but there is a problem that high-temperature processing has various effects such as fluctuations in characteristics of the semiconductor substrate and restrictions on the manufacturing process.

上記した問題を解決する手段として、非特許文献1に記載のレーザードーピングの技術が考えられる。非特許文献1は、高濃度の不純物元素の化合物を含む水溶液である溶液中に4H−SiCの半導体基板を浸漬し、半導体基板の表面と溶液との界面領域にレーザ光をパルス照射することで、半導体基板に対し局所的な加熱を行い、溶液中の不純物元素をドーピングする。具体的には、不純物元素の窒素(N)をアンモニア(NH)の形で化合物として水に溶解させたアンモニア水溶液の中に半導体基板を浸漬してレーザードーピングを行う。照射されるレーザ光は、SiCにおいて吸収係数の大きい紫外域の波長の光が用いられる。非特許文献1によれば、室温相当の環境下であっても不純物元素の注入と半導体基板の活性化とを同時に行うことが可能であり、半導体基板に対する上記した事前の加熱処理及び不純物元素注入後のアニールを行う必要がないとされている。 As a means for solving the above problem, a laser doping technique described in Non-Patent Document 1 can be considered. Non-Patent Document 1 discloses that a 4H—SiC semiconductor substrate is immersed in a solution that is an aqueous solution containing a high-concentration impurity element compound, and laser light is pulsed to the interface region between the surface of the semiconductor substrate and the solution. Then, the semiconductor substrate is locally heated to dope the impurity element in the solution. Specifically, laser doping is performed by immersing a semiconductor substrate in an aqueous ammonia solution in which nitrogen (N) as an impurity element is dissolved in water as a compound in the form of ammonia (NH 3 ). As the irradiated laser light, light having a wavelength in the ultraviolet region having a large absorption coefficient in SiC is used. According to Non-Patent Document 1, it is possible to perform the implantation of the impurity element and the activation of the semiconductor substrate at the same time even in an environment corresponding to room temperature. It is said that there is no need to perform later annealing.

しかし非特許文献1の技術の場合、レーザ光の照射中に、半導体基板を浸漬する溶液中に含まれる不純物元素以外の化合物塩や溶媒構成材料が、レーザ光の熱で分解される。そして、分解された化合物塩や溶媒構成材料が半導体基板の表面に吸着して汚染を生じさせたり、半導体基板の結晶層中に取り込まれたりすることで、半導体素子の特性に悪影響が生じるという問題がある。   However, in the case of the technique of Non-Patent Document 1, during irradiation with laser light, compound salts other than impurity elements and solvent constituent materials contained in the solution in which the semiconductor substrate is immersed are decomposed by the heat of the laser light. Then, the decomposed compound salt or the solvent constituent material is adsorbed on the surface of the semiconductor substrate to cause contamination or taken into the crystal layer of the semiconductor substrate, thereby adversely affecting the characteristics of the semiconductor element. There is.

井上祐樹 他5名、「アンモニア水溶液中レーザー照射による4H−SiC中への窒素ドーピング」、第74回応用物理学会秋季学術講演会 講演予稿集、19a−P9−8、2013年Yuki Inoue and 5 others, “Nitrogen doping into 4H-SiC by laser irradiation in aqueous ammonia”, Proceedings of the 74th JSAP Autumn Meeting, 19a-P9-8, 2013

本発明は上記した問題に着目して為されたものであって、レーザードーピングを行う際に、不純物元素以外の化合物塩や溶媒構成材料が、半導体基板の表面に吸着して生じる汚染が生じたり、半導体基板の結晶層中に取り込まれたりすることを回避できる不純物元素の導入方法及び半導体素子の製造方法を提供することを目的とする。   The present invention has been made by paying attention to the above-described problems. When laser doping is performed, contamination caused by adsorption of compound salts other than impurity elements and solvent constituent materials on the surface of a semiconductor substrate may occur. It is an object of the present invention to provide a method for introducing an impurity element and a method for manufacturing a semiconductor element, which can avoid being incorporated into a crystal layer of a semiconductor substrate.

上記課題を解決するために、本発明に係る不純物導入方法のある態様は、半導体基板の表面上に、不純物元素の分子の液相を形成する工程と、液相を介して半導体基板の表面にレーザ光を照射する工程と、を含み、半導体基板の内部の一部に不純物元素を導入することを要旨とする。   In order to solve the above-described problems, an aspect of the impurity introduction method according to the present invention includes a step of forming a liquid phase of molecules of impurity elements on a surface of a semiconductor substrate, and a surface of the semiconductor substrate through the liquid phase. And a step of irradiating with a laser beam, and the gist is to introduce an impurity element into a part of the inside of the semiconductor substrate.

また本発明に係る半導体素子の製造方法のある態様は、半導体基板の表面上に、不純物元素の分子の液相を形成する工程と、液相を介して半導体基板の表面にレーザ光を照射して、半導体基板の内部の一部に不純物元素を導入し、第1の半導体領域を形成する工程と、を含むことを要旨とする。   According to another aspect of the method for manufacturing a semiconductor element according to the present invention, a step of forming a liquid phase of a molecule of an impurity element on a surface of a semiconductor substrate, and laser light is irradiated on the surface of the semiconductor substrate through the liquid phase. And a step of introducing an impurity element into a part of the inside of the semiconductor substrate to form a first semiconductor region.

従って本発明に係る不純物導入方法及び半導体素子の製造方法によれば、レーザードーピングを行う際に、不純物元素以外の化合物塩や溶媒構成材料が、半導体基板の表面に吸着して生じる汚染が生じたり、半導体基板の結晶層中に取り込まれたりすることを回避できる。   Therefore, according to the impurity introduction method and the semiconductor device manufacturing method according to the present invention, when laser doping is performed, contamination caused by adsorption of compound salts other than impurity elements and solvent constituent materials on the surface of the semiconductor substrate may occur. Incorporation into the crystal layer of the semiconductor substrate can be avoided.

本発明の実施形態に係る不純物導入方法に用いる不純物導入装置を側面視で模式的に説明する一部断面図である。It is a partial cross section figure explaining typically an impurity introduction device used for an impurity introduction method concerning an embodiment of the present invention by a side view. 本発明の実施形態に係る不純物導入方法に用いる不純物導入装置において、不純物元素が揮発する状態を側面視で模式的に説明する一部断面図である。In the impurity introduction apparatus used for the impurity introduction method according to the embodiment of the present invention, FIG. 本発明の実施形態に係る不純物導入方法を用いた半導体素子の製造方法を説明する一部断面図である。It is a partial cross section figure explaining the manufacturing method of the semiconductor element using the impurity introduction method which concerns on embodiment of this invention. 本発明の実施形態に係る半導体素子の製造方法で得られた半導体素子の製造方法を説明する一部断面図である。It is a partial cross section explaining the manufacturing method of the semiconductor element obtained with the manufacturing method of the semiconductor element which concerns on embodiment of this invention. 本発明の実施例で得られた半導体基板の内部の不純物元素の濃度と侵入深さのプロファイルを示す図である。It is a figure which shows the profile of the impurity element inside the semiconductor substrate obtained in the Example of this invention, and the profile of penetration depth.

以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。又、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and it should be noted that the relationship between the thickness and the planar dimensions, the ratio of the thickness of each device and each member, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings. Also, the directions of “left and right” and “up and down” in the following description are merely definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”. Of course.

まず、本発明の実施形態に係る不純物導入方法及び半導体素子の製造方法が用いられる不純物導入装置を、図1及び図2を参照して説明する。図1及び図2では、説明のため半導体基板2、不純物液槽5が断面視で示されている。半導体基板2は、例えば4H−SiCであり、図1に示すように、不純物液槽5の内側で底面上に配置され固定されている。半導体基板2上には、所定の濃度の4H−SiCエピタキシャル成長層が形成されている。そして半導体基板2は、不純物液槽5の内側に貯留された不純物液1中に浸漬され、半導体基板2のレーザ光6が照射される側の面を、4H−SiCの結晶層の(0001)面((000−1)面)としている。不純物液槽5は、支持台3に下方から支持されるとともに、支持台3は更にX−Y移動ステージ8に搭載されている。   First, an impurity introduction apparatus using an impurity introduction method and a semiconductor device manufacturing method according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2, the semiconductor substrate 2 and the impurity liquid tank 5 are shown in a cross-sectional view for explanation. The semiconductor substrate 2 is 4H—SiC, for example, and is disposed and fixed on the bottom surface inside the impurity liquid tank 5 as shown in FIG. A 4H—SiC epitaxial growth layer having a predetermined concentration is formed on the semiconductor substrate 2. Then, the semiconductor substrate 2 is immersed in the impurity liquid 1 stored inside the impurity liquid tank 5, and the surface of the semiconductor substrate 2 on the side irradiated with the laser light 6 is a (0001) 4H—SiC crystal layer. Surface ((000-1) surface). The impurity liquid tank 5 is supported on the support table 3 from below, and the support table 3 is further mounted on the XY moving stage 8.

不純物液1は、不純物元素の分子が液相とされた液体である。本発明の実施形態に係る不純物元素としては液体窒素が用いられる。液体窒素は、例えば図示しないタンクに液相を保持されて蓄えられており、レーザードーピングの際、図2に示すように、タンクから不純物液槽5に供給される。窒素の沸点はマイナス約196度と比較的低温であり、液体窒素に接触する半導体基板2及び不純物液槽5は、低温に耐性を有する材料で構成されている。尚、半導体基板2にドーピングさせる不純物元素としては、窒素に限定されることなく他の元素であってもよいが、例えばn型の半導体領域を形成する場合には、窒素は工業的に安価に量産可能であるとともに、安全性が比較的高いため好ましい。   The impurity liquid 1 is a liquid in which the impurity element molecules are in a liquid phase. Liquid nitrogen is used as the impurity element according to the embodiment of the present invention. Liquid nitrogen is stored, for example, in a liquid phase held in a tank (not shown), and is supplied from the tank to the impurity liquid tank 5 during laser doping as shown in FIG. The boiling point of nitrogen is minus 196 degrees, which is relatively low, and the semiconductor substrate 2 and the impurity liquid tank 5 that are in contact with liquid nitrogen are made of a material that is resistant to low temperatures. The impurity element doped in the semiconductor substrate 2 is not limited to nitrogen, but may be other elements. For example, when forming an n-type semiconductor region, nitrogen is industrially inexpensive. It is preferable because it can be mass-produced and has relatively high safety.

不純物液槽5の内側には、不純物液1が、半導体基板2の上面上に不純物液1の層が存在する領域が形成されるように、半導体基板2の厚み(図1中の上下方向の長さ)よりも大きい液位となる量で貯留されている。また不純物液槽5は、X−Y移動ステージ8によって支持台3が移動する場合であっても、支持台3からずれることがないように、支持台3上の所定位置に固定されている。また不純物液槽5の底面には、例えば不図示の基準マークが複数形成されている。基準マークは、半導体基板2に予め設定されたレーザ光6の照射目標位置に対応する、不純物液槽5側の照射目標位置として用いられるものである。   Inside the impurity liquid tank 5, the thickness of the semiconductor substrate 2 (in the vertical direction in FIG. 1) is formed so that the impurity liquid 1 is formed on the upper surface of the semiconductor substrate 2. It is stored in an amount that results in a liquid level larger than (length). Further, the impurity liquid tank 5 is fixed at a predetermined position on the support base 3 so as not to be displaced from the support base 3 even when the support base 3 is moved by the XY moving stage 8. A plurality of reference marks (not shown) are formed on the bottom surface of the impurity liquid tank 5, for example. The reference mark is used as an irradiation target position on the impurity liquid tank 5 side corresponding to the irradiation target position of the laser beam 6 set in advance on the semiconductor substrate 2.

X−Y移動ステージ8は、支持台3を下方から水平に支持するとともに、不図示の駆動装置に接続され、半導体基板2を、水平面内の方向(X−Y方向)にそれぞれ自在に移動可能に構成されている。尚、例えば、支持台3とX−Y移動ステージ8との間に、支持台3をZ方向に移動させる図示しないZ移動ステージを設けることにより、支持台3を、更にX−Y方向に垂直なZ方向に移動可能に構成してもよい。支持台3をXYZの3軸移動可能に構成することにより、半導体基板2をレーザ光6の照射目標位置に応じた所定の位置に自在に移動させ、半導体基板2の所望の位置に、所望の不純物元素を導入することができる。   The XY moving stage 8 supports the support base 3 horizontally from below and is connected to a driving device (not shown) so that the semiconductor substrate 2 can be freely moved in a horizontal plane direction (XY direction). It is configured. For example, by providing a Z movement stage (not shown) for moving the support base 3 in the Z direction between the support base 3 and the XY movement stage 8, the support base 3 is further perpendicular to the XY direction. It may be configured to be movable in the Z direction. By configuring the support base 3 so as to be movable in three axes of XYZ, the semiconductor substrate 2 can be freely moved to a predetermined position corresponding to the irradiation target position of the laser light 6, and a desired position of the semiconductor substrate 2 can be moved to a desired position. Impurity elements can be introduced.

レーザ光6は、図1に示すように、レーザ光学系10により照射される。レーザ光学系10は、レーザ光6を照射するレーザ光源11と、照射されたレーザ光6を所定形状に成形する可変スリット12と、成形されたレーザ光6を反射して集光装置15に導く2枚の反射ミラー13、14とを備える。集光装置15は、例えば集光レンズであり、集光されたレーザ光6は半導体基板2と不純物液1との界面領域に照射される。またレーザ光学系10には、不純物液槽5の基準マークを撮像するCCDカメラ等からなる撮像装置18、照明光を照射する照明光発光装置16、照明光を反射及び透過させるミラー17が設けられている。またレーザ光学系10には不図示のアライメント機構等が別途設けられてよい。レーザ光学系10は、不図示の駆動装置に接続された上でX及びY方向に移動可能に構成されてよい。   The laser beam 6 is irradiated by a laser optical system 10 as shown in FIG. The laser optical system 10 includes a laser light source 11 that irradiates laser light 6, a variable slit 12 that shapes the irradiated laser light 6 into a predetermined shape, and reflects the shaped laser light 6 to guide it to a light collecting device 15. Two reflection mirrors 13 and 14 are provided. The condensing device 15 is, for example, a condensing lens, and the condensed laser light 6 is applied to the interface region between the semiconductor substrate 2 and the impurity liquid 1. Further, the laser optical system 10 is provided with an imaging device 18 such as a CCD camera that images the reference mark of the impurity liquid tank 5, an illumination light emitting device 16 that emits illumination light, and a mirror 17 that reflects and transmits illumination light. ing. The laser optical system 10 may be separately provided with an alignment mechanism (not shown). The laser optical system 10 may be configured to be movable in the X and Y directions after being connected to a driving device (not shown).

レーザ光学系10は、半導体基板2の禁制帯幅よりも大きなエネルギーとなる波長のレーザ光を照射するように構成されることが好ましい。例えば、KrF(=248nm)レーザやArF(=193nm)レーザ等の紫外線領域のレーザ光を照射するレーザ光源11を用いるようにすればよい。紫外線領域の光エネルギーで励起させることにより、不純物元素を4H−SiCの格子間位置に移動させることを容易にすることができる。   The laser optical system 10 is preferably configured to irradiate laser light having a wavelength that is larger than the forbidden band width of the semiconductor substrate 2. For example, a laser light source 11 that irradiates laser light in an ultraviolet region such as a KrF (= 248 nm) laser or an ArF (= 193 nm) laser may be used. By exciting with light energy in the ultraviolet region, the impurity element can be easily moved to the interstitial position of 4H—SiC.

次に、本発明の実施形態に係る不純物導入方法を説明する。まず図1に示すように、半導体基板2を、上面を支持台3と反対側に向けて不純物液槽5の内側の底面上に載置し固定する。次に、半導体基板2上で不純物元素をドーピングさせる照射目標領域に応じた基準マークの位置を、レーザ光6の光軸に合致させるように、X−Y移動ステージ8を用いて支持台3をX及びY方向に所定量移動させる。このとき支持台3の移動に替えて、レーザ光学系10をX及びY方向に所定量移動させてもよい。   Next, an impurity introduction method according to an embodiment of the present invention will be described. First, as shown in FIG. 1, the semiconductor substrate 2 is placed and fixed on the bottom surface inside the impurity liquid tank 5 with the upper surface facing away from the support 3. Next, the support 3 is moved using the XY moving stage 8 so that the position of the reference mark corresponding to the irradiation target region to be doped with the impurity element on the semiconductor substrate 2 matches the optical axis of the laser beam 6. Move a predetermined amount in the X and Y directions. At this time, instead of moving the support base 3, the laser optical system 10 may be moved by a predetermined amount in the X and Y directions.

次に、不純物液槽5の内側に不純物液1を供給して貯留させた上で、貯留した不純物液1中に半導体基板2を浸漬させる。或いは、不純物液槽5の内側の底面上に半導体基板2を載置した上で、不純物液1を不純物液槽5の内側に供給して貯留させてもよい。不純物液1の供給により、不純物元素の分子の液相が、半導体基板2の上面上に形成される。すなわち不純物元素の濃度が100%又は100%に極めて近似する状態の液体を半導体基板2に接触させる。   Next, after supplying and storing the impurity liquid 1 inside the impurity liquid tank 5, the semiconductor substrate 2 is immersed in the stored impurity liquid 1. Alternatively, after the semiconductor substrate 2 is placed on the bottom surface inside the impurity liquid tank 5, the impurity liquid 1 may be supplied and stored inside the impurity liquid tank 5. By supplying the impurity liquid 1, a liquid phase of molecules of the impurity element is formed on the upper surface of the semiconductor substrate 2. That is, a liquid in a state where the concentration of the impurity element is very close to 100% or 100% is brought into contact with the semiconductor substrate 2.

次に、不純物液1を介して半導体基板2の上面上の照射目標位置にレーザ光6を照射する。レーザ光6の照射により、照射位置の下側の領域に不純物元素がドーピングされる。ここで図1に示すように、不純物導入装置は常温環境とされた室内に配置されているが、不純物液槽5には断熱容器を用いて、不純物液1が揮発して発生した気泡によりレーザ光6が散乱されることを抑制している。タンクから不純物液槽5に移動した不純物液1は、直ちに周囲から蒸発潜熱を奪い、図2中の複数の上向き矢印で示すように、不純物液1の液面から揮発する。そして揮発した不純物液1は、不純物液槽5の周囲から大気を排除し、不純物液1の液面には不純物と同組成の気体(揮発した不純物液1)のみが接するような構成としている。この様にして、空気中の酸素などが不純物液1に溶け込み、不純物液1の純度が低下することを防止している。尚、図2中では説明のため、集光装置15以外のレーザ光学系10の構成の図示は省略されている。   Next, the irradiation target position on the upper surface of the semiconductor substrate 2 is irradiated with the laser beam 6 through the impurity liquid 1. By irradiation with the laser beam 6, an impurity element is doped in a region below the irradiation position. Here, as shown in FIG. 1, the impurity introduction device is disposed in a room in a room temperature environment, but a heat insulating container is used for the impurity liquid tank 5, and the laser is generated by bubbles generated by evaporation of the impurity liquid 1. The scattering of the light 6 is suppressed. The impurity liquid 1 moved from the tank to the impurity liquid tank 5 immediately takes away latent heat of vaporization from the surroundings and volatilizes from the surface of the impurity liquid 1 as indicated by a plurality of upward arrows in FIG. The volatilized impurity liquid 1 is configured such that the atmosphere is excluded from the periphery of the impurity liquid tank 5, and only the gas having the same composition as the impurities (the volatilized impurity liquid 1) is in contact with the liquid surface of the impurity liquid 1. In this way, oxygen in the air or the like is dissolved in the impurity liquid 1 to prevent the purity of the impurity liquid 1 from being lowered. 2, illustration of the structure of the laser optical system 10 other than the condensing device 15 is abbreviate | omitted for description.

不純物液1の揮発に伴い不純物液1と空気との置換が進行すると、不純物液槽5中の不純物液1の貯留量は漸減する。しかし本発明の実施形態では、不純物液1の揮発が進行する一方で、不純物液槽5の内側に、レーザードーピングを継続可能な量の不純物液1を、図2中の白抜きの下向き矢印で示すように、供給して貯留する。すなわち、レーザードーピング処理中は、不純物液1の貯留量の減少が抑制され、半導体基板2の内部に所望の濃度の不純物元素を所望の深さまで導入可能な量の不純物液1が、半導体基板2の上面に存在する。レーザードーピング中における不純物液1の貯留量は、不純物液1の単位時間あたりの揮発量や、レーザ光6の照射開始から終了までの処理時間等を考慮して設定されている。そのため、レーザードーピングの途中で不純物元素が不足してドーパントの導入濃度が低下するという事態を回避できる。   As the substitution of the impurity liquid 1 and air proceeds as the impurity liquid 1 volatilizes, the amount of the impurity liquid 1 stored in the impurity liquid tank 5 gradually decreases. However, in the embodiment of the present invention, while the volatilization of the impurity liquid 1 proceeds, an amount of the impurity liquid 1 capable of continuing the laser doping is indicated inside the impurity liquid tank 5 by a white downward arrow in FIG. Supply and store as shown. That is, during the laser doping process, a decrease in the storage amount of the impurity liquid 1 is suppressed, and an amount of the impurity liquid 1 that can introduce an impurity element having a desired concentration into the semiconductor substrate 2 to a desired depth is contained in the semiconductor substrate 2. Present on the top surface of The storage amount of the impurity liquid 1 during laser doping is set in consideration of the volatilization amount per unit time of the impurity liquid 1, the processing time from the start to the end of the irradiation of the laser light 6, and the like. Therefore, it is possible to avoid a situation in which the impurity element is insufficient during laser doping and the dopant concentration is lowered.

またレーザードーピングの際、レーザ光6が照射された半導体基板2の表面は、局所的に加熱され昇温するが、半導体基板2の表面には、常温より遥かに低温の液体窒素が接触することにより、昇温した半導体基板2の冷却が促進され速やかに降温する。通常、シリコンの安定性が比較的高いとされるSiCの半導体基板であっても、千数百度以上の高温レベルで加熱処理が施されると、半導体基板の表面が溶発(アブレーション)し、表面からシリコンが脱落することが知られている。本発明の実施形態では、液体窒素を不純物液1として用いることにより、SiCの半導体基板2の表面のアブレーションを抑制できる。   In addition, during laser doping, the surface of the semiconductor substrate 2 irradiated with the laser beam 6 is locally heated to raise the temperature, but the surface of the semiconductor substrate 2 is in contact with liquid nitrogen at a temperature much lower than room temperature. Thus, the cooling of the semiconductor substrate 2 whose temperature has been increased is promoted, and the temperature is quickly lowered. Usually, even if it is a SiC semiconductor substrate whose stability of silicon is relatively high, the surface of the semiconductor substrate is ablated (ablated) when subjected to heat treatment at a high temperature level of several thousand degrees or more, It is known that silicon falls off the surface. In the embodiment of the present invention, by using liquid nitrogen as the impurity liquid 1, ablation of the surface of the SiC semiconductor substrate 2 can be suppressed.

尚、常温より低い沸点を有し本発明の実施形態に係る不純物導入方法のドーパントとして使用可能な他の不純物元素として、例えば水素(H、沸点:マイナス約252度)、酸素(O、沸点:マイナス約183度)、フッ素(F、沸点:マイナス約188度)、塩素(Cl、沸点:マイナス約34度)等が好適に用いられる。   As other impurity elements having a boiling point lower than normal temperature and usable as a dopant in the impurity introduction method according to the embodiment of the present invention, for example, hydrogen (H, boiling point: minus about 252 degrees), oxygen (O, boiling point: Minus about 183 degrees), fluorine (F, boiling point: minus about 188 degrees), chlorine (Cl, boiling point: minus about 34 degrees), etc. are preferably used.

次に、ある照射目標位置におけるレーザ光6の照射が終了した後、支持台3又はレーザ光学系10を、所望の方向に所定量移動させることにより、レーザ光6の照射位置を次の照射目標位置に移動させる。そして新たな照射目標位置に対してレーザ光6を照射し、照射が終了した後、レーザ光6の照射位置を次の照射目標位置に移動させ…の処理を繰り返し、半導体基板2の内部の一部に不純物元素を導入する。レーザ光6の照射及び照射位置の移動を繰り返すことにより、半導体基板2の上面上に複数の照射領域を重ね合わせたパターンを形成し、不純物元素のドーピング面を形成する。   Next, after the irradiation of the laser beam 6 at a certain irradiation target position is completed, the irradiation position of the laser beam 6 is moved to the next irradiation target by moving the support base 3 or the laser optical system 10 by a predetermined amount in a desired direction. Move to position. Then, the laser beam 6 is irradiated to the new irradiation target position, and after the irradiation is completed, the irradiation position of the laser beam 6 is moved to the next irradiation target position, and the process of the above is repeated. Impurity elements are introduced into the parts. By repeating the irradiation of the laser beam 6 and the movement of the irradiation position, a pattern in which a plurality of irradiation regions are superimposed on the upper surface of the semiconductor substrate 2 is formed, and an impurity element doping surface is formed.

次に、本発明の実施形態に係る不純物導入方法を用いた半導体素子の製造方法を説明する。まず、第1導電型又は第2導電型の半導体基板2の上面の一部に、不純物元素の分子の液相を形成する。ここで第1導電型はp型又はn型であり、第2導電型は第1導電型の反対の導電型である。次に、液相を介して半導体基板2の上面にレーザ光6を照射して、半導体基板2の上部に、第1導電型(p型又はn型)の第1の半導体領域を形成する。次に、第1の半導体領域が形成されていない半導体基板2の上面にオーミックコンタクト電極層を接合させ、半導体素子を製造する。   Next, a method for manufacturing a semiconductor device using the impurity introduction method according to the embodiment of the present invention will be described. First, a liquid phase of an impurity element molecule is formed on a part of the upper surface of the semiconductor substrate 2 of the first conductivity type or the second conductivity type. Here, the first conductivity type is p-type or n-type, and the second conductivity type is a conductivity type opposite to the first conductivity type. Next, the upper surface of the semiconductor substrate 2 is irradiated with a laser beam 6 through a liquid phase to form a first semiconductor region of a first conductivity type (p-type or n-type) on the semiconductor substrate 2. Next, an ohmic contact electrode layer is bonded to the upper surface of the semiconductor substrate 2 where the first semiconductor region is not formed, and a semiconductor element is manufactured.

図3及び図4には、第2導電型(p型)の半導体基板2の上面に、第1導電型(n型)の第1の半導体領域2aを形成する実施例が示されている。尚、図3中では説明のため、レーザ光6及び集光装置15以外のレーザ光学系10の構成の図示は省略されている。まず濃度1017/cmのアルミニウム(Al)をドーピングしたp型エピタキシャル層を厚さ2μmで形成した4H−SiCの半導体基板2を、図3に示すように、不純物液槽5の内側に貯留させた不純物液1中に浸漬した。不純物液1は液体窒素を用いた。 FIGS. 3 and 4 show an embodiment in which a first conductive type (n-type) first semiconductor region 2a is formed on the upper surface of a second conductive type (p-type) semiconductor substrate 2. FIG. In FIG. 3, the illustration of the configuration of the laser optical system 10 other than the laser beam 6 and the condensing device 15 is omitted for the sake of explanation. First, a 4H—SiC semiconductor substrate 2 in which a p-type epitaxial layer doped with aluminum (Al) at a concentration of 10 17 / cm 3 is formed with a thickness of 2 μm is stored inside an impurity liquid tank 5 as shown in FIG. It was immersed in the impurity liquid 1 made to flow. As the impurity liquid 1, liquid nitrogen was used.

次に、不純物液1を介して半導体基板2の上面にKrF(=248nm)エキシマレーザをパルス照射した。レーザ光6のビームは130μm×330μmの矩形状に形成した。パルス照射は、レーザ光6のパワー密度を4J/cmとするとともに、パルス幅を55ns、繰り返し周波数を100Hzとした。そして半導体基板2の上面のある照射目標位置に対してレーザ光6の照射を1000回繰り返して第1の半導体領域2aを形成し、半導体基板2に窒素をドーピングした。 Next, a KrF (= 248 nm) excimer laser was pulse-irradiated on the upper surface of the semiconductor substrate 2 through the impurity liquid 1. The beam of the laser beam 6 was formed in a rectangular shape of 130 μm × 330 μm. In the pulse irradiation, the power density of the laser beam 6 was 4 J / cm 2 , the pulse width was 55 ns, and the repetition frequency was 100 Hz. Then, the irradiation of the laser beam 6 was repeated 1000 times to the irradiation target position on the upper surface of the semiconductor substrate 2 to form the first semiconductor region 2a, and the semiconductor substrate 2 was doped with nitrogen.

レーザードーピング終了後、半導体基板2を酸素プラズマに曝し、表面に堆積したカーボンコンタミネーションを除去した。次に半導体基板2の表面上にチタン(Ti)、続けてアルミニウム(Al)を、それぞれスパッタリングにより成膜形成した後、Ti/Al膜が、半導体基板2の第1の半導体領域2a以外のレーザ光6を照射していないp型領域に残るようにパターニングした。その後、半導体基板2に対し窒素(N)雰囲気中で1000度/2分のアニールを行い、Ti/Al膜を合金化し、図4に示すように、半導体基板2のp型層上にオーミックコンタクト電極層Cを形成した。 After the laser doping, the semiconductor substrate 2 was exposed to oxygen plasma to remove carbon contamination deposited on the surface. Next, after titanium (Ti) and subsequently aluminum (Al) are formed on the surface of the semiconductor substrate 2 by sputtering, the Ti / Al film is a laser other than the first semiconductor region 2 a of the semiconductor substrate 2. Patterning was performed so as to remain in the p-type region not irradiated with light 6. Thereafter, the semiconductor substrate 2 is annealed at 1000 ° / 2 minutes in a nitrogen (N 2 ) atmosphere to alloy the Ti / Al film, and an ohmic layer is formed on the p-type layer of the semiconductor substrate 2 as shown in FIG. A contact electrode layer C was formed.

図4中の半導体基板の上側には、n型の第1の半導体領域2aと、第1の半導体領域2aが形成されていないp型の半導体基板2の上面に接合されたオーミックコンタクト電極層Cとの間を接続した回路が模式的に例示されている。図4に示す回路を用いて、第1の半導体領域2aとオーミックコンタクト電極層Cとの間の電流‐電圧特性を確認したところ、約2.8Vで、回路に電流が流れ始めた。2.8Vの値は、SiCにおけるpn接合のビルトインポテンシャル近傍の値であるので、n型の第1の半導体領域2aとp型領域との間にpn接合が形成されていることが確認された。   On the upper side of the semiconductor substrate in FIG. 4, an n-type first semiconductor region 2a and an ohmic contact electrode layer C bonded to the upper surface of the p-type semiconductor substrate 2 where the first semiconductor region 2a is not formed. The circuit which connected between these is typically illustrated. When the current-voltage characteristics between the first semiconductor region 2a and the ohmic contact electrode layer C were confirmed using the circuit shown in FIG. 4, current started to flow through the circuit at about 2.8V. Since the value of 2.8 V is a value near the built-in potential of the pn junction in SiC, it was confirmed that a pn junction was formed between the n-type first semiconductor region 2a and the p-type region. .

また実施例で得られた半導体基板2中にドーピングされた窒素は、SIMSを用いた分析により、図5中のNで示す曲線のように、ピーク濃度が、半導体基板2の表面近傍で4×1021/cm程度であった。また窒素の侵入深さについては、図5中の「N」で示す曲線の略水平な領域で表されるように、SIMSによる検出限界濃度が3×1018/cm程度であったため、図5に示すプロファイルからは1μm程度以上の深さにおける正確な濃度は不明であった。しかし、少なくとも1μm程度の深さまでは濃度3×1018/cm以上でドーピングされたことが確認できた。 Further, nitrogen doped in the semiconductor substrate 2 obtained in the example has a peak concentration of 4 × in the vicinity of the surface of the semiconductor substrate 2 as shown by a curve indicated by N in FIG. 5 by analysis using SIMS. It was about 10 21 / cm 3 . As for the penetration depth of nitrogen, the detection limit concentration by SIMS was about 3 × 10 18 / cm 3 as represented by the substantially horizontal region of the curve indicated by “N” in FIG. From the profile shown in FIG. 5, the exact concentration at a depth of about 1 μm or more was unknown. However, it was confirmed that doping was performed at a concentration of 3 × 10 18 / cm 3 or more at a depth of at least about 1 μm.

尚、図5中には、ドーピングされた窒素の濃度プロファイルとともに、半導体基板2に含まれるシリコン(Si)及び炭素(C)のそれぞれのイオン強度(a.u,)の深さ方向分布が、図5中の「Si」で示す曲線及び「C」で示す曲線によって表されている。「Si」で示す曲線と「C」で示す曲線とが略平行に現れる状態で示されるように、SiCの結晶構造の維持が、半導体基板2の表面から0.3〜0.4μm程度以上深い領域で達成されている。そして、SiCの結晶構造が維持された領域に、窒素が深く導入されていることがわかる。   In FIG. 5, along with the concentration profile of the doped nitrogen, the distribution in the depth direction of the ionic strength (au) of each of silicon (Si) and carbon (C) contained in the semiconductor substrate 2 is This is represented by a curve indicated by “Si” and a curve indicated by “C” in FIG. As shown in a state where the curve indicated by “Si” and the curve indicated by “C” appear substantially in parallel, the maintenance of the crystal structure of SiC is about 0.3 to 0.4 μm or more deep from the surface of the semiconductor substrate 2. Has been achieved in the area. It can be seen that nitrogen is deeply introduced into the region where the SiC crystal structure is maintained.

また比較例として、実施例と同様のp型エピタキシャル層を形成した4H−SiCの半導体基板2を、85%リン酸水溶液中に浸漬させ、実施例と同様の条件でレーザ光6を照射し、半導体基板の内部にリンをドーピングしてn型の半導体領域を形成した半導体基板を製造した。図5中には、比較例における半導体基板の内部のリンの濃度のプロファイルが、「P」で示す曲線で表されている。リンのピーク濃度は、半導体基板の表面近傍で1×1021/cm程度であった。また侵入深さについては、上限が0.4μm程度であるとともに、0.1〜0.4μm程度の深さにおけるドーピング濃度は2×1015/cm程度であった。よって本発明の実施例は、比較例に比べて、不純物元素のピーク濃度及び侵入深さのいずれについても上回った。 As a comparative example, a 4H—SiC semiconductor substrate 2 on which a p-type epitaxial layer similar to that of the example was formed was immersed in an 85% phosphoric acid aqueous solution, and the laser beam 6 was irradiated under the same conditions as in the example. A semiconductor substrate in which an n-type semiconductor region was formed by doping phosphorus inside the semiconductor substrate was manufactured. In FIG. 5, the profile of the concentration of phosphorus inside the semiconductor substrate in the comparative example is represented by a curve indicated by “P”. The peak concentration of phosphorus was about 1 × 10 21 / cm 3 in the vicinity of the surface of the semiconductor substrate. As for the penetration depth, the upper limit was about 0.4 μm, and the doping concentration at a depth of about 0.1 to 0.4 μm was about 2 × 10 15 / cm 3 . Therefore, the example of the present invention exceeded both the peak concentration of the impurity element and the penetration depth as compared with the comparative example.

本発明の実施形態に係る不純物導入方法によれば、レーザードーピングを行う際に、不純物元素の分子の液相である不純物液1を半導体基板2の表面に存在させ、不純物液1を介してレーザードーピングを行う。不純物液1に含まれる不純物元素は分子単体であり、不純物元素を溶解させるための化合物塩や溶媒を用いないため、不純物元素以外の化合物塩や溶媒構成材料が半導体基板の表面に接触しない。よって、これらの化合物塩や溶媒構成材料が、半導体基板の表面に吸着して汚染が生じたり、半導体基板の結晶層中に取り込まれたりすることを回避できる。   According to the impurity introduction method according to the embodiment of the present invention, when performing laser doping, the impurity liquid 1 that is the liquid phase of the molecule of the impurity element is present on the surface of the semiconductor substrate 2, and the laser is introduced through the impurity liquid 1. Doping. Since the impurity element contained in the impurity liquid 1 is a single molecule and does not use a compound salt or solvent for dissolving the impurity element, a compound salt or solvent constituent material other than the impurity element does not contact the surface of the semiconductor substrate. Therefore, it can be avoided that these compound salts and solvent constituent materials are adsorbed on the surface of the semiconductor substrate to cause contamination or taken into the crystal layer of the semiconductor substrate.

また通常、不純物元素を溶媒に溶解させて溶液を作成し、作成した溶液を用いてSiCの半導体基板に対して行うレーザードーピングの場合、不純物元素の注入効率の観点から、溶液中の不純物元素の分子又は不純物元素の化合物は、溶液中に溶解度限界付近の高濃度で溶解されることが多い。そのため、溶液の温度が僅かに低下しただけで、不純物元素の分子又は不純物元素を含む化合物が析出する状態が生じる場合がある。本発明の実施形態では、不純物元素を溶媒に溶解させた溶液を使用せず、不純物元素の分子の液相を選択的に用いるので、所望の不純物元素を高濃度で半導体基板2の内部に導入するとともに、レーザードーピング中に不純物元素の分子や不純物元素を含む化合物が析出することがない。   In addition, in the case of laser doping, which is usually performed by dissolving an impurity element in a solvent, and performing laser doping on a SiC semiconductor substrate using the prepared solution, the impurity element in the solution is removed from the viewpoint of impurity element implantation efficiency. Molecules or compounds of impurity elements are often dissolved in a solution at a high concentration near the solubility limit. Therefore, a state in which a molecule of an impurity element or a compound containing the impurity element is precipitated may occur even when the temperature of the solution is slightly lowered. In the embodiment of the present invention, the liquid phase of the molecule of the impurity element is selectively used without using the solution in which the impurity element is dissolved in the solvent, so that the desired impurity element is introduced into the semiconductor substrate 2 at a high concentration. In addition, no impurity element molecules or compounds containing the impurity element are precipitated during laser doping.

本発明は上記のとおり開示した実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになると考えられるべきである。すなわち本発明は、上記に記載していない様々な実施の形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。例えば、本実施例では不純物液槽5に断熱容器を用いたが、これに限ることはなく、不純物液槽5を液体ヘリウムなど不純物液の沸点以下の温度の液体やクライオスタットなどで冷却して不純物液の揮発を抑制する構造を用いても良い。   Although the present invention has been described by the embodiments disclosed above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, it should be understood that various alternative embodiments, examples, and operational techniques will become apparent to those skilled in the art. That is, the present invention includes various embodiments and the like not described above, and the technical scope of the present invention is determined only by the invention specifying matters according to the appropriate claims from the above description. is there. For example, although a heat insulating container is used for the impurity liquid tank 5 in this embodiment, the present invention is not limited to this. A structure that suppresses the volatilization of the liquid may be used.

1 不純物液
2 半導体基板
2a 第1の半導体領域
6 レーザ光
C オーミックコンタクト電極層
DESCRIPTION OF SYMBOLS 1 Impurity liquid 2 Semiconductor substrate 2a 1st semiconductor region 6 Laser beam C Ohmic contact electrode layer

Claims (5)

半導体基板の表面上に、不純物元素の分子の液相を形成する工程と、
前記液相を介して前記半導体基板の表面にレーザ光を照射する工程と、
を含み、前記半導体基板の内部の一部に前記不純物元素を導入することを特徴とする不純物導入方法。
Forming a liquid phase of impurity element molecules on the surface of the semiconductor substrate;
Irradiating the surface of the semiconductor substrate with laser light through the liquid phase;
And introducing the impurity element into part of the inside of the semiconductor substrate.
前記不純物元素の分子として、沸点が常温より低い温度の不純物元素の分子を用いることを特徴とする請求項1に記載の不純物導入方法。   2. The impurity introduction method according to claim 1, wherein a molecule of the impurity element having a boiling point lower than room temperature is used as the molecule of the impurity element. 前記不純物元素の分子として、窒素分子を用いることを特徴とする請求項2に記載の不純物導入方法。   The impurity introducing method according to claim 2, wherein nitrogen molecules are used as the molecules of the impurity element. 半導体基板の表面上に、不純物元素の分子の液相を形成する工程と、
前記液相を介して前記半導体基板の表面にレーザ光を照射して、前記半導体基板の内部の一部に前記不純物元素を導入し、第1の半導体領域を形成する工程と、
を含むことを特徴とする半導体素子の製造方法。
Forming a liquid phase of impurity element molecules on the surface of the semiconductor substrate;
Irradiating the surface of the semiconductor substrate with laser light through the liquid phase, introducing the impurity element into a part of the semiconductor substrate, and forming a first semiconductor region;
The manufacturing method of the semiconductor element characterized by the above-mentioned.
前記半導体基板の第1の半導体領域以外の領域にオーミックコンタクト電極層を形成する工程を更に含むことを特徴とする請求項4に記載の半導体素子の製造方法。   The method of manufacturing a semiconductor element according to claim 4, further comprising a step of forming an ohmic contact electrode layer in a region other than the first semiconductor region of the semiconductor substrate.
JP2014174567A 2014-08-28 2014-08-28 Impurity introduction method and semiconductor device manufacturing method Active JP6372881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174567A JP6372881B2 (en) 2014-08-28 2014-08-28 Impurity introduction method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174567A JP6372881B2 (en) 2014-08-28 2014-08-28 Impurity introduction method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2016051737A true JP2016051737A (en) 2016-04-11
JP6372881B2 JP6372881B2 (en) 2018-08-15

Family

ID=55659060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174567A Active JP6372881B2 (en) 2014-08-28 2014-08-28 Impurity introduction method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP6372881B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069779B2 (en) 2018-05-29 2021-07-20 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method for manufacturing the same
US11264240B2 (en) 2018-08-27 2022-03-01 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130930A (en) * 1980-03-18 1981-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS63178520A (en) * 1987-01-20 1988-07-22 Nippon Telegr & Teleph Corp <Ntt> Method of adding impurity to semiconductor
JPH0448723A (en) * 1990-06-15 1992-02-18 Fuji Xerox Co Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130930A (en) * 1980-03-18 1981-10-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS63178520A (en) * 1987-01-20 1988-07-22 Nippon Telegr & Teleph Corp <Ntt> Method of adding impurity to semiconductor
JPH0448723A (en) * 1990-06-15 1992-02-18 Fuji Xerox Co Ltd Manufacture of semiconductor device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
井上祐樹: "アンモニア水溶液中レーザー照射による4H-SiC中への窒素ドーピング", 第74会応用物理学会秋季学術講演会講演予稿集, vol. 2013秋, JPN6017043168, 16 September 2013 (2013-09-16), JP, pages 19a-P9-8 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069779B2 (en) 2018-05-29 2021-07-20 Fuji Electric Co., Ltd. Silicon carbide semiconductor device and method for manufacturing the same
US11264240B2 (en) 2018-08-27 2022-03-01 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP6372881B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
ES2314688T3 (en) SOLID WITH LASER BODY LASER WITH A LINEARLY FOCUSED LASER RAY AND MANUFACTURE OF SOLAR CELL ISSUERS BASED ON THE SAME.
US7915154B2 (en) Laser diffusion fabrication of solar cells
US20160052090A1 (en) Manufacturing method of substrate, cutting method of processing object and laser processing apparatus
JP5641965B2 (en) Laser annealing method and laser annealing apparatus
JP2011119297A (en) Laser annealing device and laser annealing method
JP2006351659A (en) Method of manufacturing semiconductor device
JP2011514664A (en) Engineering flat surfaces of materials doped via pulsed laser irradiation
JP2010171057A (en) Semiconductor device, and method of manufacturing the same
US20160247681A1 (en) Method for doping impurities, method for manufacturing semiconductor device, and semiconductor device
JP6372881B2 (en) Impurity introduction method and semiconductor device manufacturing method
JP2016157911A (en) Device for doping impurity, method for doping impurity, and method for manufacturing semiconductor element
US9659774B2 (en) Impurity introducing method, impurity introducing apparatus, and method of manufacturing semiconductor element
JP2016015463A (en) METHOD FOR PROCESSING SiC MATERIAL AND SiC MATERIAL
JP6468041B2 (en) Impurity introduction apparatus, impurity introduction method, and semiconductor device manufacturing method
US10854457B2 (en) Implanted dopant activation for wide bandgap semiconductor electronics
JP2012156390A (en) Laser annealing method and laser annealing apparatus
JP2016046448A (en) Semiconductor element manufacturing method
JP2013138252A (en) Laser annealing method
JPH11224861A (en) Activation method and activation device for semiconductor impurity
CN109891553B (en) Device forming method
JP2005223219A (en) Thin film, method for manufacturing p-type zinc oxide thin film and semiconductor device
JP6573163B2 (en) Impurity introduction apparatus, impurity introduction method, and semiconductor device manufacturing method
JP2014195004A (en) Process of manufacturing semiconductor element and manufacturing apparatus of semiconductor element
TWI833756B (en) How to form the suction layer
JP6143591B2 (en) Semiconductor device manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180712

R150 Certificate of patent or registration of utility model

Ref document number: 6372881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250