JP2016049570A - サーボモータおよび遅延運動手法を使用した超音波プレス機 - Google Patents

サーボモータおよび遅延運動手法を使用した超音波プレス機 Download PDF

Info

Publication number
JP2016049570A
JP2016049570A JP2015168740A JP2015168740A JP2016049570A JP 2016049570 A JP2016049570 A JP 2016049570A JP 2015168740 A JP2015168740 A JP 2015168740A JP 2015168740 A JP2015168740 A JP 2015168740A JP 2016049570 A JP2016049570 A JP 2016049570A
Authority
JP
Japan
Prior art keywords
ultrasonic
stack
welding
predetermined
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015168740A
Other languages
English (en)
Other versions
JP6685669B2 (ja
Inventor
レオ・クラインステイン
Leo Klinstein
ポール・ゴルコ
Paul Golko
ウィリアム・イー・ジューコウスキー
E Jurkowski William
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dukane Corp
Original Assignee
Dukane Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/471,895 external-priority patent/US9144937B2/en
Application filed by Dukane Corp filed Critical Dukane Corp
Publication of JP2016049570A publication Critical patent/JP2016049570A/ja
Application granted granted Critical
Publication of JP6685669B2 publication Critical patent/JP6685669B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8167Quick change joining tools or surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8246Servomechanisms, e.g. servomotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/847Drilling standard machine type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9221Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power
    • B29C66/92211Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force or the mechanical power with special measurement means or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/922Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9231Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the pressure, the force, the mechanical power or the displacement of the joining tools by measuring the displacement of the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • B29C66/92441Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time
    • B29C66/92443Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile
    • B29C66/92445Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power the pressure, the force or the mechanical power being non-constant over time following a pressure-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • B29C66/92611Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools by controlling or regulating the gap between the joining tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • B29C66/92611Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools by controlling or regulating the gap between the joining tools
    • B29C66/92615Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools by controlling or regulating the gap between the joining tools the gap being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • B29C66/92921Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams in specific relation to time, e.g. pressure-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/932Measuring or controlling the joining process by measuring or controlling the speed by measuring the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93441Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • B29C66/9392Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9511Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by measuring their vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9512Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9516Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93431Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

【課題】プラスチック部品を振動接合するための、超音波溶接または他のシステムで使用するプレス機を提供すること。【解決手段】超音波溶接システムは、超音波溶接スタックに連結され、1つまたは複数のセンサから受信する1つまたは複数の制御信号に基づく制御入力に従って、制御された運動を超音波溶接スタックに行わせる運動制御システムを含む。運動制御システムは溶接動作を開始させ、それに続いて、既定条件が満たされるまで初期運動遅延が生じる。その後、既定条件が満たされたことに応答して、超音波溶接スタックは溶接プロファイルに従って運動させられる。その後、既定の遅延開始条件の発生に応答して、超音波溶接スタックは運動を停止させられ、静止位置に維持させられる。その後、既定の遅延終了条件の発生に応答して、超音波溶接スタックの運動は溶接プロファイルに従って再開される。【選択図】図1

Description

関連出願の相互参照
[0001]本出願は、その全体が参照により本明細書に組み込まれる、2014年8月28日出願の米国特許出願第14/471,895号の優先権を主張する。
[0002]本発明は、概して、プラスチック部品を振動接合するための、超音波溶接または他のシステムで使用するプレス機に関する。
米国特許第5,557,154号
[0003]本概念の一実施形態によれば、超音波溶接システムは、振動エネルギーを加工物に印加することによって溶接動作を開始するために制御入力に応答して運動可能な超音波溶接スタックを含む。システムはさらに、少なくとも1つの制御変数を測定し、少なくとも1つの制御変数に対応する制御信号を出力するための1つまたは複数のセンサを含む。システムはまた、超音波溶接スタックに連結され、制御された運動を超音波溶接スタックに行わせる運動制御システムを含む。運動制御システムは、1つまたは複数のセンサから受信した1つまたは複数の制御信号に基づいた制御入力に応答する。運動制御システムは、溶接動作を開始させること、および、溶接動作の開始に続いて、各制御変数が既定条件を満たしたことを制御信号のうちの1つまたは複数が示すまで、超音波溶接スタックの任意の運動を初期遅延させることを含む。運動制御システムはさらに、初期遅延および既定の条件を満たしたことへの応答に続いて、超音波溶接スタックを溶接プロファイルに従って運動させることを含む。運動制御システムは、溶接プロファイルに従う超音波溶接スタックの運動に続いて、既定の遅延開始条件の発生に応答して超音波溶接スタックに運動を停止させ、静止位置に維持させる。運動制御システムは、既定の遅延終了条件の発生に応答して、溶接プロファイルに従って超音波溶接スタックの運動を再開させる。
[0004]本概念の別の態様では、溶接動作のための方法は、制御入力に応答して超音波溶接スタックを運動させて加工物に振動エネルギーを印加することによって溶接動作を開始させ、1つまたは複数のセンサを介して、少なくとも1つの制御変数を測定し、対応する制御信号を出力するステップを含む。本方法はさらに、運動制御システムを介して、制御された運動を超音波溶接スタックに行わせ、運動制御システムを介して、1つまたは複数のセンサから受信した1つまたは複数の制御信号に基づいた制御入力に応答するステップを含む。本方法はまた、溶接動作の開始に続いて、各制御変数が既定条件を満たしたことを制御信号のうちの1つまたは複数が示すまで、運動制御システムを介して、超音波溶接スタックの任意の運動を初期遅延させるステップを含む。運動制御システムは、初期遅延および既定条件を満たしたことへの応答に続いて、超音波溶接スタックを溶接プロファイルに従って運動させる。運動制御システムは、溶接プロファイルに従う超音波溶接スタックの運動に続いて、既定の遅延開始条件の発生に応答して超音波溶接スタックに運動を停止させ、静止位置に維持させる。運動制御システムは、既定の遅延終了条件の発生に応答して、溶接プロファイルに従って超音波溶接スタックの運動を再開させる。
[0005]本概念のさらに別の態様では、超音波溶接システムは、直線運動して、制御された、力、速度、または、力および速度の組み合わせを第1の加工物に印加して、第1の加工物が接合される第2の加工物に対して、第1の加工物を付勢するために載置された超音波溶接スタックを含む。電動リニアアクチュエータは、超音波溶接スタックに連結された可動要素を含み、電動リニアアクチュエータは、制御入力に応答して、1または複数の制御された力および速度で可動要素および超音波溶接スタックを運動させる。制御器は、制御入力を、電動リニアアクチュエータまたはサーボモータのうちの少なくとも1つに提供して、電動リニアアクチュエータまたはサーボモータの出力を制御する。少なくとも1つのセンサは、少なくとも1つの対応する制御変数を測定し、制御変数に対応する信号を制御器に出力する。制御器は、少なくとも1つのセンサによる信号出力に基づいて、電動リニアアクチュエータの可動要素に、任意の前の溶接運動に続いて、既定の遅延開始条件から既定の遅延終了条件まで運動を停止させ、静止位置を維持させる。制御器はさらに、少なくとも1つのセンサによる信号出力が既定の遅延終了条件を満たしたことを示すのに基づいて、電動リニアアクチュエータに、デフォルトの溶接プロファイル、または複数の利用可能な溶接プロファイルから選択された溶接プロファイルに従って超音波溶接スタックの運動を再開させる。
[0006]本発明の追加の態様は、以下に簡単な説明が提供される図面を参照してなされる様々な実施形態の詳細な記載に鑑みれば当業者にとっては明らかであろう。
[0007]本発明は、添付図面を参照するとともに、以下の好ましい実施形態の記載からより適切に理解されよう。
[0008]超音波溶接機の正面斜視図である。 [0009]ハウジング壁の一部を取り除いて、リニアアクチュエータを含む、内部構造を明らかにした、図1に示した超音波溶接機の一部の拡大側面斜視図である。 [0010]サーボモータ駆動のアクチュエータの代わりの、リニアモータ駆動を示した、図2の変形例を示す図である。 [0011]力のフィードバックに使用される荷重セルを示した、図2の変形例を示す図である。 [0012]図1に示された超音波溶接機内の超音波「スタック」の拡大分解立面図である。 [0013]接触棒に対して押圧されたままの状態のばね式接触ボタンを示した、図5の変形例を示す図である。 [0014]図1〜4に示された超音波溶接機に使用されるリニアアクチュエータのための制御システムの一実施形態のブロック図である。 [0015]図4に示された超音波溶接機に使用されるリニアアクチュエータのための制御システムの一実施形態のブロック図である。 [0016]本概念の少なくとも1つの態様に従って、サーボプレス機を使用し、遅延運動手法を用いて形成した溶接サンプルの距離対時間のグラフを示す図である。 [0017]図9に示されたサンプルにおける溶接の力対時間のグラフを示す図である。 [0018]図9に示されたサンプルにおける溶接のための溶接スタックのトランスデューサに対する出力電力の電力対時間のグラフを示す図である。 [0019]遅延溶接運動の、時間に対してプロットされた対応する、距離、力、および力の変化率のグラフの例である。 [0020]遅延溶接運動の、時間に対してプロットされた対応する、距離、力、および超音波振幅のグラフの別の例である。 [0021]2つの運動遅延段階を有する溶接運動の、時間に対してプロットされた対応する、距離および力のグラフの別の例である。 [0022]動的速度調節(a)なし、および(b)あり、の溶接の、時間に対してプロットされた対応する、速度、力、および力の変化率のグラフの別の例である。 [0023]動的速度調節(a)なし、および(b)あり、の溶接の、時間に対してプロットされた対応する、速度および力のグラフの別の例である。 [0024]速度が超音波振幅に直接比例して立ち上がる溶接の、時間に対してプロットされた対応する、超音波振幅および速度のグラフの別の例である。
[0025]本発明を特定の好適な実施形態に関連して説明するが、本発明は、それらの具体的実施形態に限定されないものと理解されよう。それに対して、本発明は、添付の特許請求の範囲によって定義される本発明の精神および範囲内に含まれるような、全ての代替例、変形例、および均等物をカバーすることを意図している。
[0026]ここで、最初に図1〜図6を参照すると、例示的な超音波溶接機は、双方向性の電動リニアアクチュエータ11によって制御された垂直運動のために載置された、超音波溶接「スタック」10を含む(図2)。スタック10を、図5および図6に関連して以下に詳述する。アクチュエータ11は、主ハウジング12内に載置され、また、溶接プレスのための電源および電子制御を収容した補助ハウジング13を支持する。本概念の変形例では、ハウジング12および補助ハウジング13は、本発明の意図に実質的に影響を及ぼさずに、1つの構造体に併合することができる。溶接する熱可塑性加工物W1およびW2(図5)は、超音波スタック10の下の静止固定具内に載置され、アクチュエータ11は、上部加工物W1に対してスタック10を下方へ前進させる。スタック10の下端部は、加工物W1に対して下方へ押圧されて、下部加工物W2に対して上部加工物W1を押圧し、一方で、機械的振動を加工物W1に印加して、2つの加工物W1およびW2を互いに接合する所望の溶接を生じさせる。
[0027]主ハウジング12は、溶接する加工物を受けて支持するための固定具を担持する基部15から上方へ延在する垂直カラム14を含む、フレーム上に載置される。ハウジング12は、一般的に、カラム14に調節可能に載置され、異なる加工物に対して、ハウジング12全体の垂直位置を調節できるようにする。制御パネル16は、基部15の前部に提供される。
[0028]超音波溶接スタック10は、以下の3つ構成要素を含む(図5および図6を参照されたい)。
・電気エネルギーを機械的振動に変換する、電気機械トランスデューサ20、
・トランスデューサ20によって生成された機械的振動のゲイン(すなわち、出力振幅)を変化させる、ブースタ21、および、
・ブースタ21から溶接する部品へ機械的振動を伝達する、ホーン22。
[0029]図5に示されるように、トランスデューサ20は、トランスデューサ20を励起するための高周波電気信号を供給する高電圧同軸ケーブル24を取り付けるためのコネクタ23を含む。この信号は、別個の超音波信号発生器(図示せず)によって供給される。代替的な接続方法を用いて、トランスデューサのより簡単な取り外しおよび取り付けができるようにすることもできる。図6に示されるように、この方法は、プレス機上の導電性棒と接触する、トランスデューサ20上のばね式のボタンを用いる。導電性は、ボタンの背後のばね力が棒を押圧することによって確保される。
[0030]トランスデューサ20は、電気エネルギーを機械的運動に変換するランジュヴァン(Langevin)圧電コンバータとして、超音波振動を発生する。トランスデューサ20に印加される電力は、20kHzの典型的な周波数で、50ワット未満から最高5000ワットまで変動させることができる。同じ概念が、本発明の溶接プロセスで通常使用される、他の周波数および電力レベルのトランスデューサに対しても当てはまることに留意されたい。
[0031]トランスデューサ20は、一般的に、薄い金属板によって分離され、高圧下で互いに型締めされた、複数の標準的な圧電セラミック素子で作製される。交流電圧がセラミック素子に印加されると、対応する電界が生成され、その結果、セラミック素子の厚さが変化する。この厚さの変化は、材料を通じて伝播してトランスデューサの金属塊の端部によって反射される、圧力波を誘起する。組み立て体の長さがその励起周波数に同調すると、組み立て体が共振して定存波源になる。20kHzのトランスデューサからの出力振幅は、一般的に、約20ミクロン(0.0008インチ)である。この振幅は、部品W1およびW2に有用な作業を行うように、ブースタ21およびホーン22によって増幅する必要がある。ブースタおよびホーンは、音響導波路または変換回路として機能して、超音波振動を増幅して加工物に集中させる。
[0032]ブースタ21の主要機能は、スタック10のゲイン(すなわち、出力振幅)を変化させることである。ブースタは、そのゲインが1よりも大きい場合には増幅し、1よりも小さい場合には減衰させる。20kHzでのゲインは、一般的に、1/2未満から約3まで変動する。
[0033]ホーン22は、自由に振動させなければならず、したがって、トランスデューサ20およびブースタ21だけが固定されるので、通常は型締めすることができない。したがって、ブースタの二次機能(および時には単独の目的)は、プレス機に固定したときに、スタックの増幅を変化させることなく、追加的な取り付け位置を提供することである。中間または連結ブースタは、トランスデューサとホーンとの間に追加され、節点(定存波が最小限の縦方向の振幅を有する)に配置された取り付けリングによって、プレス機内に載置される。
[0034]ホーン22は、以下の3つの主要機能を有する。
・超音波の機械的振動エネルギー(トランスデューサ20で生じる)を、直接的な物理的接触を通じて熱可塑性加工物(W1およびW2)に伝達し、融解を生じさせる領域内にエネルギーを局所化させる、
・振動の振幅を増幅して、所望の先端振幅を熱可塑性加工物および溶接プロセス要件に提供する、および、
・接合面が融解したときに溶接させるのに必要な圧力を印加する。
[0035]ホーンは、精密機械加工され、一般的に、15kHz、20kHz、30kHz、40kHz、50kHz、または70kHzで振動するように設計される。周波数が高くなるにつれて、音響波長が短くなり、結果的に、ホーンが小さくなる。ホーンの同調は、一般的に、電子的な周波数測定を使用して達成される。ホーンは、通常、高強度アルミニウム合金またはチタンから製造されるが、これらはどちらも、ほとんど減衰することなく超音波エネルギーを伝達する、優れた音響特性を有する。
[0036]プロセス要件に応じて、多数の異なるホーンの形状およびスタイルが存在する。ホーンの設計に影響を与える要因は、溶接される材料および組み立て方法である。ホーンは、熱可塑性加工物の界面においてそれらを融解させるのに十分な振幅となるように機械的振動を増幅しなければならず、ホーンのゲインは、そのプロファイルによって決定される。ホーン先端での振幅は、一般的に、20kHzで、ピークツーピークが30から125ミクロン(1000分の1.2から5.0インチ)まで変動する。代替的な変形例では、ホーンは、ブースタの形態を取り、安定化および溶接の機能を兼ねるように設計することができる。この変形例では、ブースタが取り除かれ、ホーンは、プレス機内のブースタを載置するリング領域の位置に固定される。
[0037]周波数が増加するにつれて、振動の振幅は減衰する。大きな振幅を必要としない薄い材料および精巧な部品のシーミングには、より高い周波数が用いられる。ホーンは、高い周波数で小さくなるので、より接近した間隔を達成することもできる。
[0038]プラスチック溶接は、超音波組み立て体の最も一般的な応用例である。図5に示されるように、超音波プラスチック溶接を実行するために、ホーンの先端を、上部加工物W1と接触させる。上部加工物を通じて圧力が印加され、超音波エネルギーが移動することで、2つの加工物の接触点における運動エネルギー(または熱)が増加する。熱は、加工物のうちの1つのプラスチックの成形隆線を融解させ、融解材料が2つの材料の間を流れる。振動が止まると、材料は凝固して永続的な接合を形成する。
[0039]リニアアクチュエータ11は、コンバータ31と一体化した電気サーボモータ30を備え、該コンバータは、モータ30の回転出力を直線運動に変換する。コンバータは、一般的に、モータ出力軸30aに連結された親ねじであり、従動ユニットが親ねじのねじ山に沿って移動して、所望の直線出力を生成する。例示的な実施形態では、直線出力は、コンバータ31をスタック10に接続するロッド31aの垂直運動を制御する。サーボモータ30およびコンバータ31の両方を収容した一体型ユニットは、Chanhassen、MinnesotaにあるExlar社から入手可能な、GSM(登録商標)またはGSXシリーズのリニアアクチュエータのような、市販のアイテムである。Exlar社に譲渡された米国特許第5,557,154号も参照されたい。サーボモータによって使用される直線位置のフィードバックは、溶接スタック10に連結された直線エンコーダによって、または回転モータ30の位置を感知する回転エンコーダによって提供することができる。
[0040]図2および図4から分かるように、アクチュエータロッド31aは、垂直軸に沿って直線的に運動する。ロッド31aの下端は、超音波溶接スタック10が取り付けられるキャリッジを備えた構成要素に接続される。アクチュエータ11の目的は、制御された力、速度、または力および速度の組み合わせをスタック10に印加して、スタックを加工物W1に対して下方へ押圧し、一方で、スタックも機械的振動を加工物に伝達することである。ロッド31aの直線運動は、別の制御可能な変数である。例えば、ロッド31aの直線運動は、特に、加工物の熱可塑性材料が所望の溶接を生じるのに十分に軟化した後に、溶接深さを制御するように制御することができる。印加された振動エネルギーによって熱可塑性材料が軟化した後のロッド31aの過度の前進は、過度に薄い、したがって過度に弱い溶接を生成する可能性がある。同様に、下記に開示される概念によれば、加工物の熱可塑性材料の軟化によって、最初に印加した力が既定の閾値を下回るレベルに減少した後まで、ゼロまたはほぼゼロに維持される等によって、ロッド31aの初期の直線運動が遅れる場合がある。
[0041]直接駆動式リニアサーボスライドを用いた、溶接スタックを駆動する代替方法を図3に示す。これらのスライドは、歯車のバックラッシュおよび電動ねじのねじ込みによって生じる不正確さを減じる。直接駆動式リニアサーボモータ38は、スタック組み立て体10に作用する。このリニア駆動のサーボモータは、モータ30とコンバータ31との組み合わせである。このような駆動装置は、Perker Trilogy 410シリーズのように、複数の供給業者によって市販されている。位置のフィードバック36は、例えばモータ軸に直接連結されたエンコーダまたはリゾルバを使用して、リニアモータによって提供される。垂直配置においてリニアサーボモータを使用するために、電源オフ状態の間に、溶接スタック10がその自重で下がらないように維持するために、別個の電気ブレーキ37が必要である。
[0042]図7は、リニアアクチュエータ11のための制御システムを例示した図である。力制御ループは、電気サーボモータ30のトルク出力の大きさに関する電気信号を生成するための、モータ30の回転出力軸30aに連結されたトルクセンサ32を含む。このトルク信号は、従来型の信号調節回路33内で処理され、次いで、電源35から電力を受けて駆動増幅器34aを介してモータ30に供給される電流を制御する、運動制御器34に供給される。したがって、トルクセンサ32および信号調節回路33は、フィードバックループを形成し、該ループは、モータ30が所望のトルクで出力軸30aを回転させるように制御し、次いで、モータ30の回転出力をロッド31aの直線運動に変換するコンバータ31によってスタック10に印加される力を制御する。このフィードバックループは、サーボモータによって生成される出力トルクを制御することによって、溶接動作中に加工物に印加される圧力を制御できるようにする。
[0043]制御システムに力のフィードバックを提供する代替方法では、モータ駆動自体へのトルク制御の代わりに、市販の荷重セルを使用する。荷重セル40は、溶接スタックによって加工物に及ぼされる力を測定することができるように配置される。これを図4および図8に示す。
[0044]ロッド31aの直線変位の大きさを制御するには、位置センサ36をロッド31aに連結して、ロッド31aの垂直運動に関する電気信号を生成する。例えば、位置センサ36は、ロッド31aの変位の大きさに比例した複数の電気パルスを生成する、エンコーダとすることができる。この位置信号は、モータ30に供給される電流を制御するのに制御器34が使用するさらなるパラメータとして、制御器34に供給される。したがって、位置センサ36は、フィードバックループの一部であり、該ループは、モータ30を制御して、出力軸30aの角変位を制御し、次いでロッド31aの垂直運動、したがって、スタック10の垂直運動の大きさを制御する。スタック10の実際の変位は、当然、モータ30によって印加された力、および加工物によって提供される抵抗の両方の関数であり、これは、溶接ゾーンが加熱され、加工物の熱可塑性材料が軟化するにつれて変化する。
[0045]溶接サイクル中に溶接スタックの直線位置を判断する代替方法では、モータのエンコーダフィードバックを用いる。これは、図7のアイテム41、または図8のアイテム36によって表される。この位置は、駆動系内で使用されるあらゆる減速歯車と組み合わせた駆動ナットのリードとモータ位置との関数である。
[0046]力、速度、または力および速度の組み合わせを直接制御することに加えて、運動制御システム34は、外部制御装置42からの入力信号または信号の組み合わせを使用した任意のアルゴリズムに基づいて、オンザフライで力または速度を自動的に変化させることができる。外部制御装置42は、スタック10に電力を提供して制御する、超音波発生器または制御器とすることができる。加工物W1および加工物W2に接続されるか、またはこれらに関与する制御器とすることもできる。これらの場合には、運動制御器34は、外部装置42、信号調節器33、および位置センサ36からの入力信号を受信して、溶接および維持プロセス中に、力または速度を変化させる。例えば、アクチュエータは、(超音波発生器によって提供される)超音波電力出力を一定に維持するために、力または速度を自動的に変えるように操作することができる。第2の実施例として、超音波トランスデューサ20は、外部制御装置42に及ぼされた力に関連して、フィードバック電力を該装置に提供することができる。このフィードバック電力は、モータ30およびアクチュエータロッド31aの力または速度の変化の影響を運動制御器34に与えるように、外部制御装置の基準として使用される。結果は、加工物W1および加工物W2に印加された力、および位置センサ36および41のいずれか、または両方によって報告された実際の溶接速度に関連する、閉サーボ制御ループとなる。
[0047]このタイプの溶接システムでのサーボ電気装置制御の使用には、多数の利点がある。第1の利点は、媒体の圧縮性により不正確になりがちな空気圧システムと比較して、電力が反復可能に制御可能であるという性質によって、溶接プロセスの全体にわたって溶接スタックの位置を正確に制御できることである。第2の利点は、溶接スタックの速度または力を、サーボシステムを使用して、あるレベルから別のレベルまでより速く変化させる能力である。第3の利点は、空気圧制御が全く無いことによって、また、適合する性能を達成するための複数の溶接システムの設定に伴う労力を減じることによって、電気サーボを使用した溶接システムの較正および検証の容易さが増すことである。
[0048]また、速度および力のフィードバックの効果を組み合わせて、溶接プロセスを制御することも可能である。この一実施例は、サーボモータによって部品に及ぼされる力を一定に維持するために、二次制御として速度を監視して変化させる。このシナリオでは、最大および最小の溶接速度を定義して、全ての部品が明確に定義されたプロセスパラメータのエンベロープを有するようにできる。既定の速度プロファイルを維持するように定義された制限の範囲内で、サーボモータによって及ぼされる力を変化させる相互的な方法も、本装置および設計固有の制御能力によって実現性がある。一実施例として、超音波溶接方法は、トランスデューサ20に供給された測定電力(例、瞬時電力)に応答して、リニアアクチュエータの力または速度を調整する、少なくとも1つの入力信号を含む。別の実施例では、超音波溶接方法は、トランスデューサ20に供給された累積電力(すなわち、トランスデューサに供給された電力を、時間とともに連続的に合計して累積電力を得るが、この累積電力は、フィードバックループの基準として用いることができる)に応答して、リニアアクチュエータの力または速度を調整する、少なくとも1つの入力信号を含む。
[0049]図9は、本概念の少なくとも1つの態様に従って、サーボプレスシステムを使用し、遅延運動手法を用いて形成したポリカーボネート製の溶接サンプルの距離対時間のグラフである。図10は、図9に示されたサンプルにおける溶接の力対時間のグラフである。図11は、図9に示されたサンプルにおける溶接の溶接スタックのトランスデューサに対する出力電力の電力対時間のグラフである。この図示された実験的な溶接サンプルでは、ここではある特徴が実装されるが、20ポンドの初期荷重(「トリガ力」)を超音波スタックに印加した後に、超音波溶接スタック10の変位を実質的にゼロに維持した。初期荷重は、適切な溶接パラメータおよびプロセス情報の入力時にオペレータによって、または代替的に制御システムによって選択可能な変動荷重であり、ゼロポンドから、用いられるリニアアクチュエータのいかなる上限までも変化し得ることに留意されたい。この初期荷重が印加された後に、超音波溶接スタック10のトランスデューサ20に給電することによって、0秒のときに溶接動作を開始した。その時の溶接崩壊(weld collapse)距離は、0インチであった。約0.080秒間、溶接距離を実質的に0インチに維持した。
[0050]この間、超音波溶接スタック10の電力を増加させ、溶接動作を開始して、溶接点における加工物の熱可塑性材料を軟化させた。それに応じて、約0.064秒のときに、力が低下し始めていること(図10)が観察される。このときのトランスデューサ20への電力は、約275Wである(図11を参照されたい)。約0.064秒から約0.080秒の間に、リニアアクチュエータ11によって超音波溶接スタック10上に印加された力が、約26ポンドから約9ポンドに低下することが観察された。この時間まで、溶接距離はほぼゼロに維持され、リニアアクチュエータロッド31aおよび超音波溶接スタック10は、認識できるほどには前進しない。しかしながら、図9〜図11のパラメータによって示されるように、本実施例では約17ポンドである選択した既定の閾値の力以上に力が増加したことが観察された後に、制御システムは、溶接スタックの下方への運動(例、正の下方への速度)を開始させて、選択した溶接プロセスのプロファイルに従った溶接プロセスを継続した。
[0051]図9〜図11に図示された溶接プロセスによって生成された溶接サンプルを測定したところ、0.0174インチの崩壊高さ(例、非溶接部分と溶接部分との差)が得られ、その後の引っ張り試験で、1006ポンドの最大引っ張り強度が得られた。本明細書に記載した概念の試験では、統計的に有意な数のサンプルを、類似した条件(すなわち、本明細書に記載の遅延運動手法を実装する)で溶接し、0.0001インチの標準偏差で、0.0172インチの平均崩壊高さが得られ、19ポンドの標準偏差で、991ポンドの引っ張り強度が得られた。同じ超音波溶接ホーンおよび発生器を備えた空気圧システムを使用して、別の群の同じ溶接サンプルに比較試験を行った。空気圧システムによる試験では、超音波溶接スタックを、空気圧を制御することによって規定の溶接力が維持される「力」モードで動作させて、溶接中の全体にわたってほぼ一定の溶接力を達成した。比較により、空気圧システムの溶接プロセスによって生成された、統計的に有意な数のサンプルを測定したところ、0.0005インチの標準偏差で、0.0182インチの平均崩壊高さが得られ、約31ポンドの標準偏差で、1002ポンドの引っ張り強度が得られた。
[0052]遅延運動手法を実装したサーボ試験の結果は、崩壊距離および引っ張り強度再現性の一貫性に関して、空気圧システムによる試験の結果よりも優れていた。また、引っ張り強度の絶対平均値は、空気圧システムの方が若干高かったが、平均溶接崩壊距離も若干高かった。これらのサンプルは、当業者に既知の剪断溶接接合設計を用いたので、溶接崩壊距離の単位あたりの平均引っ張り強度を比較することができる。サーボシステム上で溶接されたサンプルは、空気圧システム上で溶接されたサンプルと比較して、より高い相対強度をもたらした。平均値は、1インチの溶接崩壊あたり、それぞれ、57,700および55,200ポンドであった。
[0053]溶接強度に対するさらなる改善は、超音波溶接スタック10の下方への運動を開始する前に遅延の量を調節することによって、および残りの溶接全体にわたって速度のプロファイルを調節することによって得ることができると考えられる。強度再現性に対する改善も、本手法に用いた力の感知の精度および再現性を高めることによって期待することができるが、これらは、感知回路内の電気的および機械的ノイズをさらに減じることによって達成することができる。
[0054]当業者には、本発明は、上に例示した実施形態の詳細に制限されるものではなく、また、本発明は、本発明の精神またはその基本的特性から逸脱することなく、他の特定の形態で具体化できることが明らかとなろう。したがって、本実施形態は、全ての側面において例示的なものであり、限定的なものではないとみなすべきであり、本発明の範囲は、上述の説明ではなく、添付の特許請求の範囲によって示され、したがって、特許請求の範囲と均等の意味および範囲に入る全ての変更が、その範囲内に包含されることが意図される。一実施例として、超音波溶接スタックの溶接距離は、溶接動作の遅延運動段階においてほぼゼロに維持されるように、本明細書に記載されているが、わずかな傾斜または任意のプロファイルを好都合に用いることができる。
[0055]別の実施例として、本概念の少なくともいくつかの態様に従って、記載されたアクチュエータおよび関連する制御システムは、アクチュエータが、第2の加工物W2を、静止溶接スタック(すなわち、ホーン22の振動運動を除いて静止している)に、またはこれに隣接して取り付けた静止加工物W1の方へ運動させるように、第2の加工物W2と組み合わせて実装することが可能である。次いで、本明細書に記載の制御システムは、第2の加工物へ制御された力、速度、または力および速度の組み合わせを、電動リニアアクチュエータによって、第2の加工物が接合される第1の加工物に対して、第2の加工物に印加することによって、第1の加工物W1に対する第2の加工物W2の直線運動を制御する。同様に、本概念の別の潜在的用途は、第2の加工物W2を、超音波溶接スタック、および記載したアクチュエータ、ならびに上述のように実装した関連する制御システムのホーンに隣接して載置して、静止溶接スタック(すなわち、ホーン22の振動運動を除いて静止している)に、またはこれに隣接して取り付けた静止加工物W2に対して、第1の加工物W1を付勢する配置を含むことができる。次いで、本明細書に記載の制御システムは、第2の加工物W2に対する第1の加工物W1の直線運動を制御する。さらに、静止対象加工物に対して上から押圧するような、本明細書の特定の様態で力が印加され得るように示されているが、例えばこれに限定されないが、同様に、可動加工物(例、W1)を静止加工物(例、W2)の方へ引っ張るような、力を印加する他の変形例も本概念の範囲内に含まれるものと理解されたい。
[0056]図12を参照すると、一実施例は、パラメータの変化率に基づいて溶接運動を開始するための新しい条件を示す。上記でより詳細に記載したように、溶接運動を開始するための既定の条件は、力パラメータなどの感知したパラメータの所定の閾値を横切ることを含む。これに加えて、既定の条件が、感知したパラメータの変化率の所定の閾値を横切ることに基づくとき、溶接運動は開始される。
[0057]例えば、溶接運動は、力の変化率が規定の、または既定のレベルを横切る時まで遅延される。図12の特定の例によれば、時間軸の「0」(ゼロ)は超音波振動の開始に対応しており、溶接運動を開始するための条件は力の変化率が所定のレベルに落ちることである。時間に対してプロットされた距離のグラフは、溶接プレス機が溶接の初期段階では静止したままであることを示す。この初期段階の間、押圧力は、部品の熱可塑性材料の溶接部が軟化され溶けはじめるにつれて、初めは初期の力Fから上昇し、頂点に達し、次いで下降する。力の曲線の傾きである力の変化率の対応するグラフは、力の変化率は、初めは正で、次いで「0」(ゼロ)に減少し、その後負になることを示す。力の変化率が既定のレベル−F’に達すると、溶接運動が開始される。図12の実施例では、溶接運動は、時間tを過ぎたところの距離の線形増加によって示される。
[0058]他の実施例によれば、他のパラメータの変化率は既定の条件に対する基礎として用いることができる。例えば、変化率は、トランスデューサに対する電力入力の変化率、超音波スタックに対する周波数の変化率、および/またはトランスデューサに対する位相の変化率を含むことができる。
[0059]例示的な実施形態A1によれば、センサは超音波溶接スタックのトランスデューサへの電力入力の変化率を感知し、既定の条件は電力の規定の変化率または累積電力の規定の変化率のうちの1つまたは複数である。
[0060]別の例示的な実施形態A2によれば、センサは超音波溶接スタックの周波数の変化率を感知し、既定の条件は周波数の規定の変化率である。
[0061]さらに別の例示的な実施形態A3によれば、センサは超音波溶接スタックのトランスデューサの位相の変化率を感知し、既定の条件は位相の規定の変化率である。
[0062]さらに別の例示的な実施形態A4によれば、センサはリニアアクチュエータ可動要素による力出力の変化率を感知し、既定の条件は力の規定の変化率である。
[0063]さらに別の例示的な実施形態A5によれば、センサはサーボモータの出力トルクの変化率を感知し、既定の条件は出力トルクの規定の変化率である。
[0064]図13を参照すると、溶接運動を開始するための条件の例示的な改良がより詳細に記載される。溶接運動を開始するための上記の基準は、たいていの場合、溶接プロセスに十分良い影響を与える。しかしながら、操作員の経験不足に基づいて溶接システムが最適にプログラムされない場合を含む特定の条件の下では、溶接運動を開始する利点が十分実現できない場合がある。1つの特定の例によれば、溶接運動を開始するための既定の条件が規定の力X1であり、規定の力X1と既定の正の初期の力X0との間の差dXが過小であるようにプログラムされる場合、超音波スタックの振幅が溶融を引き起こすのに十分高いレベルに立ち上がるのに十分な時間が経過する前に、規定の力X1に達する場合がある。例えば、規定の力X1に達するのが早すぎる1つの理由は、超音波振動を開始するときの加工物の配置のわずかな変化によって力が変動することである。
[0065]溶接運動を遅らせる利点を十分実現する可能性を高めるために、溶接運動を遅らせる基準を複数の条件を組み合わせることによって強化することができる。例えば、溶接運動は、単一の条件に依存せずに、複数のセンサからの入力に基づいた複数の条件を使用することによって開始される。一例として、溶接運動は、次の条件の両方が満足するまで遅らされる。すなわち、(a)力が規定の閾値より下に下降する、および(b)超音波の振幅が規定の閾値より上に上昇する。この例では、部品にかなりのエネルギー量を確実に伝達して溶融を開始することによって、力ベースだけの基準で生じる場合がある早すぎる溶接運動の開始を防ぐ。
[0066]このような例を図13に示す。この図は、時間に対してプロットされた溶接距離、時間に対してプロットされた力、および時間に対してプロットされた超音波振幅のグラフを示す。時間軸の「0」(ゼロ)は超音波振動の開始に対応する。距離対時間のグラフによって示されるように、プレス機は溶接の初期段階の間は静止している。この段階では、押圧力は、部品の熱可塑性材料の溶接部が軟化して溶けはじめるにつれて、初期の力Fから上昇し、頂点に達し、次いで下降する。同時に、超音波振幅は既定の割合で時間とともに「0」(ゼロ)からプログラムされた溶接の振幅Aまで増加する。力はtにおいて所定のレベルFより下に低下するが、溶接運動は、振幅が、時間tにおいて生じる所定のレベルAよりも上に増大するまで遅らされる。この場合、時間tを過ぎて距離が線形に増加することが示されているプログラムされた溶接運動が続く。他の実施例によれば、条件の他の組み合わせも、同様な利点を達成するために用いることができる。
[0067]例示的な実施形態B1によれば、超音波溶接システムは、制御入力に応答して運動して、少なくとも1つの加工物に振動エネルギーを印加するために可動超音波溶接スタックを含む。システムはまた、超音波溶接スタックの運動を制御するために運動制御システムを含む。システムはさらに、制御入力を超音波溶接スタックに関連した運動制御システムに提供して、超音波溶接スタックの運動を制御し、少なくとも1つの加工物への超音波溶接スタックの出力を制御するために制御器を含む。システムはさらに、制御変数を感知し、制御変数に対応する信号を制御器に出力するために少なくとも2つのセンサを含む。制御器は、超音波溶接スタックに、溶接の開始前に少なくとも1つの加工物に既定の正の初期の力を印加させ、次に、少なくとも2つのセンサからの信号出力が、制御変数の組み合わせが既定の条件を満足することを示した後にのみ、超音波溶接スタックの運動を開始させ、続いて溶接を開始させる。
[0068]別の例示的な実施形態B2によれば、実施形態B1のセンサは、リニアアクチュエータ可動要素による力出力および超音波スタックの振幅を感知する。既定の条件は、規定の力および規定の振幅の両方を含む。
[0069]さらに別の例示的な実施形態B3によれば、実施形態B1のセンサは、リニアアクチュエータ可動要素による力出力および超音波溶接スタックのトランスデューサへの電力入力を感知する。既定の条件は、規定の力および規定の電力の両方を含む。
[0070]さらに別の例示的な実施形態B4によれば、実施形態B1のセンサは、リニアアクチュエータ可動要素による力出力および超音波溶接スタックのトランスデューサへの電力入力を感知する。既定の条件は、規定の力および規定の累積電力の両方を含む。
[0071]さらに別の例示的な実施形態B5によれば、実施形態B1の1つのセンサは、リニアアクチュエータ可動要素による力出力を感知し、実施形態B1の別のセンサは、溶接開始後の経過時間を追跡する。既定の条件は、規定の力および規定の経過時間の両方を含む。
[0072]さらに別の例示的な実施形態B6によれば、実施形態B1のセンサは、サーボモータの出力トルクおよび超音波溶接スタックの振幅を感知する。既定の条件は、規定の出力トルクおよび規定の振幅の両方を含む。
[0073]さらに別の例示的な実施形態B7によれば、実施形態B1のセンサは、サーボモータの出力トルクおよび超音波溶接スタックのトランスデューサへの電力入力を感知する。既定の条件は、規定の出力トルクおよび規定の電力の両方を含む。
[0074]さらに別の例示的な実施形態B8によれば、実施形態B1のセンサは、サーボモータの出力トルクおよび超音波溶接スタックのトランスデューサへの電力入力を感知する。既定の条件は、規定の出力トルクおよび規定の累積電力の両方を含む。
[0075]さらに別の例示的な実施形態B9によれば、実施形態B1の1つのセンサは、サーボモータの出力トルクを感知し、別のセンサは、溶接開始後の経過時間を追跡する。既定の条件は、規定の出力トルクおよび規定の経過時間の両方を含む。
[0076]さらに別の例示的な実施形態B10によれば、実施形態B1のセンサは、リニアアクチュエータ可動要素による力出力、サーボモータの出力トルク、超音波溶接スタックの振幅、超音波溶接スタックのトランスデューサへの電力入力、超音波溶接スタックのトランスデューサへの累積電力入力、超音波溶接スタックの周波数、および超音波溶接スタックのトランスデューサの位相のうちの1つまたは複数を感知し、かつ/または、センサのうちの1つまたは複数は、溶接開始後の経過時間を追跡する。既定の条件は、2つの基準を同時に満足することを含み、その2つの基準は、それぞれが別個に感知した制御変数に関連する第1の基準および第2の基準を含む。第1の基準は、規定の、力、出力トルク、振幅、電力、累積電力、周波数、位相、または経過時間のうちの1つを含む。第2の基準は、規定の、力、出力トルク、振幅、電力、累積電力、周波数、位相、または経過時間のうちの1つを含む。
[0077]図14を参照すると、代替の実施形態は、すでにいくらかの溶接運動をした後の溶接運動の遅延を含む。上記のように、遅延運動を用いる超音波溶接システムは、接合されるプラスチック部品が溶融を始めている溶接段階の初期段階に適用する。しかしながら、この手法はまた、いくつかの用途では、溶接の1つまたは複数の後期の段階に使用するときにも有利な場合がある。例えば、1つの領域が他の領域に対して溶融する材料の体積が意図的により多くあるプラスチック部品においては、溶融速度は一様でない場合があり、その結果、不均等な溶接部分が生じる。このような場合、材料の集中する領域で力が所定の量だけ下がって追加の溶融が生じるまで、溶接運動を一時的に停止する(例えば、溶接スタックの位置を維持する)ことによって全体的な溶接の一様性は改善される。
[0078]図14に示す1つの特定の例として、時間に対してプロットされた溶接距離および力のグラフが、2つの運動遅延段階を有する溶接に対して示される。時間軸の「0」(ゼロ)は、超音波振動の開始に対応する。時間「0」とtとの間の時間間隔で生じる第1の遅延は、上記の溶接遅延と概ね同様である。第2の遅延はすでにいくらかの溶接運動が起こった後に生じる。この実施形態では、第2の遅延は、力が所定のレベルFd2iに達したときに始まり、このFd2iは時間tに対応し、第2の遅延は、力が所定の量ΔFd2だけ下がってFd2tになったときに終わり、このFd2tは時間tに対応する。
[0079]第2の運動遅延は、例えば、力の閾値、電力の閾値、累積電力の閾値、および/または溶接の開始点から通過した距離を含む複数のパラメータのうちの1つまたは複数によって開始することができる。第2の運動遅延は、例えば、力または電力の、開始条件の時点における感知したレベルからの変化、および/または開始条件の瞬間からの経過時間量を含む複数のパラメータのうちの1つまたは複数によって終了することができる。単一の溶接サイクルで溶接運動を遅らすことができる回数は、特定の溶接要件に基づいて必要に応じて、1回の遅延から多くの遅延まで変えることができる。さらに、超音波振動の開始時の遅延は省略することができるが、すでにいくらかの溶接運動が生じた後に、1回または複数回の遅延をその後に用いることができる。
[0080]例示的な実施形態C1によれば、超音波溶接システムは、直線運動して、制御された、力、速度、または、力および速度の組み合わせを第1の加工物に印加して、第1の加工物が接合される第2の加工物に対して、第1の加工物を付勢するために載置された超音波溶接スタックを含む。システムはまた、超音波溶接スタックに連結された可動要素を含む電動リニアアクチュエータを含み、電動リニアアクチュエータは、可動要素および超音波溶接スタックを制御入力に応答して制御された、力、速度、または、力および速度で運動させる。システムはさらに、制御入力を電動リニアアクチュエータまたはサーボモータのうちの少なくとも1つに提供して、電動リニアアクチュエータの出力を制御するために制御器を含む。システムはさらに、少なくとも1つの対応する制御変数を測定し、制御変数に対応する信号を制御器に出力するために1つまたは複数のセンサをさらに含む。制御器は、少なくとも1つのセンサによる信号出力に基づいて、電動リニアアクチュエータの可動要素に、任意の前の溶接運動に続いて、既定の遅延開始条件から既定の遅延終了条件まで運動を停止させ、静止位置を維持させる。制御器はさらに、少なくとも1つのセンサによる信号出力が既定の遅延終了条件を満たしたことを示すのに基づいて、電動リニアアクチュエータに、デフォルトの溶接プロファイル、または複数の利用可能な溶接プロファイルから選択された溶接プロファイルに従って超音波溶接スタックの運動を再開させる。
[0081]別の例示的な実施形態C2によれば、実施形態C1の少なくとも1つのセンサは、リニアアクチュエータ可動要素による力出力を感知する。既定の遅延開始条件は規定の力であり、既定の遅延終了条件は開始条件の時に感知したレベルからの力の規定の変化である。
[0082]さらに別の例示的な実施形態C3によれば、実施形態C1の少なくとも1つのセンサは、溶接の開始点から通過した距離、およびリニアアクチュエータ可動要素による力出力を感知する。既定の遅延開始条件は規定の距離であり、既定の遅延終了条件は開始条件の時に感知したレベルからの力の規定の変化である。
[0083]さらに別の例示的な実施形態C4によれば、実施形態C1の少なくとも1つのセンサは、超音波溶接スタックのトランスデューサへの電力入力、およびリニア可動要素による力出力を感知する。既定の遅延開始条件は規定の電力であり、既定の遅延終了条件は開始条件の時に感知したレベルからの力の規定の変化である。
[0084]さらに別の例示的な実施形態C5によれば、実施形態C1の少なくとも1つのセンサは、超音波溶接スタックのトランスデューサへの電力入力を感知する。既定の遅延開始条件は規定の電力であり、既定の遅延終了条件は開始条件の時に感知したレベルからの電力の規定の変化である。
[0085]さらに別の例示的な実施形態C6によれば、実施形態C1の少なくとも1つのセンサは、超音波溶接スタックのトランスデューサへの電力入力、およびリニア可動要素による力出力を感知する。既定の遅延開始条件は規定の累積電力であり、既定の遅延終了条件は開始条件の時に感知したレベルからの力の規定の変化である。
[0086]さらに別の例示的な実施形態C7によれば、実施形態C1の1つのセンサは、リニアアクチュエータ可動要素による力出力を感知し、別のセンサは、遅延開始条件の瞬間からの経過時間を追跡する。既定の遅延開始条件は規定の力であり、既定の遅延終了条件は規定の経過時間である。
[0087]さらに別の例示的な実施形態C8によれば、実施形態C1の1つのセンサは、溶接の開始点から通過した距離を感知し、実施形態C1の別のセンサは、遅延開始条件の瞬間からの経過時間を追跡する。既定の遅延開始条件は規定の距離であり、既定の遅延終了条件は規定の経過時間である。
[0088]さらに別の例示的な実施形態C9によれば、実施形態C1の1つのセンサは、超音波溶接スタックのトランスデューサへの電力入力を感知し、実施形態C1の別のセンサは、遅延開始条件の瞬間からの経過時間を追跡する。既定の遅延開始条件は規定の電力であり、既定の遅延終了条件は規定の経過時間である。
[0089]さらに別の例示的な実施形態C10によれば、実施形態C1の1つのセンサは、超音波溶接スタックのトランスデューサへの電力入力を感知し、実施形態C1の別のセンサは、遅延開始条件の瞬間からの経過時間を追跡する。既定の遅延開始条件は規定の累積電力であり、既定の遅延終了条件は規定の経過時間である。
[0090]さらに別の例示的な実施形態C11によれば、実施形態C1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力、サーボモータの出力トルク、超音波スタックの位置、溶接の開始点から通過した距離、超音波溶接スタックのトランスデューサへの電力入力、超音波スタックのトランスデューサへの累積電力入力、超音波スタックの周波数、および超音波スタックのトランスデューサの位相のうちの1つまたは複数を感知し、かつ/または、実施形態C1の1つまたは複数のセンサは溶接開始後の経過時間を追跡する。既定の遅延開始条件は、規定の、力、出力トルク、位置、距離、電力、累積電力、周波数、位相、および/または経過時間のうちの1つまたは複数を含む。既定の遅延終了条件は、規定の、力の絶対値または相対値、出力トルク、電力、累積電力、周波数、位相、および/あるいは経過時間のうちの1つまたは複数を含む。相対値に対する基準は、開始条件の時に感知した特定のパラメータのレベルである。
[0091]さらに別の例示的な実施形態C12によれば、実施形態C1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力、サーボモータの出力トルク、超音波スタックの位置、溶接の開始点から通過した距離、超音波溶接スタックのトランスデューサへの電力入力、超音波スタックのトランスデューサへの累積電力入力、超音波スタックの周波数、超音波スタックのトランスデューサの位相のうちの1つまたは複数の現在値および変化率を感知し、かつ/または、実施形態C1の1つまたは複数のセンサは溶接開始後の経過時間を追跡する。既定の遅延開始条件は、規定の、力、出力トルク、位置、距離、電力、累積電力、周波数、位相、および/または経過時間のうちの1つまたは複数を含む。既定の遅延終了条件は、規定の、力の変化率、出力トルク、電力、累積電力、周波数、および/または位相のうちの1つまたは複数を含む。
[0092]図15を参照すると、代替の実施形態は、力の急速な変化を減らすために動的な速度調節を含む。接合サイクルの溶接および保持(凝固)段階の間、超音波スタックの運動速度を制御すると、その結果生じる加工物間の力は、溶接される部品の状態の変化に応じて変わる。正または負の力の変化率が高い場合があり、溶接の品質に悪影響を与える場合がある。この変化率を減らすために、プレス機の速度は溶接システムによって動的に調節することができる。
[0093]力が過度に高い割合で増大しているのが検出された場合、プレス機は自動的に速度を下げる。逆に、力が過度に高い割合で減少している場合、プレス機は自動的に速度を上げる。自動的な速度変更開始のための条件は、力の規定の変化率である。速度の変更量は、そのときの速度の数分の1または数倍の既定の量とすることができる。例えば、速度変更は、そのときの速度に対して100%の速度減少を含むことができ、あるいは、そのときの速度の100%余分の速度増大を含むことができる。
[0094]あるいは、速度変更の量は、検出された力の変化率に比例して動的に割り当てることができる。言い換えれば、力の変化率が高いときには、速度の変更をより大きくする。速度変更を終わらせるために、例えば、力の変化率の所定のレベルを横切ること、および/または力の変化率が速度変更が始まったときのレベルに戻ることを含むいくつかの条件を使うことができる。
[0095]図15に示した実施例によれば、時間に対してプロットした溶接速度、力、および力の変化率のグラフは、(a)動的速度調節なし、および(b)動的速度調節あり、の溶接を示している。動的速度調節なしの溶接を参照すると、溶接中の速度はSで一定で、その結果、力の曲線の傾きによって決められる力の変化率は継続して上昇している。動的速度調節が用いられると、力の変化率が時間t1に対応する所定のレベルF’に上昇したとき、速度は自動的に所定のレベル0.5S(すなわち、Sの半分)に下げられる。この下降によって、力の変化率が時間tに対応する所定値「0」(ゼロ)に達するまで、続いて力の変化率が減少する。次いで、速度はプログラムされた溶接速度Sに自動的に戻る。
[0096]例示的な実施形態D1によれば、超音波溶接システムは、制御入力に応答して運動して、少なくとも1つの加工物に振動エネルギーを印加するために可動超音波溶接スタックを含む。システムはまた、超音波溶接スタックの運動を制御するために運動制御システムを含む。システムはさらに、制御入力を超音波溶接スタックに関連した運動制御システムに提供して、超音波溶接スタックの運動を制御し、少なくとも1つの加工物への超音波溶接スタックの出力を制御するために制御器を含む。システムはさらに、接合される部品への力を感知して、力を制御器に出力するためにセンサを含む。制御器は、溶接の開始に続いて、超音波溶接スタックに、力の変化率の既定値に基づく速度変更開始条件から、力の変化率の異なる値に基づく速度変更終了条件まで、超音波溶接スタックの運動速度を自動的に変更させる。
[0097]別の例示的な実施形態D2によれば、実施形態D1の開始条件は、力の変化率が既定のレベルを超えて増大することである。速度は、プログラムされた速度の数分の1またはゼロへ下げられる。
[0098]さらに別の例示的な実施形態D3によれば、実施形態D1の開始条件は、力の変化率が既定のレベルより下に減少することである。速度は、プログラムされた速度に対して1倍より大きい速度に上げられる。
[0099]さらに別の例示的な実施形態D4によれば、実施形態D1の終了条件は、力の変化率が既定のレベルより下に減少することである。
[0100]さらに別の例示的な実施形態D5によれば、実施形態D1の終了条件は、力の変化率が既定のレベルを超えて増大することである。
[0101]さらに別の例示的な実施形態D6によれば、実施形態D1の終了条件は、力の変化率が開始条件のレベルに戻ることである。
[0102]図16を参照すると、別の代替の実施形態は、溶接サイクル中に力を制限するために動的速度調節を含む。溶接および保持(凝固)段階の間、溶接される部品間の力が過剰に大きくなる、または過剰に小さくなることを防ぐことは有利な場合がある。超音波スタックの運動速度を直接制御すると、アルゴリズムおよび力センサからの入力に基づいて速度を自動的に変更することによって、力に影響を与えることができる。力が上の既定のレベルに増大する場合、押圧速度は下がる。逆に、力が下の既定のレベルに減少する場合、押圧速度は上がる。
[0103]速度の変更量は、そのときの速度の数分の1または数倍の既定の量とすることができる。一例として、速度の変更量は、そのときの速度に対して100%の速度減少、またはそのときの速度の100%余分の速度増大を含むことができる。
[0104]図16に示した実施例によれば、溶接速度と力のグラフは時間に対してプロットされ、(a)動的速度調節なし、および(b)動的速度調節あり、の溶接を示している。動的速度調節なしの溶接を参照すると、溶接中の速度はSで一定で、その結果、力は継続して上昇している。動的速度調節が用いられると、力が時間tに対応する上の既定値Fに達したとき、速度は自動的に所定のレベル0.5Sに下げられる。その後、下げられた速度で溶接が続いていると、力は減少して最終的に時間tに対応する下の既定値Fに達する。この時点で、速度はプログラムされた溶接速度Sに自動的に戻る。
[0105]動的速度調節ありの溶接を参照すると、力が一旦既定のレベルに達した後で速度を変更する手法では、速度の変化は瞬間的でないので、力が既定レベルより上へ、および/または下へオーバーシュートする場合がある。より厳密な制御またはオーバーシュートの回避が望まれる場合には、自動速度調節アルゴリズムは(力に加えて他の入力パラメータを利用して)、オーバーシュートを回避するのに必要な速度変更のタイミングおよび大きさを予想し、したがって、力を既定の限度内に保つように構成することができる。例示的な追加の入力パラメータは、限定するものではないが、力の変化率および/または超音波電力の変化率を含む。
[0106]例示的な実施形態E1によれば、超音波溶接システムは、制御入力に応答して運動して、少なくとも1つの加工物に振動エネルギーを印加するために可動超音波溶接スタックを含む。システムはまた、超音波溶接スタックの運動を制御するために運動制御システムを含む。システムはさらに、制御入力を超音波溶接スタックに関連した運動制御システムに提供して、超音波溶接スタックの運動を制御し、少なくとも1つの加工物への超音波溶接スタックの出力を制御するために制御器を含む。システムはさらに、少なくとも1つの制御変数を感知し、少なくとも1つの制御変数に対応する少なくとも1つの信号を制御器に出力するために1つまたは複数のセンサを含む。制御器は、溶接の開始に続いて、超音波溶接スタックに、制御変数の既定値に基づく速度変更開始条件から、制御変数の異なる値に基づく速度変更終了条件まで、超音波スタックの運動速度を自動的に変更させる。
[0107]別の例示的な実施形態E2によれば、実施形態E1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力を感知する。開始条件は力が既定のレベルより上へ増大することであり、終了条件は力が既定のレベルより下へ減少することである。
[0108]さらに別の例示的な実施形態E3によれば、実施形態E1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力を感知する。開始条件は力が既定のレベルより下へ減少することであり、終了条件は力が既定のレベルより上へ増大することである。
[0109]さらに別の例示的な実施形態E4によれば、実施形態E1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力および超音波スタックへの電力入力を感知する。開始条件はセンサのうちの1つまたは複数からの入力に基づく第1の関数であり、終了条件はセンサのうちの1つまたは複数からの入力に基づく第2の関数である。
[0110]さらに別の例示的な実施形態E5によれば、実施形態E1の1つまたは複数のセンサは、リニアアクチュエータ可動要素による力出力、超音波溶接スタックへの電力入力、または力出力および電力入力の両方を感知する。開始条件は第1の関数であり、終了条件は第2の関数である。第1の関数は、少なくとも1つのセンサからの入力、少なくとも1つのセンサからの出力の変化率、またはこれらの組み合わせに基づく。第2の関数は、少なくとも1つのセンサからの入力、少なくとも1つのセンサからの出力の変化率、またはこれらの組み合わせに基づくが、第1の関数とは異なる。
[0111]図17を参照すると、さらに別の代替の実施形態は、溶接の開始時における速度立ち上がりを含む。典型的な超音波溶接では、振動の振幅は、溶接の開始時でのゼロから既定の溶接振幅までおおよそ一定の増加率で、徐々に増大させる。振幅立ち上がり期間中、溶接される部品へ伝達されるのに利用できる超音波エネルギーの量は限定される。振幅が立ち上がる間、プレス機が一定の速度で通るようにプログラムされる場合、プラスチックは十分速く溶けることができない(これは部品間の力を過大にする場合がある)。上記の運動遅延手法は、力の蓄積を防ぐための有効な方法である。
[0112]しかしながら、力センサが必要でない追加の、または代替の手法は、速度を低い初期値(ゼロを含む)から所定の溶接速度まで徐々に増大させることである。図17に示すように、一実施例は、実際の超音波振幅に直接比例するように速度を立ち上げることを対象とする。時間に対してプロットされた超音波振幅と速度の図示のグラフによれば、溶接の開始時(時間「0」)に超音波振動が開始されるとき、超音波振幅はゼロで速度は低いレベルSである。
[0113]超音波振幅が時間とともに増大するにつれて、速度は比例的に上昇し、最後に超音波振幅は溶接振幅Aに達し、速度は同時に溶接速度Sに達する(時間tにおいて)。この特徴の別の変形例は、振幅の非線形関数(例えば、多項式関数)である速度立ち上がりを有することである。速度立ち上がり関数はまた、(限定するものではないが)、超音波電力などの別の感知したパラメータの線形関数または非線形関数であってもよい。図17では(時間tの後に示されるように)一定の溶接速度の場合が示されるが、この特徴は速度が立ち上がり期間の後に可変である溶接、または(速度の代わりに)押圧力が制御される溶接に適用することができる。
[0114]同様に、本概念は、超音波溶接に限定されるものではなく、これに限定されないが、摩擦溶接または拡散溶接のような、加工物の駆動にサーボモータまたはアクチュエータを用いた、他の溶接プロセスおよび溶接装置に好都合に組み込むことができる。
[0115]例示的な実施形態F1によれば、超音波溶接システムは、制御入力に応答して運動して、少なくとも1つの加工物に振動エネルギーを印加するために可動超音波溶接スタックを含む。システムはまた、超音波溶接スタックの運動を制御するために運動制御システムを含む。システムはさらに、制御入力を超音波溶接スタックに関連した運動制御システムに提供して、超音波溶接スタックの運動を制御し、少なくとも1つの加工物への超音波溶接スタックの出力を制御するために制御器を含む。システムはさらに、少なくとも1つの制御変数を感知し、少なくとも1つの制御変数に対応する少なくとも1つの信号を制御器に出力するために少なくとも1つのセンサを含む。制御器は、溶接の開始時に、超音波溶接スタックに、超音波スタックの運動速度を、制御変数が既定の値に達するまで、制御変数の関数として自動的に変更させる。
[0116]別の例示的な実施形態F2によれば、実施形態F1のセンサは、超音波溶接スタックの超音波振幅を感知する。速度は超音波振幅に直線的に比例する。
[0117]さらに別の例示的な実施形態F3によれば、実施形態F1のセンサは、超音波溶接スタックへの電力入力を感知する。速度は電力入力に直線的に比例する。
[0118]さらに別の例示的な実施形態F4によれば、実施形態F1のセンサは、超音波溶接スタックの超音波振幅を感知する。速度は超音波振幅の非線形関数である。
[0119]さらに別の例示的な実施形態F5によれば、実施形態F1のセンサは、超音波溶接スタックへの電力入力を感知する。速度は電力入力の非線形関数である。
[0120]さらに別の例示的な実施形態F6によれば、実施形態F1の1つまたは複数のセンサは、超音波スタックの周波数および超音波溶接スタックのトランスデューサの位相のうちの1つまたは複数を感知する。速度は、周波数および/または位相の線形または非線形関数である。
[0121]さらに別の例示的な実施形態F7によれば、実施形態F1の1つまたは複数のセンサは、超音波溶接スタックの超音波振幅、超音波溶接スタックへの電力入力、超音波溶接スタックの周波数、および超音波溶接スタックのトランスデューサの位相のうちの1つまたは複数を感知する。速度は、振幅、電力、周波数、位相、振幅の変化率、電力の変化率、周波数の変化率、および/または位相の変化率のうちの1つまたは複数を含む任意の組み合わせの線形または非線形関数である。
[0122]本開示の特定の実装および適用例が図示され、説明されたが、本開示は、本明細書において開示された厳密な構造および構成に限定されるものではなく、様々な修正、変更、および変形が、添付の特許請求の範囲において規定される本発明の範囲から逸脱することなく、上記の記載から明らかにできることを理解されたい。
10 超音波溶接スタック
11 リニアアクチュエータ
12 主ハウジング
13 補助ハウジング
14 垂直カラム
15 基部
16 制御パネル
20 トランスデューサ
21 ブースタ
22 ホーン
23 コネクタ
24 高電圧同軸ケーブル
30 サーボモータ
30a モータ出力軸
31 コンバータ
31a アクチュエータロッド
32 トルクセンサ
33 信号調節回路
34 運動制御器
34a 駆動増幅器
35 電源
36 位置センサ
37 電気ブレーキ
38 直接駆動式リニアサーボモータ
40 荷重セル
41 ロータリエンコーダ
42 外部制御装置
W1 加工物
W2 加工物

Claims (15)

  1. 加工物に振動エネルギーを印加することによって溶接動作を開始するために制御入力に応答して運動可能な超音波溶接スタックと、
    少なくとも1つの制御変数を測定し、前記少なくとも1つの制御変数に対応する制御信号を出力するための1つまたは複数のセンサと、
    前記超音波溶接スタックに連結され、制御された前進運動を前記超音波溶接スタックに行わせる運動制御システムであって、前記1つまたは複数のセンサから受信した1つまたは複数の制御信号に基づいた前記制御入力に応答して、
    前記溶接動作を開始させ、
    前記溶接動作の前記開始に続いて、各制御変数が既定条件を満たしたことを前記制御信号のうちの1つまたは複数が示すまで、前記超音波溶接スタックの任意の前進運動を任意に初期遅延させ、
    前記任意の初期遅延および前記既定条件を満たしたことへの応答に続いて、前記超音波溶接スタックを溶接プロファイルに従って前進させ、
    前記溶接プロファイルに従う前記超音波溶接スタックの運動に続いて、既定の遅延開始条件の発生に応答して前記超音波溶接スタックに前進運動を停止させ、静止位置に維持させ、
    既定の遅延終了条件の発生に応答して、前記溶接プロファイルに従って前記超音波溶接スタックの前進運動を再開させる、運動制御システムと
    を備える超音波溶接システムであって、
    振動エネルギーが、前記超音波溶接スタックが停止している間、および前記溶接スタックの前記前進運動が続いている間、前記加工物に印加され続ける、
    超音波溶接システム。
  2. 前記運動制御システムがさらに、前記超音波溶接スタックの前記前進運動を再開させることに続いて、
    前記超音波溶接スタックに、別の1つまたは複数の既定の遅延開始条件の発生に応答して、少なくとももう一度前進運動を停止させ、別の静止位置に維持させることと、
    別の1つまたは複数の遅延終了条件の発生に応答して、前記溶接プロファイルに従って前記超音波溶接スタックの前記前進運動を再び再開させることと
    を含む、請求項1に記載の超音波溶接システム。
  3. 1つまたは複数のセンサのうちの少なくとも1つがリニアアクチュエータ可動要素による力出力を感知し、前記既定の遅延開始条件が規定の力であり、前記既定の遅延終了条件が前記規定の力に対する力の規定の変化である、請求項1に記載の超音波溶接システム。
  4. 前記1つまたは複数のセンサが前記溶接の開始点から通過した距離およびリニアアクチュエータ可動要素による力出力を感知し、前記既定の遅延開始条件が規定の距離であり、前記既定の遅延終了条件が前記既定の遅延開始条件の発生時に感知された力に対する力の規定の変化である、請求項1に記載の超音波溶接システム。
  5. 前記1つまたは複数のセンサが前記超音波溶接スタックのトランスデューサへの電力入力およびリニアアクチュエータ可動要素による力出力を感知し、前記既定の遅延開始条件が規定の電力であり、前記既定の遅延終了条件が前記既定の遅延開始条件の発生時に感知された力に対する力の規定の変化である、請求項1に記載の超音波溶接システム。
  6. 前記1つまたは複数のセンサのうちの少なくとも1つが前記超音波溶接スタックのトランスデューサへの電力入力を感知し、前記既定の遅延開始条件が規定の電力であり、前記既定の遅延終了条件が前記規定の電力に対する電力の規定の変化である、請求項1に記載の超音波溶接システム。
  7. 前記1つまたは複数のセンサが前記超音波溶接スタックのトランスデューサへの電力入力およびリニアアクチュエータ可動要素による力出力を感知し、前記既定の遅延開始条件が規定の累積電力であり、前記既定の遅延終了条件が前記既定の遅延開始条件の発生時に感知された力に対する力の規定の変化である、請求項1に記載の超音波溶接システム。
  8. 前記1つまたは複数のセンサのうちの1つがリニア可動要素による力出力を感知し、前記1つまたは複数のセンサのうちの別の1つが前記既定の遅延開始条件の発生からの経過時間を追跡し、前記既定の遅延開始条件が規定の力であり、前記既定の遅延終了条件が規定の経過時間である、請求項1に記載の超音波溶接システム。
  9. 前記1つまたは複数のセンサのうちの1つが溶接の開始点から通過した距離を感知し、前記1つまたは複数のセンサのうちの別の1つが前記既定の遅延開始条件の発生からの経過時間を追跡し、前記既定の遅延開始条件が規定の距離であり、前記既定の遅延終了条件が規定の経過時間である、請求項1に記載の超音波溶接システム。
  10. 前記1つまたは複数のセンサのうちの1つが前記超音波溶接スタックのトランスデューサへの電力入力を感知し、前記1つまたは複数のセンサのうちの別の1つが前記既定の遅延開始条件の発生からの経過時間を追跡し、前記既定の遅延開始条件が規定の電力であり、前記既定の遅延終了条件が規定の経過時間である、請求項1に記載の超音波溶接システム。
  11. 前記1つまたは複数のセンサのうちの1つが前記超音波溶接スタックのトランスデューサへの電力入力を感知し、前記1つまたは複数のセンサのうちの別の1つが前記既定の遅延開始条件の発生からの経過時間を追跡し、前記既定の遅延開始条件が規定の累積電力であり、前記既定の遅延終了条件が規定の経過時間である、請求項1に記載の超音波溶接システム。
  12. 制御入力に応答して超音波溶接スタックを運動させて加工物に振動エネルギーを印加することによって溶接動作を開始させるステップと、
    1つまたは複数のセンサを介して、少なくとも1つの制御変数を測定し、対応する制御信号を出力するステップと、
    運動制御システムを介して、制御された前進運動を前記超音波溶接スタックに行わせるステップと、
    前記運動制御システムを介して、前記1つまたは複数のセンサから受信した1つまたは複数の制御信号に基づいた前記制御入力を決定するステップと、
    前記運動制御システムを介して、前記超音波溶接スタックを溶接プロファイルに従って前進させるステップと、
    前記溶接プロファイルに従う前記超音波溶接スタックの前進に続いて、前記運動制御システムを介して、既定の遅延開始条件の発生に応答して前記超音波溶接スタックに前進運動を停止させ、静止位置に維持させるステップと、
    前記運動制御システムを介して、既定の遅延終了条件の発生に応答して前記溶接プロファイルに従って前記超音波溶接スタックの前進運動を再開させるステップと
    を備える溶接動作のための方法であって、
    振動エネルギーが、前記超音波溶接スタックが停止している間、および前記溶接スタックの前進運動が続いている間、前記加工物に印加され続ける、
    方法。
  13. 前記溶接動作の前記開始に続いて、かつ前記超音波溶接スタックに前進運動を停止させるより前に、各制御変数が既定条件を満たしたことを前記制御信号のうちの1つまたは複数が示すまで、前記運動制御システムを介して、前記超音波溶接スタックのいかなる前進運動も初期遅延させるステップと、
    前記初期遅延および前記既定条件を満たしたことへの応答に続いて、前記運動制御システムを介して、溶接プロファイルに従って前記超音波溶接スタックを前進させるステップと
    をさらに備える、請求項12に記載の方法。
  14. 前記超音波溶接スタックの前記前進運動を再開させることに続いて、前記超音波溶接スタックに、別の1つまたは複数の既定の遅延開始条件の発生に応答して、少なくとももう一度前進運動を停止させ、別の静止位置に維持させるステップと、
    別の1つまたは複数の規定の遅延終了条件の発生に応答して、前記溶接プロファイルに従って前記超音波溶接スタックの前記前進運動を再び再開させるステップと
    をさらに備える、請求項12に記載の方法。
  15. 前記1つまたは複数のセンサが、
    (a)リニアアクチュエータ可動要素による力出力
    (b)サーボモータの出力トルク
    (c)前記超音波溶接スタックの位置
    (d)溶接の開始点から通過した距離
    (e)前記超音波溶接スタックのトランスデューサへの電力入力
    (f)前記超音波溶接スタックの前記トランスデューサへの累積電力入力
    (g)前記超音波溶接スタックの周波数
    (h)前記超音波溶接スタックの前記トランスデューサの位相
    (i)前記溶接動作の前記開始後の経過時間
    からなる群から選択された1つまたは複数のパラメータを感知し、
    前記既定の遅延開始条件が、規定の
    (1)力
    (2)出力トルク
    (3)位置
    (4)距離
    (5)電力
    (6)累積電力
    (7)周波数
    (8)位相
    (9)経過時間
    のうちの1つまたは複数を含み、
    前記既定の遅延終了条件が、
    (i)力
    (ii)出力トルク
    (iii)電力
    (iv)累積電力
    (v)周波数
    (vi)位相
    (vii)経過時間
    の規定の絶対値または相対値のうちの1つまたは複数を含み、
    前記相対値に対する基準が、前記既定の遅延開始条件の発生時に感知した各パラメータのレベルである、
    請求項12に記載の方法。
JP2015168740A 2014-08-28 2015-08-28 サーボモータおよび遅延運動手法を使用した超音波プレス機 Active JP6685669B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/471,895 2014-08-28
US14/471,895 US9144937B2 (en) 2006-05-08 2014-08-28 Ultrasonic press using servo motor with delayed motion

Publications (2)

Publication Number Publication Date
JP2016049570A true JP2016049570A (ja) 2016-04-11
JP6685669B2 JP6685669B2 (ja) 2020-04-22

Family

ID=54011534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015168740A Active JP6685669B2 (ja) 2014-08-28 2015-08-28 サーボモータおよび遅延運動手法を使用した超音波プレス機

Country Status (5)

Country Link
EP (1) EP2990182B1 (ja)
JP (1) JP6685669B2 (ja)
CN (1) CN105383052B (ja)
ES (1) ES2706196T3 (ja)
PL (1) PL2990182T3 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527580A (ja) * 2018-06-13 2021-10-14 デューケイン アイエーエス エルエルシー 所定の溶着強度との相関関係に基づいてそれに関連する溶融層厚さを特定する方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180186084A1 (en) * 2016-07-26 2018-07-05 T.A. Systems, Inc. Method and apparatus for ultrasonic welding
US20180120148A1 (en) * 2016-11-02 2018-05-03 Branson Ultrasonics Corporation Method And Apparatus For Detection Of Broken Piezo Material Of An Ultrasonic Transducer Of An Ultrasonic Stack
CN107053680A (zh) * 2016-12-07 2017-08-18 必能信超声(上海)有限公司 超声波焊接机以及控制方法
US10746703B2 (en) * 2018-11-13 2020-08-18 Dukane Ias, Llc Automated ultrasonic press systems and methods for welding physically variant components
US10549481B1 (en) * 2018-12-21 2020-02-04 Dukane Ias, Llc Systems and methods for low initial weld speed in ultrasonic welding
CN109702315B (zh) * 2018-12-27 2024-05-03 东莞市鸿振超声波设备有限公司 一种利用位置与压力触发的超声波控制电路及焊接方法
CN111936259B (zh) * 2019-03-13 2022-05-24 东芝三菱电机产业系统株式会社 超声波接合方法
DE102019132559A1 (de) * 2019-11-29 2021-06-02 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultraschallbearbeitungsverfahren
US20220143762A1 (en) * 2020-11-11 2022-05-12 Branson Ultrasonics Corporation Dynamic mode work piece processing device
CN112894117B (zh) * 2020-12-29 2022-06-21 上海骄成超声波技术股份有限公司 一种超声波焊接控制方法
CN118265600A (zh) * 2021-11-19 2024-06-28 利乐拉瓦尔集团及财务有限公司 用于包装机的密封设备、具有密封设备的包装机以及操作密封设备的方法
DE102022108397A1 (de) * 2022-04-07 2023-10-12 Herrmann Ultraschalltechnik Gmbh & Co. Kg Vorrichtung zum Ultraschallschweißen eines Werkstücks und Verfahren zum Betreiben einer solchen Vorrichtung
CN117464156B (zh) * 2023-12-28 2024-03-29 珠海灵科自动化科技有限公司 焊接下压速度控制方法、超声波焊接机及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104070A (ja) * 1995-10-12 1997-04-22 Mishima Daiji 振動溶着機における溶着圧力制御装置
JP2006231698A (ja) * 2005-02-24 2006-09-07 Kyoto Seisakusho Co Ltd 超音波溶着装置
US20090188966A1 (en) * 2006-05-08 2009-07-30 Dukane Corporation Ultrasonic press using servo motor with delayed motion
JP2009297786A (ja) * 2008-04-04 2009-12-24 Dukane Corp サーボモータおよび遅延運動手法を使用した超音波プレス機
JP2013063521A (ja) * 2011-09-15 2013-04-11 Seidensha Electronics Co Ltd 超音波溶着装置、超音波接合装置、布線装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197371A (en) * 1988-03-28 1993-03-30 U.S. Philips Corporation Force limiter and ultrasonic device provided with a force limiter
US5207584A (en) * 1991-01-09 1993-05-04 Johnson David A Electrical interconnect contact system
US5557154A (en) 1991-10-11 1996-09-17 Exlar Corporation Linear actuator with feedback position sensor device
WO2008018935A2 (en) * 2006-05-08 2008-02-14 Dukane Corporation Ultrasonic press using servo motor with integrated linear actuator
JP5435135B2 (ja) * 2010-07-22 2014-03-05 株式会社島津製作所 材料試験機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104070A (ja) * 1995-10-12 1997-04-22 Mishima Daiji 振動溶着機における溶着圧力制御装置
JP2006231698A (ja) * 2005-02-24 2006-09-07 Kyoto Seisakusho Co Ltd 超音波溶着装置
US20090188966A1 (en) * 2006-05-08 2009-07-30 Dukane Corporation Ultrasonic press using servo motor with delayed motion
US20120085496A1 (en) * 2006-05-08 2012-04-12 Dukane Corporation Ultrasonic Press Using Servo Motor With Delayed Motion
JP2009297786A (ja) * 2008-04-04 2009-12-24 Dukane Corp サーボモータおよび遅延運動手法を使用した超音波プレス機
JP2013063521A (ja) * 2011-09-15 2013-04-11 Seidensha Electronics Co Ltd 超音波溶着装置、超音波接合装置、布線装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021527580A (ja) * 2018-06-13 2021-10-14 デューケイン アイエーエス エルエルシー 所定の溶着強度との相関関係に基づいてそれに関連する溶融層厚さを特定する方法
JP7443259B2 (ja) 2018-06-13 2024-03-05 デューケイン アイエーエス エルエルシー 所定の溶着強度との相関関係に基づいてそれに関連する溶融層厚さを特定する方法

Also Published As

Publication number Publication date
EP2990182B1 (en) 2018-10-24
JP6685669B2 (ja) 2020-04-22
CN105383052B (zh) 2019-08-16
EP2990182A3 (en) 2016-05-18
CN105383052A (zh) 2016-03-09
EP2990182A2 (en) 2016-03-02
ES2706196T3 (es) 2019-03-27
PL2990182T3 (pl) 2019-04-30

Similar Documents

Publication Publication Date Title
US9849628B2 (en) Ultrasonic welding method using delayed motion of welding stack
JP6685669B2 (ja) サーボモータおよび遅延運動手法を使用した超音波プレス機
US9849627B2 (en) Ultrasonic press using servo motor with delayed motion
JP5542361B2 (ja) サーボモータおよび遅延運動手法を使用した超音波プレス機
US7819158B2 (en) Ultrasonic press using servo motor with integrated linear actuator
US9688017B2 (en) Vibration welders with high frequency vibration, position motion control, and delayed weld motion
CN112888553B (zh) 用于焊接物理变化部件的自动超声挤压系统和方法
JP6644047B2 (ja) 超音波溶接機の溶接パラメータの動的調整
CN112272610B (zh) 用于基于预定焊接强度与熔化层厚度间的相关性来确定与预定焊接强度相关联的熔化层厚度的方法
CN113242788B (zh) 用于超声波焊接中的低初始焊接速度的系统和方法
JP7141306B2 (ja) 接合装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6685669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250