JP2016047923A - Hard coating agent for decorative film, cured film, plastic film and molded article - Google Patents

Hard coating agent for decorative film, cured film, plastic film and molded article Download PDF

Info

Publication number
JP2016047923A
JP2016047923A JP2015166255A JP2015166255A JP2016047923A JP 2016047923 A JP2016047923 A JP 2016047923A JP 2015166255 A JP2015166255 A JP 2015166255A JP 2015166255 A JP2015166255 A JP 2015166255A JP 2016047923 A JP2016047923 A JP 2016047923A
Authority
JP
Japan
Prior art keywords
film
cured film
meth
coating agent
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015166255A
Other languages
Japanese (ja)
Other versions
JP6481565B2 (en
Inventor
佳明 宮尾
Yoshiaki Miyao
佳明 宮尾
裕 増田
Yutaka Masuda
裕 増田
仁宣 佐藤
Yoshinobu Sato
仁宣 佐藤
浩壽 小谷野
Hirohisa Koyano
浩壽 小谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2015166255A priority Critical patent/JP6481565B2/en
Publication of JP2016047923A publication Critical patent/JP2016047923A/en
Application granted granted Critical
Publication of JP6481565B2 publication Critical patent/JP6481565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard coating agent for decoration capable of being molded without crack against complicated shapes or deep drawing in a process molding by a vacuum bonding method, hardly being scratched and excellent in chemical resistance even without needs for post curing by active energy radiation or the like after molding.SOLUTION: There is provided a hard coating agent for decorative film containing a thermosetting resin composition containing (A) a copolymer obtained by radical polymerizing an ethylenic unsaturated monomer having a part capable of coordination bond (a-1) and another ethylenic unsaturated monomer (a-2) and having weight average molecular weight of 5,000 to 100,000 and (B) a metallic compound capable of coordination bond and having glass transition temperature of a cured film of the thermosetting resin composition of 80 to 150°C.SELECTED DRAWING: None

Description

本発明は、加熱時に優れた硬化膜伸度を有し、加熱成型加工後には優れた傷付き難さ、耐薬品性を付与することができる加飾フィルム用ハードコーティング剤、加飾フィルム用ハードコーティング剤を硬化して得られる硬化膜、硬化膜を積層してなるプラスチックフィルムに関する。 The present invention provides a hard coating agent for a decorative film, a hard film for a decorative film, which has excellent cured film elongation at the time of heating, and can impart excellent scratch resistance and chemical resistance after heat molding processing. The present invention relates to a cured film obtained by curing a coating agent and a plastic film obtained by laminating a cured film.

従来、電化製品、自動車外装、自動車内装部品、生活用品等の物品の表面加飾には、量産性や生産コストの点から加飾フィルムを使用した加飾技術が広く用いられており、金型内に加飾フィルムを挿入して射出成型と同時にプラスチック成型物表面を加飾するインモールド同時加飾成型が主であるが、プラスチックや金属あるいはガラスなどの成型品に加飾フィルムを貼り合わせ、または、加飾フィルムに積層した絵柄やハードコート層を転写させる真空圧着法が提案され、加飾対象物や形状適応性がさらに広がったことから、加飾フィルムには複雑な形状や深い絞り加工(深絞りという)に追従することができるよう高伸度が求められ、100%以上に加飾フィルムが延伸してもクラック等が生じないような加工性が求められる。 Conventionally, decoration techniques using decorative films have been widely used for surface decoration of articles such as electrical appliances, automobile exteriors, automobile interior parts, and daily necessities from the viewpoint of mass productivity and production cost. In-mold simultaneous decoration molding is mainly used, in which a decorative film is inserted and the surface of the plastic molded product is decorated at the same time as injection molding, but the decorative film is bonded to a molded product such as plastic, metal or glass, Or, the vacuum pressure bonding method to transfer the pattern or hard coat layer laminated on the decorative film has been proposed, and the decoration object and shape adaptability have further expanded, so the decorative film has a complicated shape and deep drawing process High elongation is required to follow (called deep drawing), and workability that does not cause cracks or the like even when the decorative film is stretched to 100% or more is required.

これらいずれの工法においても、柄インキによる意匠性に加え、それらを保護し美しい外観を長期間維持させる目的で、成型品最表面にはハードコート層が設けられている。ハードコート層には、熱可塑性樹脂や熱硬化性樹脂、活性エネルギー線硬化型樹脂が賞用されているが、熱可塑性樹脂は加工性が優れるものの耐薬品性に弱く、熱硬化性樹脂は加工性と傷付き難さがやや弱い傾向であり、活性エネルギー線硬化型樹脂は傷付き難さや耐薬品性は優れるものの、成型前に硬化させた場合には加工性が悪く、成型後に硬化させる場合にはハンドリングの悪さや成型物に活性エネルギー線を照射する工程が増えることによる生産効率低下が挙げられる。 In any of these methods, a hard coat layer is provided on the outermost surface of the molded product for the purpose of protecting the design and maintaining a beautiful appearance for a long period of time in addition to the design properties by the pattern ink. For the hard coat layer, thermoplastic resins, thermosetting resins, and active energy ray-curable resins are used awards. Thermoplastic resins are excellent in processability but weak in chemical resistance, and thermosetting resins are processed. The active energy ray-curable resin is excellent in scratch resistance and chemical resistance, but has poor processability when cured before molding and is cured after molding. In this case, the production efficiency decreases due to poor handling and an increase in the number of steps of irradiating the molded product with active energy rays.

これらに対しては、特許文献1には、水酸基と(メタ)アクリロイル基を有する活性エネルギー線ポリマーと多官能イソシアネートとの二液硬化により、加工性と硬化膜物性の両立を提案している(特許文献1)。しかしながら、真空圧着法で求められる加工性には達していない。また、加工成型後の成型物表面に活性エネルギー線を照射して硬化膜とする必要があるが、複雑な形状の場合、全面を均一に照射することが困難であり、生産性も乏しい。 For these, Patent Document 1 proposes both workability and cured film physical properties by two-component curing of an active energy ray polymer having a hydroxyl group and a (meth) acryloyl group and a polyfunctional isocyanate ( Patent Document 1). However, it does not reach the workability required by the vacuum pressure bonding method. Further, it is necessary to irradiate the surface of the molded product after processing and molding with an active energy ray to form a cured film. However, in the case of a complicated shape, it is difficult to uniformly irradiate the entire surface, and productivity is poor.

また特許文献2では、1分子中に活性メチレン基及び/または活性メチン基を合計で2個以上有する化合物と、(メタ)アクリロイル基を有する化合物及び光重合開始剤の樹脂組成物が提案されている(特許文献2参照)。しかし、特許文献1と同様に加工成型後に活性エネルギー線照射により硬化させる必要があり、加工性及び生産性に乏しい。 Patent Document 2 proposes a resin composition comprising a compound having a total of two or more active methylene groups and / or active methine groups in one molecule, a compound having a (meth) acryloyl group, and a photopolymerization initiator. (See Patent Document 2). However, as in Patent Document 1, it is necessary to cure by active energy ray irradiation after processing and molding, and workability and productivity are poor.

特許文献3では、ラジカル重合性二重結合を有しない非反応性樹脂を(メタ)アクリルモノマーに配合することで加工性を付与する手法も提案されている(特許文献3参照)。しかしながら、このような非反応性樹脂や可塑性樹脂を配合する場合には、柔軟になり加工性は向上するものの、傷付き難さや耐薬品性が不足する傾向がある。 Patent Document 3 also proposes a method of imparting processability by blending a non-reactive resin having no radical polymerizable double bond with a (meth) acrylic monomer (see Patent Document 3). However, when such a non-reactive resin or plastic resin is blended, it becomes flexible and processability is improved, but there is a tendency that scratch resistance and chemical resistance are insufficient.

特許文献4では、三官能以上の(メタ)アクリルオリゴマーと一〜二官能(メタ)アクリルモノマーとの配合組成により架橋密度をコントロールする方法が挙げられる(特許文献4参照)。この方法によれば、高い表面硬度と成型時の変形に追従できる柔軟性を兼ね備えたハードコートフィルムが得られるが、表面硬度と伸度とを高い水準で両立することは困難であった。 In patent document 4, the method of controlling a crosslinking density by the compounding composition of the trifunctional or more than trifunctional (meth) acryl oligomer and the mono- or bifunctional (meth) acryl monomer is mentioned (refer patent document 4). According to this method, a hard coat film having both high surface hardness and flexibility capable of following deformation during molding can be obtained, but it has been difficult to achieve both high levels of surface hardness and elongation.

特開平10−58895号公報JP-A-10-58895 特開2005−206778号公報JP 2005-206778 A 特開2008−208154号公報JP 2008-208154 A 特開2011−148964号公報JP 2011-148964 A

本発明は、真空圧着法による加工成型において、複雑な形状や深絞りに対してもクラックなく成型可能で且つ、成型後に活性エネルギー線照射などによる後硬化を必要としないにもかかわらず傷付き難さや耐薬品性の優れた加飾用ハードコーティング剤を提供することである。 The present invention is capable of forming a complex shape or deep drawing without cracking in processing and molding by vacuum pressure bonding, and is difficult to be scratched even though post-curing by active energy ray irradiation is not required after molding. It is to provide a hard coating agent for decoration having excellent sheath chemical resistance.

すなわち、本発明1は、配位結合可能な部位を有するエチレン性不飽和単量体(a−1)と、他のエチレン性不飽和単量体(a−2)をラジカル重合して得られる重量平均分子量5,000〜100,000の共重合ポリマー(A)及び配位結合可能な金属化合物(B)を含有する熱硬化性樹脂組成物を含み、熱硬化性樹脂組成物の硬化膜のガラス転移温度が80〜150℃である加飾フィルム用ハードコーティング剤である。 That is, the present invention 1 is obtained by radical polymerization of an ethylenically unsaturated monomer (a-1) having a site capable of coordination bonding and another ethylenically unsaturated monomer (a-2). A thermosetting resin composition comprising a copolymer (A) having a weight average molecular weight of 5,000 to 100,000 and a metal compound (B) capable of coordinating bonding, and comprising a cured film of the thermosetting resin composition It is a hard coating agent for a decorative film having a glass transition temperature of 80 to 150 ° C.

本発明2は、本発明1において、配位結合可能な部位を有するエチレン性不飽和単量体(a−1)が、ヒドロキシル基、カルボキシル基及びアセトアセチル基のうち少なくとも1種の官能基を分子中に有する化合物である加飾フィルム用ハードコーティング剤である。 The present invention 2 relates to the present invention 1, wherein the ethylenically unsaturated monomer (a-1) having a site capable of coordinating bonding has at least one functional group selected from a hydroxyl group, a carboxyl group and an acetoacetyl group. It is a hard coating agent for a decorative film which is a compound contained in the molecule.

本発明3は、本発明1又は2において、金属化合物(B)が、金属キレート化合物及び/又は金属アルコレートの金属キレート化合物である加飾フィルム用ハードコーティング剤である。 Invention 3 is a hard coating agent for a decorative film according to Invention 1 or 2, wherein the metal compound (B) is a metal chelate compound and / or a metal chelate compound of a metal alcoholate.

本発明4は、本発明1〜3のいずれかの加飾フィルム用ハードコーティング剤を熱処理により硬化させてなる硬化膜である。 The present invention 4 is a cured film obtained by curing the hard coating agent for a decorative film according to any one of the present invention 1 to 3 by heat treatment.

本発明5は、本発明4の硬化膜を有する積層してなるプラスチックフィルムである。 The present invention 5 is a laminated plastic film having the cured film of the present invention 4.

本発明6は、本発明4の硬化膜を表面に被覆してなる成型物である。 The present invention 6 is a molded product obtained by coating the surface of the cured film of the present invention 4.

本発明の加飾フィルム用ハードコーティング剤を使用すれば、熱硬化反応後の硬化膜においても加熱加工成型時に100%以上の硬化膜伸度を示すことから加工性が良く、且つ、成型後の硬化膜は傷付き難く耐薬品性が良好な硬化膜が得られる。これにより、従来困難であった、成型後の硬化工程を必要としない簡便で、且つ、加工性と塗膜物性を両立した加飾用ハードコーティング剤を提供することが出来る。 If the hard coating agent for a decorative film of the present invention is used, even in a cured film after a thermosetting reaction, the processability is good because it exhibits a cured film elongation of 100% or more at the time of heat processing molding, and after molding. The cured film is hard to be damaged, and a cured film having good chemical resistance can be obtained. Thereby, the hard coating agent for decorating which was difficult conventionally and does not require the hardening process after shaping | molding and was compatible with workability and the physical property of a coating film can be provided.

本発明は、配位結合可能な部位を有するエチレン性不飽和単量体(a−1)(以下、「(a−1)成分」という)と、他のエチレン性不飽和単量体(a−2)(以下、「(a−2)成分」という)をラジカル重合して得られる重量平均分子量5,000〜100,000の共重合ポリマー(A)(以下、「(A)成分」という)及び配位結合可能な金属化合物(B)(以下、「(B)成分」という)を含有する熱硬化性樹脂組成物を含み、熱硬化性樹脂組成物の硬化膜のガラス転移温度が80〜150℃である加飾フィルム用ハードコーティング剤である。 The present invention relates to an ethylenically unsaturated monomer (a-1) having a site capable of coordination bonding (hereinafter referred to as “component (a-1)”) and another ethylenically unsaturated monomer (a -2) Copolymer (A) (hereinafter referred to as “component (A)”) having a weight average molecular weight of 5,000 to 100,000 obtained by radical polymerization of (hereinafter referred to as “component (a-2)”) ) And a metal compound (B) capable of coordination bonding (hereinafter referred to as “component (B)”), and the glass transition temperature of the cured film of the thermosetting resin composition is 80. It is a hard coating agent for a decorative film having a temperature of ˜150 ° C.

上記配位結合可能な部位とは、非共有電子対を有することができる化学構造のことであり、このような部位を有する(A)成分と後述する(B)成分を含有する加飾フィルム用ハードコーティング剤を用いることで、100〜150℃の加熱時には優れた塗膜伸度を有する硬化膜を得ることができる。これにより、成型加工時には塗膜がよく伸びて加工性が高く、成型後の冷えた状態では耐傷性や耐薬品性に優れた硬化膜を得ることができ、従来困難であった塗膜伸度と塗膜強度の両立が可能となる。 The site capable of coordinate bonding is a chemical structure capable of having an unshared electron pair, and for a decorative film containing the component (A) having such a site and the component (B) described later. By using a hard coating agent, a cured film having excellent coating film elongation can be obtained when heated at 100 to 150 ° C. This makes it possible to obtain a cured film with excellent scratch resistance and chemical resistance in the cold state after molding. And film strength can be achieved.

上記(a−1)成分は、ヒドロキシル基、カルボキシル基及びアセトアセチル基のうち少なくともいずれか1種の官能基を分子中に有する化合物であることが好ましい。具体的には、ヒドロキシル基含有エチレン性不飽和単量体、カルボキシル基含有エチレン性不飽和単量体及びアセトアセチル基含有エチレン性不飽和単量体からなる群より選ばれる少なくとも一種が挙げられる。これにより、(B)成分を架橋剤とした硬化物とすることができる。これらの中でも、硬化物性に関して耐溶剤性に優れる点から特にアセトアセチル基含有エチレン性不飽和単量体及び/又はカルボキシル基含有エチレン性不飽和単量体が好ましい。 The component (a-1) is preferably a compound having in the molecule at least one functional group among a hydroxyl group, a carboxyl group and an acetoacetyl group. Specific examples include at least one selected from the group consisting of a hydroxyl group-containing ethylenically unsaturated monomer, a carboxyl group-containing ethylenically unsaturated monomer, and an acetoacetyl group-containing ethylenically unsaturated monomer. Thereby, it can be set as the hardened | cured material which used the (B) component as the crosslinking agent. Among these, an acetoacetyl group-containing ethylenically unsaturated monomer and / or a carboxyl group-containing ethylenically unsaturated monomer are particularly preferred from the viewpoint of excellent solvent resistance with respect to cured properties.

上記ヒドロキシル基含有エチレン性不飽和単量体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシエチルアクリロイルホスフェート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシプロピルフタレート、2−ヒドロキシ−3−(メタ)アクリロイロキシプロピル(メタ)アクリレート、カプロラクトン変性2−ヒドロキシエチル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、1,4−シルロヘキサンジメタノールモノアクリレート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルブタレート、などが挙げられる。これらの中でも入手が容易な観点から、2−ヒドロキシエチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートが好ましい。 Examples of the hydroxyl group-containing ethylenically unsaturated monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, caprolactone-modified 2-hydroxyethyl (meth) Acrylate, butanediol mono (meth) acrylate, dipropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol Lumpur (meth) acrylate, 1,4-sill b hexane dimethanol monoacrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl swine rate, and the like. Among these, 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate are preferable from the viewpoint of easy availability.

上記カルボキシル基含有エチレン性不飽和単量体としては、(メタ)アクリル酸、(メタ)アクリル酸ダイマー、(メタ)アクリル酸トリマー、2−(メタ)アクリロイルオキシエチルコハク酸、2−(メタ)アクリロイルオキシエチルフタレート、2−(メタ)アクリロイルオキシエチルヘキサヒドロフタレート、2−アクリロイルオキシプロピルフタレート、2−アクリロイルオキシプロピルヘキサヒドロフタレート、EO変性コハク酸(メタ)アクリレートが挙げられる。これらの中でも入手が容易な観点から、(メタ)アクリル酸、2−(メタ)アクリロイルオキシエチルヘキサヒドロフタレート、EO変性コハク酸(メタ)アクリレートが好ましい。 Examples of the carboxyl group-containing ethylenically unsaturated monomer include (meth) acrylic acid, (meth) acrylic acid dimer, (meth) acrylic acid trimer, 2- (meth) acryloyloxyethyl succinic acid, and 2- (meth). Examples include acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-acryloyloxypropyl hexahydrophthalate, and EO-modified succinic acid (meth) acrylate. Among these, (meth) acrylic acid, 2- (meth) acryloyloxyethyl hexahydrophthalate, and EO-modified succinic acid (meth) acrylate are preferable from the viewpoint of easy availability.

上記アセトアセチル基含有エチレン性不飽和単量体としては、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシブチル(メタ)アクリレートが挙げられる。これらの中でも入手が容易な観点から、アセトアセトキシエチル(メタ)アクリレートが好ましい。 Examples of the acetoacetyl group-containing ethylenically unsaturated monomer include acetoacetoxyethyl (meth) acrylate, acetoacetoxypropyl (meth) acrylate, and acetoacetoxybutyl (meth) acrylate. Among these, acetoacetoxyethyl (meth) acrylate is preferable from the viewpoint of easy availability.

上記(a−2)成分の代表例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジシククロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2−エチルヘキシルカルビトール(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ノニエフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、スチレンが挙げられる。これらのエチレン性不飽和単量体は1種、又は、2種以上を組み合わせて使用することができる。これらの中でも硬化膜が加工時にクラックが生じにくく、且つ、硬化膜表面が傷付き難い点で、メチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、スチレンが好ましい。 Representative examples of the component (a-2) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl. (Meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) ) Acrylate, benzyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate Rate, 2-methoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, butoxyethyl (meth) acrylate, EO-modified cresol (meth) acrylate, ethoxylated phenyl (meth) acrylate, methoxydipropylene glycol (meth) Acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, noniephenoxypolyethylene glycol (meth) acrylate, phenoxyethylene glycol (meth) acrylate, isobornyl (meth) acrylate , Phenoxydiethylene glycol (meth) acrylate, and styrene. These ethylenically unsaturated monomers can be used alone or in combination of two or more. Among these, methyl (meth) acrylate, cyclohexyl (meth) acrylate, phenoxyethylene glycol (meth) acrylate, and styrene are preferred because the cured film is less likely to crack during processing and the cured film surface is less likely to be damaged.

上記共重合ポリマー(A)は上記(a−1)成分と(a−2)成分をラジカル重合して得られるものであり、(a−1)成分と(a−2)成分の共重合比率は、(A)成分の重量平均分子量が5,000〜100,000となる範囲であれば特に限定されないが、好ましくは(a−1)成分:(a−2)成分の重量比が10:90〜80:20程度である。(a−1)成分の比率が10を下回る場合には、硬化膜の耐薬品性が低下してしまう。対して、80を超える場合には(A)成分の粘度が高くなりハンドリングが困難になる。(A)成分のラジカル共重合体の合成法は、溶液重合法、懸濁重合法、乳化重合法、塊状重合法などの従来既知の合成法で行うことが出来る。特に、分子量の制御の容易さから、溶液重合法が好ましい。 The copolymer (A) is obtained by radical polymerization of the components (a-1) and (a-2), and the copolymerization ratio of the components (a-1) and (a-2). Is not particularly limited as long as the weight average molecular weight of the component (A) is in the range of 5,000 to 100,000, but the weight ratio of the component (a-1) to the component (a-2) is preferably 10: It is about 90-80: 20. (A-1) When the ratio of a component is less than 10, the chemical resistance of a cured film will fall. On the other hand, when it exceeds 80, the viscosity of the component (A) becomes high and handling becomes difficult. (A) The radical copolymer of a component can be synthesized by a conventionally known synthesis method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method or a bulk polymerization method. In particular, the solution polymerization method is preferable because of easy control of the molecular weight.

溶液重合法で(A)成分を製造する場合には、(a−1)成分と、(a−2)成分を原料に用い、有機溶剤を加えて、さらにラジカル重合開始剤を添加して、50℃〜150℃で2〜12時間保持することにより得られる。ラジカル重合開始剤種と反応温度は、生成する(A)成分の重量平均分子量に影響を与え得ることから、任意の重量平均分子量範囲になるように調整が必要である。 When the component (A) is produced by the solution polymerization method, the component (a-1) and the component (a-2) are used as raw materials, an organic solvent is added, and a radical polymerization initiator is further added. It is obtained by holding at 50 to 150 ° C. for 2 to 12 hours. Since the radical polymerization initiator species and the reaction temperature can affect the weight average molecular weight of the component (A) to be generated, it is necessary to adjust the radical polymerization initiator species and the reaction temperature to be in an arbitrary weight average molecular weight range.

上記ラジカル重合開始剤としては、特に限定することなく公知のものを使用することができる。具体的には、例えば、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ラウリルパーオキサイド等の有機過酸化物、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート等のアゾ系化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。なお、ラジカル重合開始剤の使用量は特に限定されないが、生成する共重合ポリマー(A)の重量平均分子量に影響を与え得ることから、重量平均分子量5,000〜100,000の共重合ポリマー(A)とする為には、全重合成分100重量部に対し0.01〜8重量部程度とすることが好ましい。なお、必要に応じ、連鎖移動剤などを用いてもよい。 As said radical polymerization initiator, a well-known thing can be used without limitation. Specifically, for example, inorganic peroxides such as hydrogen peroxide, ammonium persulfate and potassium persulfate, organic peroxides such as benzoyl peroxide, dicumyl peroxide and lauryl peroxide, 2,2′-azobis And azo compounds such as isobutyronitrile and dimethyl-2,2′-azobisisobutyrate. These may be used alone or in combination of two or more. In addition, although the usage-amount of a radical polymerization initiator is not specifically limited, Since it may affect the weight average molecular weight of the copolymer copolymer (A) to produce | generate, the copolymer polymer (weight average molecular weight 5,000-100,000 ( In order to achieve A), it is preferable that the amount be about 0.01 to 8 parts by weight with respect to 100 parts by weight of the total polymerization components. In addition, you may use a chain transfer agent etc. as needed.

上記連鎖移動剤としては、例えば、n−ラウリルメルカプタン、n−ドデシルメルカプタン、2−メルカプトベンゾチアゾール、ブロムトリクロルメタン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。連鎖移動剤の使用量は、使用する全重合成分100重量部に対し、0.01〜5重量部程度とすることが好ましい。 Examples of the chain transfer agent include n-lauryl mercaptan, n-dodecyl mercaptan, 2-mercaptobenzothiazole, bromotrichloromethane, and the like. These may be used alone or in combination of two or more. The amount of the chain transfer agent used is preferably about 0.01 to 5 parts by weight with respect to 100 parts by weight of all the polymerization components used.

上述した溶液重合する際の溶剤については、(a−1)成分、(a−2)成分、及び、(A)成分と相溶する有機溶剤であれば特に制限なく使用することが出来る。好ましくは、ラジカル重合反応の際に好適な反応温度50℃〜150℃を維持することが可能で、塗液乾燥の際に揮発性が良いものが好ましく、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ジアセトンアルコール、アセチルアセトン、トルエン、キシレン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、n−ヘプタン、イソプロピルエーテル、メチルセロソルブ、エチルセロソルブ、1,4−ジオキサン、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、1種または2種以上の混合用液でも使用することが出来る。これらの中でも塗工時に特に適する乾燥性、乾燥時の臭気の観点から、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸ブチル、ジアセトンアルコール、アセチルアセトン、プロピレングリコールモノメチルエーテルが好ましい。有機溶剤の使用量は、原料固形分100重量部に対して、通常は60〜150重量部である。 About the solvent at the time of solution polymerization mentioned above, if it is an organic solvent compatible with (a-1) component, (a-2) component, and (A) component, it can be especially used without a restriction | limiting. Preferably, it is possible to maintain a suitable reaction temperature of 50 ° C. to 150 ° C. during the radical polymerization reaction, and those having good volatility during drying of the coating liquid are preferred. Methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, acetic acid Ethyl, butyl acetate, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutyl alcohol, tert-butyl alcohol, diacetone alcohol, acetylacetone, toluene, xylene, n-hexane, cyclohexane, methylcyclohexane, n-heptane, Isopropyl ether, methyl cellosolve, ethyl cellosolve, 1,4-dioxane, propylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether Seteto and the like, can also be used in one or more mixing liquid. Of these, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, butyl acetate, diacetone alcohol, acetylacetone, and propylene glycol monomethyl ether are preferred from the viewpoints of drying property particularly suitable for coating and odor during drying. The amount of the organic solvent used is usually 60 to 150 parts by weight with respect to 100 parts by weight of the raw material solid content.

合成された(A)成分の重量平均分子量を5,000〜100,000とすることで、硬化膜物性とハンドリングの良いものとすることができる。重量平均分子量5,000未満の場合には、硬化膜の耐薬品性が低下してしまう。対して、100,000を超える場合には、粘度が高くなり、また、有機溶剤との相溶性が悪くなる傾向でハンドリングが悪くなってしまう。 By setting the weight average molecular weight of the synthesized component (A) to 5,000 to 100,000, the cured film properties and handling can be improved. When the weight average molecular weight is less than 5,000, the chemical resistance of the cured film is lowered. On the other hand, when it exceeds 100,000, the viscosity becomes high, and the handling becomes worse due to the tendency of the poor compatibility with the organic solvent.

上記(B)成分としては、配位結合能を有する金属化合物であれば各種公知のものを特に制限なく使用できる。具体的には、例えば、金属キレート化合物、金属アルコレート及び金属アシレートからなる群より選ばれる少なくとも一種が挙げられる。なお、該金属キレート化合物にはその部分アルコレートまたは部分アシレートなどが、該金属アルコレートにはその加水分解物及び縮合物などが、該金属アシレートにはその加水分解物及び縮合物などが含まれる。これらの中でも、保存安定性の観点より、金属キレート化合物及び/又は金属アルコレートの金属キレート化合物が好ましい。 As the component (B), various known compounds can be used without particular limitation as long as they are metal compounds having coordination ability. Specific examples include at least one selected from the group consisting of metal chelate compounds, metal alcoholates, and metal acylates. The metal chelate compound includes a partial alcoholate or partial acylate thereof, the metal alcoholate includes a hydrolyzate or condensate thereof, and the metal acylate includes a hydrolyzate or condensate thereof. . Among these, metal chelate compounds and / or metal chelate compounds of metal alcoholates are preferable from the viewpoint of storage stability.

上記(B)成分を構成する金属としては、例えば、アルミニウム、ジルコニウム、チタニウム、マグネシウム、クロム、コバルト、銅、鉄、ニッケル、バナジウム、亜鉛、インジウム、カルシウム、マンガン、スズが挙げられる。これらの中でも(B)成分としての入手が容易な観点から、アルミニウム、ジルコニウム、チタニウムが好ましい。 Examples of the metal constituting the component (B) include aluminum, zirconium, titanium, magnesium, chromium, cobalt, copper, iron, nickel, vanadium, zinc, indium, calcium, manganese, and tin. Among these, aluminum, zirconium and titanium are preferable from the viewpoint of easy availability as the component (B).

上記金属キレート化合物としては、例えば、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリスエチルアセトアセテート、アルミニウムモノアセチルアセテートビスエチルアセトアセテート、アルミニウムトリスアセチルアセトネート、アルミニウムモノイソプロポキシモノオレオキシエチルアセトアセテートのアルミニウム化合物;ジルコニウムテトラアセチルアセテート、ジルコニウムトリブトキシモノアセチルアセテート、ジルコニウムモノブトキシアセチルアセテートビスエチルアセトアセテート、ジルコニウムジブトキシビスエチルアセトアセテート等のジルコニウム化合物;チタンジイソプロポキシビスアセチルアセテート、チタンテトラアセチルアセテート、チタンジオクチロキシビスオクチレングリコレート、チタンジイソプロポキシビスエチルアセトアセテート等のチタン化合物;エトキシ・アセチルアセトナート亜鉛、ビスアセチルアセトナート亜鉛、プロポキシ・アセチルアセトナート亜鉛、ブトキシ・アセチルアセトナート亜鉛、エトキシ・エチルアセトアセテート亜鉛、ビスエチルアセトアセテート亜鉛、プロポキシ・エチルアセトアセテート亜鉛、ブトキシ・エチルアセトアセテート亜鉛などの亜鉛化合物が挙げられる。 Examples of the metal chelate compound include aluminum ethyl acetoacetate / diisopropylate, alkyl acetoacetate aluminum diisopropylate, aluminum trisethyl acetoacetate, aluminum monoacetyl acetate bisethyl acetoacetate, aluminum trisacetylacetonate, aluminum monoisopropylate. Aluminum compounds of propoxy mono-oroxyethyl acetoacetate; zirconium compounds such as zirconium tetraacetyl acetate, zirconium tributoxy monoacetyl acetate, zirconium monobutoxy acetyl acetate bisethyl acetoacetate, zirconium dibutoxy bisethyl acetoacetate; titanium diisopropoxy bis Acetyl acetate, titanium Titanium compounds such as laacetyl acetate, titanium dioctyloxybisoctylene glycolate, titanium diisopropoxybisethyl acetoacetate; ethoxy acetylacetonate zinc, bisacetylacetonate zinc, propoxy acetylacetonate zinc, butoxy acetyl Zinc compounds such as acetonate zinc, ethoxy / ethyl acetoacetate zinc, bisethyl acetoacetate zinc, propoxy / ethyl acetoacetate zinc, butoxy / ethyl acetoacetate zinc are listed.

上記金属アルコレートとしては、例えば、アルミニウムエチレート、アルミニウムプロピレート、アルミニウムイソプロピレート、アルミニウムジイソプロピレートモノsecブチレート、アルミニウムモノイソプロピレートジsecブチレート、アルミニウムsecブチレートのアルミニウム化合物;ジエトキシ亜鉛、ジプロポキシ亜鉛、ジブトキシ亜鉛等の亜鉛化合物、チタニウムエチレート、チタニウムプロピレート、チタニウムイソプロピレート、チタニウムブチレート、等のチタニウム化合物;ジルコニウムエチレート、ジルコニウムプロピレート、ジルコニウムイソプロピレート、ジルコニウムブチレート等のジルコニウム化合物が挙げられる。また、該金属アルコレートの縮合物としては、環状アルミニウムオキサイドイソプロピレート、環状アルミニウムオキサイドオクチレート、環状アルミニウムオキサイドステアレートが挙げられる。 Examples of the metal alcoholate include aluminum ethylate, aluminum propylate, aluminum isopropylate, aluminum diisopropylate monosec butyrate, aluminum monoisopropylate disec butyrate, aluminum compound of aluminum sec butyrate; diethoxy zinc, dipropoxy zinc, Zinc compounds such as dibutoxy zinc, titanium compounds such as titanium ethylate, titanium propyrate, titanium isopropylate, and titanium butyrate; zirconium compounds such as zirconium ethylate, zirconium propyrate, zirconium isopropylate, and zirconium butyrate . Examples of the condensate of the metal alcoholate include cyclic aluminum oxide isopropylate, cyclic aluminum oxide octylate, and cyclic aluminum oxide stearate.

上記金属アシレートとしては、例えば、ジルコニウムモノプロピルトリステアレート、ジルコニウムジプロピルジステアレート、ジルコニウムトリプロピルモノステアレート、ジルコニウムモノブトキシトリステアレート、ジルコニウムジブトキシジステアレート、ジルコニウムトリブトキシモノステアレート等のジルコニウム化合物が挙げられ、縮合物としては、ポリヒドロキシチタンステアレートが挙げられる。 Examples of the metal acylate include zirconium monopropyl tristearate, zirconium dipropyl distearate, zirconium tripropyl monostearate, zirconium monobutoxy tristearate, zirconium dibutoxy distearate, zirconium tributoxy monostearate and the like. And the condensate includes polyhydroxytitanium stearate.

上記(B)成分の使用量は特に限定されないが、(A)成分中の(a−1)成分3molに対して0.25〜3mol程度を配合することで、良好な硬化膜物性とすることができる。(B)成分の使用量を0.25mol以上とすることにより、硬化膜は硬化性を始め良好な硬化膜物性を示すようになり、また、3mol以下とすることにより、コーティング剤の保存安定性が良好になる。 Although the usage-amount of said (B) component is not specifically limited, By setting about 0.25-3 mol with respect to 3 mol of (a-1) component in (A) component, it shall be favorable cured film physical property. Can do. By setting the amount of component (B) used to be 0.25 mol or more, the cured film will exhibit good cured film properties including curability, and by setting it to 3 mol or less, the storage stability of the coating agent is increased. Will be better.

本発明の加飾フィルム用ハードコーティング剤は、(A)成分と(B)成分に加えて、塗工の際に適した粘度に希釈調整するための有機溶剤、塗工外観を向上させるための添加剤、塗膜特性を向上させるための無機フィラーまたは有機フィラーを使用することが出来る。 In addition to the (A) component and the (B) component, the hard coating agent for a decorative film of the present invention is an organic solvent for adjusting the dilution to a viscosity suitable for coating, for improving the coating appearance. Additives, inorganic fillers or organic fillers for improving coating film properties can be used.

上記希釈調整用の有機溶剤に関しては、(A)成分と(B)成分と相溶性の良い有機溶剤であり、且つ、塗液乾燥の際に揮発性が良いものであれば特に制限なく使用することが出来き、具体的には、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル、酢酸ブチル、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、イソブチルアルコール、tert−ブチルアルコール、ジアセトンアルコール、アセチルアセトン、トルエン、キシレン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサン、n−ヘプタン、イソプロピルエーテル、メチルセロソルブ、エチルセロソルブ、1,4−ジオキサン、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらは単独で使用してもいいし、複数種を配合して使用することも出来る。一般には塗液粘度を5~1000mPa・s程度になるように配合量が調整される。 The organic solvent for dilution adjustment is not particularly limited as long as it is an organic solvent having good compatibility with the components (A) and (B) and has good volatility when drying the coating liquid. Specifically, methyl ethyl ketone, methyl isobutyl ketone, methyl acetate, ethyl acetate, butyl acetate, ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, isobutyl alcohol, tert-butyl alcohol, diacetone alcohol , Acetylacetone, toluene, xylene, n-hexane, cyclohexane, methylcyclohexane, n-heptane, isopropyl ether, methyl cellosolve, ethyl cellosolve, 1,4-dioxane, propylene glycol monomethyl ether, ethylene glycol monoethyl ether Tate, propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more. In general, the blending amount is adjusted so that the coating liquid viscosity is about 5 to 1000 mPa · s.

上記添加剤は、特に制限なく市販されるシリコーン類、アクリル類、フッ素類のレベリング剤、表面調整剤を使用することができる。例えば、BYK社のBYK300番台、BYK−UV3500番台、BYKETOL−OKなどを使用できる。 As the additive, commercially available silicones, acrylics, fluorine leveling agents, and surface conditioners can be used. For example, BYK 300 series, BYK-UV 3500 series, BYKETOL-OK, etc. of BYK company can be used.

上記無機フィラーとしては、シリカ、アルミナ、ジルコニア及びチタニア等の金属酸化物の粒子、並びに粒子状、板状、鱗片状、又は繊維状のガラスが挙げられる。また、有機フィラーとしては、メタクリル酸エステル類ポリマー、ポリウレタン、ポリスチレンなどで組成される有機ビーズや、カーボンナノチューブなどが挙げられ、硬化膜の透明性を損なわないものであれば、特に制限なく使用することが出来る。 Examples of the inorganic filler include particles of metal oxides such as silica, alumina, zirconia, and titania, and particles, plates, scales, or fibers of glass. Examples of the organic filler include organic beads composed of methacrylic acid ester polymers, polyurethane, polystyrene, and carbon nanotubes, and carbon nanotubes are used without particular limitation as long as they do not impair the transparency of the cured film. I can do it.

さらに、市販の酸化防止剤、紫外線吸収剤、擦り傷防止剤、スリップ剤、アンチブロッキング剤など、用途に応じて特に制限することなく使用することができる。 Furthermore, commercially available antioxidants, ultraviolet absorbers, scratch inhibitors, slip agents, antiblocking agents, and the like can be used without particular limitation depending on the application.

加飾フィルム用ハードコーティング剤を熱処理により硬化させてなる硬化膜も本発明の1つである。この熱処理により、加飾フィルム用ハードコーティング剤が含有し得る有機溶剤が揮発するとともに硬化反応が進むことで硬化膜が得られる。この熱処理は、80℃〜160℃の温度で30秒から10分間加熱することが好ましい。これにより、硬化膜のガラス転移温度を80℃から150℃とすることができる。 A cured film obtained by curing a hard coating agent for a decorative film by heat treatment is also one aspect of the present invention. By this heat treatment, the organic solvent that can be contained in the decorative film hard coating agent is volatilized and the cured reaction proceeds to obtain a cured film. This heat treatment is preferably performed at a temperature of 80 ° C. to 160 ° C. for 30 seconds to 10 minutes. Thereby, the glass transition temperature of a cured film can be 80 to 150 degreeC.

加飾用ハードコーティング剤を80℃より高温で加熱することで硬化反応が十分に進行し、さらには硬化膜中の溶剤が十分に揮発する。160℃より低温で加熱することで、後述するプラスチックフィルムに熱変性が生じるのを防ぐことができる。加熱処理時間は、通常30秒〜10分間であり、生産性の点から、温度設定が120℃〜160℃の高温が好ましい。これにより、30秒〜3分間ほどの短時間で硬化反応が終了する。対して、温度設定が80℃〜120度の場合には、5分〜10分間程の加熱時間を要する。 By heating the hard coating agent for decoration at a temperature higher than 80 ° C., the curing reaction sufficiently proceeds, and the solvent in the cured film is sufficiently volatilized. By heating at a temperature lower than 160 ° C., it is possible to prevent heat denaturation from occurring in the plastic film described later. The heat treatment time is usually 30 seconds to 10 minutes, and a high temperature of 120 ° C. to 160 ° C. is preferable from the viewpoint of productivity. Thereby, the curing reaction is completed in a short time of about 30 seconds to 3 minutes. On the other hand, when the temperature setting is 80 ° C. to 120 ° C., a heating time of about 5 minutes to 10 minutes is required.

こうして得られた硬化膜のガラス転移温度(Tg)は、硬化膜のみを採取して基準物質との熱量の違いを示差走査熱量測定により解析することで測定することができる。一般に成型時に硬化膜には、140℃〜180℃ほどの熱が加飾フィルムにかかることから、硬化膜のTgを80℃〜150℃の範囲にすることで、成型時の熱で硬化膜が軟化し、成型時に十分な伸度を発現することができる。硬化膜のTgが80℃以下の場合には、傷付き難さや耐薬品性などの塗膜物性が低下してしまう。対して、150℃以上になると、成型時の熱で硬化膜が軟化することが出来ず、クラックが生じてしまう。 The glass transition temperature (Tg) of the cured film thus obtained can be measured by collecting only the cured film and analyzing the difference in calorie from the reference material by differential scanning calorimetry. Generally, the cured film has a heat of 140 ° C. to 180 ° C. applied to the decorative film at the time of molding. Therefore, by setting the Tg of the cured film to a range of 80 ° C. to 150 ° C., the cured film is heated by the heat at the time of molding. Softens and can exhibit sufficient elongation at the time of molding. When the Tg of the cured film is 80 ° C. or lower, physical properties of the coating film such as difficulty of scratching and chemical resistance are deteriorated. On the other hand, when the temperature is 150 ° C. or higher, the cured film cannot be softened by heat during molding, and cracks are generated.

この硬化膜を積層したプラスチックフィルムも、本発明の一つである。プラスチックフィルムとは、ポリエチレンテレフタレート、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリオレフィン、ポリスチレン、ポリアミド、ポリエステル等が上げられ、中でもポリエチレンテレフタレートが市場で入手し易い点で好ましい。 A plastic film in which this cured film is laminated is also one aspect of the present invention. Examples of the plastic film include polyethylene terephthalate, polycarbonate, polypropylene, polyethylene, polyolefin, polystyrene, polyamide, polyester, etc. Among them, polyethylene terephthalate is preferable because it is easily available on the market.

本発明の加飾用ハードコーティング剤は、グラビヤコート法、ロールコート法、スプレーコート法、コンマコート法、リップコート法、グラビヤ印刷法、スクリーン印刷法などでプラスチック基材に塗工し加熱することで硬化膜を積層することができる。生産性の観点からグラビヤ印刷法が好ましい。また、グラビヤ印刷法により硬化膜の厚さが3〜10μmになるように塗工するのが硬化膜の物性の点から好ましい。 The decorative hard coating agent of the present invention is applied to a plastic substrate by the gravure coating method, roll coating method, spray coating method, comma coating method, lip coating method, gravure printing method, screen printing method, etc. and heated. The cured film can be laminated with. The gravure printing method is preferred from the viewpoint of productivity. Moreover, it is preferable from the point of the physical property of a cured film to coat so that the thickness of a cured film may be set to 3-10 micrometers by the gravure printing method.

プラスチックフィルム表面には、加飾フィルムの用途に合わせて、本発明の硬化膜との密着性向上を目的に易接着処理、または、プラスチックフィルムから硬化膜を剥離し易くする為の剥離処理をしても良い。 Depending on the application of the decorative film, the surface of the plastic film is subjected to easy adhesion treatment for the purpose of improving adhesion to the cured film of the present invention, or peeling treatment to facilitate peeling of the cured film from the plastic film. May be.

上記易接着処理は、コロナ処理、プラズマ処理、または、ポリエステル骨格、ポリエーテル骨格、ポリカーボネート骨格、ポリウレタン骨格、ポリアミド骨格、ポリビニルアルコール骨格などを有する樹脂を1種単独で、または2種以上を組み合わせて易接着層を積層することでできる。 The easy adhesion treatment may be performed by corona treatment, plasma treatment, or a resin having a polyester skeleton, a polyether skeleton, a polycarbonate skeleton, a polyurethane skeleton, a polyamide skeleton, a polyvinyl alcohol skeleton, or the like alone or in combination of two or more. It can be done by laminating an easy adhesion layer.

上記剥離処理は、剥離性が良い場合には特に必要がないが、より剥離を容易にするために、メラミン樹脂系、シリコーン樹脂系、フッ素樹脂系、セルロース誘導体系、尿素樹脂系、ポリオレフィン樹脂系、パラフィン樹脂系のこれら1種単独または2種以上を組み合わせて離型層として積層することでできる。 The above peeling treatment is not particularly necessary when the peelability is good, but in order to make peeling easier, melamine resin, silicone resin, fluororesin, cellulose derivative, urea resin, polyolefin resin These can be laminated as a release layer by combining one or more of these paraffinic resins.

次に、本発明の硬化膜を積層してなる成型物について説明する。この成型物も本発明の1つである。インモールド同時加飾法、真空加圧法などの工法を用いることによって、本発明の硬化膜を成型物表面に積層することができ、それら両方の工法においても、硬化膜をプラスチックフィルムごと成型物表面に貼り付けるラミネート法と、プラスチックフィルム上に積層した硬化膜やその他柄インキ層や機能層のみを成型物表面に転写する転写法がある。 Next, a molded product formed by laminating the cured film of the present invention will be described. This molded product is also one aspect of the present invention. The cured film of the present invention can be laminated on the surface of the molded product by using a method such as the in-mold simultaneous decorating method or the vacuum pressure method. And a transfer method in which only a cured film or other patterned ink layer or functional layer laminated on a plastic film is transferred to the surface of the molded product.

上記ラミネート法では、加飾フィルムの構成として、一般に、本発明の硬化膜層、アンカー層、柄インキ層、易接着層、プラスチックフィルム、機能層、接着層の順、または、本発明の硬化膜層、易接着層、プラスチックフィルム、易接着層、柄インキ層、機能層、接着層の順などの層構成があり、成型物表面にこの接着層を介して貼り合わせることができる。 In the above laminating method, the decorative film is generally composed of the cured film layer of the present invention, the anchor layer, the handle ink layer, the easy-adhesion layer, the plastic film, the functional layer, the adhesive layer, or the cured film of the present invention. There are layer configurations such as a layer, an easy-adhesion layer, a plastic film, an easy-adhesion layer, a pattern ink layer, a functional layer, and an adhesive layer, and can be bonded to the surface of the molded product via the adhesive layer.

上記転写法では、一般にプラスチックフィルムの上に、必要であれば剥離層を積層し、その上に、本発明の硬化膜層、アンカー層、柄インキ層、機能層、接着層の順で積層されたもの(転写層)であり、成型物表面に接着層を介して貼り付けられた後、プラスチックフィルム、または、剥離層と硬化膜層との層間を剥離させて、成型物表面に転写層のみを積層することができる。 In the above transfer method, a release layer is generally laminated on a plastic film, if necessary, and the cured film layer, anchor layer, handle ink layer, functional layer, and adhesive layer of the present invention are laminated in that order. After being attached to the surface of the molded product via an adhesive layer, the plastic film or the layer between the release layer and the cured film layer is peeled off, and only the transfer layer is applied to the surface of the molded product. Can be laminated.

以下に、合成例、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明で、部および%は重量基準である。 Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples and comparative examples, but the present invention is not limited to these examples. In the following description, parts and% are based on weight.

<合成例1>
撹拌機、温度計、還流冷却機、窒素流入口及び滴下ロートを取り付けた四つ口フラスコに、メチルイソブチルケトン(以下、MIBK)47.6部を仕込み、窒素ガスを流入し撹拌しながら110℃まで昇温させた。次いで、メチルメタクリレート(以下、MMA)38.1部、メタクリル酸−2−ヒドロキシエチル(以下、HEMA)9.5部、アゾビスイソブチロニトリル(以下、AIBN)4.8部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で110℃12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−1)とし、重量平均分子量(GPCによるポリスチレン換算値)は6,000であった。なお、重量平均分子量は、ゲルパーメーションクロマトグラフィー(東ソー(株)製、商品名「HLC−8220」、カラム:東ソー(株)製、商品名「TSKgel superHZ−M」を3本直列に連結して測定した値を示す(以下、同様。)。
<Synthesis Example 1>
A four-necked flask equipped with a stirrer, thermometer, reflux condenser, nitrogen inlet, and dropping funnel was charged with 47.6 parts of methyl isobutyl ketone (hereinafter referred to as MIBK). The temperature was raised to. Subsequently, a mixed solution comprising 38.1 parts of methyl methacrylate (hereinafter referred to as MMA), 9.5 parts of methacrylic acid-2-hydroxyethyl (hereinafter referred to as HEMA), and 4.8 parts of azobisisobutyronitrile (hereinafter referred to as AIBN). Was added dropwise from a dropping funnel over 2 hours and reacted at 110 ° C. for 12 hours in a nitrogen atmosphere to obtain 100 g of a copolymer polymer solution having a resin content of 50%. This copolymer was designated as (A-1), and the weight average molecular weight (polystyrene equivalent value by GPC) was 6,000. The weight average molecular weight was obtained by connecting three gel permeation chromatography (manufactured by Tosoh Corporation, trade name “HLC-8220”, column: Tosoh Corporation, trade name “TSKgel superHZ-M” in series. The measured values are shown below (the same applies hereinafter).

<合成例2>
合成例1と同様の反応容器に、MIBK 48.8部を仕込み、撹拌しながら90℃まで昇温させた。次いで、MMA 39.0部、HEMA 9.8部、AIBN 2.4部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で90℃12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−2)とし、重量平均分子量は13,000であった。
<Synthesis Example 2>
48.8 parts of MIBK was charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 90 ° C. while stirring. Next, a mixed solution consisting of 39.0 parts of MMA, 9.8 parts of HEMA, and 2.4 parts of AIBN was dropped from the dropping funnel over 2 hours, and the mixture was reacted at 90 ° C. for 12 hours in a nitrogen atmosphere to give a resin content of 50%. 100 g of a copolymer solution was obtained. This copolymer was designated as (A-2), and the weight average molecular weight was 13,000.

<合成例3>
合成例1と同様の反応容器に、MIBK 48.8部を仕込み、撹拌しながら90℃まで昇温させた。次いで、MMA 24.4部、シクロヘキシルメタクリレート(以下、CHMA)12.2部、メタクリル酸 12.2部、AIBN 2.4部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で90℃12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−3)とし、重量平均分子量は14,000であった。
<Synthesis Example 3>
48.8 parts of MIBK was charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 90 ° C. while stirring. Next, a mixed liquid consisting of 24.4 parts of MMA, 12.2 parts of cyclohexyl methacrylate (hereinafter referred to as CHMA), 12.2 parts of methacrylic acid, and 2.4 parts of AIBN was dropped from the dropping funnel over 2 hours, and the reaction was performed in a nitrogen atmosphere. At 90 ° C. for 12 hours to obtain 100 g of a copolymer solution having a resin content of 50%. This copolymer was designated as (A-3), and the weight average molecular weight was 14,000.

<合成例4>
合成例1と同様の反応容器に、プロピレングリコールモノメチルエーテル(以下、PM)49.9部を仕込み、撹拌しながら80℃まで昇温させた。次いで、メタクリル酸エチル(以下、EMA)15.0部、2−アセトアセトキシエチルメタクリレート(以下、AAEM)34.9部、AIBN 0.3部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で0℃12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−4)とし、重量平均分子量は62,000であった。
<Synthesis Example 4>
In a reaction vessel similar to Synthesis Example 1, 49.9 parts of propylene glycol monomethyl ether (hereinafter referred to as PM) was charged and heated to 80 ° C. with stirring. Next, a mixed solution consisting of 15.0 parts of ethyl methacrylate (hereinafter referred to as EMA), 34.9 parts of 2-acetoacetoxyethyl methacrylate (hereinafter referred to as AAEM) and 0.3 part of AIBN was dropped over 2 hours from the dropping funnel. The mixture was reacted at 0 ° C. for 12 hours in a nitrogen atmosphere to obtain 100 g of a copolymer polymer solution having a resin content of 50%. This copolymer was designated as (A-4), and the weight average molecular weight was 62,000.

<合成例5>
合成例1と同様の反応容器に、MIBK 48.8部を仕込み、撹拌しながら80℃まで昇温させた。次いで、MMA 24.4部、AAEM 24.4部、AIBN 2.4部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で還流しながら12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−5)とし、重量平均分子量は15,000であった。
<Synthesis Example 5>
48.8 parts of MIBK was charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 80 ° C. while stirring. Next, a mixed solution composed of 24.4 parts of MMA, 24.4 parts of AAEM, and 2.4 parts of AIBN was dropped from the dropping funnel over 2 hours, and the mixture was reacted for 12 hours while refluxing in a nitrogen atmosphere to obtain a resin content of 50%. 100 g of a copolymer polymer solution was obtained. This copolymer was designated as (A-5), and the weight average molecular weight was 15,000.

<合成例6>
合成例1と同様の反応容器に、MIBK 49.4部を仕込み、撹拌しながら80℃まで昇温させた。次いで、MMA 34.6部、AAEM 14.8部、AIBN 1.2部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で還流しながら12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−6)とし、重量平均分子量は30,000であった。
<Synthesis Example 6>
In the same reaction vessel as in Synthesis Example 1, 49.4 parts of MIBK was charged, and the temperature was raised to 80 ° C. while stirring. Next, a mixed solution consisting of 34.6 parts of MMA, 14.8 parts of AAEM, and 1.2 parts of AIBN was dropped from the dropping funnel over 2 hours and reacted for 12 hours while refluxing in a nitrogen atmosphere, and the resin content was 50%. 100 g of a copolymer polymer solution was obtained. This copolymer was designated as (A-6), and the weight average molecular weight was 30,000.

<合成例7>
合成例1と同様の反応容器に、MIBK 47.6部を仕込み、撹拌しながら還流(MIBK沸点116℃)するまで昇温させた。次いで、MMA 38.1部、HEMA 9.5部、AIBN 4.8部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で還流しながら12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−7)とし、重量平均分子量は3,500であった。
<Synthesis Example 7>
In the same reaction vessel as in Synthesis Example 1, 47.6 parts of MIBK was charged, and the temperature was raised to reflux (MIBK boiling point 116 ° C.) while stirring. Next, a mixed solution composed of 38.1 parts of MMA, 9.5 parts of HEMA, and 4.8 parts of AIBN was dropped from the dropping funnel over 2 hours, and the mixture was reacted for 12 hours while refluxing in a nitrogen atmosphere to give a resin content of 50%. 100 g of a copolymer polymer solution was obtained. This copolymer was designated as (A-7), and the weight average molecular weight was 3,500.

<合成例8>
合成例1と同様の反応容器に、MIBK 45.8部を仕込み、撹拌しながら90℃まで昇温させた。次いで、MMA 36.6部、グリシジルメタクリレート(以下、GMA)12.2部、AIBN 2.4部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で90℃18時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−8)とし、重量平均分子量は22,000であった。
<Synthesis Example 8>
In the same reaction vessel as in Synthesis Example 1, 45.8 parts of MIBK was charged, and the temperature was raised to 90 ° C. while stirring. Next, a mixed liquid consisting of 36.6 parts of MMA, 12.2 parts of glycidyl methacrylate (hereinafter referred to as GMA) and 2.4 parts of AIBN was dropped from the dropping funnel over 2 hours, and reacted at 90 ° C. for 18 hours in a nitrogen atmosphere. 100 g of a copolymer polymer solution having a resin content of 50% was obtained. This copolymer was designated as (A-8), and the weight average molecular weight was 22,000.

<合成例9>
合成例1と同様の反応容器に、MIBK 43.2部を仕込み、窒素気流化で撹拌しながら90℃まで昇温したのち、予めMMA 32.4部、GMA 10.8部、AIBN 2.2部の混合液を仕込んでおいた滴下ロートから2時間掛けて滴下し窒素雰囲気下で90℃12時間反応させた。その後、120℃に昇温させ4時間保持の後に常温まで冷却し、アクリル酸(以下、AA)5.5部、トリフェニルフォスフィン 0.1部、メトキノン 0.2部、MIBK 5.63部を仕込み、窒素流入口をエアーバブリング装置に取り換えて空気をバブリングしながら攪拌し、110℃6時間反応させることによって、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−9)とし、重量平均分子量は28,000であった。
<Synthesis Example 9>
Into the same reaction vessel as in Synthesis Example 1, 43.2 parts of MIBK was charged, and the temperature was raised to 90 ° C. while stirring under a nitrogen stream, and then 32.4 parts of MMA, 10.8 parts of GMA, AIBN 2.2 in advance. The mixture was dropped from a dropping funnel charged with a portion of the mixture over 2 hours and reacted at 90 ° C. for 12 hours in a nitrogen atmosphere. Thereafter, the temperature was raised to 120 ° C., held for 4 hours, and then cooled to room temperature, 5.5 parts of acrylic acid (hereinafter referred to as AA), 0.1 part of triphenylphosphine, 0.2 part of methoquinone, and 5.63 parts of MIBK. And the nitrogen inlet was replaced with an air bubbling device and stirred while bubbling air and reacted at 110 ° C. for 6 hours to obtain 100 g of a copolymer polymer solution having a resin content of 50%. This copolymer was designated as (A-9), and the weight average molecular weight was 28,000.

<合成例10>
合成例1と同様、PM 49.3部を仕込み、撹拌しながら85℃まで昇温させた。次いで、MMA 49.3部、AIBN 1.5部からなる混合液を滴下ロートから2時間掛けて滴下し、窒素雰囲気下で85℃12時間反応させ、樹脂分50%の共重合ポリマー溶液100gを得た。この共重合ポリマーを(A−10)とし、重量平均分子量は48,000であった。
<Synthesis Example 10>
As in Synthesis Example 1, 49.3 parts of PM was charged, and the temperature was raised to 85 ° C. while stirring. Next, a mixed solution consisting of 49.3 parts of MMA and 1.5 parts of AIBN was dropped from the dropping funnel over 2 hours and reacted at 85 ° C. for 12 hours in a nitrogen atmosphere to obtain 100 g of a copolymer polymer solution having a resin content of 50%. Obtained. This copolymer was designated as (A-10), and the weight average molecular weight was 48,000.

Figure 2016047923
Figure 2016047923

次に本発明の加飾用ハードコーティング剤としての実施例を示す。
<実施例1>
共重合ポリマー(A−1)40.3部、アルミニウムトリスエチルアセトアセテート(以下、AL−T) 4.9部、プロピレングリコールモノメチルエーテル(以下、PM)54.8部を均一に成るように撹拌して、固形分25%の加飾用ハードコーティング剤を得た。
Next, examples of the hard coating agent for decoration of the present invention will be shown.
<Example 1>
40.3 parts of copolymer (A-1), 4.9 parts of aluminum trisethyl acetoacetate (hereinafter referred to as AL-T), and 54.8 parts of propylene glycol monomethyl ether (hereinafter referred to as PM) are stirred uniformly. Thus, a decorative hard coating agent having a solid content of 25% was obtained.

<実施例2〜6>
以下、同様にして表2の配合比率に従い、加飾用ハードコーティング剤の調製を行った。
<Examples 2 to 6>
Hereinafter, similarly, according to the compounding ratio of Table 2, the hard coating agent for decoration was prepared.

Figure 2016047923
Figure 2016047923

AL−T:アルミニウムトリスエチルアセトアセテート
AL−M:アルミニウムモノアセチルアセトネートビスエチルアセトアセテート 76%イソプロパノール溶液
Zr−T:ジルコニウムテトラアセチルアセトネート 20%トルエン溶液
Ti−T:チタンテトラアセチルアセトネート 65% 2−プロパノール溶液
Zr−B:ジルコニウムブチレート 87% ノルマルブタノール溶液
Ti−B:チタンブチレート 99% ノルマルブタノール溶液
フィラー:ガラスフィラー 旭硝子社製 中心粒子径0.8μm
AC:アセチルアセトン
AL-T: Aluminum trisethyl acetoacetate AL-M: Aluminum monoacetylacetonate bisethylacetoacetate 76% isopropanol solution Zr-T: Zirconium tetraacetylacetonate 20% toluene solution Ti-T: Titanium tetraacetylacetonate 65% 2-propanol solution Zr-B: zirconium butyrate 87% normal butanol solution Ti-B: titanium butyrate 99% normal butanol solution Filler: glass filler Asahi Glass Co., Ltd., center particle size 0.8 μm
AC: Acetylacetone

本発明に対する比較例1〜6の組成を表3に示す。 Table 3 shows the compositions of Comparative Examples 1 to 6 for the present invention.

Figure 2016047923
Figure 2016047923

イソシアネート:日本ポリウレタン社製 製品名「コロネートHX」
PE3A:ペンタエリスリトールトリアクリレート
SI−80L:三新化学工業社製 製品名「SI−80L」
Irg184:BASF社製 製品名「イルガキュア184」
MEK:メチルエチルケトン
Isocyanate: Product name "Coronate HX" manufactured by Nippon Polyurethane
PE3A: Pentaerythritol triacrylate SI-80L: Product name “SI-80L” manufactured by Sanshin Chemical Industry Co., Ltd.
Irg184: Product name “Irgacure 184” manufactured by BASF
MEK: Methyl ethyl ketone

上記、実施例1〜6及び比較例1〜6の加飾用ハードコーティング剤を、易接着ポリエチレンテレフタレートフィルム上に、バーコータNo.20を用いて、乾燥膜厚5μmになるようにハンドコートを行い、150℃で3分間乾燥させた。   The hard coating agents for decorating of Examples 1 to 6 and Comparative Examples 1 to 6 above were coated on an easy-adhesive polyethylene terephthalate film with a bar coater no. 20 was hand-coated to a dry film thickness of 5 μm and dried at 150 ° C. for 3 minutes.

<硬化膜の作製>
実施例1から6、比較例1、2、4、5の乾燥膜の状態からさらに、150℃10分間の熱処理をすることで硬化膜を得た。また、比較例3、6は、乾燥膜の状態から、高圧水銀灯80W 、1灯を用いて積算照射量450mJ/cmを照射させ硬化膜を作製し、以下の評価を行った。
<Production of cured film>
A cured film was obtained by further heat treatment at 150 ° C. for 10 minutes from the dried film states of Examples 1 to 6 and Comparative Examples 1, 2, 4, and 5. In Comparative Examples 3 and 6, a cured film was prepared by irradiating an accumulated dose of 450 mJ / cm 2 using a high pressure mercury lamp 80 W and one lamp from the dry film state, and the following evaluation was performed.

<ガラス転移温度>
各硬化膜表面より、硬化膜成分のみを削り取り、示差走査熱量計(セイコーインスツルメンツ社製 DSC6200)にてガラス転移温度を測定した。
<Glass transition temperature>
Only the cured film component was scraped from the surface of each cured film, and the glass transition temperature was measured with a differential scanning calorimeter (DSC6200, manufactured by Seiko Instruments Inc.).

<塗膜熱時伸度>
硬化膜フィルムを長さ100mm、幅7mmの短冊状に切り出した試験片を引張試験機(型番「AGS−10KNX」株式会社島津製作所)にチャック間距離50mmでセットし、室温150℃の環境の下、引張り速度10mm/minで実施し、チャック間距離を150mm(伸度150%)になった点で停止し、硬化膜のクラックの有無を目視で観察し、クラックがなければ○、クラックが発生していれば×と評価した。硬化膜の伸度の測定により、硬化膜の熱時の加工性を評価することができる。150%の延伸でクラックが生じない硬化膜であれば、実際の成型加工時においてもクラックを生じず良好な硬化膜表面の積層された成型物を得ることが出来る。対して、150%の延伸でクラックが生じる硬化膜であれば、表面にクラックが生じた成型物となってしまう。
<Elongation at coating time>
A test piece obtained by cutting a cured film film into a strip shape having a length of 100 mm and a width of 7 mm is set in a tensile tester (model number “AGS-10KNX”, Shimadzu Corporation) with a distance between chucks of 50 mm, under an environment at a room temperature of 150 ° C. The test was carried out at a pulling speed of 10 mm / min, stopped when the distance between chucks reached 150 mm (elongation 150%), and the presence or absence of cracks in the cured film was visually observed. If it did, it evaluated as x. By measuring the elongation of the cured film, the processability of the cured film when heated can be evaluated. If it is a cured film in which cracks do not occur when stretched by 150%, it is possible to obtain a molded product with a good cured film surface laminated without cracks even during actual molding. On the other hand, if it is a cured film in which cracks are caused by stretching by 150%, a molded product having cracks on the surface is obtained.

<鉛筆硬度>
JIS−K−5600に準じて、鉛筆硬度を評価した。鉛筆硬度H以上のものを優れた硬度としてハードコート性を十分に満たすものとし、鉛筆硬度F以下のものはハードコート性が劣るものであると評価した。
<Pencil hardness>
The pencil hardness was evaluated according to JIS-K-5600. Those having a pencil hardness of H or higher were regarded as having excellent hardness and sufficiently satisfying the hard coat property, and those having a pencil hardness of F or less were evaluated as being inferior in hard coat property.

<耐薬品性>
メタノール、トルエン、アセトンの三種類の有機溶剤を使用し、各有機溶剤を脱脂綿に染み込ませて、硬化膜表面を4.9Nの荷重をかけて10往復ラビングした後、試験前後の硬化膜表面に変化ないものを○、変化のあるものを×と評価した。さらに、100往復ラビングした後でも硬化膜表面に変化なければ◎とした。
<Chemical resistance>
Using three types of organic solvents, methanol, toluene, and acetone, each organic solvent was soaked in absorbent cotton, and the cured film surface was rubbed 10 times with a load of 4.9 N, and then the cured film surface before and after the test was applied. The thing which did not change was evaluated as (circle) and the thing with a change was evaluated as x. Furthermore, even after 100 reciprocating rubs, it was marked as ◎ if the cured film surface did not change.

実施例1から6、及び、比較例1から6の評価結果を表4に示す。 Table 4 shows the evaluation results of Examples 1 to 6 and Comparative Examples 1 to 6.

Figure 2016047923
Figure 2016047923


Claims (6)

配位結合可能な部位を有するエチレン性不飽和単量体(a−1)と、他のエチレン性不飽和単量体(a−2)をラジカル重合して得られる重量平均分子量5,000〜100,000の共重合ポリマー(A)及び配位結合可能な金属化合物(B)を含有する熱硬化性樹脂組成物を含み、熱硬化性樹脂組成物の硬化膜のガラス転移温度が80〜150℃である加飾フィルム用ハードコーティング剤。 Weight average molecular weight of 5,000--obtained by radical polymerization of ethylenically unsaturated monomer (a-1) having a coordination bondable site and other ethylenically unsaturated monomer (a-2) The glass transition temperature of the cured film of a thermosetting resin composition is 80-150 including the thermosetting resin composition containing the copolymer compound (A) of 100,000 and the metal compound (B) in which a coordination bond is possible. Hard coating agent for decorative film at ℃. 配位結合可能な部位を有するエチレン性不飽和単量体(a−1)が、ヒドロキシル基、カルボキシル基及びアセトアセチル基のうち少なくとも1種の官能基を分子中に有する化合物である請求項1記載の加飾フィルム用ハードコーティング剤。 The ethylenically unsaturated monomer (a-1) having a site capable of coordinating bonding is a compound having in its molecule at least one functional group among a hydroxyl group, a carboxyl group and an acetoacetyl group. The hard coating agent for a decorative film as described. 金属化合物(B)が、金属キレート化合物及び/又は金属アルコレートである請求項1又は2記載の加飾フィルム用ハードコーティング剤。 The hard coating agent for a decorative film according to claim 1 or 2, wherein the metal compound (B) is a metal chelate compound and / or a metal alcoholate. 請求項1〜3のいずれかに記載の加飾フィルム用ハードコーティング剤を熱処理により硬化させてなる硬化膜。 A cured film obtained by curing the decorative film hard coating agent according to claim 1 by heat treatment. 請求項4記載の硬化膜を有する積層してなるプラスチックフィルム。 A laminated plastic film having the cured film according to claim 4. 請求項4記載の硬化膜を表面に被覆してなる成型物。














A molded product obtained by coating the surface of the cured film according to claim 4.














JP2015166255A 2014-08-25 2015-08-25 Hard coating agent for decorative film, cured film, plastic film, and molded product Active JP6481565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015166255A JP6481565B2 (en) 2014-08-25 2015-08-25 Hard coating agent for decorative film, cured film, plastic film, and molded product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014170610 2014-08-25
JP2014170610 2014-08-25
JP2015166255A JP6481565B2 (en) 2014-08-25 2015-08-25 Hard coating agent for decorative film, cured film, plastic film, and molded product

Publications (2)

Publication Number Publication Date
JP2016047923A true JP2016047923A (en) 2016-04-07
JP6481565B2 JP6481565B2 (en) 2019-03-13

Family

ID=55648995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015166255A Active JP6481565B2 (en) 2014-08-25 2015-08-25 Hard coating agent for decorative film, cured film, plastic film, and molded product

Country Status (1)

Country Link
JP (1) JP6481565B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065947A (en) * 2016-10-20 2018-04-26 東洋インキScホールディングス株式会社 Acrylic resin composition, acrylic film, decorative film and decorative molding body
CN113354968A (en) * 2020-03-05 2021-09-07 荒川化学工业株式会社 Active energy ray-curable resin composition, cured product, laminate, and curing method
WO2021215106A1 (en) * 2020-04-23 2021-10-28 株式会社ダイセル Polyorganosilsesquioxane, multilayer body and surface-coated molded body
WO2022270460A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1086314A (en) * 1996-09-19 1998-04-07 Dainippon Printing Co Ltd Stain resistant decorative sheet
JP2003326554A (en) * 2002-05-15 2003-11-19 Sumitomo Chem Co Ltd Acrylic film for surface decoration and molded object decorated thereby
WO2007148684A1 (en) * 2006-06-20 2007-12-27 Nof Corporation Inorganic-organic hybrid composition and use thereof
JP2012206299A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Decorative film for molding
JP2013220590A (en) * 2012-04-17 2013-10-28 Mitsubishi Gas Chemical Co Inc Decorative film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1086314A (en) * 1996-09-19 1998-04-07 Dainippon Printing Co Ltd Stain resistant decorative sheet
JP2003326554A (en) * 2002-05-15 2003-11-19 Sumitomo Chem Co Ltd Acrylic film for surface decoration and molded object decorated thereby
WO2007148684A1 (en) * 2006-06-20 2007-12-27 Nof Corporation Inorganic-organic hybrid composition and use thereof
JP2012206299A (en) * 2011-03-29 2012-10-25 Toray Ind Inc Decorative film for molding
JP2013220590A (en) * 2012-04-17 2013-10-28 Mitsubishi Gas Chemical Co Inc Decorative film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018065947A (en) * 2016-10-20 2018-04-26 東洋インキScホールディングス株式会社 Acrylic resin composition, acrylic film, decorative film and decorative molding body
CN113354968A (en) * 2020-03-05 2021-09-07 荒川化学工业株式会社 Active energy ray-curable resin composition, cured product, laminate, and curing method
WO2021215106A1 (en) * 2020-04-23 2021-10-28 株式会社ダイセル Polyorganosilsesquioxane, multilayer body and surface-coated molded body
WO2022270460A1 (en) * 2021-06-21 2022-12-29 積水化学工業株式会社 (meth)acrylic resin composition, inorganic fine particle-dispersed slurry composition, and inorganic fine particle-dispersed molded product

Also Published As

Publication number Publication date
JP6481565B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6481565B2 (en) Hard coating agent for decorative film, cured film, plastic film, and molded product
JP6048804B2 (en) Active energy ray curable resin, active energy ray curable resin composition, active energy ray curable hard coating agent, cured film using them, decorative film on which the cured film is laminated, and plastic injection using the decorative film Molded product.
JP5233614B2 (en) Resin composition and transfer film using the same
KR20140074505A (en) UV-Curable Coating Composition of High-Elongation
EP1944344B1 (en) Resin composition for plastic coating and plastic coating using the same
TW202237764A (en) Coating composition, semi-cured film, decorative molded article, and method of manufacturing decorative molded article wherein a ultraviolet curable coating composition can form a tack-free semi-cured film excellent in anti-adhesive property and having excellent heating ductility
JP7237086B2 (en) Aqueous resin composition, its production method and its use
TWI758597B (en) Active energy ray-curable resin composition, cured product, and laminate
JP5902953B2 (en) Active energy ray-curable resin composition
JP4771110B2 (en) Protective layer forming sheet and protective layer forming method
JP5556583B2 (en) Base coat coating composition and glitter composite coating film
JP2008179693A (en) Active energy beam curable type coating material composition and molded article covered by the same
JP5930261B2 (en) Metal surface coating composition and laminated molded product
JP6179150B2 (en) Active energy ray-curable composition and cured product
JP6805489B2 (en) Active energy ray-curable resin composition, cured product, film, cured layer and molded product.
JP6937141B2 (en) Hard coat film and method of manufacturing hard coat film
JP2012072320A (en) Curable composition for coating material and method for manufacturing plastic molding body using the same
JP5979587B2 (en) Active energy ray curable resins, active energy ray curable hard coating agents, cured films using them, plastic films on which cured films are laminated, and processed products using plastic films.
JP6161884B2 (en) Aqueous resin composition
JP4438498B2 (en) Protective layer forming sheet and method for forming protective layer of molded product
JP2018197320A (en) Curable composition
JP5985227B2 (en) UV curable undercoat agent for vapor deposition
JP2006160942A (en) Water-based resin composition for coating and coating finishing method
JP6221657B2 (en) Active energy ray-curable composition
JP4340598B2 (en) Anti-fogging photocurable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6481565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250