JP2016042508A - Electronic element - Google Patents

Electronic element Download PDF

Info

Publication number
JP2016042508A
JP2016042508A JP2014165359A JP2014165359A JP2016042508A JP 2016042508 A JP2016042508 A JP 2016042508A JP 2014165359 A JP2014165359 A JP 2014165359A JP 2014165359 A JP2014165359 A JP 2014165359A JP 2016042508 A JP2016042508 A JP 2016042508A
Authority
JP
Japan
Prior art keywords
active layer
electronic device
layer
type semiconductor
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014165359A
Other languages
Japanese (ja)
Inventor
岳仁 加藤
Takehito Kato
岳仁 加藤
直樹 萩原
Naoki Hagiwara
直樹 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Ashizawa Finetech Ltd
Original Assignee
Institute of National Colleges of Technologies Japan
Ashizawa Finetech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Ashizawa Finetech Ltd filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014165359A priority Critical patent/JP2016042508A/en
Publication of JP2016042508A publication Critical patent/JP2016042508A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic element high in energy conversion efficiency, especially photoelectric conversion efficiency.SOLUTION: The electronic element includes an anode, a cathode, and an active layer disposed between the anode and the cathode. The active layer contains a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor. The active layer is, for example, a photoelectric conversion layer or a thermoelectric conversion layer. A first functional layer having at least hole transporting ability is preferably provided between the anode and the active layer. A second functional layer having at least electron transporting ability is preferably provided between the cathode and the active layer. The active layer may have a structure including a p-type semiconductor layer and a mixed layer containing an n-type semiconductor and an oxide semiconductor.SELECTED DRAWING: None

Description

本発明は、電子素子に関する。   The present invention relates to an electronic device.

近年、光エネルギーを利用した電子素子として有機光電変換素子(有機太陽電池、光センサー等)が着目されており、有機光電変換素子は、素子中の有機層の層数を低減できること、有機層を印刷法で製造できることなどの利点を有し、無機光電変換素子と比較して、簡便かつ安価に製造することができる。   In recent years, organic photoelectric conversion elements (organic solar cells, optical sensors, etc.) have attracted attention as electronic elements using light energy, and the organic photoelectric conversion elements can reduce the number of organic layers in the elements. It has advantages such as being able to be manufactured by a printing method, and can be manufactured easily and inexpensively compared to inorganic photoelectric conversion elements.

有機光電変換素子としては、例えば、特許文献1に記載された有機薄膜光電変換素子が知られている。この有機薄膜光電変換素子は、透明導電体層と、該透明導電体層上に配置された正孔輸送層、該正孔輸送層上に配置された光電変換層と、該光電変換層上に配置された電子輸送層と、該電子輸送層上に配置された対極電極を具備し、前記光電変換層がp型半導体分子またはp型半導体ポリマーとn型半導体分子が混在した層で構成された有機薄膜光電変換素子において、前記光電変換層と前記対極電極との間に電子輸送層を形成し、前記光電変換層の最表面に存在しているp型半導体と前記電子輸送層が接していることを特徴とするものである。
この特許文献1では、前記有機光電変換素子の製造方法として、高分子化合物であるP3HTとフラーレン誘導体とo−ジクロロベンゼンとを含む液を用いて活性層を形成し、有機光電変換素子を製造する方法が提案されている。
As an organic photoelectric conversion element, for example, an organic thin film photoelectric conversion element described in Patent Document 1 is known. The organic thin film photoelectric conversion element includes a transparent conductor layer, a hole transport layer disposed on the transparent conductor layer, a photoelectric conversion layer disposed on the hole transport layer, and the photoelectric conversion layer. An electron transport layer disposed; and a counter electrode disposed on the electron transport layer, wherein the photoelectric conversion layer is composed of a p-type semiconductor molecule or a layer in which a p-type semiconductor polymer and an n-type semiconductor molecule are mixed. In the organic thin film photoelectric conversion element, an electron transport layer is formed between the photoelectric conversion layer and the counter electrode, and the p-type semiconductor existing on the outermost surface of the photoelectric conversion layer is in contact with the electron transport layer. It is characterized by this.
In Patent Document 1, as a method for producing the organic photoelectric conversion element, an active layer is formed using a liquid containing P3HT which is a polymer compound, a fullerene derivative, and o-dichlorobenzene, and an organic photoelectric conversion element is produced. A method has been proposed.

特開2009−158734号公報JP 2009-158734 A

しかしながら、上記有機光電変換素子は、光電変換効率が十分ではなく、実用化に向かないという課題がある。   However, the organic photoelectric conversion element has a problem that the photoelectric conversion efficiency is not sufficient and is not suitable for practical use.

本発明は、エネルギー変換効率、特に光電変換効率が高い電子素子を提供することを目的とする。   An object of this invention is to provide an electronic device with high energy conversion efficiency, especially photoelectric conversion efficiency.

本発明は第一に、陽極、陰極、および該陽極と該陰極との間に配置された活性層を備え、該活性層がp型半導体とn型半導体と酸化物半導体を含む電子素子を提供する。
本発明は第二に、前記活性層が、光電変換層または熱電変換層である電子素子を提供する。
本発明は第三に、前記陽極と前記活性層の間に、少なくとも正孔輸送能を有する第1機能層を備えた電子素子を提供する。
本発明は第四に、前記陰極と前記活性層の間に、少なくとも電子輸送能を有する第2機能層を備えた電子素子を提供する。
本発明は第五に、前記活性層が、p型半導体層と、n型半導体および酸化物半導体を含む混合層とを備えた電子素子を提供する。
本発明は第六に、前記活性層がp型半導体とn型半導体と酸化物半導体の混合物を塗布することにより形成されたものである電子素子を提供する。
本発明は第七に、前記活性層がp型半導体とn型半導体と酸化物半導体が分散した分散液を塗布することにより形成されたものである電子素子を提供する。
本発明は第八に、前記酸化物半導体は、粒子形状のものであり、粒子径が平均一次粒子径10μm以下の微粒子を含む電子素子を提供する。
本発明は第九に、前記酸化物半導体が酸化チタン粒子を含む電子素子を提供する。
本発明は第十に、前記酸化チタン粒子の平均一次粒子径が5nmから80nmである電子素子を提供する。
本発明は第十一に、前記酸化チタン粒子が二酸化チタンを含む電子素子。
本発明は第十二に、前記活性層のがp型半導体および/またはn型半導体の少なくとも一部が高分子化合物である電子素子を提供する。
本発明は第十三に、前記高分子化合物の光吸収端波長が700nm以上である電子素子を提供する。
本発明は第十四に、陰極および陽極の一方上に、p型半導体層と、n型半導体および酸化物半導体を含む混合物を塗布することにより活性層を形成する工程と、該活性層上に陰極または陽極の他方を形成する工程とを備えた電子素子の製造方法を提供する。
本発明は第十五に、陰極および陽極の一方上に、p型半導体層と、n型半導体および酸化物半導体が分散した分散液を塗布することにより活性層を形成する工程と、該活性層上に陰極または陽極の他方を形成する工程とを備えた電子素子の製造方法を提供する。
本発明は第十六に、陰極および陽極の一方上に、活性層を形成する前に、少なくとも電子輸送能または正孔輸送能一方を有する機能層を形成する電子素子の製造方法を提供する。
本発明は第十七に、前記活性層上に、少なくとも電子輸送能または正孔輸送能一方を有する機能層を形成する電子素子の製造方法を提供する。
The present invention firstly provides an electronic device comprising an anode, a cathode, and an active layer disposed between the anode and the cathode, wherein the active layer includes a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor. To do.
The present invention secondly provides an electronic device wherein the active layer is a photoelectric conversion layer or a thermoelectric conversion layer.
Thirdly, the present invention provides an electronic device including a first functional layer having at least a hole transporting capability between the anode and the active layer.
Fourthly, the present invention provides an electronic device including a second functional layer having at least an electron transporting ability between the cathode and the active layer.
Fifth, the present invention provides an electronic device in which the active layer includes a p-type semiconductor layer and a mixed layer including an n-type semiconductor and an oxide semiconductor.
Sixth, the present invention provides an electronic device in which the active layer is formed by applying a mixture of a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor.
Seventhly, the present invention provides an electronic device in which the active layer is formed by applying a dispersion in which a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor are dispersed.
Eighthly, the present invention provides an electronic device in which the oxide semiconductor has a particle shape and includes fine particles having an average primary particle size of 10 μm or less.
Ninthly, the present invention provides an electronic device in which the oxide semiconductor includes titanium oxide particles.
Tenthly, the present invention provides an electronic device wherein the titanium oxide particles have an average primary particle diameter of 5 nm to 80 nm.
Eleventh aspect of the present invention is an electronic device in which the titanium oxide particles include titanium dioxide.
Twelfthly, the present invention provides an electronic device wherein the active layer is a p-type semiconductor and / or at least part of an n-type semiconductor.
13thly this invention provides the electronic device whose light absorption edge wavelength of the said high molecular compound is 700 nm or more.
Fourteenth aspect of the present invention is a process for forming an active layer by applying a mixture containing a p-type semiconductor layer and an n-type semiconductor and an oxide semiconductor on one of a cathode and an anode, and on the active layer. And a method of forming the other of the cathode and the anode.
According to the fifteenth aspect of the present invention, there is provided a process of forming an active layer by applying a p-type semiconductor layer and a dispersion liquid in which an n-type semiconductor and an oxide semiconductor are dispersed on one of a cathode and an anode; And a method of forming the other of the cathode and the anode.
Sixteenth, the present invention provides a method for producing an electronic device, wherein a functional layer having at least one of an electron transport ability and a hole transport ability is formed on one of a cathode and an anode before forming an active layer.
Seventeenth, the present invention provides a method for producing an electronic device, wherein a functional layer having at least one of an electron transport ability and a hole transport ability is formed on the active layer.

本発明の電子素子は、高いエネルギー変換効率、特に光電変効率を示すので、本発明は工業的に極めて有用である。   Since the electronic device of the present invention exhibits high energy conversion efficiency, particularly photoelectric conversion efficiency, the present invention is extremely useful industrially.

以下に本発明の実施の形態による電子素子を詳細に説明する。   Hereinafter, an electronic device according to an embodiment of the present invention will be described in detail.

本電子素子は、陽極、陰極、および該陽極と該陰極との間に配置された活性層を備えている。本発明の電子素子は、光電変換素子、熱電変換素子等として用いることができるが、以下、光電変換素子として説明する。   The electronic device includes an anode, a cathode, and an active layer disposed between the anode and the cathode. The electronic device of the present invention can be used as a photoelectric conversion device, a thermoelectric conversion device, or the like, and will be described below as a photoelectric conversion device.

前記活性層は、電子供与性化合物としてのp型半導体と電子受容性化合物としてのn型半導体と酸化物半導体とを含む。この活性層は、膜厚が、1nm〜100μmであることが好ましく、より好ましくは2nm〜1000nmであり、さらに好ましくは5nm〜500nmであり、特に、20nm〜200nmが好ましい。
前記活性層が有する機能としては、光吸収を行う機能、電荷分離を行う機能、電荷輸送を行う機能、陰極への電子の注入を行う機能、入射した光を反射する機能、活性層自体の劣化を抑制する機能等があげられる。
The active layer includes a p-type semiconductor as an electron donating compound, an n-type semiconductor as an electron accepting compound, and an oxide semiconductor. The active layer preferably has a thickness of 1 nm to 100 μm, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and particularly preferably 20 nm to 200 nm.
The active layer has functions such as light absorption, charge separation, charge transport, injection of electrons into the cathode, reflection of incident light, and deterioration of the active layer itself. And the like.

前記電子供与性化合物としては、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、フタロシアニン、金属フタロシアニン、ポルフィリン、金属ポルフィリン、オリゴチオフェン、テトラセン、ペンタセン、ルブレン等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。また活性層中における電子供与性化合物は2種類以上の化合物を含んでいても用いてもよい。   The electron donating compound may be a low molecular compound or a high molecular compound. Examples of the low molecular weight compound include phthalocyanine, metal phthalocyanine, porphyrin, metal porphyrin, oligothiophene, tetracene, pentacene, and rubrene. Examples of the polymer compound include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and Examples thereof include polythienylene vinylene and derivatives thereof, polyfluorene and derivatives thereof, and the like. Further, the electron donating compound in the active layer may be used even if it contains two or more kinds of compounds.

前記電子受容性化合物は、電子受容性化合物のHOMOエネルギーが電子供与性化合物のHOMOエネルギーよりも高く、かつ、電子受容性化合物のLUMOエネルギーが電子供与性化合物のLUMOエネルギーよりも高くなる。   In the electron accepting compound, the HOMO energy of the electron accepting compound is higher than the HOMO energy of the electron donating compound, and the LUMO energy of the electron accepting compound is higher than the LUMO energy of the electron donating compound.

前記電子受容性化合物としては、低分子化合物であっても高分子化合物であってもよい。低分子化合物としては、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアンスラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8−ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、2、9−ジメチル−4、7−ジフェニル−1、10−フェナントロリン等のフェナントレン誘導体等が挙げられる。高分子化合物としては、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体、ポリフルオレン及びその誘導体等が挙げられる。とりわけチタニウムイソプロポキシドやジエチル亜鉛等の酸化物半導体前駆体や金属アルコキシドが好ましい。金属アルコキシドとしてはMg, Ge, B, Li, Na, Fe, Ga, P, Sb, Sn, Ta, Vなどの金属類からなるアルコキシドが挙げられるが、取扱いの容易さからアルミニウムイソプロポキシド、チタニウムイソプロポキシド、チタニウムイソブトキシド、チタニウムイソエトキシド、チタニウムイソプロポキシドポリマー等が好ましい。また活性層中における電子受容性化合物は2種類以上の化合物を含んでいてもよい。 The electron accepting compound may be a low molecular compound or a high molecular compound. Low molecular weight compounds include oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and its derivatives, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes and derivatives thereof such as C 60, 2,9-dimethyl And phenanthrene derivatives such as -4,7-diphenyl-1,10-phenanthroline. Examples of the polymer compound include polyvinyl carbazole and derivatives thereof, polysilane and derivatives thereof, polysiloxane derivatives having an aromatic amine in the side chain or main chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and Examples thereof include polythienylene vinylene and derivatives thereof, polyfluorene and derivatives thereof, and the like. In particular, oxide semiconductor precursors such as titanium isopropoxide and diethyl zinc and metal alkoxides are preferable. Examples of the metal alkoxide include alkoxides made of metals such as Mg, Ge, B, Li, Na, Fe, Ga, P, Sb, Sn, Ta, and V, but aluminum isopropoxide and titanium are easy to handle. Isopropoxide, titanium isobutoxide, titanium isoethoxide, titanium isopropoxide polymer and the like are preferable. Moreover, the electron-accepting compound in the active layer may contain two or more kinds of compounds.

前記フラーレン類としては、C60、C70、カーボンナノチューブ、及びその誘導体が挙げられる。フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。

Figure 2016042508
Examples of the fullerenes include C 60 , C 70 , carbon nanotubes, and derivatives thereof. Specific examples of the fullerene derivative include the following.
Figure 2016042508

前記酸化物半導体は粒子であることが好ましい。酸化物半導体の平均一次粒子径は10μm以下であることが好ましく、更に、1μm以下であることが好ましい。特に、電子素子の光電変換効率を高める観点からは、100nm以下であることが好ましく、溶媒中への粒子の分散を高める観点からは80nm以下から5nm以上であることが好ましい。酸化物半導体としてはFe2O3、TiO2、Cu2O、In2O3、SrTiO3、WO3、ZnO、Fe2TiO3、BaTiO3、PbO、CaTiO3、V2O5、KTaO3、FeTiO3、SnO2、Bi2O3、ZrO2、Nb2O3などが挙げられるが、これらに限定されるものではない。バンドギャップの観点からはTiO2、ZnO、Nb2O3、SrTiO3などが好ましく、取扱いの観点からはTiO2、ZnOなどがより好ましい。   The oxide semiconductor is preferably a particle. The average primary particle diameter of the oxide semiconductor is preferably 10 μm or less, and more preferably 1 μm or less. In particular, from the viewpoint of increasing the photoelectric conversion efficiency of the electronic device, it is preferably 100 nm or less, and from the viewpoint of increasing dispersion of particles in the solvent, it is preferably 80 nm or less to 5 nm or more. Examples of oxide semiconductors include Fe2O3, TiO2, Cu2O, In2O3, SrTiO3, WO3, ZnO, Fe2TiO3, BaTiO3, PbO, CaTiO3, V2O5, KTaO3, FeTiO3, SnO2, Bi2O3, ZrO2, and Nb2O3. It is not something. From the viewpoint of band gap, TiO2, ZnO, Nb2O3, SrTiO3 and the like are preferable, and from the viewpoint of handling, TiO2, ZnO and the like are more preferable.

酸化物半導体の割合は、電子供与性化合物100重量部に対して、1〜1000重量部であることが好ましく、より好ましくは10〜500重量部であり、更に好ましくは50〜300重量部である。   The ratio of the oxide semiconductor is preferably 1 to 1000 parts by weight, more preferably 10 to 500 parts by weight, and still more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the electron donating compound. .

前記活性層のp型半導体および/またはn型半導体として用いられる高分子化合物の光吸収端波長は発電特性の観点から、700nm以上であることが好ましい。
本発明における光吸収端波長とは以下の方法で求められた値のことを意味する。
測定には、紫外、可視、近赤外の波長領域で動作する分光光度計(例えば、株式会社島津製作所、紫外可視分光光度計UV−1800)を用いる。UV−1800を用いる場合、測定可能な波長範囲が190〜1100nmであるため、該波長範囲で測定を行う。まず、測定に用いる基板の吸収スペクトルを測定する。基板としては、石英基板、ガラス基板等を用いる。次いで、その基板の上に高分子化合物を含む溶液から高分子化合物を含む薄膜を形成する。溶液からの製膜では、製膜後乾燥を行う。その後、薄膜と基板との積層体の吸収スペクトルを得る。薄膜と基板との積層体の吸収スペクトルと基板の吸収スペクトルとの差を、薄膜の吸収スペクトルとして得る。該薄膜の吸収スペクトルは、縦軸が化合物の吸光度を、横軸が波長を示す。
最も大きい吸収ピークの吸光度が0.1〜1程度になるよう、薄膜の膜厚を調整することが望ましい。吸収ピークの中で一番長波長の吸収ピークの吸光度を100%とし、その50%の吸光度を含む横軸(波長軸)に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第1の点とする。その25%の吸光度を含む波長軸に平行な直線と該吸収ピークとの交点であって、該吸収ピークのピーク波長よりも長波長である交点を第2の点とする。第1の点と第2の点とを結ぶ直線と基準線の交点を光吸収端波長と定義する。ここで、基準線とは、最も長波長の吸収ピークにおいて、該吸収ピークの吸光度を100%とし、その20%の吸光度を含む波長軸に平行な直線と該吸収ピークの交点であって、該吸収ピークのピーク波長よりも長波長である交点の波長を基準として、基準となる波長より100nm長波長である吸収スペクトル上の第3の点と、基準となる波長より150nm長波長である吸収スペクトル上と第4の点を結んだ直線をいう。
The light absorption edge wavelength of the polymer compound used as the p-type semiconductor and / or n-type semiconductor of the active layer is preferably 700 nm or more from the viewpoint of power generation characteristics.
The light absorption edge wavelength in the present invention means a value obtained by the following method.
For the measurement, a spectrophotometer (for example, Shimadzu Corporation, UV-visible spectrophotometer UV-1800) operating in the ultraviolet, visible, or near-infrared wavelength region is used. When UV-1800 is used, the measurable wavelength range is 190 to 1100 nm, and thus measurement is performed in the wavelength range. First, the absorption spectrum of the substrate used for measurement is measured. As the substrate, a quartz substrate, a glass substrate, or the like is used. Next, a thin film containing a polymer compound is formed on the substrate from a solution containing the polymer compound. In film formation from a solution, drying is performed after film formation. Thereafter, an absorption spectrum of the laminate of the thin film and the substrate is obtained. The difference between the absorption spectrum of the laminate of the thin film and the substrate and the absorption spectrum of the substrate is obtained as the absorption spectrum of the thin film. In the absorption spectrum of the thin film, the vertical axis represents the absorbance of the compound, and the horizontal axis represents the wavelength.
It is desirable to adjust the thickness of the thin film so that the absorbance at the largest absorption peak is about 0.1 to 1. The absorbance of the absorption peak with the longest wavelength among the absorption peaks is defined as 100%, and the intersection of the absorption peak and a straight line parallel to the horizontal axis (wavelength axis) including the absorbance of 50% of the absorption peak. The intersection point that is longer than the peak wavelength is taken as the first point. The intersection point between the absorption peak and a straight line parallel to the wavelength axis containing 25% of the absorbance, which is longer than the peak wavelength of the absorption peak, is defined as a second point. The intersection of the straight line connecting the first point and the second point and the reference line is defined as the light absorption edge wavelength. Here, the reference line is the intersection of the absorption peak with a straight line parallel to the wavelength axis including the absorbance of the absorption peak at the absorption peak of the longest wavelength, with the absorbance of the absorption peak being 100%. The third point on the absorption spectrum that is 100 nm longer than the reference wavelength and the absorption spectrum that is 150 nm longer than the reference wavelength with reference to the wavelength of the intersection that is longer than the peak wavelength of the absorption peak A straight line connecting the top and the fourth point.

前記陰極は金属を含むことが好ましい。陰極中にさらに、金属の酸化物、金属のハロゲン化物を含んでいてもよいが、金属の重量を100とした場合に、金属の酸化物の重量と金属のハロゲン化物の重量との合計が10以下であることが好ましく、実質的に、陰極が金属のみからなることがより好ましい。金属としては、リチウム、ベリリウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、セシウム、バリウム、ランタン、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、タリウム、鉛、ビスマス、ランタニド等があげられる。また、これら金属の合金や、グラファイトまたはこれらの金属とグラファイトとの層間化合物等を用いることもできる。金属の中では、アルミニルム、マグネシウム、チタン、クロム、鉄、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、モリブデン、銀、インジウム、スズが好ましい。陰極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。その他、金属インクや金属ペースト、低融点金属等を用いて、塗布法で金属電極を作製することもできる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の導電膜を用いてもよい。   The cathode preferably contains a metal. The cathode may further contain a metal oxide and a metal halide. When the weight of the metal is 100, the total of the weight of the metal oxide and the weight of the metal halide is 10 Preferably, the cathode is substantially composed of only a metal. The metals include lithium, beryllium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, rubidium, strontium, yttrium, zirconium, Niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, cesium, barium, lanthanum, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, Lanthanides and the like. Further, alloys of these metals, graphite, or intercalation compounds of these metals and graphite can be used. Among metals, aluminium, magnesium, titanium, chromium, iron, nickel, copper, zinc, gallium, zirconium, molybdenum, silver, indium, and tin are preferable. Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. In addition, a metal electrode can also be produced by a coating method using a metal ink, a metal paste, a low melting point metal, or the like. Further, as the electrode material, an organic conductive film such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used.

前記陽極は金属を含むことが好ましい。陽極中にさらに、金属の酸化物、金属のハロゲン化物を含んでいてもよいが、金属の重量を100とした場合に、金属の酸化物の重量と金属のハロゲン化物の重量の合計が10以下であることが好ましく、実質的に、陽極が金属のみからなることがより好ましい。金属としては、リチウム、ベリリウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、スズ、アンチモン、セシウム、バリウム、ランタン、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、タリウム、鉛、ビスマス、ランタニド等があげられる。また、これら金属の合金や、グラファイトまたはこれらの金属とグラファイトとの層間化合物等を用いることもできる。金属の中では、金、銀、チタン、クロム、鉄、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、モリブデン、インジウム、スズが好ましい。腐食防止の観点からは、金が好ましい。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。その他、金属インクや金属ペースト、低融点金属等を用いて、塗布法で金属電極を作製することもできる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の導電膜を用いてもよい。   The anode preferably contains a metal. The anode may further contain a metal oxide or a metal halide. When the weight of the metal is 100, the total of the weight of the metal oxide and the weight of the metal halide is 10 or less. It is preferable that the anode is substantially made of only metal. The metals include lithium, beryllium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, rubidium, strontium, yttrium, zirconium, Niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, cesium, barium, lanthanum, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead, bismuth, Lanthanides and the like. Further, alloys of these metals, graphite, or intercalation compounds of these metals and graphite can be used. Among metals, gold, silver, titanium, chromium, iron, nickel, copper, zinc, gallium, zirconium, molybdenum, indium and tin are preferable. From the viewpoint of preventing corrosion, gold is preferable. Examples of a method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. In addition, a metal electrode can also be produced by a coating method using a metal ink, a metal paste, a low melting point metal, or the like. Further, as the electrode material, an organic conductive film such as polyaniline and a derivative thereof, polythiophene and a derivative thereof may be used.

本電子素子は、通常、透明又は半透明の基板上に形成される。この基板は、電極を形成し、有機物を含む層を形成する際に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板を用いる場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが必要である。   The electronic element is usually formed on a transparent or translucent substrate. This substrate should just be what does not change when forming an electrode and forming the layer containing organic substance. Examples of the material for the substrate include glass, plastic, polymer film, and silicon. When an opaque substrate is used, the opposite electrode (that is, the electrode far from the substrate) needs to be transparent or translucent.

前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性材料を用いて作製された膜(NESA等)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。本発明の電子素子においては、陰極が透明又は半透明であることが好ましい。   Examples of the transparent or translucent electrode material include a conductive metal oxide film and a translucent metal thin film. Specifically, indium oxide, zinc oxide, tin oxide, and a composite film thereof (NESA) manufactured using a conductive material made of indium / tin / oxide (ITO), indium / zinc / oxide, or the like. Etc.), gold, platinum, silver, copper and the like are used, and ITO, indium / zinc / oxide, and tin oxide are preferable. In the electronic device of the present invention, the cathode is preferably transparent or translucent.

本電子素子は、機能層としての有機層を備えていてもよい。この有機層は、高分子化合物からなることが好ましく、導電性が高い高分子化合物からなることがより好ましい。導電性が高い高分子化合物からなる有機層を陽極および活性層に隣接させることで、陽極と活性層の密着性を高めるとともに活性層から電極へのホール(正孔)注入効率を高めることができる。高分子化合物としては、チオフェンジイル基を含む高分子化合物、アニリンジイル基を含む高分子化合物、ピロールジイル基を含む高分子化合物、フルオレンジイル基を含む高分子化合物等があげられる。   The electronic element may include an organic layer as a functional layer. This organic layer is preferably made of a polymer compound, more preferably a polymer compound having high conductivity. By adhering an organic layer made of a high-conductivity polymer compound adjacent to the anode and the active layer, the adhesion between the anode and the active layer can be improved and the efficiency of hole injection from the active layer to the electrode can be increased. . Examples of the polymer compound include a polymer compound containing a thiophene diyl group, a polymer compound containing an aniline diyl group, a polymer compound containing a pyrrole diyl group, and a polymer compound containing a fluorenediyl group.

前記機能層としての有機層は、高分子化合物と溶媒とを含む溶液を塗布することにより形成することができる。塗布する方法としては、活性層を形成する方法と同様の方法を用いることができる。有機層が有する機能としては、電極への正孔の注入効率を高める機能、活性層からの電子の注入を防ぐ機能、正孔の輸送能を高める機能、電極を蒸着する際の平坦性を高める機能、電極を塗布法で作製する場合に活性層を溶媒の浸食から保護する機能、電極から入射した光を反射する機能、活性層の劣化を抑制する機能等があげられる。   The organic layer as the functional layer can be formed by applying a solution containing a polymer compound and a solvent. As a coating method, a method similar to the method of forming the active layer can be used. Functions that the organic layer has include a function that increases the efficiency of hole injection into the electrode, a function that prevents the injection of electrons from the active layer, a function that increases the hole transport capability, and a flatness when the electrode is deposited. Examples thereof include a function, a function of protecting the active layer from erosion of the solvent when the electrode is produced by a coating method, a function of reflecting light incident from the electrode, and a function of suppressing deterioration of the active layer.

本発明の電子素子は、さらに陰極と活性層の間に配される機能層としての無機層を有していてもよい。陰極への電子の注入効率を高める。該無機層に含まれる材料としては、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化鉄、酸化タングステン、酸化ジルコニウム、酸化ハフニウム、酸化ストロンチウム、酸化インジウム、酸化セリウム、酸化イットリウム、酸化ランタン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化ガリウム、酸化ニッケル、チタン酸ストロンチウム、チタン酸バリウム、ニオブ酸カリウム、タンタル酸ナトリウム等の金属酸化物;ヨウ化銀、臭化銀、ヨウ化銅、臭化銅等の金属ハロゲン化物;硫化亜鉛、硫化チタン、硫化インジウム、硫化ビスマス、硫化カドミウム、硫化ジルコニウム、硫化タンタル、硫化モリブデン、硫化銀、硫化銅、硫化スズ、硫化タングステン、硫化アンチモン等の金属硫化物;セレン化カドミウム、セレン化ジルコニウム、セレン化亜鉛、セレン化チタン、セレン化インジウム、セレン化タングステン、セレン化モリブデン、セレン化ビスマス、セレン化鉛等の金属セレン化物;テルル化カドミウム、テルル化タングステン、テルル化モリブデン、テルル化亜鉛、テルル化ビスマス等の金属テルル化物;リン化亜鉛、リン化ガリウム、リン化インジウム、リン化カドミウム等の金属リン化物;フッ化リチウム等の金属のハロゲン化物ガリウム砒素、銅−インジウム−セレン化物、銅−インジウム−硫化物、シリコン、ゲルマニウム等が挙げられ、また、これらの2種以上の混合物であってもよい。混合物としては、例えば酸化亜鉛と酸化スズとの混合物、および酸化スズと酸化チタンとの混合物等が挙げられる。   The electronic device of the present invention may further have an inorganic layer as a functional layer disposed between the cathode and the active layer. Increase the efficiency of electron injection into the cathode. Examples of the material contained in the inorganic layer include titanium oxide, tin oxide, zinc oxide, iron oxide, tungsten oxide, zirconium oxide, hafnium oxide, strontium oxide, indium oxide, cerium oxide, yttrium oxide, lanthanum oxide, and vanadium oxide. , Niobium oxide, tantalum oxide, gallium oxide, nickel oxide, strontium titanate, barium titanate, potassium niobate, sodium tantalate, etc .; silver iodide, silver bromide, copper iodide, copper bromide, etc. Metal sulfides of: metal sulfides such as zinc sulfide, titanium sulfide, indium sulfide, bismuth sulfide, cadmium sulfide, zirconium sulfide, tantalum sulfide, molybdenum sulfide, silver sulfide, copper sulfide, tin sulfide, tungsten sulfide, and antimony sulfide; selenium Cadmium and zirconium selenides Metal selenides such as zinc selenide, titanium selenide, indium selenide, tungsten selenide, molybdenum selenide, bismuth selenide, lead selenide; cadmium telluride, tungsten telluride, molybdenum telluride, zinc telluride, tellurium Metal tellurides such as bismuth iodide; metal phosphides such as zinc phosphide, gallium phosphide, indium phosphide, cadmium phosphide; metal halides such as lithium fluoride gallium arsenide, copper-indium selenide, copper- Indium sulfide, silicon, germanium and the like can be mentioned, and a mixture of two or more of these may be used. Examples of the mixture include a mixture of zinc oxide and tin oxide, a mixture of tin oxide and titanium oxide, and the like.

前記電子素子の製造方法は、陰極および陽極の一方上に、p型半導体層と、n型半導体および酸化物半導体を含む混合物またはp型半導体層と、n型半導体および酸化物半導体が分散した分散液を塗布することにより活性層を形成する工程と、該活性層上に陰極または陽極の他方を形成する工程とを備えている。機能層を持つ場合は、活性層は、この機能層上に形成される。
活性層は、具体的には、例えば、溶媒と共役高分子化合物とチタニウムイソプロポキシドと酸化物半導体微粒子とを含む組成物からの成膜による形成される。成膜には、下記の塗布方法を用いることが好ましい。
The method of manufacturing the electronic device includes a p-type semiconductor layer, a mixture containing an n-type semiconductor and an oxide semiconductor or a p-type semiconductor layer, and a dispersion in which the n-type semiconductor and the oxide semiconductor are dispersed on one of a cathode and an anode. The method includes a step of forming an active layer by applying a liquid and a step of forming the other of the cathode and the anode on the active layer. In the case of having a functional layer, the active layer is formed on this functional layer.
Specifically, the active layer is formed, for example, by film formation from a composition containing a solvent, a conjugated polymer compound, titanium isopropoxide, and oxide semiconductor fine particles. The following coating method is preferably used for film formation.

分散液に含まれる溶媒としては、水及び有機溶媒が例示される。有機溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラリン、デカリン、ビシクロヘキシル、n−ブチルベンゼン、sec−ブチルベンゼン、tert−ブチルベンゼン等の不飽和炭化水素溶媒、四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素溶媒(特に、塩素化飽和炭化水素溶媒)、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素溶媒(特に、塩素化不飽和炭化水素溶媒)、テトラヒドロフラン、テトラヒドロピラン、ジフェニルエーテル等のエーテル溶媒が挙げられる。高分子化合物の溶解性の観点からは、ハロゲン化不飽和炭化水素溶媒が好ましく、芳香族塩素化合物がより好ましく、ジクロロベンゼンがさらに好ましく、オルトジクロロベンゼンが特に好ましい。本発明に用いられる分散液中に、これらの溶媒を2種類以上含んでいてもよい。
また溶媒中での酸化物半導体の分散を高めるためには、分散液に分散剤を添加しても良い。該分散剤としては酢酸、塩酸、硝酸、硫酸、などがあげられる。
Examples of the solvent contained in the dispersion include water and organic solvents. Examples of the organic solvent include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, carbon tetrachloride, chloroform, dichloromethane, Halogenated saturated hydrocarbon solvents (particularly chlorinated saturated hydrocarbon solvents) such as dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, etc. And halogenated unsaturated hydrocarbon solvents (especially chlorinated unsaturated hydrocarbon solvents), ether solvents such as tetrahydrofuran, tetrahydropyran, and diphenyl ether. From the viewpoint of the solubility of the polymer compound, a halogenated unsaturated hydrocarbon solvent is preferable, an aromatic chlorine compound is more preferable, dichlorobenzene is further preferable, and orthodichlorobenzene is particularly preferable. Two or more of these solvents may be included in the dispersion used in the present invention.
In order to increase the dispersion of the oxide semiconductor in the solvent, a dispersant may be added to the dispersion. Examples of the dispersant include acetic acid, hydrochloric acid, nitric acid, sulfuric acid and the like.

前記の塗布する方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法、ノズルコート法、キャピラリーコート法等の塗布法を用いることができ、スピンコート法、フレキソ印刷法、インクジェット印刷法、ディスペンサー印刷法が好ましい。   Examples of the coating method include spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic method. Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, a capillary coating method can be used, and a spin coating method, a flexographic printing method, an ink jet printing method, and a dispenser printing method are preferable.

電子素子の具体例としては、
1.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と酸化物半導体を含有する第一の活性層と、該第一の活性層に隣接して設けられた電子供与性化合物を含有する第二の活性層と、該陰極と該第一の活性層との間に該陰極に隣接して設けられた機能層とを有する電子素子;
2.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と酸化物半導体を含有する第一の活性層と、該第一の活性層に隣接して設けられた電子供与性化合物を含有する第二の活性層と、該陽極と該第一の活性層との間に該陽極に隣接して設けられた機能層とを有する電子素子;
3.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と酸化物半導体を含有する第一の活性層と、該第一の活性層に隣接して設けられた電子供与性化合物を含有する第二の活性層と、該陰極と該第一の活性層との間に該陰極に隣接して設けられた機能層と、該陽極と該第一の活性層との間に該陽極に隣接して設けられた機能層とを有する電子素子
4.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と電子供与性化合物と酸化物半導体を含有する活性層と、該陰極と該活性層との間に該陰極に隣接して設けられた機能層とを有する電子素子;
5.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と電子供与性化合物と酸化物半導体を含有する活性層と、該陽極と該活性層との間に該陽極に隣接して設けられた機能層とを有する電子素子;および
6.陽極と陰極と、該陽極と該陰極との間に電子受容性化合物と電子供与性化合物と酸化物半導体を含有する活性層と、該陰極と該活性層との間に該陰極に隣接して設けられた機能層と、該陽極と該活性層との間に該陽極に隣接して設けられた機能層とを有する電子素子:
が挙げられる。
Specific examples of electronic elements include
1. An anode, a cathode, a first active layer containing an electron-accepting compound and an oxide semiconductor between the anode and the cathode, and an electron-donating compound provided adjacent to the first active layer An electronic device comprising: a second active layer contained; and a functional layer provided adjacent to the cathode between the cathode and the first active layer;
2. An anode, a cathode, a first active layer containing an electron-accepting compound and an oxide semiconductor between the anode and the cathode, and an electron-donating compound provided adjacent to the first active layer An electronic device comprising: a second active layer containing; and a functional layer provided adjacent to the anode between the anode and the first active layer;
3. An anode, a cathode, a first active layer containing an electron-accepting compound and an oxide semiconductor between the anode and the cathode, and an electron-donating compound provided adjacent to the first active layer A second active layer containing, a functional layer provided adjacent to the cathode between the cathode and the first active layer, and the anode between the anode and the first active layer 3. an electronic device having a functional layer provided adjacent to An anode, a cathode, an active layer containing an electron-accepting compound, an electron-donating compound, and an oxide semiconductor between the anode and the cathode, and adjacent to the cathode between the cathode and the active layer An electronic device having a functional layer provided;
5. An active layer containing an electron-accepting compound, an electron-donating compound, and an oxide semiconductor between the anode and the cathode, the anode and the cathode, and the anode and the active layer adjacent to the anode 5. an electronic device having a functional layer provided; and An anode, a cathode, an active layer containing an electron-accepting compound, an electron-donating compound, and an oxide semiconductor between the anode and the cathode, and adjacent to the cathode between the cathode and the active layer An electronic device having a functional layer provided and a functional layer provided adjacent to the anode between the anode and the active layer:
Is mentioned.

電子素子としてはヘテロ接合界面を多く含むという観点からは、前記4から前記6.の素子がより好ましい。   From the viewpoint of including many heterojunction interfaces as electronic elements, the above-mentioned 4 to 6. The element is more preferable.

次に、電子素子の動作機構を説明する。透明又は半透明の電極から入射した光エネルギーが電子受容性化合物及び/又は電子供与性化合物で吸収され、電子とホールの結合した励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると界面でのそれぞれのHOMOエネルギー及びLUMOエネルギーの違いにより電子とホールが分離し、独立に動くことができる電荷(電子とホール)が発生する。発生した電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。   Next, the operation mechanism of the electronic element will be described. Light energy incident from a transparent or translucent electrode is absorbed by the electron-accepting compound and / or the electron-donating compound to generate excitons in which electrons and holes are combined. When the generated excitons move and reach the heterojunction interface where the electron-accepting compound and the electron-donating compound are adjacent to each other, electrons and holes are separated due to the difference in HOMO energy and LUMO energy at the interface. Electric charges (electrons and holes) that can move are generated. The generated charges can be taken out as electric energy (current) by moving to the electrodes.

本発明の電子素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、薄膜太陽電池として動作させることができる。薄膜太陽電池を複数集積することにより薄膜太陽電池モジュールとして用いることもできる。   The electronic device of the present invention can be operated as a thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as a thin film solar cell module by integrating a plurality of thin film solar cells.

また、電極間に電圧を印加した状態で、透明又は半透明の電極から光を照射することにより、光電流が流れ、光センサーとして動作させることができる。光センサーを複数集積することによりイメージセンサーとして用いることもできる。   Further, by applying light from a transparent or translucent electrode in a state where a voltage is applied between the electrodes, a photocurrent flows and it can be operated as a photosensor. It can also be used as an image sensor by integrating a plurality of optical sensors.

以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。   Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.

<実施例>
膜厚約150nmのITOがパターニングされたガラス基板を、有機溶媒、アルカリ洗剤、及び超純水で洗浄し、乾燥させた。フィルジェン製UVオゾンクリーナーUV253Eを用い、該ガラス基板に紫外線オゾン(UV−O3)処理を施した。
次に、1−Material社より購入したPoly[[4,8−bis[(2−ethylhexyl)oxy]benzo[1,2−b:4,5−b‘]dithiophene−2,6−diyl][3−fluoro−2−[(2−ethylhexyl)carbonyl]thieno[3,4−b]thiophenediyl]](PTB7)とSIGMAS ALDRICH社より購入したTitanium(IV)isopropoxide97%をクロロベンゼンの重量に対してそれぞれ0.5重量%、1.0重量%となるように添加し、更に日本アエロジル社製の酸化チタン微粒子P25(平均一次粒子径30nm)の粉体をエタノール中に3重量%の濃度になるように調整した液を、ビーズミルを用いてφ0.1mmのジルコニアビーズにて分散させ、その分散液をクロロベンゼンに対して11.5重量%添加し、発電層を作製するための塗布溶液を作製した。分散液の作製にはアシザワ・ファインテック株式会社製のビーズミル、ラボスターミニHFM02を用いた。分散前のエタノール中の酸化チタンの平均粒子径は4.9μmであり最大粒子径は52.3μmであった。ビーズミルにて分散した分散液中のP25の平均粒子径は188nmあり、最大粒子径は578nmであった。活性層中に含まれる高分子化合物の吸収端波長は753nmであった。
次いで塗布溶液中にスターラーチップを投入し、600rpmの回転数で攪拌混合を行った。攪拌混合は温度可変機能付きホットスターラー上で行い、設定温度を80℃とした。その後、ガラス基板上に塗布溶液をスピンコートした後、乾燥を行い、発電層を形成した。発電層の膜厚は105nmであった。膜厚の測定にはアルバック社製DektakXT−Eを用いた。続いてHeraeus社より購入したCLEVIOSSV3をバーコーターにより塗布し、乾燥させることにより電極を形成した。次いで、エポキシ樹脂(急速硬化型アラルダイト)を封止材として用いてガラス基板を接着することで封止処理を施し、電子素子を得た。電子素子の発電面積は5mm×20mmであった。この電子素子にソーラシミュレーター(三永電機製作所、商品名:XES-40S1、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電圧を測定した。発生した電圧は406.6mVであった。
<Example>
A glass substrate on which ITO having a thickness of about 150 nm was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. Using UV UV cleaner UV253E manufactured by Filgen, the glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment.
Next, Poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2,6-diyl] [1 purchased from 1-Material Co. 3-fluor-2--2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenedylyl]] (PTB7) and Titanium (IV) isopropoxide 97% purchased from SIGMAS ALDRICH, respectively, with respect to the weight of chlorobenzene are 0%. 0.5 wt% and 1.0 wt% were added, and the powder of titanium oxide fine particles P25 (average primary particle size 30 nm) manufactured by Nippon Aerosil Co., Ltd. was adjusted to a concentration of 3 wt% in ethanol. The prepared solution is 0.1 mm in diameter using a bead mill. Dispersed in Rukoniabizu, the dispersion was added 11.5% by weight relative to the chlorobenzene to prepare a coating solution for producing a power generation layer. A bead mill manufactured by Ashizawa Finetech Co., Ltd. and Labo Star Mini HFM02 were used for the preparation of the dispersion. The average particle size of titanium oxide in ethanol before dispersion was 4.9 μm, and the maximum particle size was 52.3 μm. The average particle size of P25 in the dispersion liquid dispersed by a bead mill was 188 nm, and the maximum particle size was 578 nm. The absorption edge wavelength of the polymer compound contained in the active layer was 753 nm.
Next, a stirrer chip was put into the coating solution, and stirring and mixing were performed at a rotation speed of 600 rpm. The stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was 80 ° C. Then, after spin-coating the coating solution on the glass substrate, it dried and formed the electric power generation layer. The film thickness of the power generation layer was 105 nm. DektakXT-E manufactured by ULVAC, Inc. was used for the measurement of the film thickness. Subsequently, CLEVIOSSV3 purchased from Heraeus was applied with a bar coater and dried to form an electrode. Next, an epoxy resin (rapid curing type Araldite) was used as a sealing material, and a glass substrate was adhered to perform a sealing process to obtain an electronic device. The power generation area of the electronic element was 5 mm × 20 mm. This electronic element was irradiated with a certain amount of light using a solar simulator (Minaga Electric Manufacturing Co., Ltd., trade name: XES-40S1, irradiance 100 mW / cm 2 ), and the generated voltage was measured. The generated voltage was 406.6 mV.

<比較例1>
膜厚約150nmのITOがパターニングされたガラス基板を、有機溶媒、アルカリ洗剤、及び超純水で洗浄し、乾燥させた。フィルジェン製UVオゾンクリーナーUV253Eを用い、該ガラス基板に紫外線オゾン(UV−O3)処理を施した。
次に、1−Material社より購入したPoly[[4,8−bis[(2−ethylhexyl)oxy]benzo[1,2−b:4,5−b‘]dithiophene−2,6−diyl][3−fluoro−2−[(2−ethylhexyl)carbonyl]thieno[3,4−b]thiophenediyl]](PTB7)とSIGMAS ALDRICH社より購入したTitanium(IV)isopropoxide97%をクロロベンゼンの重量に対してそれぞれ0.5重量%、1.0重量%となるように添加し、発電層を作製するための塗布溶液を作製した。活性層中に含まれる高分子化合物の吸収端波長は753nmであった。次いで塗布溶液中にスターラーチップを投入し、600rpmの回転数で攪拌混合を行った。攪拌混合は温度可変機能付きホットスターラー上で行い、設定温度を80℃とした。その後、ガラス基板上に塗布溶液をスピンコートした後、乾燥を行い、発電層を形成した。発電層の膜厚は98nmであった。膜厚の測定にはアルバック社製DektakXT−Eを用いた。続いてHeraeus社より購入したCLEVIOSSV3をバーコーターにより塗布し、乾燥させることにより電極を形成した。次いで、エポキシ樹脂(急速硬化型アラルダイト)を封止材として用いてガラス基板を接着することで封止処理を施し、電子素子を得た。電子素子の発電面積は5mm×20mmであった。この電子素子にソーラシミュレーター(三永電機製作所、商品名:XES-40S1、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電圧を測定した。発生した電圧は393mVであった。
<Comparative Example 1>
A glass substrate on which ITO having a thickness of about 150 nm was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. Using UV UV cleaner UV253E manufactured by Filgen, the glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment.
Next, Poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2,6-diyl] [1 purchased from 1-Material Co. 3-fluor-2--2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenedylyl]] (PTB7) and Titanium (IV) isopropoxide 97% purchased from SIGMAS ALDRICH, respectively, with respect to the weight of chlorobenzene are 0%. It added so that it might become 0.5 weight% and 1.0 weight%, and the coating solution for producing a power generation layer was produced. The absorption edge wavelength of the polymer compound contained in the active layer was 753 nm. Next, a stirrer chip was put into the coating solution, and stirring and mixing were performed at a rotation speed of 600 rpm. The stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was 80 ° C. Then, after spin-coating the coating solution on the glass substrate, it dried and formed the electric power generation layer. The film thickness of the power generation layer was 98 nm. DektakXT-E manufactured by ULVAC, Inc. was used for the measurement of the film thickness. Subsequently, CLEVIOSSV3 purchased from Heraeus was applied with a bar coater and dried to form an electrode. Next, an epoxy resin (rapid curing type Araldite) was used as a sealing material, and a glass substrate was adhered to perform a sealing process to obtain an electronic device. The power generation area of the electronic element was 5 mm × 20 mm. This electronic element was irradiated with a certain amount of light using a solar simulator (Minaga Electric Manufacturing Co., Ltd., trade name: XES-40S1, irradiance 100 mW / cm 2 ), and the generated voltage was measured. The generated voltage was 393 mV.

<比較例2>
膜厚約150nmのITOがパターニングされたガラス基板を、有機溶媒、アルカリ洗剤、及び超純水で洗浄し、乾燥させた。フィルジェン製UVオゾンクリーナーUV253Eを用い、該ガラス基板に紫外線オゾン(UV−O3)処理を施した。
次に、SIGMAS ALDRICH社より購入したPoly(3−hexylthiophene−2,5−diyl)(P3HT)とSIGMAS ALDRICH社より購入したTitanium(IV)isopropoxide97%をクロロベンゼンの重量に対してそれぞれ0.5重量%、1.0重量%となるように添加し、発電層を作製するための塗布溶液を作製した。活性層中に含まれる高分子化合物の吸収端波長は655nmであった。次いで塗布溶液中にスターラーチップを投入し、600rpmの回転数で攪拌混合を行った。攪拌混合は温度可変機能付きホットスターラー上で行い、設定温度を80℃とした。その後、ガラス基板上に塗布溶液をスピンコートした後、乾燥を行い、発電層を形成した。発電層の膜厚は90nmであった。膜厚の測定にはアルバック社製DektakXT−Eを用いた。
続いてHeraeus社より購入したCLEVIOSSV3をバーコーターにより塗布し、乾燥させることにより電極を形成した。次いで、エポキシ樹脂(急速硬化型アラルダイト)を封止材として用いてガラス基板を接着することで封止処理を施し、電子素子を得た。電子素子の発電面積は5mm×20mmであった。この電子素子にソーラシミュレーター(三永電機製作所、商品名:XES-40S1、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電圧を測定した。発生した電圧は260mVであった。
<Comparative Example 2>
A glass substrate on which ITO having a thickness of about 150 nm was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. Using UV UV cleaner UV253E manufactured by Filgen, the glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment.
Next, Poly (3-hexylthiophene-2,5-diyl) (P3HT) purchased from SIGMAS ALDRICH and Titanium (IV) isopropoxide 97% purchased from SIGMA ALDRICH were each 0.5% by weight based on the weight of chlorobenzene. The coating solution for preparing the power generation layer was prepared by adding 1.0% by weight. The absorption edge wavelength of the polymer compound contained in the active layer was 655 nm. Next, a stirrer chip was put into the coating solution, and stirring and mixing were performed at a rotation speed of 600 rpm. The stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was 80 ° C. Then, after spin-coating the coating solution on the glass substrate, it dried and formed the electric power generation layer. The film thickness of the power generation layer was 90 nm. DektakXT-E manufactured by ULVAC, Inc. was used for the measurement of the film thickness.
Subsequently, CLEVIOSSV3 purchased from Heraeus was applied with a bar coater and dried to form an electrode. Next, an epoxy resin (rapid curing type Araldite) was used as a sealing material, and a glass substrate was adhered to perform a sealing process to obtain an electronic device. The power generation area of the electronic element was 5 mm × 20 mm. This electronic element was irradiated with a certain amount of light using a solar simulator (Minaga Electric Manufacturing Co., Ltd., trade name: XES-40S1, irradiance 100 mW / cm 2 ), and the generated voltage was measured. The generated voltage was 260 mV.

<比較例3>
膜厚約150nmのITOがパターニングされたガラス基板を、有機溶媒、アルカリ洗剤、及び超純水で洗浄し、乾燥させた。フィルジェン製UVオゾンクリーナーUV253Eを用い、該ガラス基板に紫外線オゾン(UV−O3)処理を施した。
次に、SIGMAS ALDRICH社より購入したPoly[2−methoxy−5−(3‘,7’−dimethyloctyloxy)−1,4−phenylenevinylene](MDMO−PPV)とSIGMAS ALDRICH社より購入したTitanium(IV)isopropoxide97%をクロロベンゼンの重量に対してそれぞれ0.5重量%、1.0重量%となるように添加し、発電層を作製するための塗布溶液を作製した。活性層中に含まれる高分子化合物の吸収端波長は574nmであった。次いで塗布溶液中にスターラーチップを投入し、600rpmの回転数で攪拌混合を行った。攪拌混合は温度可変機能付きホットスターラー上で行い、設定温度を80℃とした。その後、ガラス基板上に塗布溶液をスピンコートした後、乾燥を行い、発電層を形成した。発電層の膜厚は130nmであった。膜厚の測定にはアルバック社製DektakXT−Eを用いた。
続いてHeraeus社より購入したCLEVIOSSV3をバーコーターにより塗布し、乾燥させることにより電極を形成した。次いで、エポキシ樹脂(急速硬化型アラルダイト)を封止材として用いてガラス基板を接着することで封止処理を施し、電子素子を得た。電子素子の発電面積は5mm×20mmであった。この電子素子にソーラシミュレーター(三永電機製作所、商品名:XES-40S1、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電圧を測定した。発電した220mVであった。

以上から本発明の効果が明らかである。
<Comparative Example 3>
A glass substrate on which ITO having a thickness of about 150 nm was patterned was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried. Using UV UV cleaner UV253E manufactured by Filgen, the glass substrate was subjected to ultraviolet ozone (UV-O 3 ) treatment.
Next, Poly [2-methoxy-5- (3 ′, 7′-dimethylity) -1,4-phenylenevinylene] (MDMO-PPV) purchased from SIGMAS ALDRICH and Titanium (IV) isopropoxy 97 purchased from SIGMAS ALDRICH. % Was added so as to be 0.5% by weight and 1.0% by weight, respectively, with respect to the weight of chlorobenzene, to prepare a coating solution for preparing a power generation layer. The absorption edge wavelength of the polymer compound contained in the active layer was 574 nm. Next, a stirrer chip was put into the coating solution, and stirring and mixing were performed at a rotation speed of 600 rpm. The stirring and mixing was performed on a hot stirrer with a temperature variable function, and the set temperature was 80 ° C. Then, after spin-coating the coating solution on the glass substrate, it dried and formed the electric power generation layer. The thickness of the power generation layer was 130 nm. DektakXT-E manufactured by ULVAC, Inc. was used for the measurement of the film thickness.
Subsequently, CLEVIOSSV3 purchased from Heraeus was applied with a bar coater and dried to form an electrode. Next, an epoxy resin (rapid curing type Araldite) was used as a sealing material, and a glass substrate was adhered to perform a sealing process to obtain an electronic device. The power generation area of the electronic element was 5 mm × 20 mm. This electronic element was irradiated with a certain amount of light using a solar simulator (Minaga Electric Manufacturing Co., Ltd., trade name: XES-40S1, irradiance 100 mW / cm 2 ), and the generated voltage was measured. The generated power was 220 mV.

From the above, the effect of the present invention is clear.

Claims (17)

陽極、陰極、および該陽極と該陰極との間に配置された活性層を備え、該活性層がp型半導体とn型半導体と酸化物半導体を含む電子素子。   An electronic device comprising an anode, a cathode, and an active layer disposed between the anode and the cathode, wherein the active layer includes a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor. 前記活性層が、光電変換層または熱電変換層である請求項1に記載の電子素子。   The electronic device according to claim 1, wherein the active layer is a photoelectric conversion layer or a thermoelectric conversion layer. 前記陽極と前記活性層の間に、少なくとも正孔輸送能を有する第1機能層を備えた請求項2に記載の電子素子。   The electronic device according to claim 2, further comprising a first functional layer having at least a hole transport ability between the anode and the active layer. 前記陰極と前記活性層の間に、少なくとも電子輸送能を有する第2機能層を備えた請求項2または3に記載の電子素子。   The electronic device according to claim 2, further comprising a second functional layer having at least an electron transporting capability between the cathode and the active layer. 前記活性層が、p型半導体層と、n型半導体および酸化物半導体を含む混合層とを備えた請求項1または2に記載の電子素子。   The electronic device according to claim 1, wherein the active layer includes a p-type semiconductor layer and a mixed layer including an n-type semiconductor and an oxide semiconductor. 前記活性層がp型半導体とn型半導体と酸化物半導体の混合物を塗布することにより形成されたものである請求項1〜5のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein the active layer is formed by applying a mixture of a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor. 前記活性層がp型半導体とn型半導体と酸化物半導体が分散した分散液を塗布することにより形成されたものである請求項1〜5のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein the active layer is formed by applying a dispersion in which a p-type semiconductor, an n-type semiconductor, and an oxide semiconductor are dispersed. 前記酸化物半導体は、粒子形状のものであり、粒子径が平均一次粒子径10μm以下の微粒子を含む請求項1〜7のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein the oxide semiconductor has a particle shape and includes fine particles having an average primary particle size of 10 μm or less. 前記酸化物半導体が酸化チタン粒子を含む請求項1〜8のいずれかに記載の電子素子。   The electronic device according to claim 1, wherein the oxide semiconductor includes titanium oxide particles. 前記酸化チタン粒子の平均一次粒子径が5nmから80nmである請求項9に記載の電子素子。   The electronic device according to claim 9, wherein an average primary particle diameter of the titanium oxide particles is 5 nm to 80 nm. 前記酸化チタン粒子が二酸化チタンを含む請求項9または10に記載の電子素子。   The electronic device according to claim 9 or 10, wherein the titanium oxide particles include titanium dioxide. 前記活性層のがp型半導体および/またはn型半導体の少なくとも一部が高分子化合物である請求項1〜8のいずれかに記載の電子素子。   The electronic device according to any one of claims 1 to 8, wherein at least a part of the p-type semiconductor and / or the n-type semiconductor of the active layer is a polymer compound. 前記高分子化合物の光吸収端波長が700nm以上である請求項12に記載の電子素子。   The electronic device according to claim 12, wherein the polymer compound has a light absorption edge wavelength of 700 nm or more. 陰極および陽極の一方上に、p型半導体層と、n型半導体および酸化物半導体を含む混合物を塗布することにより活性層を形成する工程と、該活性層上に陰極または陽極の他方を形成する工程とを備えた電子素子の製造方法。   A step of forming an active layer by applying a mixture containing a p-type semiconductor layer and an n-type semiconductor and an oxide semiconductor on one of the cathode and the anode, and forming the other of the cathode or the anode on the active layer A method for manufacturing an electronic device comprising the steps. 陰極および陽極の一方上に、p型半導体層と、n型半導体および酸化物半導体が分散した分散液を塗布することにより活性層を形成する工程と、該活性層上に陰極または陽極の他方を形成する工程とを備えた電子素子の製造方法。   A step of forming an active layer on one of the cathode and the anode by applying a dispersion in which a p-type semiconductor layer and an n-type semiconductor and an oxide semiconductor are dispersed; and the other of the cathode and the anode on the active layer The manufacturing method of the electronic element provided with the process to form. 陰極および陽極の一方上に、活性層を形成する前に、少なくとも電子輸送能または正孔輸送能一方を有する機能層を形成する請求項14または15に記載の電子素子の製造方法。   The method of manufacturing an electronic device according to claim 14 or 15, wherein a functional layer having at least one of an electron transport ability and a hole transport ability is formed on one of the cathode and the anode before forming the active layer. 前記活性層上に、少なくとも電子輸送能または正孔輸送能一方を有する機能層を形成する請求項14または15に記載の電子素子の製造方法。   The method for manufacturing an electronic device according to claim 14, wherein a functional layer having at least one of an electron transport ability and a hole transport ability is formed on the active layer.
JP2014165359A 2014-08-15 2014-08-15 Electronic element Pending JP2016042508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014165359A JP2016042508A (en) 2014-08-15 2014-08-15 Electronic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014165359A JP2016042508A (en) 2014-08-15 2014-08-15 Electronic element

Publications (1)

Publication Number Publication Date
JP2016042508A true JP2016042508A (en) 2016-03-31

Family

ID=55592133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014165359A Pending JP2016042508A (en) 2014-08-15 2014-08-15 Electronic element

Country Status (1)

Country Link
JP (1) JP2016042508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640800A (en) * 2020-04-30 2020-09-08 中国科学院微电子研究所 Semiconductor device and preparation method thereof
JP2021082719A (en) * 2019-11-20 2021-05-27 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2021086876A (en) * 2019-11-26 2021-06-03 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158730A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Organic thin film solar cell and fabrication method of same
JP2011119701A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
JP2012099592A (en) * 2010-11-01 2012-05-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell and method for manufacturing the same
JP2012182410A (en) * 2011-03-03 2012-09-20 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing organic photoelectric conversion element, and solar cell
JP2012195575A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Material of organic photoelectric conversion element and manufacturing method of organic photoelectric conversion element
US20130061931A1 (en) * 2010-10-27 2013-03-14 Korea Institute Of Machinery And Materials Efficient organic solar cell using core/shell metal oxide nanoparticles, and method for manufacturing same
JP2013203881A (en) * 2012-03-28 2013-10-07 Toshiba Corp Organic semiconductor and solar cell using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158730A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Organic thin film solar cell and fabrication method of same
JP2011119701A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
US20130061931A1 (en) * 2010-10-27 2013-03-14 Korea Institute Of Machinery And Materials Efficient organic solar cell using core/shell metal oxide nanoparticles, and method for manufacturing same
JP2012099592A (en) * 2010-11-01 2012-05-24 Konica Minolta Holdings Inc Organic photoelectric conversion element, solar cell and method for manufacturing the same
JP2012195575A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Material of organic photoelectric conversion element and manufacturing method of organic photoelectric conversion element
JP2012182410A (en) * 2011-03-03 2012-09-20 Konica Minolta Holdings Inc Organic photoelectric conversion element, method of manufacturing organic photoelectric conversion element, and solar cell
JP2013203881A (en) * 2012-03-28 2013-10-07 Toshiba Corp Organic semiconductor and solar cell using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082719A (en) * 2019-11-20 2021-05-27 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP7400384B2 (en) 2019-11-20 2023-12-19 東洋インキScホールディングス株式会社 Thermoelectric conversion materials and thermoelectric conversion elements
JP2021086876A (en) * 2019-11-26 2021-06-03 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP7400396B2 (en) 2019-11-26 2023-12-19 東洋インキScホールディングス株式会社 Thermoelectric conversion materials and thermoelectric conversion elements
CN111640800A (en) * 2020-04-30 2020-09-08 中国科学院微电子研究所 Semiconductor device and preparation method thereof
CN111640800B (en) * 2020-04-30 2023-04-11 中国科学院微电子研究所 Semiconductor device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5680286B2 (en) Photoelectric conversion element
WO2011052570A1 (en) Organic photoelectric conversion element and process for production thereof
US9362515B2 (en) Photoelectric conversion element
WO2012132828A1 (en) Process for producing organic photoelectric conversion element
US20160380221A1 (en) Photoelectric conversion element, wiring board for photoelectric conversion element, method for manufacturing photoelectric conversion element and photoelectric conversion structure
WO2017115646A1 (en) Photoelectric conversion element and imaging device
US9660193B2 (en) Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
US20110132453A1 (en) Organic photoelectric conversion element and production method thereof
JP2016042508A (en) Electronic element
WO2011052583A1 (en) Organic photoelectric conversion element
JP5932928B2 (en) Photoelectric conversion device
WO2012160911A1 (en) Organic photoelectric conversion element
WO2011052509A1 (en) Method for production of organic photoelectric conversion element
WO2011052546A1 (en) Organic photoelectric conversion element and manufacturing method thereof
KR20150121407A (en) Tandem type organic solar cell and method for manufacturing the same
JP6076302B2 (en) Photoelectric conversion element
JP6010649B2 (en) Solar cell module and manufacturing method thereof
JP6032284B2 (en) Manufacturing method of organic photoelectric conversion element
JP2014241369A (en) Photoelectric conversion element and method for manufacturing the same
KR20120000409A (en) Organic solar cell and method of manufacturing the same
US20150047708A1 (en) Organic-inorganic hybrid photoelectric conversion device
JP2016066645A (en) Photoelectric conversion element and manufacturing method for photoelectric conversion element
JP2016171317A (en) Organic photoelectric conversion device and solar battery
JP2014241370A (en) Photoelectric conversion element and method for manufacturing the same
KR20150143338A (en) Inorganic-organic hybrid solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120