JP2016050762A - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP2016050762A
JP2016050762A JP2015136734A JP2015136734A JP2016050762A JP 2016050762 A JP2016050762 A JP 2016050762A JP 2015136734 A JP2015136734 A JP 2015136734A JP 2015136734 A JP2015136734 A JP 2015136734A JP 2016050762 A JP2016050762 A JP 2016050762A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
ejector
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015136734A
Other languages
English (en)
Other versions
JP6459807B2 (ja
Inventor
片岡 博
Hiroshi Kataoka
博 片岡
倉田 俊
Takashi Kurata
俊 倉田
高杉 勇
Isamu Takasugi
勇 高杉
西嶋 春幸
Haruyuki Nishijima
春幸 西嶋
陽平 長野
Yohei Nagano
陽平 長野
佳之 横山
Yoshiyuki Yokoyama
佳之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015136734A priority Critical patent/JP6459807B2/ja
Priority to US15/502,606 priority patent/US10179500B2/en
Priority to CN201580045864.8A priority patent/CN106796058B/zh
Priority to PCT/JP2015/003981 priority patent/WO2016031156A1/ja
Priority to DE112015003931.7T priority patent/DE112015003931B4/de
Publication of JP2016050762A publication Critical patent/JP2016050762A/ja
Application granted granted Critical
Publication of JP6459807B2 publication Critical patent/JP6459807B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3291Locations with heat exchange within the refrigerant circuit itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3297Expansion means other than expansion valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】蒸発器にて発揮される冷凍能力の低下を抑制可能なエジェクタ式冷凍サイクルを提供することを目的とする。
【解決手段】
気液分離手段が一体的に構成されたエジェクタモジュール13の液相冷媒流出口31cと蒸発器14の冷媒流入口とを接続する入口配管15dの長さを、エジェクタモジュール13の気相冷媒流出口31dと圧縮機11の吸入口とを接続する吸入配管15cの長さよりも短くする。これにより、入口配管15dを流通する液相冷媒がエンジンルーム内の熱を吸熱してしまうことを抑制し、蒸発器14にて発揮される冷凍能力の低下を抑制する。
【選択図】図1

Description

本発明は、冷媒減圧手段としてエジェクタを備えるエジェクタ式冷凍サイクルに関する。
従来、冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。
この種のエジェクタ式冷凍サイクルでは、エジェクタのノズル部から噴射された高速度の噴射冷媒の吸引作用によって、蒸発器から流出した冷媒をエジェクタの冷媒吸引口から吸引し、エジェクタのディフューザ部(昇圧部)にて噴射冷媒と吸引冷媒との混合冷媒を昇圧させて圧縮機へ吸入させる。
これにより、エジェクタ式冷凍サイクルでは、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。従って、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。
さらに、特許文献1には、気液分離手段(気液分離部)が一体的に構成されたエジェクタ(以下、エジェクタモジュールと記載する。)が開示されている。
この特許文献1のエジェクタモジュールによれば、気液分離手段にて分離された気相冷媒を流出させる気相冷媒流出口に圧縮機の吸入口側を接続し、気液分離手段にて分離された液相冷媒を流出させる液相冷媒流出口に蒸発器の冷媒流入口側を接続し、さらに、冷媒吸引口に蒸発器の冷媒流出口側を接続することによって、極めて容易にエジェクタ式冷凍サイクルを構成することができる。
特開2013−177879号公報
ところが、特許文献1のエジェクタモジュールでは、気液分離手段が一体に構成されているので、エジェクタモジュール自体や、エジェクタモジュールの液相冷媒流出口と蒸発器の冷媒流入口とを接続する入口配管が高温環境下に配置されていると、気液分離手段にて分離された液相冷媒が外部の熱を吸熱しやすい。
そして、気液分離手段にて分離された液相冷媒が外部から吸熱し、蒸発器へ流入する冷媒のエンタルピが上昇してしまうと、蒸発器にて発揮される冷凍能力が低下してしまう。なお、蒸発器にて発揮される冷凍能力は、蒸発器出口側冷媒のエンタルピから蒸発器入口側冷媒のエンタルピを減算したエンタルピ差によって定義される。
さらに、エジェクタ式冷凍サイクルでは、通常の冷凍サイクル装置よりも、蒸発器へ流入させる冷媒の温度が低くなる。このため、通常の冷凍サイクル装置よりも、蒸発器へ流入する冷媒と外部との温度差が拡大しやすく、蒸発器へ流入する冷媒のエンタルピが上昇してしまいやすい。
本発明は、上記点に鑑み、蒸発器にて発揮される冷凍能力の低下を抑制可能なエジェクタ式冷凍サイクルを提供することを目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、噴射冷媒と冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および昇圧部(13c)から流出した冷媒の気液を分離する気液分離部(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、気液分離部(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、を備え、
ボデー部(30)には、気液分離部(30f)にて分離された液相冷媒を流出させる液相冷媒流出口(31c)、および気液分離部(30f)にて分離された気相冷媒を流出させる気相冷媒流出口(31d)が形成されており、
液相冷媒流出口(31c)と蒸発器(14)の冷媒流入口とを接続する入口配管(15d)の長さが、気相冷媒流出口(31d)と圧縮機(11)の吸入口とを接続する吸入配管(15c)の長さよりも短くなっているエジェクタ式冷凍サイクルを特徴とする。
これによれば、入口配管(15d)の長さが、吸入配管(15c)の長さよりも短くなっているので、気液分離部(30f)にて分離された液相冷媒が入口配管(15d)を流通する際に外部の熱を吸熱してしまうことを抑制できる。従って、蒸発器(14)にて発揮される冷凍能力の低下を抑制できる。
ここで、請求項に記載された「配管の長さ」としては、直線状あるいは曲線状に形成される配管の中心線の合計長さを採用することができる。従って、「配管の長さ」は、「流路長さ」と表現することもできる。また、「配管」とは、管状の部材で形成されたものに限定されず、冷媒が流通する流路を形成する部材であれば管状以外の形状の部材によって形成されたものも含む意味である。
また、請求項2に記載の発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、噴射冷媒と冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および昇圧部(13c)から流出した冷媒の気液を分離する気液分離部(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、気液分離部(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、を備え、
ボデー部(30)には、気液分離部(30f)にて分離された液相冷媒を流出させる液相冷媒流出口(31c)、および気液分離部(30f)にて分離された気相冷媒を流出させる気相冷媒流出口(31d)が形成されており、
エジェクタモジュール(13)は、圧縮機(11)よりも蒸発器(14)の近くに配置されているエジェクタ式冷凍サイクルを特徴とする。
これによれば、エジェクタモジュール(13)が圧縮機(11)よりも蒸発器(14)の近くに配置されているので、液相冷媒流出口(31c)と蒸発器(14)とを接続する入口配管(15d)の長さを、容易に気相冷媒流出口(31d)と圧縮機(11)とを接続する吸入配管(15c)の長さよりも短くすることができる。従って、請求項1に記載の発明と同様に、蒸発器(14)にて発揮される冷凍能力の低下を抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルの模式的な全体構成図である。 第1実施形態のエジェクタ式冷凍サイクルの配管長さ比(Li/Ls)と冷凍能力との関係を示すグラフである。 第2実施形態のエジェクタモジュールの配置態様を説明するための説明図である。 第2実施形態のエジェクタモジュールの配置態様の変形例を説明するための説明図である。 第3実施形態のエジェクタモジュールの配置態様を説明するための説明図である。 第3実施形態のエジェクタモジュールの配置態様の変形例を説明するための説明図である。 第3実施形態のエジェクタモジュールの配置態様の別の変形例を説明するための説明図である。
(第1実施形態)
以下、図面を用いて、本発明の第1実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内(室内空間)へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
また、エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力する図示しない内燃機関(エンジン)とともにエンジンルーム内に配置されている。そして、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される。
より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用している。この圧縮機11の吐出容量(冷媒吐出能力)は、後述する制御装置から圧縮機11の吐出容量制御弁に出力される制御電流によって制御される。
また、本実施形態におけるエンジンルームとは、エンジンが収容される室外空間であって、車両ボデーや後述するファイアウォール50等によって囲まれた空間である。エンジンルームは、エンジンコンパートメントと呼ばれることもある。圧縮機11の吐出口には、上流側高圧配管15aを介して、放熱器12の凝縮部12aの冷媒流入口が接続されている。
放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両前方側に配置されている。
より具体的には、本実施形態の放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器として構成されている。
冷却ファン12dは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒流出口には、下流側高圧配管15bを介して、エジェクタモジュール13の冷媒流入口31aが接続されている。
エジェクタモジュール13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たすものである。さらに、本実施形態のエジェクタモジュール13は、減圧させた冷媒の気液を分離する気液分離手段としての機能も有している。
つまり、本実施形態のエジェクタモジュール13は、「気液分離手段一体型エジェクタ」あるいは「気液分離機能付きエジェクタ」として構成されている。本実施形態では、気液分離手段(気液分離部)を有していないエジェクタとの相違を明確化するために、エジェクタと気液分離手段とを一体化(モジュール化)させた構成を、エジェクタモジュールという用語を用いて表す。
エジェクタモジュール13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。なお、図1における上下の各矢印は、エジェクタモジュール13を車両に搭載した状態における上下の各方向を示したものであり、他の構成部材を車両に搭載した状態における上下の各方向は、これに限定されない。
より具体的には、本実施形態のエジェクタモジュール13は、図1に示すように、複数の構成部材を組み合わせることによって構成されたボデー部30を備えている。ボデー部30は、円柱状の金属部材にて形成されている。このボデー部30には、複数の冷媒流入口や複数の内部空間等が形成されている。
ボデー部30に形成された複数の冷媒流入出口としては、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー部30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口31dが形成されている。
また、ボデー部30の内部に形成された内部空間としては、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30a、旋回空間30aから流出した冷媒を減圧させる減圧用空間30b、減圧用空間30bから流出した冷媒を流入させる昇圧用空間30e、昇圧用空間30eから流出した冷媒の気液を分離する気液分離空間30f等が形成されている。
旋回空間30aおよび気液分離空間30fは、略円柱状の回転体形状に形成されている。減圧用空間30bおよび昇圧用空間30eは、旋回空間30a側から気液分離空間30f側へ向かって徐々に拡大する略円錐台状の回転体形状に形成されている。これらの空間の中心軸はいずれも同軸上に配置されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。
さらに、ボデー部30には、冷媒吸引口31bから吸引された冷媒を、減圧用空間30bの冷媒流れ下流側であって昇圧用空間30eの冷媒流れ上流側へ導く吸引用通路13bが形成されている。
また、減圧用空間30bおよび昇圧用空間30eの内部には、通路形成部材35が配置されている。通路形成部材35は、減圧用空間30bから離れるに伴って外周側に広がる略円錐形状に形成されており、通路形成部材35の中心軸も減圧用空間30b等の中心軸と同軸上に配置されている。
そして、ボデー部30の減圧用空間30bおよび昇圧用空間30eを形成する部位の内周面と通路形成部材35の円錐状側面との間には、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)の冷媒通路が形成されている。
この冷媒通路のうち、ボデー部30の減圧用空間30bを形成する部位と通路形成部材35の円錐状側面の頂部側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を小さく絞る形状に形成されている。この形状により、この冷媒通路は、冷媒を等エントロピ的に減圧させて噴射するノズル部として機能するノズル通路13aを構成している。
より具体的には、本実施形態のノズル通路13aは、ノズル通路13aの入口側から最小通路面積部へ向かって通路断面積を徐々に縮小させ、最小通路面積部からノズル通路13aの出口側に向かって通路断面積を徐々に拡大させる形状に形成されている。つまり、本実施形態のノズル通路13aでは、いわゆるラバールノズルと同様に冷媒通路断面積が変化する。
ボデー部30の昇圧用空間30eを形成する部位と通路形成部材35の円錐状側面の下流側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。この形状により、この冷媒通路は、ノズル通路13aから噴射された噴射冷媒と冷媒吸引口31bから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部(昇圧部)として機能するディフューザ通路13cを構成している。
また、ボデー部30の内部には、通路形成部材35を変位させてノズル通路13aの最小通路面積部の通路断面積を変化させる駆動手段としてのエレメント37が配置されている。より具体的には、エレメント37は、吸引用通路13bを流通する冷媒(すなわち、蒸発器14流出冷媒)の温度および圧力に応じて変位するダイヤフラムを有している。そして、このダイヤフラムの変位を作動棒37aを介して、通路形成部材35へ伝達することによって、通路形成部材35を上下方向に変位させる。
さらに、このエレメント37は、蒸発器14流出冷媒の温度(過熱度)が上昇するに伴って、最小通路面積部の通路断面積を拡大させる方向(鉛直方向下方側)に通路形成部材35を変位させる。一方、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が低下するに伴って、最小通路面積部の通路断面積を縮小させる方向(鉛直方向上方側)に通路形成部材35を変位させる。
本実施形態では、このように蒸発器14流出冷媒の過熱度に応じてエレメント37が通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル通路13aの最小通路面積部の通路断面積が調整される。
気液分離空間30fは、通路形成部材35の下方側に配置されている。この気液分離空間30fは、ディフューザ通路13cから流出した冷媒を中心軸周りに旋回させて、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離部である。さらに、この気液分離空間30fの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
また、ボデー部30のうち気液分離空間30fの底面を形成する部位には、分離された液相冷媒中の冷凍機油を、気液分離空間30fと気相冷媒流出口31dとを接続する気相冷媒通路側へ戻すオイル戻し穴31eが形成されている。さらに、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路には、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス31iが配置されている。
エジェクタモジュール13の気相冷媒流出口31dには、吸入配管15cを介して、圧縮機11の吸入口が接続されている。一方、液相冷媒流出口31cには、入口配管15dを介して、蒸発器14の冷媒流入口が接続されている。
蒸発器14は、エジェクタモジュール13にて減圧された低圧冷媒と送風機42から車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。さらに、蒸発器14は、後述する室内空調ユニット40のケーシング41内に配置されている。
ここで、本実施形態の車両には、車室内と車室外のエンジンルームとを仕切る仕切り板としてのファイアウォール50が設けられている。ファイアウォール50は、エンジンルーム内から車室内へ伝達される熱、音等を低減する機能も有しており、ダッシュパネルと呼ばれることもある。
そして、図1に示すように、室内空調ユニット40は、ファイアウォール50よりも車室内側に配置されている。従って、蒸発器14は車室内(室内空間)に配置されている。蒸発器14の冷媒流出口には、出口配管15eを介して、エジェクタモジュール13の冷媒吸引口31bが接続されている。
ここで、前述の如くエジェクタモジュール13は、エンジンルーム内(室外空間)に配置されているので、入口配管15dおよび出口配管15eは、ファイアウォール50を貫通するように配置されている。
より具体的には、ファイアウォール50には、エンジンルーム側と車室内(室内空間)側とを貫通する円形状あるいは矩形状の貫通穴50aが設けられている。また、入口配管15dおよび出口配管15eは、接続用の金属部材であるコネクタ51に接続されることによって一体化されている。そして、入口配管15dおよび出口配管15eは、コネクタ51によって一体化された状態で貫通穴50aを貫通するように配置されている。
この際、コネクタ51は、貫通穴50aの内周側あるいは近傍に位置付けられる。そして、コネクタ51の外周側と貫通穴50aの開口縁部との隙間には、弾性部材で形成されたパッキン52が配置されている。本実施形態では、パッキン52として、耐熱性に優れるゴム材料であるエチレンプロピレンジエン共重合ゴム(EPDM)にて形成されたものを採用している。
このようにコネクタ51と貫通穴50aとの隙間にパッキン52を介在させることによって、コネクタ51と貫通穴50aとの隙間を介して、エンジンルーム内から車室内へ水や騒音等が漏れてしまうことを抑制している。
さらに、本実施形態のエジェクタ式冷凍サイクル10では、低圧冷媒を流通させる吸入配管15c、入口配管15d、および出口配管15eとして、その管径(通路断面積)が、高圧冷媒を流通させる上流側高圧配管15aおよび下流側高圧配管15bの管径(通路断面積)によりも大きいものを採用している。また、吸入配管15c、入口配管15d、および出口配管15eとしては、互いに管径(通路断面積)が同等のものが採用されている。
また、本実施形態のエジェクタモジュール13は、圧縮機11よりも蒸発器14の近くに配置されている。換言すると、蒸発器14とエジェクタモジュール13との最短距離は、圧縮機11とエジェクタモジュール13との最短距離よりも短くなっている。そして、入口配管15dの長さが、吸入配管15cの長さよりも短くなっている。さらに、本実施形態の入口配管15dの長さは、一般的な車両用空調装置で用いられる通常の冷凍サイクル装置用の入口配管の長さと同様に、2m(メートル)以下となっている。
ここで、本実施形態における配管の長さとは、直線状あるいは曲線状に形成される配管の中心線の合計長さである。従って、配管の長さは、流路長さと表現することもできる。また、本実施形態における配管とは、管状の部材で形成されたものに限定されず、冷媒が流通する流路を形成する部材であればコネクタ51のように管状以外の形状の部材によって形成されたものも含む意味である。
なお、本実施形態の入口配管15dの長さは、エジェクタモジュール13の液相冷媒流出口31cから蒸発器14の冷媒流入口へ至る配管の長さとする。
次に、室内空調ユニット40について説明する。室内空調ユニット40は、エジェクタ式冷凍サイクル10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット40は、その外殻を形成するケーシング41内に送風機42、蒸発器14、ヒータコア44、エアミックスドア46等を収容することによって構成されている。
ケーシング41は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング41内の送風空気流れ最上流側には、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置43が配置されている。
内外気切替装置43は、ケーシング41内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置から出力される制御信号によって、その作動が制御される。
内外気切替装置43の送風空気流れ下流側には、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)42が配置されている。この送風機42は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される。
送風機42の送風空気流れ下流側には、蒸発器14およびヒータコア44が、送風空気の流れに対して、この順に配置されている。換言すると、蒸発器14は、ヒータコア44よりも送風空気流れ上流側に配置されている。ヒータコア44は、エンジン冷却水と蒸発器14通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。
また、ケーシング41内には、蒸発器14を通過した送風空気を、ヒータコア44を迂回させて下流側へ流す冷風バイパス通路45が形成されている。蒸発器14の送風空気流れ下流側であって、かつ、ヒータコア44の送風空気流れ上流側には、エアミックスドア46が配置されている。
エアミックスドア46は、蒸発器14通過後の空気のうち、ヒータコア34を通過させる空気と冷風バイパス通路45を通過させる空気との風量割合を調整する風量割合調整手段である。エアミックスドア46は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置から出力される制御信号によって、その作動が制御される。
ヒータコア44の空気流れ下流側および冷風バイパス通路45の空気流れ下流側には、ヒータコア44を通過した空気と冷風バイパス通路45を通過した空気とを混合させる混合空間が設けられている。従って、エアミックスドア46が、風量割合を調整することによって、混合空間にて混合された送風空気(空調風)の温度が調整される。
さらに、ケーシング41の送風空気流れ最下流部には、混合空間にて混合された空調風を、空調対象空間である車室内へ吹き出す図示しない開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴が設けられている。
これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、開口穴モードを切り替える開口穴モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、制御装置から出力される制御信号によって、その作動が制御される。
次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述した各種電気式のアクチュエータの作動を制御する。
また、制御装置には、車室内温度(内気温)Trを検出する内気温センサ、外気温Tamを検出する外気温センサ、車室内の日射量Asを検出する日射センサ、蒸発器14の吹出空気温度(蒸発器温度)Tefinを検出する蒸発器温度センサ、ヒータコア44へ流入するエンジン冷却水の冷却水温度Twを検出する冷却水温度センサ、圧縮機11から吐出された高圧冷媒の圧力Pdを検出する吐出圧センサ、等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内設定温度Tsetを設定する車室内温度設定スイッチ等が設けられている。
なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各種制御対象機器の制御手段を構成している。例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御する構成が吐出能力制御手段を構成している。
次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置では、操作パネルの空調作動スイッチが投入(ON)されると、制御装置が予め記憶回路に記憶している空調制御プログラムを実行する。
この空調制御プログラムでは、上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。
目標吹出温度TAOは、以下数式F1に基づいて算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
なお、Tsetは温度設定スイッチによって設定された車室内設定温度、Trは内気温センサによって検出された内気温、Tamは外気温センサによって検出された外気温、Asは日射センサによって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
さらに、空調制御プログラムでは、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、制御装置の出力側に接続された各種制御対象機器の作動状態を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して、蒸発器14から吹き出される送風空気の目標蒸発器吹出温度TEOを決定する。
そして、蒸発器温度センサによって検出された蒸発器温度Tefinと目標蒸発器吹出温度TEOとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の吐出容量制御弁に出力される制御電流が決定される。
また、送風機42の回転数、すなわち送風機42へ出力される制御電圧については、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して決定される。具体的には、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で電動モータへ出力する制御電圧を最大として送風空気量を最大量付近に制御し、目標吹出温度TAOが中間温度域に近づくに伴って送風空気量を減少させる。
また、エアミックスドア46の開度、すなわちエアミックスドア駆動用の電動アクチュエータへ出力される制御信号については、蒸発器温度Tefinおよび冷却水温度Twに基づいて、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくように決定される。
そして、制御装置は、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御信号等の出力といった制御ルーチンが繰り返される。
これにより、エジェクタ式冷凍サイクル10では、図1の太実線矢印に示すように冷媒が流れる。
すなわち、圧縮機11から吐出された高温高圧冷媒が放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる。
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタモジュール13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される。この際、減圧用空間30bの最小通路面積部30mにおける冷媒通路面積は、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように調整される。
そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒が、冷媒吸引口31bからエジェクタモジュール13の内部へ吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する。
ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される。気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて、蒸発器14へ流入する。
蒸発器14へ流入した冷媒は、送風機42によって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される。
蒸発器14にて冷却された送風空気は、エアミックスドア46の開度に応じて、ヒータコア44側の通風路および冷風バイパス通路45へ流入する。ヒータコア44側の通風路へ流入した冷風は、ヒータコア44を通過する際に再加熱され、混合空間にて冷風バイパス通路45を通過した冷風と混合される。そして、混合空間にて温度調整された空調風が、混合空間から各吹出口を介して車室内に吹き出される。
以上の如く、本実施形態の車両用空調装置によれば、車室内の空調を行うことができる。さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、ディフューザ通路13cにて昇圧された冷媒を圧縮機11に吸入させるので、通常の冷凍サイクル装置よりも圧縮機11の駆動動力を低減させて、サイクル効率(COP)を向上させることができる。
なお、通常の冷凍サイクル装置とは、圧縮機、放熱器、減圧手段(膨張弁)および蒸発器を環状に接続することによって構成されたものである。従って、通常の冷凍サイクル装置では、圧縮機へ吸入される吸入冷媒の圧力と蒸発器における冷媒蒸発圧力が略同等となる。
ところで、本実施形態のエジェクタモジュール13では、ボデー30の内部に気液分離空間30fが形成されているので、エジェクタモジュール13自体や、エジェクタモジュール13の液相冷媒流出口31cと蒸発器14の冷媒流入口とを接続する入口配管15dがエンジンルーム内のような高温環境下に配置されていると、気液分離空間30fにて分離された液相冷媒がエンジンルーム内の熱を吸熱しやすい。
そして、気液分離空間30fにて分離された液相冷媒がエンジンルーム内の熱を吸熱し、蒸発器14へ流入する冷媒のエンタルピが上昇してしまうと、蒸発器14にて発揮される冷凍能力を低下させてしまう。
さらに、エジェクタ式冷凍サイクル10では、通常の冷凍サイクル装置によりも、入口配管15dを介して蒸発器14へ流入する冷媒の温度が低くなる。このため、通常の冷凍サイクル装置よりも、入口配管15dを流通する冷媒とエンジンルーム内の温度との温度差が拡大しやすく、蒸発器14へ流入する冷媒のエンタルピが上昇してしまいやすい。
これに対して、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタモジュール13が圧縮機11よりも蒸発器14の近くに配置されており、入口配管15dの長さが、吸入配管15cの長さよりも短くなっているので、気液分離空間30fにて分離された液相冷媒が入口配管15dを流通する際にエンジンルーム内の熱を吸熱してしまうことを抑制できる。
より具体的には、本発明者らの検討によれば、吸入配管15cの長さをLsと定義し、入口配管15dの長さをLiと定義し、配管長さ比をLi/Lsと定義したときに、配管長さ比をLi/Lsと所定の一般的な運転条件時の冷凍能力の関係は、図2のグラフに示すように変化することが確認されている。
つまり、一般的な車両用空調装置で用いられる通常の冷凍サイクル装置用の入口配管の長さの範囲(すなわち、Li<2mの範囲)では、Li/Ls<1となっている際に、通常の冷凍サイクル装置よりも蒸発器14にて発揮される冷凍能力を拡大できることが確認されている。
従って、エジェクタ式冷凍サイクル10では、入口配管15dの長さLiが2m以下の範囲において、入口配管15dの長さLiが吸入配管15cの長さLsよりも短くなっている際に、通常の冷凍サイクル装置よりも蒸発器14にて発揮される冷凍能力を拡大できる。その結果、本実施形態のエジェクタ式冷凍サイクル10によれば、蒸発器14にて発揮される冷凍能力の低下を抑制できる。
(第2実施形態)
本実施形態では、第1実施形態に対して、エジェクタモジュール13の配置態様を変更した例を説明する。本実施形態のエジェクタモジュール13は、図3に示すように、ファイアウォール50の貫通穴50aの内周側に配置されている。
より詳細には、本実施形態のエジェクタモジュール13は、その一部がエンジンルーム(室外空間)側に配置されており、別の一部が車室内(室内空間)側に配置されている。このため、本実施形態のエジェクタモジュール13は、圧縮機11よりもファイアウォール50の近くに配置されている。さらに、本実施形態の入口配管15dおよび出口配管15eは、車室内(室内空間)側に配置されている。
なお、図3では、エジェクタモジュール13、ファイアウォール50、蒸発器14等の位置関係を模式的に示している。さらに、図3では、エジェクタモジュール13を、図1のIII−III断面に対応する断面図を縮小したもので示している。このことは、以下の図面においても同様である。
また、エジェクタモジュール13の外周側と貫通穴50aの開口縁部の隙間には、第1実施形態と同様の機能を果たすパッキン52aが配置されている。従って、本実施形態では、コネクタ51が廃止されている。さらに、本実施形態では、エジェクタモジュール13が、パッキン52aを介して、間接的に、かつ、揺動可能にファイアウォール50に固定されていると表現することもできる。
もちろん、エジェクタモジュール13は、ボルト締め等の手段によって、ファイアウォール50に直接的に固定されていてもよいし、ブラケット等を介して間接的に固定されていてもよい。
さらに、本実施形態では、図3に示すように、吸入配管15cのエジェクタモジュール13に接続される側の部位(モジュール側接続部位)および下流側高圧配管15bのモジュール側接続部位が、上下方向から見たときに互いに重合して配置されている。そして、吸入配管15cのモジュール側接続部位および下流側高圧配管15bのモジュール側接続部位が、いずれもファイアウォール50に沿って延びる形状に形成されている。
ここで、「ファイアウォール50に沿って延びる形状」とは、ファイアウォール50に対して完全に平行に延びる形状に限定されるものではなく、製造上あるいは組付上の誤差によって、平行の延びる形状から僅かにずれた形状も含まれる意味である。また、本実施形態では、出口配管15eのモジュール側接続部位および入口配管15dのモジュール側接続部位についても、上下方向から見たときに互いに重合して配置されている。
その他のエジェクタ式冷凍サイクル10の構成は、第1実施形態と同様である。従って、本実施形態の車両用空調装置を作動させると、第1実施形態と同様に車室内の空調を実現することができる。
さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、エジェクタモジュール13の一部を車室内に配置しているので、エジェクタモジュール13内の気液分離空間30fにて分離された液相冷媒がエンジンルーム内の熱を吸熱してしまうことを抑制できる。これに加えて、入口配管15dが車室内に配置されているので、入口配管15dを流通する液相冷媒がエンジンルーム内の熱を吸熱してしまうことも殆どない。従って、蒸発器14にて発揮される冷凍能力の低下を効果的に抑制することができる。
また、本実施形態のエジェクタ式冷凍サイクル10によれば、吸入配管15cのモジュール側接続部位および下流側高圧配管15bのモジュール側接続部位が、ファイアウォール50に沿って延びる形状に形成されている。従って、吸入配管15cおよび下流側高圧配管15bがファイアウォール50からエンジンルーム側へ突出する寸法(突出量)を低減できる。
これによれば、エンジン等の機器をエンジンルーム内に配置する際に、吸入配管15cおよび下流側高圧配管15bが干渉してしまうことを抑制でき、エンジンルーム内のスペースを有効に活用することができる。
なお、本実施形態に対して、図4に示すように、出口配管15eのモジュール側接続部位および入口配管15dのモジュール側接続部位を、ファイアウォール50に沿って延びる形状に形成してもよい。これによれば、車室内のスペースを有効に活用することができる。
さらに、吸入配管15cのモジュール側接続部位および下流側高圧配管15bのモジュール側接続部位を、ファイアウォール50に沿って延びる形状に形成するとともに、出口配管15eのモジュール側接続部位および入口配管15dのモジュール側接続部位を、ファイアウォール50に沿って延びる形状に形成してもよい。
(第3実施形態)
本実施形態では、第1実施形態に対して、エジェクタモジュール13の配置態様を変更した例を説明する。本実施形態のエジェクタモジュール13は、図5に示すように、車室内に配置された室内空調ユニット40のケーシング41内に配置されている。より詳細には、本実施形態のエジェクタモジュール13は、ケーシング41内に形成された空気通路内であって、蒸発器14の側方に配置されている。
なお、図5は、室内空調ユニット40の模式的な平面断面図であって、ケーシング41の内部における本実施形態のエジェクタモジュール13の配置態様を示している。このことは、後述する図6、図7においても同様である。
本実施形態のケーシング41内に形成される空気通路は、図5に示すように、上下方向から見たときに、蒸発器14の上流側では、蒸発器14の熱交換コア面に平行な方向(車両幅方向)に送風空気が流れる形状に形成されている。また、蒸発器14の下流側では、蒸発器14の熱交換コア面に垂直な方向(車両前後方向)に送風空気が流れる形状に形成されている。
このため、本実施形態のように、エジェクタモジュール13を蒸発器14の側方に配置すると、エジェクタモジュール13のボデー30の円筒状側面の一部によって、蒸発器14の上流側の送風空気が流通する空気通路の壁面を構成することができる。さらに、ボデー30の円筒状側面の別の一部によって、蒸発器14の下流側の送風空気が流通する空気通路の壁面を構成することができる。
つまり、本実施形態のエジェクタモジュール13の少なくとも一部は、蒸発器14へ流入する送風空気によって冷却可能に配置されており、エジェクタモジュール13の別の少なくとも一部は、蒸発器14にて冷却された送風空気によって冷却可能に配置されている。
その他のエジェクタ式冷凍サイクル10の構成は、第1実施形態と同様である。従って、本実施形態の車両用空調装置を作動させると、第1実施形態と同様に車室内の空調を実現することができる。また、本実施形態のエジェクタ式冷凍サイクル10によれば、エジェクタモジュール13をケーシング41内に配置しているので、第2実施形態と同様に、蒸発器14にて発揮される冷凍能力の低下を抑制することができる。
さらに、本実施形態では、エジェクタモジュール13を、蒸発器14へ流入する送風空気、および蒸発器14にて冷却された送風空気によって冷却することができるので、蒸発器14へ流入する冷媒のエンタルピを上昇させてしまうことが殆どない。その結果、蒸発器14にて発揮される冷凍能力の低下を極めて効果的に抑制することができる。
なお、本実施形態に対して、図6に示すように、エジェクタモジュール13を蒸発器14の上流側の空気通路内に配置して、エジェクタモジュール13を蒸発器14へ流入する送風空気によって冷却可能に配置してもよい。また、図7に示すように、エジェクタモジュール13を蒸発器14の下流側の空気通路内に配置して、エジェクタモジュール13を蒸発器14にて冷却された送風空気によって冷却可能に配置してもよい。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、エジェクタ式冷凍サイクル10を車両用空調装置に適用し、エジェクタモジュール13を、圧縮機11よりも蒸発器14およびファイアウォール50の近くに配置した例を説明した。これに対して、より好ましくは、エジェクタモジュール13を、エンジンよりも蒸発器14およびファイアウォール50の近くに配置すればよい。さらに好ましくは、エジェクタモジュール13を、エンジンからの熱的影響を受けにくい箇所に配置することが望ましい。
(2)上述の実施形態では、入口配管15dの長さを吸入配管15cの長さより短くした例を説明した。これに対して、車両に適用されるエジェクタ式冷凍サイクル10においては、入口配管15dのうち、少なくともエジェクタモジュール13の液相冷媒流出口31cからファイアウォール50のコネクタ51へ至る配管の長さが、吸入配管15cの長さより短くなっていればよい。これにより、入口配管15dを流通する液相冷媒がエンジンルーム内の熱を吸熱してしまうことを抑制できる。
(3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、可変容量型圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。例えば、圧縮機11として、電磁クラッチ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される固定容量型圧縮機を採用してもよい。固定容量型圧縮機では、電磁クラッチの断続により圧縮機の稼働
率を変化させて冷媒吐出能力を調整すればよい。また、圧縮機11として、電動モータの回転数を変化させて冷媒吐出能力を調整する電動圧縮機を採用してもよい。
また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
また、上述の実施形態では、エジェクタモジュール13のボデー30を円柱状に形成した例を説明したが、角柱状に形成されていてもよい。エジェクタモジュール13のボデー30、通路形成部材35等の構成部材は金属で形成されたものに限定されず、樹脂にて形成されたものであってもよい。
(4)上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、本発明に係るエジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、車両用の冷凍冷蔵装置に適用してもよいし、据置型空調装置、冷温保存庫等に適用してもよい。
10 エジェクタ式冷凍サイクル
11 圧縮機
12 放熱器
13 エジェクタモジュール
14 蒸発器
15c 吸入配管
15d 入口配管
30 ボデー部
30f 気液分離空間
31c 液相冷媒流出口
31d 気相冷媒流出口

Claims (8)

  1. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および前記昇圧部(13c)から流出した冷媒の気液を分離する気液分離部(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、
    前記気液分離部(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、を備え、
    前記ボデー部(30)には、前記気液分離部(30f)にて分離された液相冷媒を流出させる液相冷媒流出口(31c)、および前記気液分離部(30f)にて分離された気相冷媒を流出させる気相冷媒流出口(31d)が形成されており、
    前記液相冷媒流出口(31c)と前記蒸発器(14)の冷媒流入口とを接続する入口配管(15d)の長さが、前記気相冷媒流出口(31d)と前記圧縮機(11)の吸入口とを接続する吸入配管(15c)の長さよりも短くなっていることを特徴とするエジェクタ式冷凍サイクル。
  2. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および前記昇圧部(13c)から流出した冷媒の気液を分離する気液分離部(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、
    前記気液分離部(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、を備え、
    前記ボデー部(30)には、前記気液分離部(30f)にて分離された液相冷媒を流出させる液相冷媒流出口(31c)、および前記気液分離部(30f)にて分離された気相冷媒を流出させる気相冷媒流出口(31d)が形成されており、
    前記エジェクタモジュール(13)は、前記圧縮機(11)よりも前記蒸発器(14)の近くに配置されていることを特徴とするエジェクタ式冷凍サイクル。
  3. 前記蒸発器(14)が配置される室内空間および前記放熱器(12)が配置される室外空間は、仕切り板(50)によって仕切られており、
    前記エジェクタモジュール(13)は、前記圧縮機(11)よりも前記仕切り板(50)の近くに配置されていることを特徴とする請求項1または2に記載のエジェクタ式冷凍サイクル。
  4. 前記ボデー部(30)には、前記気液分離部(30f)にて分離された液相冷媒を流出させる液相冷媒流出口(31c)、および前記気液分離部(30f)にて分離された気相冷媒を流出させる気相冷媒流出口(31d)が形成されており、
    前記液相冷媒流出口(31c)と前記蒸発器(14)の冷媒流入口とを接続する入口配管(15d)、および前記気相冷媒流出口(31d)から前記圧縮機(11)の吸入口へ至る吸入配管(15c)のうち、少なくとも一方の前記エジェクタモジュール(13)に接続される側の部位が、前記仕切り板(50)に沿って延びる形状に形成されていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ式冷凍サイクル。
  5. 前記エジェクタモジュール(13)の少なくとも一部は、前記室内空間に配置されていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
  6. 前記エジェクタモジュール(13)の少なくとも一部は、前記蒸発器(14)へ流入する送風空気によって冷却可能に配置されていることを特徴とする請求項5に記載のエジェクタ式冷凍サイクル。
  7. 前記エジェクタモジュール(13)の少なくとも一部は、前記蒸発器(14)にて冷却された送風空気によって冷却可能に配置されていることを特徴とする請求項5に記載のエジェクタ式冷凍サイクル。
  8. 車両用空調装置に適用されるエジェクタ式冷凍サイクルであって、
    前記入口配管(15d)の長さが、2m以下であることを特徴とする請求項1ないし7のいずれか1つに記載のエジェクタ式冷凍サイクル。
JP2015136734A 2014-08-28 2015-07-08 エジェクタ式冷凍サイクル Active JP6459807B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015136734A JP6459807B2 (ja) 2014-08-28 2015-07-08 エジェクタ式冷凍サイクル
US15/502,606 US10179500B2 (en) 2014-08-28 2015-08-07 Ejector-type refrigeration cycle
CN201580045864.8A CN106796058B (zh) 2014-08-28 2015-08-07 喷射器式制冷循环
PCT/JP2015/003981 WO2016031156A1 (ja) 2014-08-28 2015-08-07 エジェクタ式冷凍サイクル
DE112015003931.7T DE112015003931B4 (de) 2014-08-28 2015-08-07 Ejektorkältekreislauf

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014173726 2014-08-28
JP2014173726 2014-08-28
JP2015136734A JP6459807B2 (ja) 2014-08-28 2015-07-08 エジェクタ式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2016050762A true JP2016050762A (ja) 2016-04-11
JP6459807B2 JP6459807B2 (ja) 2019-01-30

Family

ID=55399075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015136734A Active JP6459807B2 (ja) 2014-08-28 2015-07-08 エジェクタ式冷凍サイクル

Country Status (5)

Country Link
US (1) US10179500B2 (ja)
JP (1) JP6459807B2 (ja)
CN (1) CN106796058B (ja)
DE (1) DE112015003931B4 (ja)
WO (1) WO2016031156A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10473370B2 (en) * 2017-12-12 2019-11-12 GM Global Technology Operations LLC Ejector-receiver refrigeration circuit with valve
CN111189265B (zh) * 2018-11-15 2021-07-06 上海海立电器有限公司 一种吸气增压结构及制冷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137695A (ja) * 1992-10-22 1994-05-20 Nippondenso Co Ltd 冷凍サイクル
JP2003329313A (ja) * 2002-05-13 2003-11-19 Denso Corp 蒸気圧縮式冷凍機
JP2010036737A (ja) * 2008-08-05 2010-02-18 Denso Corp 車両用空調装置
JP2011145035A (ja) * 2010-01-18 2011-07-28 Denso Corp 蒸発器ユニット
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477857B2 (en) * 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP4096674B2 (ja) 2002-09-20 2008-06-04 株式会社デンソー 蒸気圧縮式冷凍機
DE102008005076A1 (de) 2008-01-18 2009-07-23 Valeo Klimasysteme Gmbh Kältemittelkreis und Verfahren zum Betreiben eines Kältemittelkreises

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137695A (ja) * 1992-10-22 1994-05-20 Nippondenso Co Ltd 冷凍サイクル
JP2003329313A (ja) * 2002-05-13 2003-11-19 Denso Corp 蒸気圧縮式冷凍機
JP2010036737A (ja) * 2008-08-05 2010-02-18 Denso Corp 車両用空調装置
JP2011145035A (ja) * 2010-01-18 2011-07-28 Denso Corp 蒸発器ユニット
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ

Also Published As

Publication number Publication date
JP6459807B2 (ja) 2019-01-30
DE112015003931T5 (de) 2017-05-11
US20170232821A1 (en) 2017-08-17
WO2016031156A1 (ja) 2016-03-03
CN106796058A (zh) 2017-05-31
DE112015003931B4 (de) 2021-08-19
CN106796058B (zh) 2019-04-09
US10179500B2 (en) 2019-01-15

Similar Documents

Publication Publication Date Title
JP5780166B2 (ja) ヒートポンプサイクル
JP4622960B2 (ja) エジェクタ式冷凍サイクル
JP2007040690A (ja) エジェクタ式冷凍サイクル
WO2019026530A1 (ja) 冷凍サイクル装置
JP2018146219A (ja) エジェクタモジュール
JP2010266198A (ja) エジェクタ式冷凍サイクル
JP6459807B2 (ja) エジェクタ式冷凍サイクル
WO2016063441A1 (ja) エジェクタ式冷凍サイクル装置
JP2019020063A (ja) エジェクタ式冷凍サイクル
JP6720934B2 (ja) エジェクタモジュール
WO2017217142A1 (ja) 冷凍サイクル装置
JP6319041B2 (ja) エジェクタ式冷凍サイクル
WO2016031157A1 (ja) エジェクタ式冷凍サイクル
CN107076470B (zh) 喷射器式制冷循环装置
WO2018159321A1 (ja) エジェクタモジュール
WO2016181639A1 (ja) 冷凍サイクル装置
JP6319042B2 (ja) エジェクタ式冷凍サイクル
JP6183223B2 (ja) ヒートポンプサイクル
WO2016031155A1 (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181217

R151 Written notification of patent or utility model registration

Ref document number: 6459807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250