JP2016171317A - Organic photoelectric conversion device and solar battery - Google Patents

Organic photoelectric conversion device and solar battery Download PDF

Info

Publication number
JP2016171317A
JP2016171317A JP2016041473A JP2016041473A JP2016171317A JP 2016171317 A JP2016171317 A JP 2016171317A JP 2016041473 A JP2016041473 A JP 2016041473A JP 2016041473 A JP2016041473 A JP 2016041473A JP 2016171317 A JP2016171317 A JP 2016171317A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic photoelectric
conversion device
buffer layer
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016041473A
Other languages
Japanese (ja)
Other versions
JP2016171317A5 (en
Inventor
稔文 小堀
Toshifumi Kobori
稔文 小堀
克美 新井
Katsumi Arai
克美 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Publication of JP2016171317A publication Critical patent/JP2016171317A/en
Publication of JP2016171317A5 publication Critical patent/JP2016171317A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion device and a solar battery that can improve and stabilize the photoelectric conversion characteristic and has excellent performance and durability.SOLUTION: An organic photoelectric conversion device comprises a pair of electrodes, an organic photoelectric conversion layer disposed between the pair of electrodes, and a buffer layer provided between at least one of the pair of electrodes and the organic photoelectric conversion layer. The organic photoelectric conversion layer is formed by using an electron-donating material and an electron-accepting material of conjugated polymers which have both of an electron-donating molecular structure and an electron-accepting molecular structure in molecules. The buffer layer is formed of metal oxide, and has a deteriorated portion formed by a heat treatment.SELECTED DRAWING: Figure 1

Description

本発明は、有機光電変換デバイス及びこれを用いた太陽電池に関する。   The present invention relates to an organic photoelectric conversion device and a solar cell using the same.

光電変換デバイスは、例えば、太陽電池に用いられている。近年、石油エネルギー等の代替エネルギーとして太陽光エネルギーの有効利用を促進するため、光エネルギーを電気エネルギーに変換する太陽電池の開発が広く行われている。   The photoelectric conversion device is used for a solar cell, for example. In recent years, in order to promote effective use of solar energy as alternative energy such as petroleum energy, development of solar cells that convert light energy into electric energy has been widely performed.

その中でも有機太陽電池は、シリコン系などの無機太陽電池と比較して、製造コストが安価、フレキシブル化・軽量化が可能、材料選択の幅が広いなどの利点を持つ事から注目を浴びている。このような有機太陽電池の具体例としては、非特許文献1に、電子供与性材料である共役系ポリマーとしてポリ(3−ヘキシルチオフェン)(P3HT)、電子受容性材料であるフラーレン誘導体として[6,6]−フェニルC61酪酸メチルエステル(PCBM)を混合した光電変換層を有し、光電変換層と透明電極間にはポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)のバッファ層を有する有機薄膜太陽電池が記載されている。 Among them, organic solar cells are attracting attention because they have advantages such as low manufacturing cost, flexibility and weight reduction, and wide selection of materials compared to silicon-based inorganic solar cells. . As a specific example of such an organic solar cell, Non-Patent Document 1 describes poly (3-hexylthiophene) (P3HT) as a conjugated polymer that is an electron-donating material and [6 as a fullerene derivative that is an electron-accepting material. , 6] -Phenyl C 61 butyric acid methyl ester (PCBM) mixed, and a buffer layer of polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) between the photoelectric conversion layer and the transparent electrode An organic thin film solar cell is described.

Wanli Ma, Cuiying Yang, Xiong Gong, Kwaghee Lee, Alan J. Heeger, Adv. Funct. Mater. 15, 1617-1622 (2005)Wanli Ma, Cuiying Yang, Xiong Gong, Kwaghee Lee, Alan J. Heeger, Adv. Funct. Mater. 15, 1617-1622 (2005)

しかしながら、現状の有機薄膜太陽電池は、光電変換特性及び耐久性が十分ではなく広く普及するには至っていない。   However, current organic thin-film solar cells have not been widely spread because of insufficient photoelectric conversion characteristics and durability.

本発明は、光電変換特性の改善及び安定化を図り、性能及び耐久性に優れた有機光電変換デバイス並びに太陽電池を提供するものである。   The present invention provides an organic photoelectric conversion device and a solar cell, which are improved and stabilized in photoelectric conversion characteristics and excellent in performance and durability.

本発明に係る有機光電変換デバイスは、一対の電極と、前記一対の電極間に配置された有機光電変換層と、前記一対の電極の少なくとも一方と前記有機光電変換層との間に設けられたバッファ層と、を備え、前記有機光電変換層は、分子内に電子供与性分子構造と電子受容性分子構造との両方を含む共役系高分子の電子供与性材料と電子受容体性材料と、を用いて形成され、前記バッファ層は、金属酸化物から形成され、且つ熱処理によって形成された変質部を有することを特徴とする。また、本発明は、このような有機光電変換デバイスを備えた太陽電池についても広く適用可能である。   The organic photoelectric conversion device according to the present invention is provided between a pair of electrodes, an organic photoelectric conversion layer disposed between the pair of electrodes, and at least one of the pair of electrodes and the organic photoelectric conversion layer. A buffer layer, and the organic photoelectric conversion layer includes an electron-donating material and an electron-accepting material of a conjugated polymer including both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule, The buffer layer is formed of a metal oxide and has an altered portion formed by heat treatment. Moreover, this invention is widely applicable also to the solar cell provided with such an organic photoelectric conversion device.

本発明によれば、光電変換特性の改善及び安定化を図ることができ、性能及び耐久性に優れた有機光電変換デバイス並びに太陽電池を実現できる。   According to the present invention, the photoelectric conversion characteristics can be improved and stabilized, and an organic photoelectric conversion device and a solar cell excellent in performance and durability can be realized.

本発明の実施形態1に係る有機光電変換デバイスの概略断面図。1 is a schematic cross-sectional view of an organic photoelectric conversion device according to Embodiment 1 of the present invention. 本発明の実施形態2に係る有機光電変換デバイスの概略断面図。The schematic sectional drawing of the organic photoelectric conversion device which concerns on Embodiment 2 of this invention. 本発明と比較例のバッファ層としての酸化モリブデン層のMo5+/Mo6+と測定X線の入射角度との関係を表した図。The figure showing the relationship between Mo5 + / Mo6 + of the molybdenum oxide layer as a buffer layer of this invention and a comparative example, and the incident angle of a measurement X-ray. 本発明と比較例のバッファ層としての酸化モリブデン層のMoOxのxの値と測定X線の入射角度との関係を表した図。The figure showing the relationship between the x value of MoOx of the molybdenum oxide layer as a buffer layer of this invention and a comparative example, and the incident angle of a measurement X-ray.

以下に本発明を実施の形態に基づいて詳細に説明する。なお、以下に説明する本発明の実施の形態は、本発明の上位概念、中位概念および下位概念など種々の概念を説明するための一例である。したがって、本発明の技術的範囲は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments. The embodiment of the present invention described below is an example for explaining various concepts such as a superordinate concept, a middle concept, and a subordinate concept of the present invention. Therefore, the technical scope of the present invention is not limited to the following embodiments.

(実施形態1)
図1は、本発明の実施形態1に係る有機光電変換デバイスの一例である光電変換素子を示す概略断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a photoelectric conversion element which is an example of an organic photoelectric conversion device according to Embodiment 1 of the present invention.

図1に示すように、本実施形態の有機光電変換デバイス(素子)10は、一対の電極1,2と、これら一対の電極1,2の間に設けられる有機光電変換層3と、前述した電極1,2の少なくとも一方と有機光電変換層3との間に熱処理による変質部4aを備えたバッファ層(中間層)4とを有する。   As shown in FIG. 1, the organic photoelectric conversion device (element) 10 of the present embodiment includes a pair of electrodes 1 and 2, an organic photoelectric conversion layer 3 provided between the pair of electrodes 1 and 2, and the above-described configuration. Between at least one of the electrodes 1 and 2 and the organic photoelectric conversion layer 3, a buffer layer (intermediate layer) 4 provided with a modified portion 4a by heat treatment is provided.

<光電変換層>
有機光電変換層3は、入射光で電荷を生成する層であり、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる電子供与性材料好ましくは、ベンゾチアジアゾール骨格を持つ共役系高分子の電子供与性材料と電子受容体性材料とから形成され、単層構造でも多層構造でもよい。例えば、本実施形態の有機光電変換層3は、ベンゾチアジアゾール骨格を持つ共役系高分子の電子供与性材料と電子受容体性材料との混合物を含む単層構造からなる。
<Photoelectric conversion layer>
The organic photoelectric conversion layer 3 is a layer that generates charges by incident light, and is an electron donating material composed of a conjugated polymer containing both an electron donating molecular structure and an electron accepting molecular structure in the molecule, preferably benzo It is formed from a conjugated polymer electron-donating material having a thiadiazole skeleton and an electron-accepting material, and may have a single layer structure or a multilayer structure. For example, the organic photoelectric conversion layer 3 of the present embodiment has a single-layer structure including a mixture of a conjugated polymer electron-donating material having a benzothiadiazole skeleton and an electron-accepting material.

本発明における分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子の電子供与性材料とは、ドナー性有機化合物であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは、2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物(電子供与性有機材料)をいう。したがって、ドナー性有機化合物は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。ドナー性有機化合物は、ベンゾチアジアゾール骨格を持つことが好ましい。   In the present invention, the electron-donating material of a conjugated polymer containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule is a donor organic compound, and is mainly represented by a hole-transporting organic compound. An organic compound that has the property of easily donating electrons. More specifically, it refers to an organic compound (electron-donating organic material) having a smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an organic compound having an electron donating property composed of a conjugated polymer containing both an electron donating molecular structure and an electron accepting molecular structure in the molecule. is there. The donor organic compound preferably has a benzothiadiazole skeleton.

分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子の電子供与性材料の好適例としては、PCPDTBT(ポリ[2,6−(4,4−ビス−(2−エチルヘキシル)−4H−シクロペンタ[2,1−b;3,4−b’]−ジチオフェン)−alt−4,7−(2,1,3−ベンゾチアジアゾール)])、PCDTBT(ポリ[N- 9'- ヘプタデカニル- 2,7- カルバゾール-alt- 5,5- (4',7'- di- 2- チエニル- 2',1',3'- ベンゾチアジアゾール)], ポリ[[9- (1- オクチルノニル) - 9H- カルバゾール- 2,7- ジイル] - 2,5- チオフェンジイル- 2,1,3- ベンゾチアジアゾール- 4,7- ジイル- 2,5- チオフェンジイル] )、PBDTTT-EF(PTB7 / ポリ[[4,8-ビス[(2-エチルヘキシル)オキシ]ベンゾ[1,2-b:4,5-b']ジチオフェン-2,6-ジイル][3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル]])、PBDTTT-EFT(PCE10 / PTB7-Th / ポリ[4,8-ビス(5-(2-エチルヘキシル)チオフェン-2-イル)ベンゾ[1,2-b;4,5-b']ジチオフェン-2,6-ジイル][3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル])、PFFBT4T-2OD(PCE11 / ポリ[(5,6-ジフルオロ-2,1,3-ベンゾチアジアゾール-4,7-ジイル)-オルト-(3,3’’’-ジ(2-オクチルドデシル)-2,2’;5’,2’’;5’’,2’’’-クォーターチオフェン-5,5’’’-ジイル)]が挙げられる。特に、ベンゾチアジアゾール骨格を持つ共役系高分子の電子供与性材料の好適例としては、PCPDTBT(ポリ[2,6−(4,4−ビス−(2−エチルヘキシル)−4H−シクロペンタ[2,1−b;3,4−b’]−ジチオフェン)−alt−4,7−(2,1,3−ベンゾチアジアゾール)])、PCDTBT(ポリ[N- 9'- ヘプタデカニル- 2,7- カルバゾール-alt- 5,5- (4',7'- di- 2- チエニル- 2',1',3'- ベンゾチアジアゾール)], ポリ[[9- (1- オクチルノニル) - 9H- カルバゾール- 2,7- ジイル] - 2,5- チオフェンジイル- 2,1,3- ベンゾチアジアゾール- 4,7- ジイル- 2,5- チオフェンジイル] )が挙げられる。   As a suitable example of an electron-donating material of a conjugated polymer containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule, PCPDTBT (poly [2,6- (4,4-bis- (2 -Ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b ']-dithiophene) -alt-4,7- (2,1,3-benzothiadiazole)]), PCDTBT (poly [N- 9'-heptadecanyl-2,7-carbazole-alt- 5,5- (4 ', 7'-di- 2-thienyl-2', 1 ', 3'-benzothiadiazole)], poly [[9- ( 1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PBDTTT- EF (PTB7 / poly [[4,8-bis [(2-ethylhexyl) oxy] benzo [1,2-b: 4,5-b '] dithiophene-2,6-diyl] [3-fluoro-2- [(2-Ethylhexyl) carboni Ru] thieno [3,4-b] thiophenediyl]]), PBDTTT-EFT (PCE10 / PTB7-Th / poly [4,8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1 , 2-b; 4,5-b '] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]), PFFBT4T- 2OD (PCE11 / poly [(5,6-difluoro-2,1,3-benzothiadiazole-4,7-diyl) -ortho- (3,3 '' '-di (2-octyldodecyl) -2,2 '; 5', 2 ''; 5 '', 2 '' '-Quaterthiophene-5,5' ''-diyl)], in particular, electron donating properties of conjugated polymers with a benzothiadiazole skeleton As a suitable example of the material, PCPDTBT (poly [2,6- (4,4-bis- (2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b ′]-dithiophene) -alt -4,7- (2,1,3-benzothiadiazole)]), PCDTBT [N-9'-heptadecanyl-2,7-carbazole-alt-5,5- (4 ', 7'-di- 2-thienyl-2', 1 ', 3'-benzothiadiazole)], poly [[ 9- (1-Octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]) Is mentioned.

これらの材料は、ベンゾジチオフェンやシクロペンタジチオフェン、カルバゾールといった電子供与性を示す分子構造と、電子吸引性基であるチエノチオフェンやベンゾチアジアゾールといった電子受容性を示す分子構造が同一分子内に存在しているため、分子内の電荷移動吸収に基づく長波長光吸収が可能となる。すなわちこれらの材料を光電変換層に用いることにより、本発明の有機光電変換デバイスは、光電変換効率が高くなる。   These materials have an electron-donating molecular structure such as benzodithiophene, cyclopentadithiophene, and carbazole, and an electron-accepting group such as thienothiophene and benzothiadiazole in the same molecule. Therefore, long wavelength light absorption based on charge transfer absorption in the molecule is possible. That is, by using these materials for the photoelectric conversion layer, the organic photoelectric conversion device of the present invention has high photoelectric conversion efficiency.

本発明の電子供与性有機材料は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子のみからなるものでもよいし、他の化合物を含んでもよい。電子供与性有機材料に含まれる前記子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子の含有量は、1〜100重量%の範囲であることが好ましく、10〜100重量%の範囲であることがさらに好ましい。他の化合物としては、例えばポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられるが、この限りではない。 The electron-donating organic material of the present invention may be composed only of a conjugated polymer containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule, or may contain other compounds. The content of the conjugated polymer containing both the electron-donating molecular structure and the electron-accepting molecular structure in the electron-donating organic material is preferably in the range of 1 to 100% by weight. More preferably, it is in the range of ˜100 wt%. Examples of other compounds include polythiophene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers. Conjugated polymers such as polymers, polythienylene vinylene polymers, phthalocyanine derivatives such as H 2 phthalocyanine (H 2 Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′— Diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl-4,4 ′ -Triarylamine derivatives such as diphenyl-1,1'-diamine (NPD), 4,4'-di (carbazol-9-yl) bif Carbazole derivatives such as sulfonyl (CBP), oligothiophene derivatives (terthiophene, quarter thiophene, sexithiophene, octyl thiophene, etc.) the low molecular organic compound, and the like, not limited.

一方、上述した本実施形態に係る有機光電変換デバイス10に用いる電子受容体性有機材料は、アクセプター性有機材料であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物(電子受容性有機材料)をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。   On the other hand, the electron acceptor organic material used for the organic photoelectric conversion device 10 according to the above-described embodiment is an acceptor organic material, mainly represented by an electron transport organic compound, and has a property of easily accepting electrons. An organic compound. More specifically, it refers to an organic compound (electron-accepting organic material) having a higher electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.

電子受容体性有機材料としては、例えば、フラーレン及びその誘導体(PCBMなど)、カーボンナノチューブ及びその誘導体、ペリレン及びその誘導体(PTCDA、PTCDIなど)、ナフタレン誘導体(NTCDA、NTCDIなど)、ピリジン及びその誘導体を骨格にもつオリゴマーやポリマー、フッ素化無金属フタロシアニン、フッ素化金属フタロシアニン類及びその誘導体、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、ビス(4−メチル−8−キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などが挙げられ、特にフラーレン系誘導体(PCBMなど)が好ましく使用されるが、この限りではない。   Examples of the electron-accepting organic material include fullerene and derivatives thereof (PCBM and the like), carbon nanotube and derivatives thereof, perylene and derivatives thereof (PTCDA and PTCDI and the like), naphthalene derivatives (NTCDA and NTCDI and the like), pyridine and derivatives thereof, and the like. Oligomers and polymers having a skeleton, fluorinated metal-free phthalocyanines, fluorinated metal phthalocyanines and their derivatives, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyryl Examples include arylene derivatives and silole compounds, and fullerene derivatives (PCBM and the like) are preferably used, but not limited thereto.

なお、上述した材料は例示であり、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる共役系高分子の電子供与性有機材料及び電子受容体性有機材料は、その該当材料の前駆体を用いても良く、前駆体を成膜後、後処理で該当材料に変換しても良い。   The above-described materials are examples, and conjugated polymer electron-donating organic materials and electron-accepting organic materials composed of conjugated polymers containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule. As the material, a precursor of the corresponding material may be used, and the precursor may be converted into the corresponding material by post-processing after film formation.

また、光電変換層3の厚みとしては、特に限定されるものではないが、例えば、10〜1000nmが好ましく、50〜500nmが特に好ましい。   Moreover, as thickness of the photoelectric converting layer 3, although it does not specifically limit, For example, 10-1000 nm is preferable and 50-500 nm is especially preferable.

<バッファ層>
バッファ層4は、金属酸化物からなり、直接的ないし間接的に光電変換デバイス10としての種々の特性を向上させる役割を担うもので、例えば、光電変換層3から電極1または2への電荷注入障壁の低下、光電変換層3から電極1または2への励起子拡散の防止、電荷整流作用、電極1または2と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などがその効果の一つとして挙げられる。
<Buffer layer>
The buffer layer 4 is made of a metal oxide and plays a role of improving various characteristics of the photoelectric conversion device 10 directly or indirectly. For example, charge injection from the photoelectric conversion layer 3 to the electrode 1 or 2 Lowering of barrier, prevention of exciton diffusion from photoelectric conversion layer 3 to electrode 1 or 2, charge rectifying action, reaction of electrode 1 or 2 with electron donating organic material or electron accepting organic material of photoelectric conversion layer 3 One of the effects is prevention and prevention of short circuit between electrodes.

なお、バッファ層4を形成する金属酸化物としては、酸化モリブデン、酸化バナジウム、酸化チタン、酸化亜鉛などがその好適例として挙げられる。該バッファ層が接する電極が正極として機能する場合、酸化モリブデン、酸化バナジウムのような正孔輸送性を備える物質を用いることが、特に好ましい。一方、該バッファ層が接する電極が負極として機能する場合、酸化チタン、酸化亜鉛のような電子輸送性を備える物質又はフッ化リチウムやカルシウムなどを用いることが、特に好ましい。   Suitable examples of the metal oxide forming the buffer layer 4 include molybdenum oxide, vanadium oxide, titanium oxide, and zinc oxide. In the case where the electrode in contact with the buffer layer functions as a positive electrode, it is particularly preferable to use a substance having a hole transporting property such as molybdenum oxide or vanadium oxide. On the other hand, when the electrode in contact with the buffer layer functions as a negative electrode, it is particularly preferable to use a substance having an electron transporting property such as titanium oxide or zinc oxide, or lithium fluoride or calcium.

バッファ層4の厚みとしては、特に制限されるものではないが、5〜100nmが好ましい。   The thickness of the buffer layer 4 is not particularly limited, but is preferably 5 to 100 nm.

また、本発明におけるバッファ層4は、熱処理によって形成された変質部4aを備える。この変質部4aは、光電変換デバイス10の光電変換効率の低下を防ぐことを目的に設けられた部位であり、バッファ層4の全体に分布していても、バッファ層4の局所に分布していても良いが、その働きによっては、バッファ層の表面、特に光電変換層側の表面に分布しているのが好ましい場合がある。その具体例として、例えば、酸化モリブデンを用いたバッファ層の場合に、酸化モリブデンを熱処理にすることによって得られる表面(表層)が挙げられる。酸化モリブデンに熱処理を施すことでその表面は実質的に粗くなり、その表面と接する光電変換層との界面面積が増加する。また、その表面の酸化が進み(Mo5+の比率が減り、Mo6+の比率が増える。または、MoOxのxの値が増える。)、デバイス中の電荷キャリアのトラップとなり得る格子欠陥(酸素欠陥)が少なくなる。これらの影響などから、光電変換層とバッファ層との間の電荷移動がよりスムーズに行われるようになり、光電変換デバイス10の光電変換効率の低下を防ぐことができる。   Moreover, the buffer layer 4 in the present invention includes an altered portion 4a formed by heat treatment. The altered portion 4 a is a portion provided for the purpose of preventing a decrease in photoelectric conversion efficiency of the photoelectric conversion device 10, and even if distributed throughout the buffer layer 4, it is distributed locally in the buffer layer 4. However, depending on the function, it may be preferable to distribute on the surface of the buffer layer, particularly on the surface of the photoelectric conversion layer. Specific examples thereof include a surface (surface layer) obtained by heat-treating molybdenum oxide in the case of a buffer layer using molybdenum oxide. When heat treatment is performed on molybdenum oxide, the surface thereof becomes substantially rough, and the interface area between the surface and the photoelectric conversion layer is increased. In addition, oxidation of the surface proceeds (the ratio of Mo5 + decreases and the ratio of Mo6 + increases, or the value of x of MoOx increases), and there are few lattice defects (oxygen defects) that can be trapped charge carriers in the device. Become. Due to these effects and the like, the charge transfer between the photoelectric conversion layer and the buffer layer can be performed more smoothly, and a decrease in the photoelectric conversion efficiency of the photoelectric conversion device 10 can be prevented.

ここで、正極側バッファ層として、ポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)を用いると、PEDOT/PSSはその吸湿性と酸性から、大気中の酸素や水分の影響などでデバイスの耐久性の低下を招くことがわかった。このような状況下で、本実施形態の光電変換素子10は、バッファ層4に反応性の低い酸化モリブデンのような金属酸化物を用い、かつ、熱処理に依る変質部4aを有することで、光電変換デバイスとしての耐久性を低下させずに、光電変換効率などの種々の特性を向上させることが可能となる。   Here, when polyethylenedioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) is used as the positive electrode side buffer layer, PEDOT / PSS is durable due to the influence of oxygen and moisture in the atmosphere due to its hygroscopicity and acidity. It was found that it caused a decrease in sex. Under such circumstances, the photoelectric conversion element 10 of the present embodiment uses a metal oxide such as molybdenum oxide having low reactivity for the buffer layer 4 and has an altered portion 4a due to heat treatment. Various characteristics such as photoelectric conversion efficiency can be improved without reducing the durability of the conversion device.

<電極>
一対の電極1,2を形成する材料としては、特に限定されないが、隣接または近接する層(本実施形態では有機光電変換層3、またはバッファ層4)の構成材料の種類、光が照射される方向や仕事関数の組合せにより適宜選択するのが好ましい。
<Electrode>
The material forming the pair of electrodes 1 and 2 is not particularly limited, but the type of constituent material of the adjacent or adjacent layer (the organic photoelectric conversion layer 3 or the buffer layer 4 in this embodiment) and light are irradiated. It is preferable to select appropriately depending on the combination of direction and work function.

例えば、電極1を形成する材料を、仕事関数が低い材料とした場合には、電極2を形成する材料は、仕事関数が高い材料が好ましい。仕事関数が低い材料としては、Li、In、Al、Ca、Mg、Sm、Tb、Yb、Zr、LiF等を挙げることができる。仕事関数が高い材料としては、例えばAu、Ag、Co、Ni、Pt、C、ITO、SnO、フッ素をドープしたSnO、ZnO等を挙げることができる。 For example, when the material forming the electrode 1 is a material having a low work function, the material forming the electrode 2 is preferably a material having a high work function. Examples of the material having a low work function include Li, In, Al, Ca, Mg, Sm, Tb, Yb, Zr, and LiF. Examples of the material having a high work function include Au, Ag, Co, Ni, Pt, C, ITO, SnO 2 , fluorine-doped SnO 2 , and ZnO.

ここで、光が照射される側、即ち、入射光側の電極1又は2は、光電変換効率を向上するため最適な材料で形成することが好ましい。特に、有機光電変換層3が電荷生成において反応する入射光の透過性を有する材料で、入射光側の電極を形成することが好ましい。   Here, the electrode 1 or 2 on the light irradiation side, that is, the incident light side is preferably formed of an optimal material in order to improve photoelectric conversion efficiency. In particular, the organic photoelectric conversion layer 3 is preferably made of a material that transmits incident light that reacts in charge generation, and the electrode on the incident light side is preferably formed.

また、入射光側の電極は、光電変換層3のうち有機層部分が電荷生成において直接反応する入射光の波長(有機層部分が本来、光電変換可能な吸収波長)以外の波長を有する他の光についても透過し易い材料で形成してもよい。光が電極平面に対し垂直に照射される場合、光が照射される側の電極は透明材料で形成される。   In addition, the electrode on the incident light side has a wavelength other than the wavelength of incident light in which the organic layer portion of the photoelectric conversion layer 3 directly reacts in charge generation (the organic layer portion is inherently capable of photoelectric conversion). You may form with the material which is easy to permeate | transmit light. When light is irradiated perpendicularly to the electrode plane, the electrode on the light irradiation side is formed of a transparent material.

このような透明な材料としては、In−Sn−O(ITO)、In−Zn−O(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、フッ素がドープされた酸化スズ、PEDOT:PSSのような透明導電性高分子などが挙げられる。 Examples of such transparent materials include In—Sn—O (ITO), In—Zn—O (IZO), zinc oxide (ZnO), tin oxide (SnO 2 ), tin oxide doped with fluorine, and PEDOT: Examples thereof include a transparent conductive polymer such as PSS.

また、上述した材料の他、例えば、炭素系の透明電極材料であることが好ましく、さらに好ましくは、複数の炭素原子が平面状に連なって形成される格子形状の薄膜を形成する材料を用いるのがよい。具体的には、炭素原子が六角形で平面的に広がった材料であるグラフェンを入射光側の電極材料に用いることが好ましい。グラフェンは、例えば、電子を流しやすく、高強度な材料としての性質があるため、光電変換デバイスとしての入射光側の電極材料に用いれば、大電流に耐えつつ光電変換効率の改善において非常に有利である。   In addition to the materials described above, for example, a carbon-based transparent electrode material is preferable, and more preferably, a material that forms a lattice-shaped thin film in which a plurality of carbon atoms are formed in a planar shape is used. Is good. Specifically, graphene, which is a material in which carbon atoms are hexagonal and spread in a plane, is preferably used as the electrode material on the incident light side. For example, graphene is easy to flow electrons and has properties as a high-strength material. Therefore, if it is used as an electrode material on the incident light side as a photoelectric conversion device, it is extremely advantageous in improving photoelectric conversion efficiency while withstanding a large current. It is.

なお、電極1,2をグラフェン薄膜とする場合には、その下側にある光電変換層3は赤外線に感度のある材料で形成することが好ましいが、その光電変換層3の層構造は特に限定されるものではない。グラフェン電極のn型が比較的強い場合(電荷輸送性が強い場合)、グラフェン電極側にn型有機半導体の存在比を高くすることが好ましいが、グラフェン電極のp型が比較的強い場合には、グラフェン電極側にp型有機半導体の存在比を高くすることが好ましい。何れにしても、有機光電変換層3の構造(pn結合割合の勾配・方向性)は、グラフェン電極の仕事関数の関係や電子・正孔移動度の関係などによって適宜選択することが好ましい。   When the electrodes 1 and 2 are graphene thin films, the photoelectric conversion layer 3 on the lower side is preferably formed of a material sensitive to infrared rays, but the layer structure of the photoelectric conversion layer 3 is particularly limited. Is not to be done. When the n-type of the graphene electrode is relatively strong (when the charge transport property is strong), it is preferable to increase the abundance ratio of the n-type organic semiconductor on the graphene electrode side, but when the p-type of the graphene electrode is relatively strong It is preferable to increase the abundance ratio of the p-type organic semiconductor on the graphene electrode side. In any case, the structure (gradient / direction of pn bond ratio) of the organic photoelectric conversion layer 3 is preferably selected as appropriate according to the work function relationship of the graphene electrode, the electron / hole mobility relationship, or the like.

<製造方法の一例>
以下、本実施形態の光電変換素子10の製造方法の一例について説明する。まず、電極2上にバッファ層4を形成する。ここで、バッファ層4を形成する前に、バッファ層4の形成表面(本実施形態例では電極2表面)に、表面性やエネルギー状態の改善などを目的としたプラズマ処理などの表面処理を行ってもよい。
<Example of manufacturing method>
Hereinafter, an example of the manufacturing method of the photoelectric conversion element 10 of this embodiment is demonstrated. First, the buffer layer 4 is formed on the electrode 2. Here, before the buffer layer 4 is formed, the surface of the buffer layer 4 (the surface of the electrode 2 in the present embodiment) is subjected to a surface treatment such as plasma treatment for the purpose of improving surface properties and energy state. May be.

また、電極2は基板上に形成されていても良く、該基板は透明なものであっても不透明なものであってもよい。例えば、この基板側が光の受光面となる場合には、透明基板であることが好ましい。この透明基板の材料としては、例えば石英ガラス、パイレックス(登録商標)、合成石英板等の可撓性のない透明なリジット材、あるいは透明樹脂フィルム、光学用樹脂板等の可撓性を有する透明なフレキシブル材を挙げることができる。   The electrode 2 may be formed on a substrate, and the substrate may be transparent or opaque. For example, when the substrate side is a light receiving surface, a transparent substrate is preferable. As a material of the transparent substrate, for example, a transparent rigid material having no flexibility such as quartz glass, Pyrex (registered trademark), a synthetic quartz plate, or a transparent material having flexibility such as a transparent resin film or an optical resin plate is used. Can be mentioned.

例えば、上記基板が透明樹脂フィルム等のフレキシブル材であれば、製造コスト低減や軽量化、割れにくい有機薄膜太陽電池の実現において有用であり、曲面への適用等の種々のアプリケーションへの適用可能性が広がるといった点で好ましい。   For example, if the substrate is a flexible material such as a transparent resin film, it is useful for realizing a reduction in manufacturing cost, weight reduction, and an organic thin film solar cell that is difficult to break, and applicability to various applications such as application to curved surfaces. Is preferable in terms of spreading.

バッファ層4の形成方法としては、その構成材料によって適宜選択することが望ましい。例えば、各種蒸着法やスパッタリング法、プラズマCVD法などの乾式成膜法や、スピンコート法、キャスティング法、グラビアコート法、ディップコート法、スプレーコート法、シャワーコート法、カーテンコート法、電着塗装法、静電塗布法(ESD法)、ダイコート法、スクリーン印刷法、インクジェットプリント法などの湿式成膜方法を適宜選択することができる。   The method for forming the buffer layer 4 is preferably selected as appropriate depending on the constituent material. For example, dry deposition methods such as various deposition methods, sputtering methods, plasma CVD methods, spin coating methods, casting methods, gravure coating methods, dip coating methods, spray coating methods, shower coating methods, curtain coating methods, electrodeposition coatings Wet film forming methods such as a method, an electrostatic coating method (ESD method), a die coating method, a screen printing method, and an ink jet printing method can be appropriately selected.

続いて、このようにして形成されたバッファ層4に熱処理を施し、熱処理による変質部4aを形成する。熱処理方法としては、公知技術より適宜選択すればよく、例えば、ホットプレートによる加熱などが挙げられる。熱処理温度は50〜250℃であることが好ましく、中でも100〜200℃がより好ましく、更には140〜200℃が特に好ましい。熱処理時間は、好ましくは1〜60分間であり、より好ましくは5〜30分間である。   Subsequently, the buffer layer 4 thus formed is subjected to a heat treatment to form an altered portion 4a by the heat treatment. What is necessary is just to select suitably from the well-known technique as a heat processing method, For example, the heating by a hotplate etc. are mentioned. The heat treatment temperature is preferably 50 to 250 ° C, more preferably 100 to 200 ° C, and particularly preferably 140 to 200 ° C. The heat treatment time is preferably 1 to 60 minutes, more preferably 5 to 30 minutes.

これにより、例えばバッファ層4に酸化モリブデンを用いた場合には、その表面粗さや透過率に変化を生じた変質部4aが形成される。また、光電変換層3を形成する前にバッファ層4に熱処理を施すことで、光電変換層3に用いられるベンゾチアジアゾール骨格を持つ共役系高分子の電子供与性有機材料及び電子受容体性有機材料の熱による劣化(性能低下)を生じさせることなく、変質部4aを形成することができる。   Thereby, for example, when molybdenum oxide is used for the buffer layer 4, an altered portion 4 a having a change in its surface roughness and transmittance is formed. In addition, by subjecting the buffer layer 4 to heat treatment before forming the photoelectric conversion layer 3, a conjugated polymer electron-donating organic material and electron-accepting organic material having a benzothiadiazole skeleton used in the photoelectric conversion layer 3. The deteriorated portion 4a can be formed without causing deterioration (performance degradation) due to heat.

次に、バッファ層4上に光電変換層3を形成する。光電変換層3の形成方法としては、公知技術を適宜用いることができるが、スピンコート法、キャスティング法、グラビアコート法、ディップコート法、スプレーコート法、シャワーコート法、カーテンコート法、電着塗装法、静電塗布法(ESD法)、ダイコート法、スクリーン印刷法、インクジェットプリント法などの湿式成膜方法が、より好ましい。   Next, the photoelectric conversion layer 3 is formed on the buffer layer 4. As a method for forming the photoelectric conversion layer 3, known techniques can be used as appropriate, but a spin coating method, a casting method, a gravure coating method, a dip coating method, a spray coating method, a shower coating method, a curtain coating method, and an electrodeposition coating. A wet film forming method such as a method, an electrostatic coating method (ESD method), a die coating method, a screen printing method, or an ink jet printing method is more preferable.

更に、有機光電変換層3上に電極1を形成する。電極1の形成方法としては、真空蒸着法やスパッタリング法、各種塗布法など公知の方法を適宜用いることができる。これにより、本実施形態の光電変換素子10を形成することができる。   Furthermore, the electrode 1 is formed on the organic photoelectric conversion layer 3. As a method for forming the electrode 1, a known method such as a vacuum deposition method, a sputtering method, or various coating methods can be appropriately used. Thereby, the photoelectric conversion element 10 of this embodiment can be formed.

また、ここでは、熱処理による変質部4aを含むバッファ層4が電極2と光電変換層3との間にあり、電極2から順次積層形成した場合について説明したが、熱処理による変質部4aを含むバッファ層4を電極1と光電変換層3との間に配置し、電極1側から順次積層形成するようにしてもよい。   Here, the case where the buffer layer 4 including the altered portion 4a by the heat treatment is between the electrode 2 and the photoelectric conversion layer 3 and is sequentially stacked from the electrode 2 has been described. However, the buffer including the altered portion 4a by the heat treatment has been described. The layer 4 may be disposed between the electrode 1 and the photoelectric conversion layer 3 and sequentially stacked from the electrode 1 side.

(実施形態2)
図2は、本発明の実施形態2に係る有機光電変換デバイスの一例である光電変換素子の概略断面図である。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view of a photoelectric conversion element that is an example of an organic photoelectric conversion device according to Embodiment 2 of the present invention.

図2に示すように、本実施形態の有機光電変換デバイス20は、有機光電変換層3と電極1との間にバッファ層5を設けるようにした以外は上述した実施形態1と同様である。なお、本実施形態では、上述した実施形態1(図1)と同一構成部分には同一符号を付して重複し、説明は省略する。   As shown in FIG. 2, the organic photoelectric conversion device 20 of the present embodiment is the same as that of Embodiment 1 described above except that the buffer layer 5 is provided between the organic photoelectric conversion layer 3 and the electrode 1. In the present embodiment, the same components as those in the first embodiment (FIG. 1) described above are denoted by the same reference numerals, and the description thereof is omitted.

ここで、バッファ層5は、直接的ないし間接的に光電変換デバイス10としての種々の特性を向上させる役割を担うもので、例えば、光電変換層3から電極1への電荷注入障壁の低下、光電変換層3から電極1への励起子拡散の防止、電荷整流作用、電極1と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などがその効果の一つとして挙げられる。   Here, the buffer layer 5 plays a role of improving various characteristics of the photoelectric conversion device 10 directly or indirectly. For example, the buffer layer 5 lowers the charge injection barrier from the photoelectric conversion layer 3 to the electrode 1, Prevention of exciton diffusion from the conversion layer 3 to the electrode 1, charge rectification action, prevention of reaction between the electrode 1 and the electron-donating organic material or the electron acceptor organic material of the photoelectric conversion layer 3, prevention of short-circuit between electrodes One of the effects.

バッファ層5を形成する材料としては、特に限定されるものではないが、目的の効果が得られるよう適宜選択される。具体的には、電極1が負極として機能する場合は、例えば、酸化チタンや酸化亜鉛のような電子輸送性を備える物質又はフッ化リチウムやカルシウムなどを用いることが好ましい。一方、電極1が負極として機能する場合は、例えば、酸化モリブデンや酸化バナジウム、ポリエチレンジオキシチオフェン(PEDOT)やポリスチレンスルホン酸(PSS)あるいはこれら高分子材料の混合物のような正孔輸送性を備える物質を用いることが好ましい。   A material for forming the buffer layer 5 is not particularly limited, but is appropriately selected so as to obtain a desired effect. Specifically, when the electrode 1 functions as a negative electrode, it is preferable to use, for example, a substance having an electron transporting property such as titanium oxide or zinc oxide, lithium fluoride, calcium, or the like. On the other hand, when the electrode 1 functions as a negative electrode, it has hole transport properties such as molybdenum oxide, vanadium oxide, polyethylenedioxythiophene (PEDOT), polystyrene sulfonic acid (PSS), or a mixture of these polymer materials. It is preferable to use a substance.

このように、本実施形態の光電変換素子20は、光電変換層3と電極1の間にバッファ層5を設けるようにしたことで、光電変換効率の改善を図ることができると共に、例えば、光電変換層3から電極1への電荷注入障壁の低下、光電変換層3から電極1への励起子拡散の防止、電荷整流作用、電極1と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などの効果を得ることができる。   As described above, the photoelectric conversion element 20 of the present embodiment can improve the photoelectric conversion efficiency by providing the buffer layer 5 between the photoelectric conversion layer 3 and the electrode 1. Reduction of charge injection barrier from conversion layer 3 to electrode 1, prevention of exciton diffusion from photoelectric conversion layer 3 to electrode 1, charge rectification action, electron donating organic material or electron acceptor of electrode 1 and photoelectric conversion layer 3 Effects such as prevention of reaction with the conductive organic material and prevention of short circuit between electrodes can be obtained.

なお、本実施形態の光電変換素子20の製造方法は、バッファ層5以外は上述した実施形態1と同様にすることができる。バッファ層5の形成方法については、特に限定されないが、形成に際して光電変換層3に熱負荷がかからない方法が適している。光電変換層3の温度が100℃以下となる形成方法が好ましく、光電変換層3の温度が100℃以下となる形成方法がより好ましい。   In addition, the manufacturing method of the photoelectric conversion element 20 of this embodiment can be made to be the same as that of Embodiment 1 mentioned above except the buffer layer 5. FIG. The method for forming the buffer layer 5 is not particularly limited, but a method that does not apply a thermal load to the photoelectric conversion layer 3 at the time of formation is suitable. A formation method in which the temperature of the photoelectric conversion layer 3 is 100 ° C. or lower is preferable, and a formation method in which the temperature of the photoelectric conversion layer 3 is 100 ° C. or lower is more preferable.

(他の実施形態)
以上、本発明を実施形態1、2に基づいて詳細に説明したが、本発明は上述した各実施形態1、2に限定されるものではない。例えば、上述した各実施形態1、2では、光電変換デバイスの一例として素子構成を例示して説明したが、本発明は勿論これに限定されず、例えば、光電変換機能、光整流機能などを利用した種々の光電変換デバイス、たとえば光電池(太陽電池(太陽光発電装置)など)、光起電力素子、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などへの応用が可能である。特に、太陽電池(有機薄膜太陽電池、有機無機薄膜太陽電池、あるいはシリコン系太陽電池等)、光起電力素子に有用である。また、その用途に応じて、単位層構造を積層化(タンデム化)しても、何ら問題はない。
(Other embodiments)
As mentioned above, although this invention was demonstrated in detail based on Embodiment 1, 2, this invention is not limited to each Embodiment 1, 2 mentioned above. For example, in each of the first and second embodiments described above, the element configuration is illustrated as an example of the photoelectric conversion device. However, the present invention is of course not limited thereto, and, for example, a photoelectric conversion function, an optical rectification function, or the like is used. To various photoelectric conversion devices such as photovoltaic cells (solar cells (photovoltaic power generation devices)), photovoltaic elements, electronic devices (optical sensors, optical switches, phototransistors, etc.), optical recording materials (optical memory, etc.), etc. Application is possible. In particular, it is useful for solar cells (organic thin film solar cells, organic inorganic thin film solar cells, silicon-based solar cells, etc.) and photovoltaic elements. Moreover, there is no problem even if the unit layer structure is laminated (tandem) according to the application.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明がこれにより限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

[実施例1]
(光電変換層用溶液の調製)
PCPDTBT(Luminescence Technology Corp.社製、LT−S949)を23mg、[70]PCBM(フロンティアカーボン社製、nanom spectra E110)を41.4mg、それぞれ秤量して混合し、そこにクロロベンゼン(和光純薬工業社製、特級)2mlと1,8−ジヨードオクタン(和光純薬工業社製)0.05mlとを加え、室温で60時間撹拌を行った。
[Example 1]
(Preparation of solution for photoelectric conversion layer)
23 mg of PCPDTBT (produced by Luminescence Technology Corp., LT-S949) and 41.4 mg of [70] PCBM (manufactured by Frontier Carbon Co., nanospectra E110) were weighed and mixed, and chlorobenzene (Wako Pure Chemical Industries, Ltd.) was mixed therewith. 2 ml of 1,8-diiodooctane (manufactured by Wako Pure Chemical Industries, Ltd.) and 0.05 ml were added and stirred at room temperature for 60 hours.

その後、シリンジフィルター(GEヘルスケア・ジャパン社製、13 mm GD/Xシリンジフィルター(PVDF 0.45μm))で濾過し、光電変換層用溶液としてPCPDTBT:[70]PCBM混合溶液を得た。   Then, it filtered with the syringe filter (The GE Healthcare Japan company make, 13 mm GD / X syringe filter (PVDF 0.45 micrometer)), and obtained the PCPDTBT: [70] PCBM mixed solution as a solution for photoelectric conversion layers.

(光電変換デバイスの作成)
ガラス基板(2cm角、厚さ0.7mm)上に透明導電膜としてITO膜がパターン形成されたITO膜付きガラス基板を準備した。以下、この基板を「ITO基板」という。
(Create photoelectric conversion device)
A glass substrate with an ITO film in which an ITO film was patterned as a transparent conductive film on a glass substrate (2 cm square, thickness 0.7 mm) was prepared. Hereinafter, this substrate is referred to as an “ITO substrate”.

ITO基板を、液体洗剤、アセトン、2−プロパノールで超音波洗浄した後に、ITO基板にUV−オゾン処理を施した。   The ITO substrate was ultrasonically cleaned with a liquid detergent, acetone, and 2-propanol, and then subjected to UV-ozone treatment.

次に、ITO基板上に酸化モリブデン膜を抵抗加熱真空蒸着により成膜し、バッファ層とした。酸化モリブデン膜の膜厚は39nm、成膜速度は2〜5Å/s、成膜時の圧力は5×10−4Pa以下であった。 Next, a molybdenum oxide film was formed on the ITO substrate by resistance heating vacuum deposition to form a buffer layer. The film thickness of the molybdenum oxide film was 39 nm, the film formation rate was 2-5 Å / s, and the pressure during film formation was 5 × 10 −4 Pa or less.

続いて、バッファ層としての酸化モリブデン膜が形成されたITO基板を、窒素雰囲気下で、160℃のホットプレート上で5分間加熱処理し、熱処理に依る変質部を形成した。   Subsequently, the ITO substrate on which the molybdenum oxide film as the buffer layer was formed was heat-treated on a hot plate at 160 ° C. for 5 minutes in a nitrogen atmosphere to form an altered portion due to the heat treatment.

加熱処理を施したバッファ層としての酸化モリブデン膜が形成されたITO基板上に、上記方法で作製された光電変換層用溶液を、窒素雰囲気下でスピンコート(1500rpm、1分)し、光電変換層として厚さ100nmのPCPDTBT:[70]PCBM混合層を得た。   The photoelectric conversion layer solution prepared by the above method is spin-coated (1500 rpm, 1 minute) in a nitrogen atmosphere on an ITO substrate on which a molybdenum oxide film as a buffer layer subjected to heat treatment is formed, and photoelectric conversion is performed. As a layer, a PCPDTBT: [70] PCBM mixed layer having a thickness of 100 nm was obtained.

光電変換層上に、電極としてAl膜を、抵抗加熱真空蒸着により成膜した。Al膜の膜厚は80nm、成膜速度は1〜5Å/s、成膜時の圧力は1×10−3Pa以下であった。また、蒸着はシャドウマスクを介して行い、3mm角、すなわち0.09cmの有効光電変換面積をもつ光電変換デバイスを作製した。 An Al film as an electrode was formed on the photoelectric conversion layer by resistance heating vacuum deposition. The film thickness of the Al film was 80 nm, the film formation rate was 1-5 Å / s, and the pressure during film formation was 1 × 10 −3 Pa or less. Moreover, vapor deposition was performed through the shadow mask and the photoelectric conversion device which has an effective photoelectric conversion area of 3 square mm, ie, 0.09 cm < 2 >, was produced.

[実施例2]
(光電変換層用溶液の調製)
PTB7(1−material社製)を11.6mg、[70]PCBM(Solenne BV社製)を17.4mg、それぞれ秤量して混合し、そこにクロロベンゼン(和光純薬工業社製、特級)0.97mlと1,8−ジヨードオクタン(東京化成工業社製)0.03mlとを加え、60℃で3時間撹拌を行い、光電変換層用溶液としてPTB7:[70]PCBM混合溶液を得た。
[Example 2]
(Preparation of solution for photoelectric conversion layer)
11.6 mg of PTB7 (manufactured by 1-material) and 17.4 mg of [70] PCBM (manufactured by Solenen BV) were weighed and mixed, and chlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd., special grade) 0. 97 ml and 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.03 ml were added, and the mixture was stirred at 60 ° C. for 3 hours to obtain a PTB7: [70] PCBM mixed solution as a solution for a photoelectric conversion layer.

(光電変換デバイスの作成)
光電変換層用溶液として上記PTB7:[70]PCBM混合溶液を用い、該溶液を窒素雰囲気下でスピンコート(2000rpm、2分)し、光電変換層として厚さ100nmのPTB7:[70]PCBM混合層を得た以外は、実施例1と同様に光電変換デバイスを作成した。
(Create photoelectric conversion device)
Using the PTB7: [70] PCBM mixed solution as a solution for the photoelectric conversion layer, the solution was spin-coated (2000 rpm, 2 minutes) under a nitrogen atmosphere, and a PTB7: [70] PCBM mixture having a thickness of 100 nm was formed as the photoelectric conversion layer. A photoelectric conversion device was produced in the same manner as in Example 1 except that the layer was obtained.

[実施例3]
(光電変換層用溶液の調製)
PCE10(1−material社製)を8mg、[70]PCBM(Solenne BV社製)を12mg、それぞれ秤量して混合し、そこにクロロベンゼン(和光純薬工業社製、特級)0.97mlと1,8−ジヨードオクタン(東京化成工業社製)0.03mlとを加え、60℃で3時間撹拌を行い、光電変換層用溶液としてPCE10:[70]PCBM混合溶液を得た。
[Example 3]
(Preparation of solution for photoelectric conversion layer)
8 mg of PCE10 (manufactured by 1-material) and 12 mg of [70] PCBM (manufactured by Solene BV) were weighed and mixed, and 0.97 ml of chlorobenzene (special grade by Wako Pure Chemical Industries, Ltd.) and 1, 8-Diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) (0.03 ml) was added, and the mixture was stirred at 60 ° C. for 3 hours to obtain a PCE10: [70] PCBM mixed solution as a solution for a photoelectric conversion layer.

(光電変換デバイスの作成)
光電変換層用溶液として上記PCE10:[70]PCBM混合溶液を用い、該溶液を窒素雰囲気下でスピンコート(2000rpm、2分)し、光電変換層として厚さ100nmのPCE10:[70]PCBM混合層を得た以外は、実施例1と同様に光電変換デバイスを作成した。
(Create photoelectric conversion device)
Using the PCE10: [70] PCBM mixed solution as a solution for the photoelectric conversion layer, the solution was spin-coated (2000 rpm, 2 minutes) under a nitrogen atmosphere, and a PCE10: [70] PCBM mixture having a thickness of 100 nm was formed as the photoelectric conversion layer. A photoelectric conversion device was produced in the same manner as in Example 1 except that the layer was obtained.

[比較例1]
バッファ層としての酸化モリブデン膜が形成されたITO基板に熱処理を施さず、熱処理に依る変質部を形成しない以外は、実施例1と同様の方法で、比較用の光電変換デバイスを作製した。
[Comparative Example 1]
A comparative photoelectric conversion device was produced in the same manner as in Example 1 except that the ITO substrate on which the molybdenum oxide film as the buffer layer was not subjected to heat treatment and an altered portion due to the heat treatment was not formed.

[比較例2]
バッファ層としての酸化モリブデン膜が形成されたITO基板に熱処理を施さず、熱処理に依る変質部を形成しない以外は、実施例2と同様の方法で、比較用の光電変換デバイスを作製した。
[Comparative Example 2]
A comparative photoelectric conversion device was produced in the same manner as in Example 2 except that the ITO substrate on which the molybdenum oxide film as the buffer layer was not subjected to heat treatment and an altered portion due to the heat treatment was not formed.

[比較例3]
バッファ層としての酸化モリブデン膜が形成されたITO基板に熱処理を施さず、熱処理に依る変質部を形成しない以外は、実施例3と同様の方法で、比較用の光電変換デバイスを作製した。
[Comparative Example 3]
A comparative photoelectric conversion device was produced in the same manner as in Example 3 except that the ITO substrate on which the molybdenum oxide film as the buffer layer was not subjected to heat treatment and an altered portion due to the heat treatment was not formed.

[比較例4]
バッファ層として酸化モリブデン膜の代わりに、以下の方法で得たPEDOT:PSS膜を用いた以外は、実施例1と同様の方法で、比較用の光電変換デバイスを作製した。
[Comparative Example 4]
A comparative photoelectric conversion device was produced in the same manner as in Example 1 except that a PEDOT: PSS film obtained by the following method was used as the buffer layer instead of the molybdenum oxide film.

ITO基板上にPEDOT:PSS(Heraeus社製、CleviosPH500)を大気中でスピンコート(5000rpm、1分)し、続けて、大気中で140℃のホットプレート上で10分間乾燥処理し、バッファ層として膜厚39nmのPEDOT:PSS膜を得た。   Spin coating (5000 rpm, 1 minute) with PEDOT: PSS (manufactured by Heraeus, CleviosPH500) on the ITO substrate, followed by drying treatment on a hot plate at 140 ° C. for 10 minutes in the atmosphere as a buffer layer A 39 nm thick PEDOT: PSS film was obtained.

[評価]
作製された光電変換デバイスについて、AM1.5Gのスペクトル分布を有し、100mW/cmの光強度を有する擬似太陽光照射下での電流密度−電圧特性を、ソーラーシミュレータ及び電流密度−電圧特性測定装置(分光計器社製、CEP−25BX)を用いて測定した。
[Evaluation]
About the produced photoelectric conversion device, a solar simulator and a current density-voltage characteristic measurement under a simulated sunlight irradiation having an AM1.5G spectral distribution and a light intensity of 100 mW / cm 2 It measured using the apparatus (The spectrometer company make, CEP-25BX).

測定により得られた実施例1〜3と比較例1〜3のデバイスの短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)および光電変換効率(η)を下記表1に記載した。   The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and photoelectric conversion efficiency (η) of the devices of Examples 1 to 3 and Comparative Examples 1 to 3 obtained by measurement are shown in Table 1 below. did.

また、実施例1と比較例2のデバイスを大気中、室温下で所定時間静置した後に、上記と同様にAM1.5Gのスペクトル分布を有し、100mW/cmの光強度を有する擬似太陽光照射下での電流密度−電圧特性を測定し、静置前の初期光電変換効率(デバイス作製直後に測定した時の変換効率)に対する変換効率の維持率を下記式より求めた結果を、下記表2に記載した。
変換効率の維持率[%] = (所定時間静置した後の光電変換効率)/(デバイス作製直後の変換効率)×100
Further, after the devices of Example 1 and Comparative Example 2 were allowed to stand in the atmosphere at room temperature for a predetermined time, the pseudo-sun having a spectral distribution of AM1.5G and a light intensity of 100 mW / cm 2 as described above. The current density-voltage characteristics under light irradiation were measured, and the result of obtaining the conversion efficiency maintenance ratio with respect to the initial photoelectric conversion efficiency (conversion efficiency when measured immediately after device fabrication) before standing from the following formula is shown below. It described in Table 2.
Conversion efficiency maintenance rate [%] = (photoelectric conversion efficiency after standing for a predetermined time) / (conversion efficiency immediately after device fabrication) × 100

上記の結果のとおり、本発明の光電変換デバイスは、光電変換について高い性能を示すとともに、かつ、優れた耐久性を発揮する。   As described above, the photoelectric conversion device of the present invention exhibits high performance for photoelectric conversion and exhibits excellent durability.

[実施例4]
(熱処理による変質部評価用サンプルの作製)
基板として全面ITO膜が形成されたガラス基板を用いた以外は、実施例1と同様にして、基板上に熱処理による変質部を含む酸化モリブデンバッファ層のみを形成し、評価用サンプルを得た。
[Example 4]
(Preparation of samples for evaluation of altered parts by heat treatment)
A sample for evaluation was obtained by forming only a molybdenum oxide buffer layer including an altered portion by heat treatment on the substrate in the same manner as in Example 1 except that a glass substrate on which an ITO film was formed on the entire surface was used as the substrate.

[比較例5]
バッファ層としての酸化モリブデン膜が形成されたITO基板に熱処理を施さず、熱処理に依る変質部を形成しない以外は、実施例4と同様の方法で、比較用の、評価用サンプルを得た。
[Comparative Example 5]
A comparative evaluation sample was obtained in the same manner as in Example 4 except that the ITO substrate on which the molybdenum oxide film as the buffer layer was formed was not subjected to heat treatment and an altered portion due to the heat treatment was not formed.

[評価]
[光電子分光法(XPS)]
作製された評価用サンプルについて、X線光電子分光装置(Kratos(島津製作所)製AXISNOVA)を用いて行った、酸化モリブデンの酸化状態についての測定結果を、図3、図4に記載する。
[Evaluation]
[Photoelectron spectroscopy (XPS)]
FIG. 3 and FIG. 4 show the measurement results of the oxidized state of molybdenum oxide, which was performed on the prepared evaluation sample using an X-ray photoelectron spectrometer (AXISNOVA manufactured by Kratos (Shimadzu Corporation)).

図3の縦軸はMo5+/Mo6+、図4の縦軸はMoOxのx、図3、図4いずれも横軸はX線の入射角度である。X線の入射角度は、0度がサンプルに対しX線が垂直に入射する角度であり、サンプルに対するX線の侵入深さが最も深くなる(測定範囲が広くなる)。角度が付くに従い、酸化モリブデンのより表層部を測定している(測定範囲が狭くなる)ことになる。   The vertical axis in FIG. 3 is Mo5 + / Mo6 +, the vertical axis in FIG. 4 is x of MoOx, and in both FIGS. 3 and 4, the horizontal axis is the X-ray incident angle. The incident angle of the X-ray is an angle at which 0 degree is incident on the sample perpendicularly to the sample, and the penetration depth of the X-ray into the sample is the deepest (the measurement range is widened). As the angle increases, the surface layer portion of molybdenum oxide is measured (measurement range becomes narrower).

図3が示すように、熱処理を施した実施例4は熱処理を施していない比較例5に比べて、特に低角度側でMo5+/Mo6+の値が小さくなっていて、バッファ層である酸化モリブデン膜の膜厚方向(測定X線入射角度)での変化率が比較的小さい。   As shown in FIG. 3, the heat treatment example 4 has a smaller value of Mo5 + / Mo6 + on the lower angle side than the comparative example 5 which has not been heat treatment, and the molybdenum oxide film serving as a buffer layer. The rate of change in the film thickness direction (measurement X-ray incident angle) is relatively small.

また、図4が示すように、熱処理を施した実施例4は熱処理を施していない比較例5に比べて、特に低角度側でMoOxのxの値が高くなっていて、バッファ層である酸化モリブデン膜の膜厚方向(測定X線入射角度)での増減が比較的少ない。   Further, as shown in FIG. 4, the heat treatment example 4 is higher in the value of x of MoOx than the comparative example 5 which is not heat treatment, and the oxidation of the buffer layer. There is relatively little increase or decrease in the film thickness direction (measurement X-ray incident angle) of the molybdenum film.

これらの結果により、実施例4並びに同様の作製プロセスを経た実施例1〜3において、熱処理によりバッファ層である酸化モリブデン膜に上記の物性変化を伴う変質部が形成されることが確認された。   From these results, it was confirmed that in Example 4 and Examples 1 to 3 that had undergone the same manufacturing process, the altered portion accompanied with the above-described change in physical properties was formed in the molybdenum oxide film that is the buffer layer by the heat treatment.

[表面粗さ測定]
作製された評価用サンプルについて、原子間力顕微鏡(Bruker Corporation製 Multimode8)を用いて、酸化モリブデン膜の表面の二乗平均平方根粗さ(RMS)の測定を行った。その結果、熱処理を施した実施例4は2.1nm、熱処理を施していない比較例5は0.4nmであった。
[Surface roughness measurement]
About the produced sample for evaluation, the root mean square roughness (RMS) of the surface of the molybdenum oxide film was measured using an atomic force microscope (Multimode 8 manufactured by Bruker Corporation). As a result, Example 4 with heat treatment was 2.1 nm, and Comparative Example 5 without heat treatment was 0.4 nm.

この結果からも、実施例4並びに同様の作製プロセスを経た実施例1〜3において、熱処理によりバッファ層である酸化モリブデン膜に上記の物性変化を伴う変質部が形成されることが確認された。   Also from this result, it was confirmed that in Example 4 and Examples 1 to 3 that passed through the same manufacturing process, the altered portion accompanied with the above physical property change was formed in the molybdenum oxide film as the buffer layer by the heat treatment.

[透過率測定]
作製された評価用サンプルについて、紫外可視分光光度計(JASCO(日本分光)製 V−650)を用いて、酸化モリブデン膜の光透過スペクトルの測定を行った。その結果、波長550〜900nmの光の透過率の平均値は、熱処理を施した実施例4では89.7%、熱処理を施していない比較例5は94.8%であった。
[Transmittance measurement]
About the produced sample for evaluation, the light transmission spectrum of the molybdenum oxide film was measured using the ultraviolet visible spectrophotometer (JASCO (JASCO Corporation V-650)). As a result, the average transmittance of light having a wavelength of 550 to 900 nm was 89.7% in Example 4 where heat treatment was performed, and 94.8% in Comparative Example 5 where heat treatment was not performed.

この結果からも、実施例4並びに同様の作製プロセスを経た実施例1〜3において、熱処理によりバッファ層である酸化モリブデン膜に上記の物性変化を伴う変質部が形成されることが確認された。   Also from this result, it was confirmed that in Example 4 and Examples 1 to 3 that passed through the same manufacturing process, the altered portion accompanied with the above physical property change was formed in the molybdenum oxide film as the buffer layer by the heat treatment.

1,2 電極
3 有機光電変換層
4 バッファ層
4a 熱処理による変質部
10 有機光電変換デバイス
DESCRIPTION OF SYMBOLS 1, 2 Electrode 3 Organic photoelectric conversion layer 4 Buffer layer 4a Alteration part by heat processing 10 Organic photoelectric conversion device

Claims (17)

一対の電極と、
前記一対の電極間に配置された有機光電変換層と、
前記一対の電極の少なくとも一方と前記有機光電変換層との間に設けられたバッファ層と、を備え、
前記有機光電変換層は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子の電子供与性材料と、電子受容体性材料と、を用いて形成され、
前記バッファ層は、金属酸化物から形成され、且つ熱処理によって形成された変質部を有することを特徴とする有機光電変換デバイス。
A pair of electrodes;
An organic photoelectric conversion layer disposed between the pair of electrodes;
A buffer layer provided between at least one of the pair of electrodes and the organic photoelectric conversion layer,
The organic photoelectric conversion layer is formed using a conjugated polymer electron-donating material containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule, and an electron-accepting material.
The said buffer layer is formed from a metal oxide, and has an altered part formed by heat processing, The organic photoelectric conversion device characterized by the above-mentioned.
前記バッファ層は、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化亜鉛、酸化チタンの少なくともいずれか1種の金属酸化物から形成されたことを特徴とする請求項1に記載の有機光電変換デバイス。   2. The organic photoelectric conversion device according to claim 1, wherein the buffer layer is made of at least one metal oxide of molybdenum oxide, vanadium oxide, tungsten oxide, zinc oxide, and titanium oxide. 前記金属酸化物は、酸化モリブデン(MoOx)であることを特徴とする請求項2に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to claim 2, wherein the metal oxide is molybdenum oxide (MoOx). 前記バッファ層の熱処理による変質部は、前記バッファ層の前記有機光電変換層側に位置することを特徴とする請求項1乃至3のいずれか1項に記載の有機光電変換デバイス。   4. The organic photoelectric conversion device according to claim 1, wherein the altered portion of the buffer layer due to heat treatment is located on the organic photoelectric conversion layer side of the buffer layer. 5. 前記バッファ層の熱処理による変質部は、その厚さが10nm以下であることを特徴とする請求項1乃至4のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to any one of claims 1 to 4, wherein the altered portion of the buffer layer by heat treatment has a thickness of 10 nm or less. 前記バッファ層の熱処理による変質部は、Mo5+/Mo6+の値の前記バッファ層の膜厚方向での変化率が3倍以下であることを特徴とする請求項3乃至5のいずれか1項に記載の有機光電変換デバイス。   6. The altered portion of the buffer layer by heat treatment has a rate of change of Mo5 + / Mo6 + in the thickness direction of the buffer layer that is three times or less. Organic photoelectric conversion device. 前記バッファ層の熱処理による変質部は、Mo5+/Mo6+の値が0.13以下であることを特徴とする請求項3乃至6のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to any one of claims 3 to 6, wherein the altered portion of the buffer layer by heat treatment has a Mo5 + / Mo6 + value of 0.13 or less. 前記バッファ層の熱処理による変質部は、MoOxのxの値の前記バッファ層の膜厚方向での増減が0.05以下であることを特徴とする請求項3乃至7のいずれか1項に記載の有機光電変換デバイス。   8. The change in the altered portion of the buffer layer due to heat treatment has an increase or decrease in the film thickness direction of the buffer layer of an x value of MoOx of 0.05 or less. Organic photoelectric conversion device. 前記バッファ層の熱処理による変質部は、MoOxのxの値が2.93以上であることを特徴とする請求項3乃至8のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to any one of claims 3 to 8, wherein the altered portion of the buffer layer by heat treatment has an x value of MoOx of 2.93 or more. 前記バッファ層が有する前記変質部は、表面の二乗平均平方根粗さ(RMS)が2nm〜5nmであることを特徴とする請求項1乃至9のいずれか1項に記載の有機光電変換デバイス。   10. The organic photoelectric conversion device according to claim 1, wherein the altered portion of the buffer layer has a surface root mean square roughness (RMS) of 2 nm to 5 nm. 前記バッファ層が有する前記変質部は、波長550nm〜900nmの光の透過率の平均値が92%以下であることを特徴とする請求項1乃至10のいずれか1項に記載の有機光電変換デバイス。   11. The organic photoelectric conversion device according to claim 1, wherein the altered portion of the buffer layer has an average transmittance of light having a wavelength of 550 nm to 900 nm of 92% or less. . 前記電子供与性材料は、ベンゾジチオフェン、チエノチオフェン、ベンゾチアジアゾール、シクロペンタジチオフェン、カルバゾールのいずれかの分子構造のうち、少なくとも一つを分子内に含む共役系高分子であることを特徴とする請求項1乃至11のいずれか1項に記載の有機光電変換デバイス。   The electron-donating material is a conjugated polymer containing at least one of the molecular structures of benzodithiophene, thienothiophene, benzothiadiazole, cyclopentadithiophene, and carbazole in the molecule. The organic photoelectric conversion device according to any one of claims 1 to 11. 前記有機光電変換層は、PCPDTBT、PCDTBT、PBDTTT−EF、PBDTTT−EFT、PFFBT4T−20Dのいずれか一つの電子供与性材料を用いて形成されたことを特徴とする請求項1乃至12のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion layer is formed using any one of electron donating materials of PCPDTBT, PCDTBT, PBDTTTT-EF, PBDTTTT-EFT, and PFFBT4T-20D. The organic photoelectric conversion device according to item 1. 前記一対の電極の一方、前記バッファ層、前記有機光電変換層、前記一対の電極の他方がこの順序で基板上に配置されたことを特徴とする請求項1乃至13のいずれか1項に記載の有機光電変換デバイス。   The one of the pair of electrodes, the buffer layer, the organic photoelectric conversion layer, and the other of the pair of electrodes are arranged on the substrate in this order. Organic photoelectric conversion device. 前記変質部は、140〜200℃の範囲での熱処理によって形成されたことを特徴とする請求項1乃至14のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to any one of claims 1 to 14, wherein the altered portion is formed by a heat treatment in a range of 140 to 200 ° C. 前記変質部は、前記有機光電変換層の形成前の熱処理によって形成されたことを特徴とする請求項1乃至15のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to claim 1, wherein the altered portion is formed by a heat treatment before the formation of the organic photoelectric conversion layer. 請求項1乃至16のいずれか1項に記載の有機光電変換デバイスを備えたことを特徴とする太陽電池。   A solar cell comprising the organic photoelectric conversion device according to any one of claims 1 to 16.
JP2016041473A 2015-03-12 2016-03-03 Organic photoelectric conversion device and solar battery Pending JP2016171317A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015049166 2015-03-12
JP2015049166 2015-03-12

Publications (2)

Publication Number Publication Date
JP2016171317A true JP2016171317A (en) 2016-09-23
JP2016171317A5 JP2016171317A5 (en) 2019-04-11

Family

ID=56982542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041473A Pending JP2016171317A (en) 2015-03-12 2016-03-03 Organic photoelectric conversion device and solar battery

Country Status (1)

Country Link
JP (1) JP2016171317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238865B1 (en) * 2019-10-31 2021-04-12 울산대학교 산학협력단 Bulk heterojunction polymer solar cell capable of low temperature solution process, and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044103A (en) * 2007-08-10 2009-02-26 Sumitomo Chemical Co Ltd Organic electroluminescence element and manufacturing method thereof
JP2009277788A (en) * 2008-05-13 2009-11-26 Panasonic Corp Organic electroluminescent element and method of manufacturing the same
JP2013089627A (en) * 2011-10-13 2013-05-13 Konica Minolta Advanced Layers Inc Organic photoelectric conversion element and organic solar cell using the same
US20140295604A1 (en) * 2011-10-27 2014-10-02 The University Of Akron P-Type Transition Metal Oxide-Based Films Serving as Hole Transport Layers in Organic Optoelectronic Devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044103A (en) * 2007-08-10 2009-02-26 Sumitomo Chemical Co Ltd Organic electroluminescence element and manufacturing method thereof
JP2009277788A (en) * 2008-05-13 2009-11-26 Panasonic Corp Organic electroluminescent element and method of manufacturing the same
JP2013089627A (en) * 2011-10-13 2013-05-13 Konica Minolta Advanced Layers Inc Organic photoelectric conversion element and organic solar cell using the same
US20140295604A1 (en) * 2011-10-27 2014-10-02 The University Of Akron P-Type Transition Metal Oxide-Based Films Serving as Hole Transport Layers in Organic Optoelectronic Devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238865B1 (en) * 2019-10-31 2021-04-12 울산대학교 산학협력단 Bulk heterojunction polymer solar cell capable of low temperature solution process, and preparation method thereof

Similar Documents

Publication Publication Date Title
Brus et al. Solution‐processed semitransparent organic photovoltaics: From molecular design to device performance
Kang et al. Bulk‐heterojunction organic solar cells: five core technologies for their commercialization
Zhang et al. Toward solution-processed high-performance polymer solar cells: from material design to device engineering
Po et al. The role of buffer layers in polymer solar cells
Etxebarria et al. Polymer: fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review
US10714270B2 (en) Photoelectric conversion device and method for manufacturing the same
Wang et al. Interface modification of ZnO-based inverted PTB7: PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters
Aïch et al. Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells
WO2009026097A1 (en) P-type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells
Liu et al. Annealing-free ZnO: PEI composite cathode interfacial layer for efficient organic solar cells
Zhao et al. Application of biuret, dicyandiamide, or urea as a cathode buffer layer toward the efficiency enhancement of polymer solar cells
Guo et al. Boosting Up Performance of Inverted Photovoltaic Cells from Bis (alkylthien-2-yl) dithieno [2, 3-d: 2′, 3′-d′] benzo [1, 2-b: 4′, 5′-b′] di thiophene-Based Copolymers by Advantageous Vertical Phase Separation
Li et al. Organic thin-film solar cells: Devices and materials
Moon et al. Hole transport layer based on conjugated polyelectrolytes for polymer solar cells
US9660193B2 (en) Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
Cai et al. Novel nonconjugated polymer as cathode buffer layer for efficient organic solar cells
Chen et al. Dibenzothiophene-S, S-dioxide and bispyridinium-based cationic polyfluorene derivative as an efficient cathode modifier for polymer solar cells
Yu et al. Optimization of the energy level alignment between the photoactive layer and the cathode contact utilizing solution-processed hafnium acetylacetonate as buffer layer for efficient polymer solar cells
Park et al. Treating the poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) surface with hydroquinone enhances the performance of polymer solar cells
Wang et al. Delicate energy-level adjustment and interfacial defect passivation of ZnO electron transport layers in organic solar cells by constructing ZnO/In nanojunctions
Zhang et al. PTFE/MoO3 anode bilayer buffer layers for improved performance in PCDTBT: PC71BM blend organic solar cells
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
Murphy et al. Influences of using a high mobility donor polymer on solar cell performance
Ma et al. Interface‐tailored and nanoengineered polymeric materials for (opto) electronic devices
Xu et al. Efficient organic solar cells with polymer-small molecule: Fullerene ternary active layers

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200918