WO2012160911A1 - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
WO2012160911A1
WO2012160911A1 PCT/JP2012/060475 JP2012060475W WO2012160911A1 WO 2012160911 A1 WO2012160911 A1 WO 2012160911A1 JP 2012060475 W JP2012060475 W JP 2012060475W WO 2012160911 A1 WO2012160911 A1 WO 2012160911A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
layer
extraction layer
electron extraction
electrode
Prior art date
Application number
PCT/JP2012/060475
Other languages
French (fr)
Japanese (ja)
Inventor
亮 釜井
関口 隆史
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012160911A1 publication Critical patent/WO2012160911A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic power generation element.
  • the organic power generation element includes a power generation layer composed of a cathode, an anode, and an organic material interposed between the cathode and the anode. Furthermore, in order to efficiently extract electrons from the cathode to the outside, it has also been proposed to interpose an electron extraction layer between the power generation layer and the cathode.
  • a photoelectric conversion element having at least a fullerene derivative of an electron acceptor and an electron donor compound between a pair of electrodes
  • the electron extraction layer becomes a resistance component in the organic power generation element, it can be a factor of reducing the photoelectric conversion efficiency of the organic power generation element.
  • the present invention has been made in view of the above points, and an object thereof is to provide an organic power generation element having an electron extraction layer and high photoelectric conversion efficiency.
  • the first organic power generation element includes a first electrode, a second electrode, a power generation layer disposed between the first electrode and the second electrode, and the power generation layer and the first An electron extraction layer disposed between the electrode and the first electrode; the electron extraction layer includes an n-type semiconductor; and the thickness of the electron extraction layer is in a range of 0.1 nm to 15 nm.
  • the electron extraction layer has a thickness of 10 nm or less.
  • the thickness of the electron extraction layer is preferably 0.5 nm or more.
  • the electron extraction layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. preferable.
  • the electron extraction layer is preferably disposed so as to be in contact with the power generation layer, and the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is preferably 3 nm or less.
  • the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1.5 nm or less.
  • the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 1 nm or less.
  • the second organic power generation element includes a second electrode, a first electrode, a power generation layer disposed between the second electrode and the first electrode, and the power generation layer and the first An electron extraction layer disposed so as to be in contact with the power generation layer between one electrode, and an arithmetic average roughness (surface roughness) Ra of the surface of the electron extraction layer on the power generation layer side is 3 nm or less .
  • the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1.5 nm or less.
  • the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 1 nm or less.
  • the electron extraction layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. preferable.
  • an organic power generation element having an electron extraction layer and high photoelectric conversion efficiency can be obtained.
  • FIG. 1 shows the configuration of the organic power generation element according to this embodiment.
  • the organic power generation element includes a base material 1, a first electrode 2, an electron extraction layer 3, a power generation layer 4, a hole extraction layer 5, a second electrode 6, and a surface protective layer 7. Laminated in order.
  • the second electrode 6 is a transparent electrode having optical transparency.
  • the surface protective layer 7 is made of a light transmissive substance. Therefore, extraneous light incident from the second electrode 6 side of the organic power generation element passes through the surface protective layer 7 and the second electrode 6 and reaches the power generation layer 4.
  • the configuration of the organic power generation element according to the present invention is not limited to this embodiment.
  • the second electrode 6, the hole extraction layer 5, the power generation layer 4, the electron extraction layer 3, One electrode 2 and the surface protective layer 7 may have a structure in which these layers are stacked in this order (a stacked structure in the reverse order to the present embodiment).
  • the organic power generation element may not include the hole extraction layer 5.
  • the surface protective layer 7 is a layer formed as necessary in order to prevent deterioration of the organic power generation element, and the organic power generation element may not include the surface protection layer 7.
  • the material of the base material 1 is not particularly limited as long as elements of the organic power generation element such as an electrode and a power generation layer can be supported by the base material 1, but for example, transparent such as soda lime glass and non-alkali glass Glass; Examples thereof include resin materials such as polyester resin, polyolefin resin, polyamide resin, epoxy resin, and fluorine resin. Although it does not restrict
  • the first electrode 2 functions as a cathode during power generation by the organic power generation element.
  • the cathode is an electrode for collecting electrons generated in the power generation layer 4.
  • the material of the first electrode 2 is not particularly limited as long as it has electrical conductivity, and examples thereof include metals, alloys, electrically conductive compounds, and mixtures of two or more of these having a low work function.
  • the work function of the material of the first electrode 2 is particularly preferably 5 eV or less.
  • Examples of the material of the first electrode 2 include alkali metals, alkali metal halides, alkali metal oxides, alkaline earth metals, rare earths, and alloys and mixtures containing the above materials, such as sodium, Examples include sodium-potassium alloy, lithium, magnesium, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / LiF mixture, and the like.
  • As the material of the first electrode 2, a conductive material obtained by doping tin oxide or zinc oxide can also be used.
  • the conductive material include indium-tin oxide (ITO), fluorine-doped Tin oxide (FTO), antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), niobium doped tin oxide (NbTO), tantalum doped tin oxide (TaTO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO) ), Indium-doped zinc oxide (IZO), and the like.
  • ITO indium-tin oxide
  • FTO fluorine-doped Tin oxide
  • ATO antimony doped tin oxide
  • PTO phosphorus doped tin oxide
  • NbTO niobium doped tin oxide
  • TaTO tantalum doped tin oxide
  • AZO aluminum doped zinc oxide
  • GZO gallium doped zinc oxide
  • IZO Indium-doped zinc oxide
  • the first electrode 2 may be composed of a plurality of layers.
  • the first electrode 2 may have a laminated structure of alkali metal / Al, alkali metal halide / alkaline earth metal / Al, Al 2 O 3 / Al, or the like.
  • the first electrode 2 is formed, for example, by depositing the material as described above by a method such as a vacuum deposition method or a sputtering method.
  • the electron extraction layer 3 is interposed between the first electrode 2 and the power generation layer 4. In the present embodiment, the electron extraction layer 3 is in contact with the first electrode 2. In the present embodiment, the electron extraction layer 3 is also in contact with the power generation layer 4.
  • the electron extraction layer 3 is preferably formed from a material that can improve the mobility of electrons from the power generation layer 4 to the first electrode 2. Moreover, it is preferable that the electron extraction layer 3 is formed of a material having a characteristic that inhibits the movement of holes.
  • the electron extraction layer 3 is preferably formed from a material excellent in thin film forming ability.
  • the material for forming the electron extraction layer 3 is particularly preferably an n-type semiconductor material (a material that exhibits the characteristics of an n-type semiconductor when crystallized). That is, the electron extraction layer 3 is preferably made of an n-type semiconductor layer.
  • the material of the electron extraction layer 3 is at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide, which are n-type semiconductor materials. Is preferred. These n-type semiconductors all have good light transmittance in a wide wavelength range in the visible light range.
  • the power generation layer 4 is formed of a material having high visible light absorptivity and the base material 1 and the first electrode 2 are light transmissive, extraneous light is generated from the base material 1 side by organic power generation. It is also possible to cause photoelectric conversion by entering the element.
  • the base material 1 and the 1st electrode 2 have a light transmittance, when external light injects from the 2nd electrode 6 side, it is preferable that the base material 1 is provided with a light reflection board. In this case, light that is transmitted through the first electrode 2 and the base material 1 without being absorbed by the power generation layer 4 reaches the power generation layer 4 again by being reflected by the light reflection plate, and is thereby absorbed.
  • the amount of light absorption at 4 increases and the photoelectric conversion efficiency improves.
  • Examples of such a light reflecting plate include a metal plate and a white resin, but the material is not particularly limited as long as the material has a function of reflecting light having a wavelength absorbed by the material constituting the power generation layer 4. Is not to be done.
  • the thickness of the electron extraction layer 3 is 0.1 nm or more and 15 nm or less, and the arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is 3 nm or less. At least one of the conditions is met. Thereby, the photoelectric conversion efficiency of an organic power generation element improves.
  • the thickness of the electron extraction layer 3 is preferably 0.1 nm or more and 15 nm or less, and the arithmetic mean roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is preferably 3 nm or less. More preferably, the thickness of the electron extraction layer 3 is larger than 0.5 nm and smaller than 15 nm, and the arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is 1 nm or less.
  • the thickness of the electron extraction layer 3 is preferably 0.1 nm or more and 15 nm or less. If the thickness of the electron extraction layer 3 is 0.1 nm or more, the function of the electron extraction layer 3 is sufficiently exhibited.
  • the thickness of the electron extraction layer 3 is more preferably 0.5 nm or more, and further preferably 1 nm or more. Moreover, if this thickness is 15 nm or less, the electric resistance value of the electron extraction layer 3 is suppressed, so that the electric resistance of the electron extraction layer 3 can be almost ignored in the organic power generation element.
  • the thickness of the electron extraction layer 3 is more preferably 10 nm or less.
  • the arithmetic average roughness Ra of the surface on the power generation layer 4 side of the electron extraction layer 3 is preferably as small as possible, and is preferably 3 nm or less as described above.
  • the arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is more preferably 1.5 nm or less, more preferably 1 nm or less, and further preferably 0.6 nm or less.
  • the smaller the arithmetic average roughness Ra of the electron extraction layer 3 is the higher the adhesion between the electron extraction layer 3 and the power generation layer 4 is, so that the interface resistance is reduced and the short circuit current density of the organic power generation element is reduced. (Jsc) increases. Thereby, the photoelectric conversion efficiency of an organic power generation element improves.
  • the electron extraction layer 3 As a method for forming the electron extraction layer 3, there are a vacuum deposition method, a sputtering method, a chemical vapor deposition (CVD) method, a chemical deposition (CBD) method, an electrolytic deposition method, a sol-gel method, a spray pyrolysis method, and the like. Can be mentioned.
  • a vacuum deposition method a sputtering method, a chemical vapor deposition (CVD) method, a chemical deposition (CBD) method, an electrolytic deposition method, a sol-gel method, a spray pyrolysis method, and the like.
  • an evaporation method such as a vacuum evaporation method, a sputtering method, or a chemical vapor deposition (CVD) method
  • the thickness of the electron extraction layer 3 is controlled and smoothed. It becomes easy.
  • the electron extraction layer 3 that satisfies at least one of the conditions in which the thickness is 0.1 nm or more and 15 nm or less and the arithmetic average roughness Ra of the surface on the power generation layer 4 side is 3 nm or less can be formed. .
  • the power generation layer 4 includes an electron donating material (electron donating semiconductor) made of an organic compound and an electron accepting material (electron accepting semiconductor) made of an organic compound.
  • the organic compound that is the material of the power generation layer 4 is preferably solvent-soluble.
  • the electron-donating semiconductor is not particularly limited, but includes phthalocyanine pigments, indigo, thioindigo pigments, quinacridone pigments, merocyanine compounds, cyanine compounds, squalium compounds, polycyclic aromatics. Group compounds and the like. Also included are charge transfer agents, electroconductive organic charge transfer complexes, and conductive polymers used in organic electrophotographic photoreceptors.
  • the phthalocyanine which has bivalent center metals, such as Cu, Zn, Co, Ni, Pb, Pt, Fe, and Mg; Metal free phthalocyanine; Aluminum chlorophthalocyanine, Indium chlorophthalocyanine, Gallium Examples include trivalent metal phthalocyanines coordinated with halogen atoms such as chlorophthalocyanine; and other phthalocyanines coordinated with oxygen such as baanadyl phthalocyanine and titanyl phthalocyanine. Although it does not specifically limit as a polycyclic aromatic compound, Anthracene, tetracene, pentacene, those derivatives, etc. are mentioned.
  • a hydrazone compound, a pyrazoline compound, a triphenylmethane compound, a triphenylamine compound, etc. are mentioned.
  • the electroconductive organic charge transfer complex is not particularly limited, and examples thereof include tetrathiofulvalene and tetraphenyltetrathioflavalene.
  • the conductive polymer that donates electrons is not particularly limited, but may be used in an organic solvent such as poly (3-alkylthiophene), polyparaphenylene vinylene derivatives, polyfluorene derivatives, thiophene polymers, and conductive polymer oligomers. A soluble thing is mentioned.
  • the electron-accepting semiconductor is not particularly limited, but fullerene derivatives, carbon nanotubes, polyphenylene vinylenes, polyfluorenes, derivatives thereof, copolymers thereof, CN groups or CFs
  • Examples include polymers containing three groups.
  • an organic compound that is a material of the power generation layer 4 is dissolved in a solvent to prepare a solution, and this solution is applied on the electron extraction layer 3 and formed into a film.
  • Layer 4 is formed.
  • the solvent is not particularly limited, but 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chlorobenzene, chloroform, xylene, toluene, 1-chloronaphthalene, acetone, isopropyl alcohol, ethanol, methanol, cyclohexane, etc.
  • An organic solvent is mentioned.
  • As the solvent a main solvent and an additive solvent having different vapor pressures may be used.
  • 1,2-dichlorobenzene (vapor pressure: 160 Pa (20 ° C.)) may be used as the main solvent
  • chloroform (vapor pressure: 21.2 kPa (20 ° C.))
  • the combination of solvents is not limited to this. It is preferable that the main solvent and the added solvent have a difference of two or more orders of magnitude in vapor pressure, and that the volume ratio of all the solvents is in a relationship of main solvent> added solvent. Even if a plurality of types of solvents are used as the main solvent or a plurality of types of solvents are used as the additive solvent, there is no particular limitation as long as the relationship between the vapor pressure and the volume ratio of mixing is as described above.
  • the thickness of the power generation layer 4 is not particularly limited, but is preferably in the range of 80 to 240 nm.
  • a method for applying a solution containing an organic compound that is a material of the power generation layer 4 is not particularly limited, but a spin coating method, a dip coating method, a die coating method, a gravure printing method.
  • a method in which the solution is brought into direct contact with the object a method in which the solution is sprayed into the gas phase toward the object, such as an ink jet method or a spray coating method.
  • the hole extraction layer 5 is formed of a material that has the ability to transport holes and can improve the mobility of holes from the hole extraction layer 5 to the second electrode 6. Is preferred.
  • the hole extraction layer 5 is preferably formed from a material that inhibits electron movement.
  • the hole extraction layer 5 is preferably formed from a material having excellent thin film forming ability.
  • the material for forming the hole extraction layer 5 is not particularly limited, but phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) Aromatic diamine compounds such as -4,4'-diamine (TPD) and 4,4'-bis [N- (naphthyl) -N-phenyl-amino] biphenyl ( ⁇ -NPD), oxazole, oxadiazole, triazole Imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene, 4,4 ′, 4 ′′ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA ), And polyvinylcarbazole, polysilane, aminopyridy Examples thereof include polymer materials
  • inorganic materials are not particularly limited, but include inorganic oxides such as molybdenum trioxide, vanadium pentoxide, tungsten trioxide, and rhenium oxide that have the ability to transport holes. And inorganic oxides such as nickel oxide and copper oxide which are p-type semiconductors.
  • the method for forming the hole extraction layer 5 is not particularly limited, but when the material for forming the hole extraction layer 5 is an inorganic material or a low molecular material, a vacuum deposition method, a sputtering method, or the like can be given.
  • a coating method such as a spin coating method, a dip coating method, a die coating method, or a gravure printing method can be used.
  • the thickness of the hole extraction layer 5 is not particularly limited, but in order to reduce the series resistance of the organic power generation element, it is preferably 200 nm or less when formed from an inorganic material, and is formed from an organic material. In some cases, it is preferably 20 nm or less.
  • the organic power generation element when the organic power generation element exhibits a high photoelectric conversion function without the hole extraction layer 5, the organic power generation element may not include the hole extraction layer 5.
  • the second electrode 6 functions as an anode during power generation by the organic power generation element.
  • the anode is an electrode for collecting holes generated in the power generation layer 4.
  • the material for forming the second electrode 6 is not particularly limited as long as it has conductivity, but a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function is preferable.
  • the work function of the material for forming the second electrode 6 is preferably 4 eV or more.
  • the material of the second electrode 6 is not particularly limited, but is a metal such as gold; CuI, ITO (indium-tin oxide), SnO 2 , ZnO, IZO (indium-zinc oxide), etc .; PEDOT And a conductive polymer such as polyaniline; a conductive polymer doped with an arbitrary acceptor; and a material having both conductivity and light transmittance, such as a carbon nanotube.
  • the work function of the second electrode 6 is preferably larger than the work function of the first electrode 2.
  • the second electrode 6 is formed, for example, on the hole extraction layer 5 or on the power generation layer 4 when the hole extraction layer 5 is unnecessary by a method such as vacuum deposition, sputtering, or coating.
  • the light transmittance of the second electrode 6 is preferably 70% or more.
  • the sheet resistance of the second electrode 6 is preferably several hundred ⁇ / ⁇ or less, more preferably 100 ⁇ / ⁇ or less.
  • the film thickness of the second electrode 6 varies depending on the material in order to control the light transmittance, sheet resistance, and other characteristics of the second electrode 6 as described above, but is preferably 500 nm or less. A range of 10 to 200 nm is more preferable.
  • the hole extraction layer 5 and the second electrode 6 are preferably formed by a coating method.
  • the solvent used in the coating method it is preferable that the power generation layer 4 is not dissolved and the wettability to the power generation layer 4 is good.
  • the solvent is not particularly limited, and examples thereof include water, ethanol, 2-propanol and the like.
  • a surfactant may be added to the solvent.
  • the addition amount of the surfactant to the solvent is preferably in the range of 0.01% to 5% by volume ratio.
  • the surface protective layer 7 may be formed on the second electrode 6. As shown in FIG. 1, the surface protective layer 7 includes a first electrode 2, an electron extraction layer 3, a power generation layer 4, a hole extraction layer 5, and a second electrode 6 laminated on the substrate 1. You may form so that all may be covered.
  • the surface protective layer 7 is provided to protect the electrode, the power generation layer, and the like from the outside.
  • the surface protective layer 7 preferably has a gas barrier property.
  • the surface protective layer 7 is preferably light transmissive.
  • the surface protective layer 7 is preferably a film-like or plate-like structure.
  • the light transmittance of the surface protective layer 7 is preferably as high as possible, but it is particularly preferable that this light transmittance is 70% or more.
  • Such a surface protective layer 7 is not particularly limited, but for example, vapor deposition of inorganic oxides such as zinc oxide, titanium dioxide, cerium oxide, zirconium oxide on a film such as polyethylene terephthalate, polyester, polycarbonate, etc. in order to enhance gas barrier properties. It can be configured by forming a thin film layer.
  • the adhesive layer is not particularly limited, but is preferably formed from a material that does not cause deterioration of the second electrode 6 and the surface protective layer 7. Moreover, it is preferable that the light transmittance of the laminated body of the surface protective layer 7 and the adhesive layer is 70% or more.
  • the material for such an adhesive layer is not particularly limited as long as it has adhesiveness, but a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, or the like can be used.
  • Preferable specific examples of the material of such an adhesive layer include ethylene-vinyl acetate copolymer resin, modified polyethylene resin, polyvinyl butyral resin, ethylene / acrylic acid ester copolymer resin, and the like.
  • a first electrode (cathode) having a thickness of 80 nm was formed by depositing Al on the glass substrate by vacuum deposition.
  • the arithmetic average roughness of the surface of the electron extraction layer was measured with AFM (manufactured by Shimadzu Corporation, model number SFT-3500), the arithmetic average roughness Ra obtained by measuring the range of 10 ⁇ m square was 0.8. It was 5 nm.
  • Poly (3-hexylthiophene) (abbreviated as P3HT; manufactured by Merck, regioregular type) as an electron-donating material, and [6,6] -phenyl C61 butyric acid methyl ester (abbreviated as PCBM) which is a fullerene derivative as an electron-accepting material; Solenne) was prepared.
  • 1,2-dichlorobenzene (vapor pressure: 160 Pa (20 ° C.)) was prepared as the main solvent, and chloroform (vapor pressure; 21.2 kPa (20 ° C.)) was prepared as the additive solvent.
  • 1,2-dichlorobenzene and chloroform were mixed at a volume ratio of 6: 4 to prepare a mixed solvent, and a material in which P3HT and PCBM were mixed in the mixed solvent at a mass ratio of 1: 0.7 was mixed with a solid content.
  • a mixed solution was prepared by dissolving to a concentration of 51 mg / mL.
  • a power generation layer having a thickness of 200 nm was formed by applying the mixed solution on the electron extraction layer by a spin coating method in a glove box having a dew point of -76 ° C. or lower and oxygen of 1 ppm or lower in a dry nitrogen atmosphere.
  • the laminate including the glass substrate, the first electrode, the electron extraction layer, and the power generation layer obtained so far is placed in a glove box in a dry nitrogen atmosphere with a dew point of ⁇ 76 ° C. or less without being exposed to the atmosphere.
  • Annealing treatment was performed by heating at 110 ° C. for 10 minutes.
  • a Plexcore OC1200 solution (manufactured by Plextronics) was applied on the power generation layer by a spin coating method to form a hole extraction layer having a thickness of 50 nm.
  • PEDOT / PSS (CLEVIOS F ET) was mixed with isopropanol at a volume ratio of 50% and surfactant Tergitol 15-S-9 (manufactured by Dow Chemical Co.) at a volume ratio of 0.05%.
  • a solution was prepared, and this solution was applied onto the hole extraction layer by a spin coating method, thereby forming a second electrode (anode) having a thickness of 100 nm.
  • Annealing treatment was performed by heating at 130 ° C. for 5 minutes. Subsequently, the laminate was transported into a glove box having a dry nitrogen atmosphere with a dew point of ⁇ 76 ° C. or lower.
  • a glass sealing plate was prepared.
  • a sealing material made of an ultraviolet curable resin was bonded to the outer peripheral portion of one surface of the sealing plate over the entire periphery.
  • a water absorbing material (getter) in which calcium oxide was kneaded was attached to the inside of the sealing material on the surface of the sealing plate on which the sealing material was bonded, with an adhesive.
  • the sealing plate is transported into the glove box together with the laminate, and the surface on the side where the sealing material of the sealing plate is bonded is opposed to the second electrode of the laminate in the glove box.
  • a sealing material was stacked on the substrate. In this state, the sealing material was cured by irradiating the sealing material with ultraviolet rays. This formed the surface protection layer which consists of a sealing board.
  • Example 2 In Example 1, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 15 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.6 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 3 In Example 1, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 0.5 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring the range of 10 ⁇ m square was 0.4 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 4 when the power generation layer is formed, poly (2-methoxy-5- (3′-7′-dimethyloctyloxy) -1,4-phenylenevinylene) (MDMO-) is used as an electron donating material used in the power generation layer.
  • PPV poly (2-methoxy-5- (3′-7′-dimethyloctyloxy) -1,4-phenylenevinylene
  • a mixed solvent was prepared by mixing 2-dichlorobenzene with chloroform at a volume ratio of 6: 4, and a material in which MDMO-PPV and PCBM were mixed in the mixed solvent at a mass ratio of 1: 4 was mixed with a solid content concentration. Was dissolved so as to be 40 mg / mL to prepare a mixed solution.
  • This mixed solution was similarly applied by spin coating on the electron extraction layer in a glove box having a dew point of ⁇ 76 ° C. or lower and oxygen of 1 ppm or lower on a dry nitrogen atmosphere to form a power generation layer having a thickness of 150 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • the electron extraction layer was formed by the same method as in Example 1.
  • the arithmetic average roughness of the surface of the electron extraction layer was measured by AFM, it was obtained by measuring a 10 ⁇ m square range.
  • the obtained arithmetic average roughness Ra was 0.5 nm.
  • Example 5 In Example 4, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 15 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 1.5 nm.
  • Example 4 the same method as in Example 4 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 6 In Example 1, when the electron extraction layer was formed, a titanium dioxide nanoparticle dispersion (average particle size 3 nm; manufactured by TAYCA) was applied onto the first electrode by a spin coating method to form a coating film. The laminate including the glass substrate, the first electrode, and the coating film obtained so far was annealed by heating at 150 ° C. for 10 minutes in the air. Thereby, the 15-nm-thick electron extraction layer was formed because the coating film dried. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 1.5 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 7 In Example 1, when the electron extraction layer was formed, zinc oxide (ZnO) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • ZnO zinc oxide
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 8 In Example 1, when the electron extraction layer was formed, cadmium sulfide (CdS) was formed to a thickness of 8 nm on the first electrode by sputtering. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • CdS cadmium sulfide
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 9 In Example 1, when the electron extraction layer was formed, indium sulfide (In 2 S 3 ) was formed on the first electrode to a thickness of 8 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 10 In Example 1, when the electron extraction layer was formed, selenium cadmium (CdSe) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • CdSe selenium cadmium
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 11 In Example 1, when the electron extraction layer was formed, indium selenide (In 2 Se 3 ) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 12 In Example 1, when the electron extraction layer was formed, zinc sulfide (ZnS) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • ZnS zinc sulfide
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 13 In Example 1, when the electron extraction layer was formed, zinc selenide (ZnSe) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 0.5 nm.
  • ZnSe zinc selenide
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • Example 1 an organic power generation element having an element area of 0.10 cm 2 was obtained in the same manner as in Example 1 except that no electron extraction layer was formed.
  • Example 2 In Example 1, when the electron extraction layer was formed, a titanium dioxide nanoparticle dispersion (average particle size 5 nm; manufactured by TAYCA) was applied onto the first electrode by a spin coating method to form a coating film. The laminate including the glass substrate, the first electrode, and the coating film obtained so far was annealed by heating at 150 ° C. for 10 minutes in the air. Thereby, the 15-nm-thick electron extraction layer was formed because the coating film dried. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 ⁇ m square was 3.2 nm.
  • Example 2 the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
  • the electron extraction layer was formed of titanium dioxide as in Examples 1 to 3 and the thickness thereof was 0.5 to 15 nm, a photoelectric conversion efficiency of 1.2% or more was obtained. Further, when the thickness of the electron extraction layer is 8 nm as in Example 1, the thickness of the electron extraction layer is 0 when the thickness of the electron extraction layer is 15 nm as in Example 2 or as in Example 3. The photoelectric conversion efficiency was better than in the case of 0.5 nm. That is, high photoelectric conversion efficiency was obtained when the thickness of the electron extraction layer was larger than 0.5 nm and smaller than 15 nm.
  • Example 5 Even when the composition of the power generation layer is changed as in Example 4 and Example 5, when the electron extraction layer is formed of titanium dioxide and has a thickness of 8 nm as in Example 4, Example 5 Thus, the photoelectric conversion efficiency was better than when the thickness of the electron extraction layer was 15 nm.
  • the arithmetic average roughness Ra of the surface of the electron extraction layer is 3 nm or less as in Examples 1, 2, 3 and 6, the arithmetic average roughness of the surface of the electron extraction layer as in Comparative Example 2 is used.
  • the photoelectric conversion efficiency was better than when Ra was larger than 3 nm.
  • the arithmetic average roughness of the surface of the electron extraction layer is 1 nm or less as in Examples 1 to 3, the arithmetic average roughness Ra of the surface of the electron extraction layer is larger than 1 nm as in Example 6.
  • the photoelectric conversion efficiency was better than the case. That is, as can be seen from the comparison of Example 2, Example 6, and Comparative Example 2, the smaller the value of the arithmetic average roughness Ra of the surface of the electron extraction layer, the better the photoelectric conversion efficiency.
  • Example 1 when the thickness of the electron extraction layer is larger than 0.5 nm and smaller than 15 nm, and the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1 nm or less, The highest photoelectric conversion efficiency was obtained.
  • the photoelectric conversion efficiency was good. From this, even when the electron extraction layer was formed of an n-type semiconductor other than titanium dioxide, it was confirmed that the photoelectric conversion efficiency was good when the thickness was 15 nm or less (more specifically, 10 nm or less).

Abstract

Provided is an organic photoelectric conversion element which is provided with an electron extraction layer and which has high photoelectric conversion efficiency. This organic photoelectric conversion element is provided with a first electrode (2), a second electrode (6), a generation layer (4) arranged between the first electrode (2) and the second electrode (6), and an electron extraction layer (3) arranged between the generation layer (4) and the first electrode (2). The electron extraction layer (3) includes an n-type semiconductor, and the thickness of the electron extraction layer (3) is 0.1-15 nm.

Description

有機発電素子Organic power generation element
 本発明は、有機発電素子に関する。 The present invention relates to an organic power generation element.
 近年、産業の発展に伴いエネルギーの使用量が益々飛躍的に増加している。そのため、地球環境に負荷を与えない、経済的で高性能な新しいクリーンエネルギーの生産技術の開発が求められている。特に太陽電池は無限にあるといってよい太陽光を利用することから、新しいエネルギー源として注目されている。 In recent years, the amount of energy used has increased dramatically with the development of industry. Therefore, the development of economical and high-performance new clean energy production technology that does not burden the global environment is required. In particular, solar cells are attracting attention as a new energy source because they use sunlight, which can be said to be infinite.
 現在実用化されている太陽電池の大部分は、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどを用いた無機太陽電池である。しかし、これら無機シリコン系の太陽電池は、その製造プロセスが複雑でコストが高いという欠点を有するため、一般家庭に広く普及するには至ってない。このような無機太陽電池の欠点を解消するため、簡単なプロセスで低コスト・大面積化が可能な有機材料を用いた有機発電素子の研究が盛んになってきている。 Most of the solar cells currently in practical use are inorganic solar cells using single crystal silicon, polycrystalline silicon, amorphous silicon, or the like. However, these inorganic silicon solar cells have the disadvantages that the manufacturing process is complicated and expensive, so that they have not been widely used in general households. In order to eliminate the disadvantages of such inorganic solar cells, research on organic power generation elements using organic materials that can be reduced in cost and increased in area with a simple process has become active.
 有機発電素子は、陰極、陽極、及び陰極と陽極との間に介在する有機材料から構成される発電層を備える。更に、陰極から電子が外部へ効率良く取り出されるために発電層と陰極との間に電子取り出し層を介在させることも提案されている。例えば日本国特許公開公報2009-206470号公報には、1対の電極間に、少なくとも、電子受容体のフラーレン誘導体と、電子供与体の化合物とを有する光電変換素子において、バソキュプロイン(BCP)または、バソフェナントレン(Bphen)、及びこれらにアルカリ金属あるいはアルカリ金属土類をドープした層などから構成される電子取り出し層を形成することが開示されている。 The organic power generation element includes a power generation layer composed of a cathode, an anode, and an organic material interposed between the cathode and the anode. Furthermore, in order to efficiently extract electrons from the cathode to the outside, it has also been proposed to interpose an electron extraction layer between the power generation layer and the cathode. For example, in Japanese Patent Publication No. 2009-206470, in a photoelectric conversion element having at least a fullerene derivative of an electron acceptor and an electron donor compound between a pair of electrodes, bathocuproin (BCP) or It is disclosed to form an electron extraction layer composed of bathophenanthrene (Bphen) and a layer doped with alkali metal or alkali metal earth.
 しかしながら、電子取り出し層は有機発電素子内において抵抗成分になるため、有機発電素子の光電変換効率を低下させる要因ともなり得る。 However, since the electron extraction layer becomes a resistance component in the organic power generation element, it can be a factor of reducing the photoelectric conversion efficiency of the organic power generation element.
 本発明は、上記の点に鑑みてなされたものであり、電子取り出し層を備えると共に光電変換効率の高い有機発電素子を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide an organic power generation element having an electron extraction layer and high photoelectric conversion efficiency.
 本発明に係る第一の有機発電素子は、第一の電極、第二の電極、前記第一の電極と前記第二の電極との間に配置される発電層、及び前記発電層と前記第一の電極との間に配置される電子取り出し層を備え、前記電子取り出し層がn型半導体を含むと共に前記電子取り出し層の厚みが0.1nm以上15nm以下の範囲である。 The first organic power generation element according to the present invention includes a first electrode, a second electrode, a power generation layer disposed between the first electrode and the second electrode, and the power generation layer and the first An electron extraction layer disposed between the electrode and the first electrode; the electron extraction layer includes an n-type semiconductor; and the thickness of the electron extraction layer is in a range of 0.1 nm to 15 nm.
 本発明において、前記電子取り出し層の厚みが10nm以下であることが好ましい。 In the present invention, it is preferable that the electron extraction layer has a thickness of 10 nm or less.
 本発明において、前記電子取り出し層の厚みが0.5nm以上であることが好ましい。 In the present invention, the thickness of the electron extraction layer is preferably 0.5 nm or more.
 本発明において、前記電子取り出し層が、n型半導体として酸化亜鉛、酸化チタン、硫化カドミウム、硫化インジウム、セレン化カドミウム、セレン化インジウム、硫化亜鉛、セレン化亜鉛から選ばれる少なくとも一つを含むことが好ましい。 In the present invention, the electron extraction layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. preferable.
 本発明において、前記電子取り出し層が前記発電層に接するように配置され、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが3nm以下であることが好ましい。 In the present invention, the electron extraction layer is preferably disposed so as to be in contact with the power generation layer, and the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is preferably 3 nm or less.
 本発明において、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1.5nm以下であることが好ましい。 In the present invention, it is preferable that the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1.5 nm or less.
 本発明において、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1nm以下であることが好ましい。 In the present invention, it is preferable that the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 1 nm or less.
 本発明に係る第二の有機発電素子は、第二の電極、第一の電極、前記第二の電極と前記第一の電極との間に配置される発電層、及び前記発電層と前記第一の電極との間に前記発電層に接するように配置される電子取り出し層を備え、前記電子取り出し層の前記発電層側の表面の算術平均粗さ(表面粗さ)Raが3nm以下である。 The second organic power generation element according to the present invention includes a second electrode, a first electrode, a power generation layer disposed between the second electrode and the first electrode, and the power generation layer and the first An electron extraction layer disposed so as to be in contact with the power generation layer between one electrode, and an arithmetic average roughness (surface roughness) Ra of the surface of the electron extraction layer on the power generation layer side is 3 nm or less .
 本発明において、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1.5nm以下であることが好ましい。 In the present invention, it is preferable that the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1.5 nm or less.
 本発明において、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1nm以下であることが好ましい。 In the present invention, it is preferable that the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 1 nm or less.
 本発明において、前記電子取り出し層が、n型半導体として酸化亜鉛、酸化チタン、硫化カドミウム、硫化インジウム、セレン化カドミウム、セレン化インジウム、硫化亜鉛、セレン化亜鉛から選ばれる少なくとも一つを含むことが好ましい。 In the present invention, the electron extraction layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. preferable.
 本発明によれば、電子取り出し層を備えると共に光電変換効率の高い有機発電素子が得られる。 According to the present invention, an organic power generation element having an electron extraction layer and high photoelectric conversion efficiency can be obtained.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の一実施形態の概略を示す断面図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
It is sectional drawing which shows the outline of one Embodiment of this invention.
 図1に本実施形態による有機発電素子の構成を示す。この有機発電素子は基材1、第一の電極2、電子取り出し層3、発電層4、正孔取り出し層5、第二の電極6、及び表面保護層7を備え、これらの要素が前記の順番に積層している。 FIG. 1 shows the configuration of the organic power generation element according to this embodiment. The organic power generation element includes a base material 1, a first electrode 2, an electron extraction layer 3, a power generation layer 4, a hole extraction layer 5, a second electrode 6, and a surface protective layer 7. Laminated in order.
 本実施形態では、第二の電極6は光透過性を有する透明電極である。また、表面保護層7は光透過性を有する物質から構成されている。このため有機発電素子の第二の電極6側から入射する外来光が表面保護層7及び第二の電極6を透過して発電層4に到達する。 In the present embodiment, the second electrode 6 is a transparent electrode having optical transparency. The surface protective layer 7 is made of a light transmissive substance. Therefore, extraneous light incident from the second electrode 6 side of the organic power generation element passes through the surface protective layer 7 and the second electrode 6 and reaches the power generation layer 4.
 尚、本発明に係る有機発電素子の構成は本実施形態に限るものではなく、例えば基材1の上に第二の電極6、正孔取り出し層5、発電層4、電子取り出し層3、第一の電極2、表面保護層7がこの順番に積層した構造(本実施形態とは逆順の積層構造)を有してもよい。また、有機発電素子が正孔取り出し層5を備えなくてもよい。また、表面保護層7は有機発電素子の劣化を防ぐために必要に応じて形成する層であり、有機発電素子が表面保護層7を備えなくてもよい。 The configuration of the organic power generation element according to the present invention is not limited to this embodiment. For example, the second electrode 6, the hole extraction layer 5, the power generation layer 4, the electron extraction layer 3, One electrode 2 and the surface protective layer 7 may have a structure in which these layers are stacked in this order (a stacked structure in the reverse order to the present embodiment). Further, the organic power generation element may not include the hole extraction layer 5. Further, the surface protective layer 7 is a layer formed as necessary in order to prevent deterioration of the organic power generation element, and the organic power generation element may not include the surface protection layer 7.
 本実施形態において、基材1の材質は、この基材1によって電極、発電層等の有機発電素子の要素が支持され得るならば特に制限されないが、例えばソーダライムガラスや無アルカリガラスなどの透明ガラス;ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、エポキシ樹脂、フッ素系樹脂などの樹脂材料などが挙げられる。基材1の形状としては、特に制限されないが、板状、シート状などが挙げられる。この基材1の発電層4側の面の平滑性が高いことが好ましい。特にこの面の算術平均粗さRaが3nm以下であることが好ましく、1nm以下であれば更に好ましい。 In the present embodiment, the material of the base material 1 is not particularly limited as long as elements of the organic power generation element such as an electrode and a power generation layer can be supported by the base material 1, but for example, transparent such as soda lime glass and non-alkali glass Glass; Examples thereof include resin materials such as polyester resin, polyolefin resin, polyamide resin, epoxy resin, and fluorine resin. Although it does not restrict | limit especially as a shape of the base material 1, A plate shape, a sheet form, etc. are mentioned. It is preferable that the surface of the substrate 1 on the power generation layer 4 side has high smoothness. In particular, the arithmetic average roughness Ra of this surface is preferably 3 nm or less, and more preferably 1 nm or less.
 本実施形態において、第一の電極2は有機発電素子による発電時に陰極として機能する。陰極は発電層4中で発生する電子を収集するための電極である。第一の電極2の材料としては、導電性を有するのであれば特に制限されないが、仕事関数の小さい金属、合金、電気伝導性化合物、並びにこれらのうちの二以上の混合物などが挙げられる。第一の電極2の材料の仕事関数は特に5eV以下であることが好ましい。第一の電極2の材料の例としては、アルカリ金属、アルカリ金属のハロゲン化物、アルカリ金属の酸化物、アルカリ土類金属、希土類、並びに前記材料を含む合金、混合物などが挙げられ、例えばナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/LiF混合物などが挙げられる。第一の電極2の材料として、アルミニウム、Al/Al混合物なども使用可能である。第一の電極2の材料として、酸化スズや酸化亜鉛にドーピングをしてなる導電性材料なども使用可能であり、この導電性材料の具体例としてはインジウム-スズ酸化物(ITO)、フッ素ドープ酸化スズ(FTO)、アンチモンドープ酸化スズ(ATO)、リンドープ酸化スズ(PTO)、ニオブドープ酸化スズ(NbTO)、タンタルドープ酸化スズ(TaTO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、インジウムドープ酸化亜鉛(IZO)などが挙げられる。 In the present embodiment, the first electrode 2 functions as a cathode during power generation by the organic power generation element. The cathode is an electrode for collecting electrons generated in the power generation layer 4. The material of the first electrode 2 is not particularly limited as long as it has electrical conductivity, and examples thereof include metals, alloys, electrically conductive compounds, and mixtures of two or more of these having a low work function. The work function of the material of the first electrode 2 is particularly preferably 5 eV or less. Examples of the material of the first electrode 2 include alkali metals, alkali metal halides, alkali metal oxides, alkaline earth metals, rare earths, and alloys and mixtures containing the above materials, such as sodium, Examples include sodium-potassium alloy, lithium, magnesium, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / LiF mixture, and the like. As the material of the first electrode 2, aluminum, an Al / Al 2 O 3 mixture, or the like can also be used. As the material of the first electrode 2, a conductive material obtained by doping tin oxide or zinc oxide can also be used. Specific examples of the conductive material include indium-tin oxide (ITO), fluorine-doped Tin oxide (FTO), antimony doped tin oxide (ATO), phosphorus doped tin oxide (PTO), niobium doped tin oxide (NbTO), tantalum doped tin oxide (TaTO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO) ), Indium-doped zinc oxide (IZO), and the like.
 第一の電極2が複数の層から構成されてもよい。例えば第一の電極2が、アルカリ金属/Al、アルカリ金属のハロゲン化物/アルカリ土類金属/Al、Al/Alなどの積層構造を有していてもよい。 The first electrode 2 may be composed of a plurality of layers. For example, the first electrode 2 may have a laminated structure of alkali metal / Al, alkali metal halide / alkaline earth metal / Al, Al 2 O 3 / Al, or the like.
 第一の電極2は例えば上記のような材料が真空蒸着法やスパッタリング法等の方法により成膜されることで形成される。 The first electrode 2 is formed, for example, by depositing the material as described above by a method such as a vacuum deposition method or a sputtering method.
 本実施形態において、電子取り出し層3は第一の電極2と発電層4との間に介在する。本実施形態において、電子取り出し層3は第一の電極2に接している。また本実施形態において、電子取り出し層3は発電層4にも接している。電子取り出し層3は、発電層4から第一の電極2への電子の移動性を向上し得る材料から形成されることが好ましい。また電子取り出し層3は正孔の移動を阻害する特性を有する材料から形成されることが好ましい。また電子取り出し層3は薄膜形成能に優れた材料から形成されることが好ましい。 In the present embodiment, the electron extraction layer 3 is interposed between the first electrode 2 and the power generation layer 4. In the present embodiment, the electron extraction layer 3 is in contact with the first electrode 2. In the present embodiment, the electron extraction layer 3 is also in contact with the power generation layer 4. The electron extraction layer 3 is preferably formed from a material that can improve the mobility of electrons from the power generation layer 4 to the first electrode 2. Moreover, it is preferable that the electron extraction layer 3 is formed of a material having a characteristic that inhibits the movement of holes. The electron extraction layer 3 is preferably formed from a material excellent in thin film forming ability.
 電子取り出し層3を形成するための材料としては、特にn型半導体材料(結晶化したときにn型半導体の特性を示す材料)が好ましい。つまり、電子取り出し層3はn型半導体層からなることが好ましい。特に電子取り出し層3の素材が、n型半導体材料である酸化亜鉛、酸化チタン、硫化カドミウム、硫化インジウム、セレン化カドミウム、セレン化インジウム、硫化亜鉛、セレン化亜鉛から選択される少なくとも一種であることが好ましい。これらのn型半導体は、いずれも可視光域における広い波長域において良好な光透過性を有する。このため発電層4が可視光吸収性の高い材料から形成される場合において、更に基材1及び第一の電極2が光透過性を有する場合には、外来光が基材1側から有機発電素子へ入射することで光電変換が生じるようになされることも可能となる。また、基材1及び第一の電極2が光透過性を有する場合において、外来光が第二の電極6側から入射する場合には、基材1に光反射板が設けられることが好ましい。この場合、発電層4で吸収されずに第一の電極2及び基材1を透過する光が、光反射板で反射されることで再び発電層4に到達して吸収され、これにより発電層4における光の吸収量が増加して光電変換効率が向上する。このような光反射板の例としては、金属板や白色樹脂などが挙げられるが、発電層4を構成する材料が吸収する波長の光を反射する機能を有する材料であれば、特にこれに限定されるものではない。 The material for forming the electron extraction layer 3 is particularly preferably an n-type semiconductor material (a material that exhibits the characteristics of an n-type semiconductor when crystallized). That is, the electron extraction layer 3 is preferably made of an n-type semiconductor layer. In particular, the material of the electron extraction layer 3 is at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide, which are n-type semiconductor materials. Is preferred. These n-type semiconductors all have good light transmittance in a wide wavelength range in the visible light range. For this reason, when the power generation layer 4 is formed of a material having high visible light absorptivity and the base material 1 and the first electrode 2 are light transmissive, extraneous light is generated from the base material 1 side by organic power generation. It is also possible to cause photoelectric conversion by entering the element. Moreover, when the base material 1 and the 1st electrode 2 have a light transmittance, when external light injects from the 2nd electrode 6 side, it is preferable that the base material 1 is provided with a light reflection board. In this case, light that is transmitted through the first electrode 2 and the base material 1 without being absorbed by the power generation layer 4 reaches the power generation layer 4 again by being reflected by the light reflection plate, and is thereby absorbed. The amount of light absorption at 4 increases and the photoelectric conversion efficiency improves. Examples of such a light reflecting plate include a metal plate and a white resin, but the material is not particularly limited as long as the material has a function of reflecting light having a wavelength absorbed by the material constituting the power generation layer 4. Is not to be done.
 本実施形態においては、電子取り出し層3の厚みが0.1nm以上15nm以下であることと、電子取り出し層3の発電層4側の面の算術平均粗さRaが3nm以下であることのうち、少なくとも一方の条件が満たされる。これにより、有機発電素子の光電変換効率が向上する。特に電子取り出し層3の厚みが0.1nm以上15nm以下であり、且つ電子取り出し層3の発電層4側の面の算術平均粗さRaが3nm以下であることが好ましい。電子取り出し層3の厚みが0.5nmよりも大きく15nmよりも小さく、且つ電子取り出し層3の発電層4側の面の算術平均粗さRaが1nm以下であることが、さらに好ましい。 In the present embodiment, the thickness of the electron extraction layer 3 is 0.1 nm or more and 15 nm or less, and the arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is 3 nm or less. At least one of the conditions is met. Thereby, the photoelectric conversion efficiency of an organic power generation element improves. In particular, the thickness of the electron extraction layer 3 is preferably 0.1 nm or more and 15 nm or less, and the arithmetic mean roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is preferably 3 nm or less. More preferably, the thickness of the electron extraction layer 3 is larger than 0.5 nm and smaller than 15 nm, and the arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is 1 nm or less.
 上記のとおり、電子取り出し層3の厚みは0.1nm以上15nm以下であることが好ましい。電子取り出し層3の厚みが0.1nm以上であれば電子取り出し層3の機能が十分に発現する。電子取り出し層3の厚みは、より好ましくは0.5nm以上であり、1nm以上であることが更に好ましい。またこの厚みが15nm以下であれば電子取り出し層3の電気抵抗値が抑制され、このため有機発電素子内で電子取り出し層3の電気抵抗がほぼ無視され得るようになる。この場合、電子取り出し層3による直列抵抗に起因する有機発電素子の曲線因子(Fill Factor)の損失を排除すること(電子取り出し層3の電気抵抗に起因して有機発電素子の曲線因子が減少するのを、防止すること)が可能となり、このため有機発電素子の光電変換効率が向上する。電子取り出し層3の厚みは、より好ましくは10nm以下である。 As described above, the thickness of the electron extraction layer 3 is preferably 0.1 nm or more and 15 nm or less. If the thickness of the electron extraction layer 3 is 0.1 nm or more, the function of the electron extraction layer 3 is sufficiently exhibited. The thickness of the electron extraction layer 3 is more preferably 0.5 nm or more, and further preferably 1 nm or more. Moreover, if this thickness is 15 nm or less, the electric resistance value of the electron extraction layer 3 is suppressed, so that the electric resistance of the electron extraction layer 3 can be almost ignored in the organic power generation element. In this case, the loss of the fill factor of the organic power generation element due to the series resistance by the electron extraction layer 3 is eliminated (the curve factor of the organic power generation element decreases due to the electrical resistance of the electron extraction layer 3). Can be prevented), and the photoelectric conversion efficiency of the organic power generation element is improved. The thickness of the electron extraction layer 3 is more preferably 10 nm or less.
 電子取り出し層3の発電層4側の面の算術平均粗さRaは小さいほど好ましく、上記のとおり、3nm以下であることが好ましい。電子取り出し層3の発電層4側の面の算術平均粗さRaが1.5nm以下であればより好ましく、1nm以下であることがより好ましく、0.6nm以下であることが更に好ましい。このように電子取り出し層3の算術平均粗さRaが小さいほど、電子取り出し層3と発電層4との間の密着性が高くなり、このため界面抵抗が減少して有機発電素子の短絡電流密度(Jsc)が増大する。これにより、有機発電素子の光電変換効率が向上する。 The arithmetic average roughness Ra of the surface on the power generation layer 4 side of the electron extraction layer 3 is preferably as small as possible, and is preferably 3 nm or less as described above. The arithmetic average roughness Ra of the surface of the electron extraction layer 3 on the power generation layer 4 side is more preferably 1.5 nm or less, more preferably 1 nm or less, and further preferably 0.6 nm or less. Thus, the smaller the arithmetic average roughness Ra of the electron extraction layer 3 is, the higher the adhesion between the electron extraction layer 3 and the power generation layer 4 is, so that the interface resistance is reduced and the short circuit current density of the organic power generation element is reduced. (Jsc) increases. Thereby, the photoelectric conversion efficiency of an organic power generation element improves.
 この電子取り出し層3を形成するための手法として、真空蒸着法、スパッタリング法、化学気相成長(CVD)法、化学析出(CBD)法、電解析出法、ゾルゲル法、スプレー熱分解法などが挙げられる。特にn型半導体が真空蒸着法、スパッタリング法、化学気相成長(CVD)法などの蒸着法により成膜されることで電子取り出し層3が形成されると、電子取り出し層3の厚み制御並びに平滑化が容易となる。このため厚みが0.1nm以上15nm以下であることと、発電層4側の面の算術平均粗さRaが3nm以下であることのうち、少なくとも一方の条件を満たす電子取り出し層3が形成され得る。 As a method for forming the electron extraction layer 3, there are a vacuum deposition method, a sputtering method, a chemical vapor deposition (CVD) method, a chemical deposition (CBD) method, an electrolytic deposition method, a sol-gel method, a spray pyrolysis method, and the like. Can be mentioned. In particular, when the electron extraction layer 3 is formed by depositing an n-type semiconductor by an evaporation method such as a vacuum evaporation method, a sputtering method, or a chemical vapor deposition (CVD) method, the thickness of the electron extraction layer 3 is controlled and smoothed. It becomes easy. For this reason, the electron extraction layer 3 that satisfies at least one of the conditions in which the thickness is 0.1 nm or more and 15 nm or less and the arithmetic average roughness Ra of the surface on the power generation layer 4 side is 3 nm or less can be formed. .
 発電層4は、有機化合物からなる電子供与材料(電子供与性半導体)と有機化合物からなる電子受容材料(電子受容性半導体)とを含む。本実施形態において、発電層4の材料である有機化合物は、溶媒可溶性であることが好ましい。 The power generation layer 4 includes an electron donating material (electron donating semiconductor) made of an organic compound and an electron accepting material (electron accepting semiconductor) made of an organic compound. In the present embodiment, the organic compound that is the material of the power generation layer 4 is preferably solvent-soluble.
 発電層4の材料である有機化合物のうち、電子供与性半導体としては、特に限定されないが、フタロシアニン系顔料、インジゴ、チオインジゴ系顔料、キナクリドン系顔料、メロシアニン化合物、シアニン化合物、スクアリウム化合物、多環芳香族化合物などが挙げられる。また、有機電子写真感光体に用いられる電荷移動剤、電気伝導性有機電荷移動錯体、更には導電性高分子なども挙げられる。フタロシアニン系顔料としては、特に限定されないが、Cu、Zn、Co、Ni、Pb、Pt、Fe、Mg等の2価の中心金属を有するフタロシアニン;無金属フタロシアニン;アルミニウムクロロフタロシアニン、インジウムクロロフタロシアニン、ガリウムクロロフタロシアニン等のハロゲン原子が配位した3価金属のフタロシアニン;その他バアナジルフタロシアニン、チタニルフタロシアニン等の酸素が配位したフタロシアニン等が挙げられる。多環芳香族化合物としては、特に限定されないが、アントラセン、テトラセン、ペンタセン、またそれらの誘導体などが挙げられる。電荷移動剤としては、特に限定されないが、ヒドラゾン化合物、ピラゾリン化合物、トリフェニルメタン化合物、トリフェニルアミン化合物等が挙げられる。電気伝導性有機電荷移動錯体としては、特に限定されないが、テトラチオフルバレン、テトラフェニルテトラチオフラバレン等が挙げられる。電子を供与する導電性高分子としては、特に限定されないが、ポリ(3-アルキルチオフェン)、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体、チオフェン系ポリマー、導電性高分子のオリゴマー等の、有機溶媒に可溶なものが挙げられる。 Among the organic compounds that are the materials for the power generation layer 4, the electron-donating semiconductor is not particularly limited, but includes phthalocyanine pigments, indigo, thioindigo pigments, quinacridone pigments, merocyanine compounds, cyanine compounds, squalium compounds, polycyclic aromatics. Group compounds and the like. Also included are charge transfer agents, electroconductive organic charge transfer complexes, and conductive polymers used in organic electrophotographic photoreceptors. Although it does not specifically limit as a phthalocyanine pigment, The phthalocyanine which has bivalent center metals, such as Cu, Zn, Co, Ni, Pb, Pt, Fe, and Mg; Metal free phthalocyanine; Aluminum chlorophthalocyanine, Indium chlorophthalocyanine, Gallium Examples include trivalent metal phthalocyanines coordinated with halogen atoms such as chlorophthalocyanine; and other phthalocyanines coordinated with oxygen such as baanadyl phthalocyanine and titanyl phthalocyanine. Although it does not specifically limit as a polycyclic aromatic compound, Anthracene, tetracene, pentacene, those derivatives, etc. are mentioned. Although it does not specifically limit as a charge transfer agent, A hydrazone compound, a pyrazoline compound, a triphenylmethane compound, a triphenylamine compound, etc. are mentioned. The electroconductive organic charge transfer complex is not particularly limited, and examples thereof include tetrathiofulvalene and tetraphenyltetrathioflavalene. The conductive polymer that donates electrons is not particularly limited, but may be used in an organic solvent such as poly (3-alkylthiophene), polyparaphenylene vinylene derivatives, polyfluorene derivatives, thiophene polymers, and conductive polymer oligomers. A soluble thing is mentioned.
 発電層4の材料である有機化合物のうち、電子受容性半導体としては、特に限定されないが、フラーレン誘導体、炭素ナノチューブ、ポリフェニレンビニレン、ポリフルオレン、これらの誘導体、これらの共重合体、CN基またはCF基を含むポリマーなどが挙げられる。 Among the organic compounds that are the materials of the power generation layer 4, the electron-accepting semiconductor is not particularly limited, but fullerene derivatives, carbon nanotubes, polyphenylene vinylenes, polyfluorenes, derivatives thereof, copolymers thereof, CN groups or CFs Examples include polymers containing three groups.
 発電層4が形成されるにあたっては、例えば発電層4の材料である有機化合物が溶媒に溶解されて溶液が調製され、この溶液が電子取り出し層3の上に塗布、成膜されることで発電層4が形成される。溶媒としては、特に限定されないが、1,2-ジクロロベンゼン、1,2,4-トリクロロベンゼン、クロロベンゼン、クロロホルム、キシレン、トルエン、1-クロロナフタレン、アセトン、イソプロピルアルコール、エタノール、メタノール、シクロヘキサンなどの有機溶媒が挙げられる。溶媒として、互いに蒸気圧の異なる主溶媒と添加溶媒とが用いられてもよい。例えば主溶媒として1,2-ジクロロベンゼン(蒸気圧:160Pa(20℃))が用いられると共に添加溶媒としてクロロホルム(蒸気圧:21.2kPa(20℃))が用いられてもよい。溶媒の組み合わせはこれに限定されない。主溶媒と添加溶媒とは蒸気圧に二桁以上の相違があり、且つ全溶媒中の容積比が主溶媒>添加溶媒の関係にあることが好ましい。主溶媒として複数種の溶媒が用いられ、あるいは添加溶媒として複数種の溶媒が用いられても、蒸気圧の関係、混合の容積比の関係が前記のようになっていれば特に構わない。 When the power generation layer 4 is formed, for example, an organic compound that is a material of the power generation layer 4 is dissolved in a solvent to prepare a solution, and this solution is applied on the electron extraction layer 3 and formed into a film. Layer 4 is formed. The solvent is not particularly limited, but 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chlorobenzene, chloroform, xylene, toluene, 1-chloronaphthalene, acetone, isopropyl alcohol, ethanol, methanol, cyclohexane, etc. An organic solvent is mentioned. As the solvent, a main solvent and an additive solvent having different vapor pressures may be used. For example, 1,2-dichlorobenzene (vapor pressure: 160 Pa (20 ° C.)) may be used as the main solvent, and chloroform (vapor pressure: 21.2 kPa (20 ° C.)) may be used as the additive solvent. The combination of solvents is not limited to this. It is preferable that the main solvent and the added solvent have a difference of two or more orders of magnitude in vapor pressure, and that the volume ratio of all the solvents is in a relationship of main solvent> added solvent. Even if a plurality of types of solvents are used as the main solvent or a plurality of types of solvents are used as the additive solvent, there is no particular limitation as long as the relationship between the vapor pressure and the volume ratio of mixing is as described above.
 発電層4の厚みは、特に限定されないが、80~240nmの範囲が好ましい。 The thickness of the power generation layer 4 is not particularly limited, but is preferably in the range of 80 to 240 nm.
 発電層4を塗布法により形成する場合、発電層4の材料である有機化合物を含有する溶液を塗布する方法としては、特に限定されないが、スピンコート法、ディップコート法、ダイコート法、グラビア印刷法など溶液を対象物に直接接触させる方法や、インクジェット、スプレーコート法など溶液を対象物へ向けて気相中に噴霧する方法などが挙げられる。 When the power generation layer 4 is formed by a coating method, a method for applying a solution containing an organic compound that is a material of the power generation layer 4 is not particularly limited, but a spin coating method, a dip coating method, a die coating method, a gravure printing method. For example, a method in which the solution is brought into direct contact with the object, a method in which the solution is sprayed into the gas phase toward the object, such as an ink jet method or a spray coating method.
 本実施形態において、正孔取り出し層5は、正孔を輸送する能力を有し、正孔取り出し層5から第二の電極6への正孔の移動性を向上し得る材料から形成されることが好ましい。また正孔取り出し層5は電子の移動を阻害する材料から形成されることが好ましい。また正孔取り出し層5は薄膜形成能に優れた材料から形成されることが好ましい。 In the present embodiment, the hole extraction layer 5 is formed of a material that has the ability to transport holes and can improve the mobility of holes from the hole extraction layer 5 to the second electrode 6. Is preferred. The hole extraction layer 5 is preferably formed from a material that inhibits electron movement. The hole extraction layer 5 is preferably formed from a material having excellent thin film forming ability.
 正孔取り出し層5を形成するための材料としては、特に限定されないが、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、及びポリビニルカルバゾール、ポリシラン、アミノピリジン誘導体、ポリエチレンジオキサイドチオフェン(PEDOT)、スルホン化ポリチオフェン等の導電性高分子等の高分子材料が挙げられる。また、無機材料であっても正孔輸送性を有するのであれば正孔取り出し層5を形成するための材料として使用され得る。このような無機材料としては、特に限定されないが、正孔を輸送する能力を有する三酸化モリブデン、五酸化バナジウム、三酸化タングステン、酸化レニウムなどの無機酸化物や、p型半導体である酸化ニッケル、酸化銅などの無機酸化物などが挙げられる。 The material for forming the hole extraction layer 5 is not particularly limited, but phthalocyanine derivatives, naphthalocyanine derivatives, porphyrin derivatives, N, N′-bis (3-methylphenyl)-(1,1′-biphenyl) Aromatic diamine compounds such as -4,4'-diamine (TPD) and 4,4'-bis [N- (naphthyl) -N-phenyl-amino] biphenyl (α-NPD), oxazole, oxadiazole, triazole Imidazole, imidazolone, stilbene derivative, pyrazoline derivative, tetrahydroimidazole, polyarylalkane, butadiene, 4,4 ′, 4 ″ -tris (N- (3-methylphenyl) N-phenylamino) triphenylamine (m-MTDATA ), And polyvinylcarbazole, polysilane, aminopyridy Examples thereof include polymer materials such as conductive polymers such as derivatives, polyethylene dioxide thiophene (PEDOT), sulfonated polythiophene, etc. In addition, even if it is an inorganic material, if it has hole transportability, hole extraction layer 5 Such inorganic materials are not particularly limited, but include inorganic oxides such as molybdenum trioxide, vanadium pentoxide, tungsten trioxide, and rhenium oxide that have the ability to transport holes. And inorganic oxides such as nickel oxide and copper oxide which are p-type semiconductors.
 正孔取り出し層5を形成する方法としては、特に限定されないが、正孔取り出し層5を形成するための材料が無機材料や低分子材料である場合には真空蒸着法やスパッタリング法などが挙げられ、正孔取り出し層5を形成するための材料が高分子材料である場合にはスピンコート法、ディップコート法、ダイコート法、グラビア印刷法などの塗布法が挙げられる。 The method for forming the hole extraction layer 5 is not particularly limited, but when the material for forming the hole extraction layer 5 is an inorganic material or a low molecular material, a vacuum deposition method, a sputtering method, or the like can be given. When the material for forming the hole extraction layer 5 is a polymer material, a coating method such as a spin coating method, a dip coating method, a die coating method, or a gravure printing method can be used.
 正孔取り出し層5の厚みは、特に限定されないが、有機発電素子の直列抵抗の低減のためには、無機材料から形成される場合には200nm以下であることが好ましく、有機材料から形成される場合には20nm以下であることが好ましい。 The thickness of the hole extraction layer 5 is not particularly limited, but in order to reduce the series resistance of the organic power generation element, it is preferably 200 nm or less when formed from an inorganic material, and is formed from an organic material. In some cases, it is preferably 20 nm or less.
 尚、本実施形態において、正孔取り出し層5が無くても有機発電素子が高い光電変換機能を発揮する場合には、有機発電素子が正孔取り出し層5を備えなくてもよい。 In the present embodiment, when the organic power generation element exhibits a high photoelectric conversion function without the hole extraction layer 5, the organic power generation element may not include the hole extraction layer 5.
 本実施形態において、第二の電極6は有機発電素子による発電時に陽極として機能する。陽極は、発電層4中で発生した正孔を収集するための電極である。第二の電極6を形成するための材料としては、導電性を有するのであれば特に限定されないが、仕事関数の大きい金属、合金、電気伝導性化合物、あるいはこれらの混合物が好ましい。特に第二の電極6を形成するための材料の仕事関数が4eV以上であることが好ましい。このような第二の電極6の材料としては、特に限定されないが、金などの金属;CuI、ITO(インジウム-スズ酸化物)、SnO、ZnO、IZO(インジウム-亜鉛酸化物)等;PEDOT、ポリアニリン等の導電性高分子;任意のアクセプタ等でドープした導電性高分子;カーボンナノチューブなどの、導電性と光透過性とを併せ持つ材料が挙げられる。また、第二の電極6の仕事関数は第一の電極2の仕事関数よりも大きいことが好ましい。 In the present embodiment, the second electrode 6 functions as an anode during power generation by the organic power generation element. The anode is an electrode for collecting holes generated in the power generation layer 4. The material for forming the second electrode 6 is not particularly limited as long as it has conductivity, but a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function is preferable. In particular, the work function of the material for forming the second electrode 6 is preferably 4 eV or more. The material of the second electrode 6 is not particularly limited, but is a metal such as gold; CuI, ITO (indium-tin oxide), SnO 2 , ZnO, IZO (indium-zinc oxide), etc .; PEDOT And a conductive polymer such as polyaniline; a conductive polymer doped with an arbitrary acceptor; and a material having both conductivity and light transmittance, such as a carbon nanotube. The work function of the second electrode 6 is preferably larger than the work function of the first electrode 2.
 第二の電極6は、例えば正孔取り出し層5上、あるいは正孔取り出し層5が不要な場合には発電層4上に、真空蒸着法やスパッタリング法、塗布等の方法により形成される。外来光が第二の電極6を透過して発電層4に入射する場合には、第二の電極6の光透過率が70%以上であることが好ましい。ただし、外来光が第一の電極2を透過して発電層4に入射する場合には、これに限ったものではない。第二の電極6のシート抵抗は数百Ω/□以下であることが好ましく、特に100Ω/□以下であれば更に好ましい。第二の電極6の膜厚は、第二の電極6の光透過率、シート抵抗等の特性が前記のように制御されるためには、材料によって異なるが、500nm以下であることが好ましく、10~200nmの範囲であれば更に好ましい。 The second electrode 6 is formed, for example, on the hole extraction layer 5 or on the power generation layer 4 when the hole extraction layer 5 is unnecessary by a method such as vacuum deposition, sputtering, or coating. When extraneous light passes through the second electrode 6 and enters the power generation layer 4, the light transmittance of the second electrode 6 is preferably 70% or more. However, the case where extraneous light passes through the first electrode 2 and enters the power generation layer 4 is not limited thereto. The sheet resistance of the second electrode 6 is preferably several hundred Ω / □ or less, more preferably 100Ω / □ or less. The film thickness of the second electrode 6 varies depending on the material in order to control the light transmittance, sheet resistance, and other characteristics of the second electrode 6 as described above, but is preferably 500 nm or less. A range of 10 to 200 nm is more preferable.
 有機発電素子の低コスト化を図る観点からは、正孔取り出し層5および第二の電極6は塗布法により形成されることが好ましい。塗布法に用いられる溶媒に関しては、発電層4を溶解させず、かつ発電層4に対してぬれ性が良いことが好ましい。溶媒としては、特に限定されないが、水、エタノール、2-プロパノールなどが挙げられる。また発電層4に対するぬれ性の向上のために、溶媒に界面活性剤が添加されてもよい。溶媒に対する界面活性剤の添加量は、体積比で0.01%~5%の範囲であることが好ましい。 From the viewpoint of reducing the cost of the organic power generation element, the hole extraction layer 5 and the second electrode 6 are preferably formed by a coating method. Regarding the solvent used in the coating method, it is preferable that the power generation layer 4 is not dissolved and the wettability to the power generation layer 4 is good. The solvent is not particularly limited, and examples thereof include water, ethanol, 2-propanol and the like. In order to improve the wettability with respect to the power generation layer 4, a surfactant may be added to the solvent. The addition amount of the surfactant to the solvent is preferably in the range of 0.01% to 5% by volume ratio.
 本実施形態において、第二の電極6の上に表面保護層7が形成されていてもよい。表面保護層7は、図1に示されるように、基材1に積層されている第一の電極2、電子取り出し層3、発電層4、正孔取り出し層5、及び第二の電極6を全て覆うように形成されてもよい。表面保護層7は、電極、発電層などを外界から保護するために設けられる。 In the present embodiment, the surface protective layer 7 may be formed on the second electrode 6. As shown in FIG. 1, the surface protective layer 7 includes a first electrode 2, an electron extraction layer 3, a power generation layer 4, a hole extraction layer 5, and a second electrode 6 laminated on the substrate 1. You may form so that all may be covered. The surface protective layer 7 is provided to protect the electrode, the power generation layer, and the like from the outside.
 表面保護層7はガスバリア性を有することが好ましい。また表面保護層7は光透過性を有することが好ましい。また表面保護層7はフィルム状や板状の構造体であることが好ましい。表面保護層7の光透過率は高いほど好ましいが、特にこの光透過率が70%以上であることが好ましい。このような表面保護層7は、特に限定されないが、例えばポリエチレンテレフタレート、ポリエステル、ポリカーボネートなどのフィルム上に、ガスバリア性を高めるために酸化亜鉛、二酸化チタン、酸化セリウム、酸化ジルコニウムなどの無機酸化物蒸着薄膜層を形成することで構成され得る。 The surface protective layer 7 preferably has a gas barrier property. The surface protective layer 7 is preferably light transmissive. The surface protective layer 7 is preferably a film-like or plate-like structure. The light transmittance of the surface protective layer 7 is preferably as high as possible, but it is particularly preferable that this light transmittance is 70% or more. Such a surface protective layer 7 is not particularly limited, but for example, vapor deposition of inorganic oxides such as zinc oxide, titanium dioxide, cerium oxide, zirconium oxide on a film such as polyethylene terephthalate, polyester, polycarbonate, etc. in order to enhance gas barrier properties. It can be configured by forming a thin film layer.
 第二の電極6と表面保護層7の間に、両者を接着するための接着層が介在してもよい。接着層は、特に限定されないが、第二の電極6および表面保護層7の劣化を引き起こさない材料から形成されることが好ましい。また、表面保護層7と接着層との積層体の光透過性が70%以上であることが好ましい。このような接着層の材料としては、接着性があれば特に制限されないが、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化樹脂等を用いることができる。このような接着層の材料の好ましい具体例としては、エチレン-酢酸ビニル共重合体樹脂、変性ポリエチレン樹脂、ポリビニルブチラール樹脂、エチレン・アクリル酸エステル共重合体樹脂などが挙げられる。 Between the second electrode 6 and the surface protective layer 7, an adhesive layer for adhering both may be interposed. The adhesive layer is not particularly limited, but is preferably formed from a material that does not cause deterioration of the second electrode 6 and the surface protective layer 7. Moreover, it is preferable that the light transmittance of the laminated body of the surface protective layer 7 and the adhesive layer is 70% or more. The material for such an adhesive layer is not particularly limited as long as it has adhesiveness, but a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, or the like can be used. Preferable specific examples of the material of such an adhesive layer include ethylene-vinyl acetate copolymer resin, modified polyethylene resin, polyvinyl butyral resin, ethylene / acrylic acid ester copolymer resin, and the like.
 なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。 Of course, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 [実施例1]
 ガラス基板の上にAlを真空蒸着により成膜することで、厚み80nmの第一の電極(陰極)を形成した。この第一の電極の上に二酸化チタン(TiO)をスパッタ法により成膜することで厚み8nmの電子取り出し層を形成した。
[Example 1]
A first electrode (cathode) having a thickness of 80 nm was formed by depositing Al on the glass substrate by vacuum deposition. An electron extraction layer having a thickness of 8 nm was formed on this first electrode by depositing titanium dioxide (TiO 2 ) by sputtering.
 この電子取り出し層の表面の算術平均粗さをAFM(株式会社島津製作所製、型番SFT-3500)で測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。 When the arithmetic average roughness of the surface of the electron extraction layer was measured with AFM (manufactured by Shimadzu Corporation, model number SFT-3500), the arithmetic average roughness Ra obtained by measuring the range of 10 μm square was 0.8. It was 5 nm.
 電子供与材料としてポリ(3-ヘキシルチオフェン)(P3HTと略す;メルク社製、レジオレギュラータイプ)を、電子受容材料としてフラーレン誘導体である[6,6]-フェニルC61酪酸メチルエステル(PCBMと略す;Solenne社製)を準備した。主溶媒として1,2-ジクロロベンゼン(蒸気圧;160Pa(20℃))を、添加溶媒としてクロロホルム(蒸気圧;21.2kPa(20℃))を準備した。1,2-ジクロロベンゼンとクロロホルムを容積比6:4で混合して混合溶媒を調製し、この混合溶媒中にP3HTとPCBMを質量比1:0.7の割合で混合した材料を、固形分濃度が51mg/mLとなるように溶解することで混合溶液を調製した。 Poly (3-hexylthiophene) (abbreviated as P3HT; manufactured by Merck, regioregular type) as an electron-donating material, and [6,6] -phenyl C61 butyric acid methyl ester (abbreviated as PCBM) which is a fullerene derivative as an electron-accepting material; Solenne) was prepared. 1,2-dichlorobenzene (vapor pressure: 160 Pa (20 ° C.)) was prepared as the main solvent, and chloroform (vapor pressure; 21.2 kPa (20 ° C.)) was prepared as the additive solvent. 1,2-dichlorobenzene and chloroform were mixed at a volume ratio of 6: 4 to prepare a mixed solvent, and a material in which P3HT and PCBM were mixed in the mixed solvent at a mass ratio of 1: 0.7 was mixed with a solid content. A mixed solution was prepared by dissolving to a concentration of 51 mg / mL.
 露点-76℃以下、酸素1ppm以下のドライ窒素雰囲気のグローブボックス内で、電子取り出し層の上に混合溶液をスピンコート法により塗布することで、厚み200nmの発電層を形成した。 A power generation layer having a thickness of 200 nm was formed by applying the mixed solution on the electron extraction layer by a spin coating method in a glove box having a dew point of -76 ° C. or lower and oxygen of 1 ppm or lower in a dry nitrogen atmosphere.
 ここまでで得られたガラス基板、第一の電極、電子取り出し層、及び発電層を備える積層物を、大気に曝露することなく露点-76℃以下のドライ窒素雰囲気のグローブボックス内に配置し、110℃で10分間加熱することでアニール処理を施した。 The laminate including the glass substrate, the first electrode, the electron extraction layer, and the power generation layer obtained so far is placed in a glove box in a dry nitrogen atmosphere with a dew point of −76 ° C. or less without being exposed to the atmosphere. Annealing treatment was performed by heating at 110 ° C. for 10 minutes.
 次に、発電層上にPlexcore OC1200溶液(Plextronics社製)をスピンコート法により塗布することで、厚み50nmの正孔取り出し層を形成した。 Next, a Plexcore OC1200 solution (manufactured by Plextronics) was applied on the power generation layer by a spin coating method to form a hole extraction layer having a thickness of 50 nm.
 次に、PEDOT/PSS(CLEVIOS F E-T)にイソプロパノールを体積比で50%、界面活性剤のTergitol 15-S-9(ダウケミカル社製)を体積比で0.05%の割合で混合することで溶液を調製し、この溶液を正孔取り出し層上にスピンコート法により塗布することで、厚み100nmの第二の電極(陽極)を形成した。 Next, PEDOT / PSS (CLEVIOS F ET) was mixed with isopropanol at a volume ratio of 50% and surfactant Tergitol 15-S-9 (manufactured by Dow Chemical Co.) at a volume ratio of 0.05%. Thus, a solution was prepared, and this solution was applied onto the hole extraction layer by a spin coating method, thereby forming a second electrode (anode) having a thickness of 100 nm.
 ここまでで得られたガラス基板、第一の電極、電子取り出し層、発電層、正孔取り出し層、及び第二の電極を備える積層物を窒素フロー下で十分に乾燥した後に、窒素雰囲気下において130℃で5分間加熱することでアニール処理を施した。続いて、この積層物を露点-76℃以下のドライ窒素雰囲気のグローブボックス内に搬送した。 After sufficiently drying the laminate comprising the glass substrate, the first electrode, the electron extraction layer, the power generation layer, the hole extraction layer, and the second electrode obtained so far under a nitrogen flow, in a nitrogen atmosphere Annealing treatment was performed by heating at 130 ° C. for 5 minutes. Subsequently, the laminate was transported into a glove box having a dry nitrogen atmosphere with a dew point of −76 ° C. or lower.
 ガラス製の封止板を用意した。この封止板の一面の外周部には全周に亘って紫外線硬化樹脂製のシール材を貼り合わせた。更にこの封止板のシール材が張り合わされている面におけるシール材の内側に、酸化カルシウムが練り込まれている吸水材(ゲッター)を粘着剤を介して貼り付けた。この封止板を上記の積層物と共にグローブボックス内に搬送し、グローブボックス内で、上記の積層物の第二の電極に、封止板のシール材が張り合わされている側の面を対向させると共に、シール材を基板上に重ねた。この状態でシール材に紫外線を照射することでシール材を硬化させた。これにより封止板からなる表面保護層を形成した。 A glass sealing plate was prepared. A sealing material made of an ultraviolet curable resin was bonded to the outer peripheral portion of one surface of the sealing plate over the entire periphery. Further, a water absorbing material (getter) in which calcium oxide was kneaded was attached to the inside of the sealing material on the surface of the sealing plate on which the sealing material was bonded, with an adhesive. The sealing plate is transported into the glove box together with the laminate, and the surface on the side where the sealing material of the sealing plate is bonded is opposed to the second electrode of the laminate in the glove box. At the same time, a sealing material was stacked on the substrate. In this state, the sealing material was cured by irradiating the sealing material with ultraviolet rays. This formed the surface protection layer which consists of a sealing board.
 これにより、素子面積0.10cmの有機発電素子を得た。 Thereby, an organic power generation element having an element area of 0.10 cm 2 was obtained.
 [実施例2]
 実施例1において、電子取り出し層を形成する際、第一の電極上に二酸化チタン(TiO)をスパッタ法により厚み15nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.6nmであった。
[Example 2]
In Example 1, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 15 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.6 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例3]
 実施例1において、電子取り出し層を形成する際、第一の電極上に二酸化チタン(TiO)をスパッタ法により厚み0.5nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.4nmであった。
[Example 3]
In Example 1, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 0.5 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring the range of 10 μm square was 0.4 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例4]
 実施例1において、発電層を形成する際、発電層に用いる電子供与材料としてポリ(2-メトキシ-5-(3’-7’-ジメチルオクチルオキシ)-1,4-フェニレンビニレン)(MDMO-PPVと略す;メルク社製)を準備した。2-ジクロロベンゼンにクロロホルムを容積比6:4で混合して混合溶媒を調製し、この混合溶媒中にMDMO-PPVとPCBMとを質量比1:4の割合で混合した材料を、固形分濃度が40mg/mLとなるように溶解することで混合溶液を調製した。
[Example 4]
In Example 1, when the power generation layer is formed, poly (2-methoxy-5- (3′-7′-dimethyloctyloxy) -1,4-phenylenevinylene) (MDMO-) is used as an electron donating material used in the power generation layer. Abbreviated as PPV; manufactured by Merck & Co., Inc.). A mixed solvent was prepared by mixing 2-dichlorobenzene with chloroform at a volume ratio of 6: 4, and a material in which MDMO-PPV and PCBM were mixed in the mixed solvent at a mass ratio of 1: 4 was mixed with a solid content concentration. Was dissolved so as to be 40 mg / mL to prepare a mixed solution.
 この混合溶液を、同様に露点-76℃以下、酸素1ppm以下のドライ窒素雰囲気のグローブボックス内で、電子取り出し層の上にスピンコート法により塗布することで、厚み150nmの発電層を形成した。 This mixed solution was similarly applied by spin coating on the electron extraction layer in a glove box having a dew point of −76 ° C. or lower and oxygen of 1 ppm or lower on a dry nitrogen atmosphere to form a power generation layer having a thickness of 150 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 尚、本実施例では電子取り出し層を実施例1と同じ方法で形成したものであり、電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。 In this example, the electron extraction layer was formed by the same method as in Example 1. When the arithmetic average roughness of the surface of the electron extraction layer was measured by AFM, it was obtained by measuring a 10 μm square range. The obtained arithmetic average roughness Ra was 0.5 nm.
 [実施例5]
 実施例4において、電子取り出し層を形成する際、第一の電極上に二酸化チタン(TiO)をスパッタ法により厚み15nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは1.5nmであった。
[Example 5]
In Example 4, when the electron extraction layer was formed, titanium dioxide (TiO 2 ) was formed on the first electrode to a thickness of 15 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 1.5 nm.
 それ以外は実施例4の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 4 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例6]
 実施例1において、電子取り出し層を形成する際、第一の電極上に二酸化チタンナノ粒子分散液(平均粒径3nm;TAYCA社製)をスピンコート法により塗布して塗膜を形成した。ここまでで得られたガラス基板、第一の電極、及び塗膜を備える積層物を、大気中で150℃で10分間加熱することでアニール処理を施した。これにより塗膜が乾燥することで厚み15nmの電子取り出し層が形成された。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは1.5nmであった。
[Example 6]
In Example 1, when the electron extraction layer was formed, a titanium dioxide nanoparticle dispersion (average particle size 3 nm; manufactured by TAYCA) was applied onto the first electrode by a spin coating method to form a coating film. The laminate including the glass substrate, the first electrode, and the coating film obtained so far was annealed by heating at 150 ° C. for 10 minutes in the air. Thereby, the 15-nm-thick electron extraction layer was formed because the coating film dried. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 1.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例7]
 実施例1において、電子取り出し層を形成する際、第一の電極上に酸化亜鉛(ZnO)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 7]
In Example 1, when the electron extraction layer was formed, zinc oxide (ZnO) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例8]
 実施例1において、電子取り出し層を形成する際、第一の電極上に硫化カドミウム(CdS)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 8]
In Example 1, when the electron extraction layer was formed, cadmium sulfide (CdS) was formed to a thickness of 8 nm on the first electrode by sputtering. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例9]
 実施例1において、電子取り出し層を形成する際、第一の電極上に硫化インジウム(In)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 9]
In Example 1, when the electron extraction layer was formed, indium sulfide (In 2 S 3 ) was formed on the first electrode to a thickness of 8 nm by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例10]
 実施例1において、電子取り出し層を形成する際、第一の電極上にセレンカドミウム(CdSe)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 10]
In Example 1, when the electron extraction layer was formed, selenium cadmium (CdSe) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例11]
 実施例1において、電子取り出し層を形成する際、第一の電極上にセレン化インジウム(InSe)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 11]
In Example 1, when the electron extraction layer was formed, indium selenide (In 2 Se 3 ) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例12]
 実施例1において、電子取り出し層を形成する際、第一の電極上に硫化亜鉛(ZnS)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 12]
In Example 1, when the electron extraction layer was formed, zinc sulfide (ZnS) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [実施例13]
 実施例1において、電子取り出し層を形成する際、第一の電極上にセレン化亜鉛(ZnSe)をスパッタ法により厚み8nmに成膜した。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは0.5nmであった。
[Example 13]
In Example 1, when the electron extraction layer was formed, zinc selenide (ZnSe) was formed to a thickness of 8 nm on the first electrode by a sputtering method. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 0.5 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [比較例1]
 実施例1において、電子取り出し層を形成せず、それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。
[Comparative Example 1]
In Example 1, an organic power generation element having an element area of 0.10 cm 2 was obtained in the same manner as in Example 1 except that no electron extraction layer was formed.
 [比較例2]
 実施例1において、電子取り出し層を形成する際、第一の電極上に二酸化チタンナノ粒子分散液(平均粒径5nm;TAYCA社製)をスピンコート法により塗布して塗膜を形成した。ここまでで得られたガラス基板、第一の電極、及び塗膜を備える積層物を、大気中で150℃で10分間加熱することでアニール処理を施した。これにより塗膜が乾燥することで厚み15nmの電子取り出し層が形成された。この電子取り出し層の表面の算術平均粗さをAFMで測定したところ、10μm角の範囲を測定することで求められた算術平均粗さRaは3.2nmであった。
[Comparative Example 2]
In Example 1, when the electron extraction layer was formed, a titanium dioxide nanoparticle dispersion (average particle size 5 nm; manufactured by TAYCA) was applied onto the first electrode by a spin coating method to form a coating film. The laminate including the glass substrate, the first electrode, and the coating film obtained so far was annealed by heating at 150 ° C. for 10 minutes in the air. Thereby, the 15-nm-thick electron extraction layer was formed because the coating film dried. When the arithmetic average roughness of the surface of this electron extraction layer was measured by AFM, the arithmetic average roughness Ra obtained by measuring a range of 10 μm square was 3.2 nm.
 それ以外は実施例1の場合と同じ方法で、素子面積0.10cmの有機発電素子を得た。 Otherwise, the same method as in Example 1 was used to obtain an organic power generation element having an element area of 0.10 cm 2 .
 [評価]
 上記実施例及び比較例で得られた有機発電素子の光電変換効率を、ソーラーシミュレータ(山下電装株式会社製)により擬似太陽光(AM1.5、1sun)を照射する条件で測定した。結果を表1~3に示す。表1には、実施例1~5および比較例1の結果を示す。表2には、実施例1~3、実施例6、および比較例1~2の結果を示す。表3には、実施例1および実施例7~13の結果を示す。
[Evaluation]
Photoelectric conversion efficiencies of the organic power generation elements obtained in the above examples and comparative examples were measured under the conditions of irradiating simulated sunlight (AM1.5, 1 sun) with a solar simulator (manufactured by Yamashita Denso). The results are shown in Tables 1 to 3. Table 1 shows the results of Examples 1 to 5 and Comparative Example 1. Table 2 shows the results of Examples 1 to 3, Example 6, and Comparative Examples 1 and 2. Table 3 shows the results of Example 1 and Examples 7 to 13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~3のように電子取り出し層が二酸化チタンから形成されてその厚みが0.5~15nmである場合、1.2%以上の光電変換効率が得られた。また、実施例1のように電子取り出し層の厚みが8nmである場合には、実施例2のように電子取り出し層の厚みが15nmの場合や実施例3のように電子取り出し層の厚みが0.5nmの場合よりも、光電変換効率が良好であった。すなわち、電子取り出し層の厚みが0.5nmよりも大きく15nmよりも小さい場合に、高い光電変換効率が得られた。 When the electron extraction layer was formed of titanium dioxide as in Examples 1 to 3 and the thickness thereof was 0.5 to 15 nm, a photoelectric conversion efficiency of 1.2% or more was obtained. Further, when the thickness of the electron extraction layer is 8 nm as in Example 1, the thickness of the electron extraction layer is 0 when the thickness of the electron extraction layer is 15 nm as in Example 2 or as in Example 3. The photoelectric conversion efficiency was better than in the case of 0.5 nm. That is, high photoelectric conversion efficiency was obtained when the thickness of the electron extraction layer was larger than 0.5 nm and smaller than 15 nm.
 また電子取り出し層が設けられていない比較例1では、変換効率が極端に低下した。 In Comparative Example 1 where no electron extraction layer was provided, the conversion efficiency was extremely reduced.
 発電層の組成を実施例4及び実施例5のように変更した場合にも、実施例4のように電子取り出し層が二酸化チタンから形成されてその厚みが8nmである場合には、実施例5のように電子取り出し層の厚みが15nmの場合よりも光電変換効率が良好であった。 Even when the composition of the power generation layer is changed as in Example 4 and Example 5, when the electron extraction layer is formed of titanium dioxide and has a thickness of 8 nm as in Example 4, Example 5 Thus, the photoelectric conversion efficiency was better than when the thickness of the electron extraction layer was 15 nm.
 また、実施例1,2,3,6のように、電子取り出し層の表面の算術平均粗さRaが3nm以下である場合には、比較例2のように電子取り出し層の表面の算術平均粗さRaが3nmより大きな場合よりも光電変換効率が良好であった。また、実施例1~3のように電子取り出し層の表面の算術平均粗さが1nm以下である場合には、実施例6のように電子取り出し層の表面の算術平均粗さRaが1nmより大きな場合よりも光電変換効率が良好であった。すなわち、実施例2、実施例6、比較例2の比較からわかるように、電子取り出し層の表面の算術平均粗さRaの値が小さいほど光電変換効率は良好になった。 Further, when the arithmetic average roughness Ra of the surface of the electron extraction layer is 3 nm or less as in Examples 1, 2, 3 and 6, the arithmetic average roughness of the surface of the electron extraction layer as in Comparative Example 2 is used. The photoelectric conversion efficiency was better than when Ra was larger than 3 nm. Further, when the arithmetic average roughness of the surface of the electron extraction layer is 1 nm or less as in Examples 1 to 3, the arithmetic average roughness Ra of the surface of the electron extraction layer is larger than 1 nm as in Example 6. The photoelectric conversion efficiency was better than the case. That is, as can be seen from the comparison of Example 2, Example 6, and Comparative Example 2, the smaller the value of the arithmetic average roughness Ra of the surface of the electron extraction layer, the better the photoelectric conversion efficiency.
 特に、実施例1のように、電子取り出し層の厚みが0.5nmよりも大きく15nmよりも小さく、且つ電子取り出し層の発電層側の表面の算術平均粗さRaが1nm以下であるときに、最も高い光電変換効率が得られた。 In particular, as in Example 1, when the thickness of the electron extraction layer is larger than 0.5 nm and smaller than 15 nm, and the arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1 nm or less, The highest photoelectric conversion efficiency was obtained.
 また実施例7~13のように電子取り出し層が種々のn型半導体で形成されてその厚みが8nmである場合も、光電変換効率が良好であった。これより電子取り出し層が二酸化チタン以外のn型半導体で形成される場合も、その厚みが15nm以下(さらに言えば10nm以下)である場合において光電変換効率が良好であることが確認できた。 Further, when the electron extraction layer was formed of various n-type semiconductors and had a thickness of 8 nm as in Examples 7 to 13, the photoelectric conversion efficiency was good. From this, even when the electron extraction layer was formed of an n-type semiconductor other than titanium dioxide, it was confirmed that the photoelectric conversion efficiency was good when the thickness was 15 nm or less (more specifically, 10 nm or less).

Claims (11)

  1. 第一の電極、第二の電極、前記第一の電極と前記第二の電極との間に配置される発電層、及び前記発電層と前記第一の電極との間に配置される電子取り出し層を備え、前記電子取り出し層がn型半導体を含むと共に前記電子取り出し層の厚みが0.1nm以上15nm以下の範囲である有機発電素子。 A first electrode; a second electrode; a power generation layer disposed between the first electrode and the second electrode; and an electron extraction disposed between the power generation layer and the first electrode An organic power generation element including a layer, wherein the electron extraction layer includes an n-type semiconductor, and the thickness of the electron extraction layer is in a range of 0.1 nm to 15 nm.
  2. 前記電子取り出し層の厚みが10nm以下である請求項1に記載の有機発電素子。 The organic power generation element according to claim 1, wherein the electron extraction layer has a thickness of 10 nm or less.
  3. 前記電子取り出し層の厚みが0.5nm以上である請求項1に記載の有機発電素子。 The organic power generation element according to claim 1, wherein the electron extraction layer has a thickness of 0.5 nm or more.
  4. 前記電子取り出し層が、n型半導体として酸化亜鉛、酸化チタン、硫化カドミウム、硫化インジウム、セレン化カドミウム、セレン化インジウム、硫化亜鉛、セレン化亜鉛から選ばれる少なくとも一つを含む請求項1~3のいずれか一項に記載の有機発電素子。 The electron extraction layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. The organic power generation element as described in any one.
  5. 前記電子取り出し層が前記発電層に接するように配置され、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが3nm以下である請求項1~4のいずれか一項に記載の有機発電素子。 5. The electron extraction layer is disposed so as to be in contact with the power generation layer, and the arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 3 nm or less. Organic power generation element.
  6. 前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1.5nm以下である請求項5に記載の有機発電素子。 The organic power generation element according to claim 5, wherein an arithmetic average roughness Ra of a surface of the electron extraction layer on the power generation layer side is 1.5 nm or less.
  7. 前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1nm以下である請求項6に記載の有機発電素子。 The organic power generation element according to claim 6, wherein an arithmetic average roughness Ra of the surface on the power generation layer side of the electron extraction layer is 1 nm or less.
  8. 第二の電極、第一の電極、前記第二の電極と前記第一の電極との間に配置される発電層、及び前記発電層と前記第一の電極との間に前記発電層に接するように配置される電子取り出し層を備え、前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが3nm以下である有機発電素子。 A second electrode; a first electrode; a power generation layer disposed between the second electrode and the first electrode; and the power generation layer in contact with the power generation layer and the first electrode. An organic power generation element comprising an electron extraction layer arranged as described above, wherein an arithmetic average roughness Ra of the surface of the electron extraction layer on the power generation layer side is 3 nm or less.
  9. 前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1.5nm以下である請求項8に記載の有機発電素子。 The organic power generation element according to claim 8, wherein an arithmetic average roughness Ra of a surface of the electron extraction layer on the power generation layer side is 1.5 nm or less.
  10. 前記電子取り出し層の前記発電層側の表面の算術平均粗さRaが1nm以下である請求項9に記載の有機発電素子。 The organic power generation element according to claim 9, wherein an arithmetic average roughness Ra of a surface of the electron extraction layer on the power generation layer side is 1 nm or less.
  11. 前記電子取り出し層が、n型半導体として酸化亜鉛、酸化チタン、硫化カドミウム、硫化インジウム、セレン化カドミウム、セレン化インジウム、硫化亜鉛、セレン化亜鉛から選ばれる少なくとも一つを含む請求項8~10のいずれか一項に記載の有機発電素子。 11. The electron extracting layer includes at least one selected from zinc oxide, titanium oxide, cadmium sulfide, indium sulfide, cadmium selenide, indium selenide, zinc sulfide, and zinc selenide as an n-type semiconductor. The organic power generation element as described in any one.
PCT/JP2012/060475 2011-05-24 2012-04-18 Organic photoelectric conversion element WO2012160911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116361A JP2014150081A (en) 2011-05-24 2011-05-24 Organic power generation element
JP2011-116361 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012160911A1 true WO2012160911A1 (en) 2012-11-29

Family

ID=47216995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060475 WO2012160911A1 (en) 2011-05-24 2012-04-18 Organic photoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2014150081A (en)
WO (1) WO2012160911A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10672920B2 (en) 2015-03-12 2020-06-02 Vitro Flat Glass Llc Article with buffer layer
JP7092979B2 (en) * 2015-03-20 2022-06-29 株式会社リコー Photoelectric conversion element and solar cell
JP2020025068A (en) * 2018-07-31 2020-02-13 株式会社リコー Photoelectric conversion element, photoelectric conversion element module, organic thin-film solar cell, electronic device, and power supply module
EP4161234A1 (en) * 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153411A (en) * 2008-12-24 2010-07-08 Hitachi Ltd Photoelectric converting element
JP2010272619A (en) * 2009-05-20 2010-12-02 Konica Minolta Holdings Inc Organic electronics element, organic photoelectric conversion element, solar cell using the same, optical sensor array, and organic electroluminescent element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153411A (en) * 2008-12-24 2010-07-08 Hitachi Ltd Photoelectric converting element
JP2010272619A (en) * 2009-05-20 2010-12-02 Konica Minolta Holdings Inc Organic electronics element, organic photoelectric conversion element, solar cell using the same, optical sensor array, and organic electroluminescent element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKINOBU HAYAKAWA ET AL.: "The effect of Ti02 hole-blocking layer in organic solar cell", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 86, no. 1, 2006, pages 723 *

Also Published As

Publication number Publication date
JP2014150081A (en) 2014-08-21

Similar Documents

Publication Publication Date Title
Li et al. Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells
JP5447521B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
US20100147385A1 (en) Organic photovoltaic device
KR101082910B1 (en) Organic Solar Cells with Fused Ring Compounds
JP5075283B1 (en) Organic thin film solar cell
WO2011141706A2 (en) Surface-modified electrode layers in organic photovoltaic cells
EP3010053B1 (en) Organic photovoltaic cell and method for manufacturing same
WO2010113606A1 (en) Organic thin-film solar cell and manufacturing method therefor
KR20120096046A (en) Organic solar cell
JP5862189B2 (en) Organic photoelectric conversion device and solar cell using the same
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
JP5444743B2 (en) Organic photoelectric conversion element
KR20150124913A (en) Organic solar cell and method for manufacturing the same
Ho et al. Interconnecting layers for tandem organic solar cells
JP5118296B2 (en) Stacked organic solar cell
JP2012099592A (en) Organic photoelectric conversion element, solar cell and method for manufacturing the same
KR101097090B1 (en) Organic Solar Cells with triphenylene compounds
KR20150121673A (en) Stacked type organic solar cell
WO2012160911A1 (en) Organic photoelectric conversion element
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
KR20160020121A (en) Perovskite solar cell and method of manufacturing the same
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
KR101098792B1 (en) Organic Solar Cells with biphenyl compounds
JP5944120B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND ORGANIC SOLAR CELL USING THE SAME
KR20140012224A (en) Tandem solar cells comprising a transparent conducting intermediate layer and fabrication methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP