JP2016040312A - 側方取り出し式の第2の反応器を備える酸化システム - Google Patents

側方取り出し式の第2の反応器を備える酸化システム Download PDF

Info

Publication number
JP2016040312A
JP2016040312A JP2015223669A JP2015223669A JP2016040312A JP 2016040312 A JP2016040312 A JP 2016040312A JP 2015223669 A JP2015223669 A JP 2015223669A JP 2015223669 A JP2015223669 A JP 2015223669A JP 2016040312 A JP2016040312 A JP 2016040312A
Authority
JP
Japan
Prior art keywords
reaction zone
slurry
range
reaction medium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015223669A
Other languages
English (en)
Other versions
JP6329117B2 (ja
Inventor
シャイク アシュファク
Shaikh Ashfaq
シャイク アシュファク
ジョージ ワンダーズ アラン
George Wonders Alan
ジョージ ワンダーズ アラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grupo Petrotemex SA de CV
Original Assignee
Grupo Petrotemex SA de CV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grupo Petrotemex SA de CV filed Critical Grupo Petrotemex SA de CV
Publication of JP2016040312A publication Critical patent/JP2016040312A/ja
Application granted granted Critical
Publication of JP6329117B2 publication Critical patent/JP6329117B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00911Sparger-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】液相酸化反応技術のさらなる改善。
【解決手段】酸化後反応器への酸素の供給を鉛直方向に分割する方法と装置を開示する。さらに、反応媒体を中位にある入口から酸化後反応器に供給する方法と装置を開示する。このような装置と方法は、酸化後反応器全体での酸素不足を減らすのに役立てることができる。
【選択図】図2

Description

関連する出願の相互参照
本出願は、以下の3つのアメリカ合衆国仮出願、すなわち「側方取り出し式の第2の反応器を備える酸化システム」という名称で2010年1月29日に出願されたアメリカ合衆国仮出願シリアル番号第61/299,450号、「側方取り出し式の第2の反応器を備える酸化システム」という名称で2010年1月29日に出願されたアメリカ合衆国仮出願シリアル番号第61/299,453号、「側方取り出し式の第2の反応器を備える酸化システム」という名称で2010年1月29日に出願されたアメリカ合衆国仮出願シリアル番号第61/299,455号の優先権を主張する。これら仮出願の開示内容は、この明細書の記載に矛盾しない範囲でその全体が参考としてこの明細書に組み込まれている。
本発明は、全体として、ポリカルボン酸組成物の製造方法に関する。本発明の1つの側面は、ジアルキル芳香族化合物(例えばパラ-キシレン)を部分的に酸化して粗芳香族ジカルボン酸(例えば粗テレフタル酸)を製造することに関するものであり、その粗芳香族ジカルボン酸はその後、精製、分離することができる。本発明の別の側面は、より効率的で経済的な方法を提供する改良された反応器システムに関する。
液相酸化反応が既存のさまざまな商業的な方法で利用されている。例えばアルデヒドを酸化して酸にする(例えばプロピオンアルデヒドをプロピオン酸にする)ため、シクロヘキサンを酸化してアジピン酸にするため、アルキル芳香族を酸化してアルコール、酸、二酸のいずれかにするため、液相酸化が現在利用されている。後者のカテゴリー(アルキル芳香族の酸化)に属する特に重要な1つの商業的酸化方法は、パラ-キシレンの液相触媒部分酸化によってテレフタル酸にするものである。テレフタル酸は、さまざまな用途を持つ重要な化合物である。テレフタル酸の主たる用途は、ポリテレフタル酸エチレン(“PET”)の製造における供給材料である。PETは、ボトル、繊維、パッケージングなどの製品を作るのに世界中で大量に使用されているよく知られたプラスチックである。
典型的な液相酸化法では、パラ-キシレンの部分的酸化によりテレフタル酸にすることを含め、液相供給物流と気相酸化剤流が反応器の中に導入され、その反応器の中で多相反応媒体を形成する。反応器の中に導入される液相供給物流は少なくとも1種類の酸化可能な有機化合物(例えばパラ-キシレン)を含んでいるのに対し、気相酸化剤流は分子酸素を含んでいる。反応器の中に気体として導入される分子酸素の少なくとも一部は反応媒体の液相の中に溶け、液相反応で利用できる酸素を提供する。多相反応媒体の液相に含まれている分子酸素の濃度が十分でない場合(すなわち反応媒体のある部分が“酸素飢餓状態”である場合)には、望ましくない副反応によって不純物が生成する可能性、および/または予期する反応の速度が遅くなる可能性がある。反応媒体の液相に含まれる酸化可能な化合物が少なすぎる場合には、反応速度が望ましくないくらいに遅くなる可能性がある。さらに、反応媒体の液相に含まれる酸化可能な化合物の濃度が大きすぎる場合には、追加の望ましくない副反応によって不純物が生成する可能性がある。
従来の液相酸化反応器には、その中に収容される多相反応媒体を混合するための撹拌手段が取り付けられている。反応媒体を撹拌するのは、分子酸素が反応媒体の液相に溶けるのを促進し、反応媒体の液相に溶けた酸素の濃度を比較的一様に維持し、反応媒体の液相中の酸化可能な有機化合物の濃度を比較的一様に維持するためである。
液相酸化がなされる反応媒体の撹拌は、容器(例えば連続撹拌タンク反応器(“CSTR”))内の機械式撹拌手段によって行なわれることがしばしばある。CSTRは反応媒体を完全に混合できるが、CSTRには多数の欠点がある。例えばCSTRは、高価なモータ、および/または流体気密ベアリング、および/または駆動シャフト、および/または複雑な撹拌機構が必要であるという理由で資本コストが比較的高い。さらに、従来のCSTRの回転用および/または振動用機械部品は、定期的なメンテナンスを必要とする。そうしたメンテナンスに伴う作業時間と停止時間が、CSTRの運転コストに加わる。しかしCSTRで用いられている機械式撹拌システムは、定期的にメンテナンスしても故障しやすいため、比較的短期間に交換せねばならない可能性がある。
気泡塔反応器が、CSTRやそれ以外の機械式撹拌酸化反応器に代わる魅力的な1つの代替手段を提供する。気泡塔反応器は、高価で信頼性の低い機械装置を必要とすることなく反応媒体を撹拌する。気泡塔反応器は、一般に、細長い直立した反応ゾーンを備えていて、その中に反応媒体が収容される。反応ゾーンでの反応媒体の撹拌は、主に、反応媒体の液相から生じる気体の泡が自然に浮上することによってなされる。気泡塔反応器におけるこの天然浮上式撹拌により、機械式撹拌反応器と比べて資本コストとメンテナンス・コストが小さくなる。さらに、気泡塔反応器には動く機械部品が実質的に存在していないため、機械式撹拌反応器と比べて機械の故障が少ない酸化システムが提供される。
パラ-キシレンの液相部分酸化を従来の酸化反応器(CSTRまたは気泡塔)の中で実施するとき、反応器から取り出される生成物は、一般に、粗テレフタル酸(“CTA”)と母液を含むスラリーである。CTAは比較的高レベルの不純物(例えば4-カルボキシベンズアルデヒド、パラ-トルイル酸、フルオレノン、それ以外の着色体)を含んでいるため、PETを製造するための供給材料には適していない。そのため従来の酸化反応器で製造されるCTAは、一般に精製プロセスにかけられ、PETの製造に適した精製されたテレフタル酸(“PTA”)に変換される。
液相酸化反応の技術はこれまで進歩してきたが、それでも改善が必要である。
本発明の一実施態様は、スラリーを気相酸化剤と接触させることによってポリカルボン酸を製造するシステムに関する。この実施態様のシステムは、第1のスラリー出口を有する第1の酸化反応器と、スラリー入口と第2のスラリー出口を有する第2の酸化反応器を備えている。この実施態様では、スラリー入口は、第1のスラリー出口に下流方向の流体流で通じている。第2の酸化反応器は、その内部に、最大長Lsと最大直径Dsを有する第2の反応ゾーンを規定している。スラリー入口は、第2の反応ゾーンの底部から約0.3Ls〜約0.9Lsの範囲の距離離れている。
本発明のさらに別の一実施態様は、ポリカルボン酸組成物を製造する方法に関する。この実施態様の方法は、(a)第1の酸化反応器の中に規定されている第1の反応ゾーンにおいて、酸化可能な化合物を含む第1の多相反応媒体を酸化することによって第1のスラリーを製造し、(b)第2の酸化反応器の中に規定されている第2の反応ゾーンにおいて、前記第1のスラリーの少なくとも一部を気相酸化剤と接触させることにより第2のスラリーを製造する操作を含んでいる。この実施態様では、第2の反応ゾーンは最大長Lsと最大直径Dsを持ち、第1のスラリーの少なくとも一部は、第2の反応ゾーンの底部から約0.3Ls〜約0.9Lsの範囲の距離離れたスラリー入口領域で第2の反応ゾーンに導入される。
添付の図面を参照して本発明の実施態様を以下に詳細に説明する。
本発明の一実施態様に従って構成した酸化反応器の側面図であり、供給物流、酸化剤流、還流物流の反応器への導入と、反応器内の多相反応媒体の存在と、反応器の頂部と底部からの気体とスラリーの取り出しを特に図示してある。 第1の酸化反応器の側方取り出し口からのスラリーを受け入れる第2の酸化反応器を外部に備える気泡塔反応器の側面図である。 図2の線3-3に沿って見た側方取り出し式反応器の断面の拡大底面図であり、酸化剤流の少なくとも一部を反応器の中に導入するのに使用する1つの上方酸化剤スパージャーの位置と構成を特に図示してある。 多相反応媒体を収容した気泡塔反応器の側面図であり、反応媒体中で不可避の勾配を定量化するため、反応媒体を体積が同じ30個の水平なスライスに理論的に分割することを特に図示してある。 多相反応媒体を含む気泡塔反応器の側面図であり、反応媒体のうちで酸素濃度および/または酸素消費速度が実質的に異なる第1と第2の個別の20%連続体積を特に図示してある。 本発明の一実施態様に従ってPTAを製造する方法を簡略化した流れ図である。
本発明のさまざまな実施態様は、酸化可能な化合物の液相部分酸化に関する。このような酸化は、1つ以上の撹拌式反応器に収容された多相反応媒体の液相中で実施することができる。適切な撹拌式反応器として、例えばバブル撹拌式反応器(例えば気泡塔反応器)、機械撹拌式反応器(例えば連続撹拌タンク反応器)、流れ撹拌式反応器(例えばジェット反応器)などがある。1つ以上の実施態様では、液相酸化は、少なくとも1つの気泡塔反応器を用いて実施できる。
この明細書では、“気泡塔反応器”という用語は、多相反応媒体の中での化学反応を容易にする反応器を表わす。ここでは反応媒体の撹拌は、主に、反応媒体の中を気泡が上方に運動することによってなされる。この明細書では、“撹拌”という用語は、反応媒体の中に散逸させて流体流および/または混合を生じさせる作業を表わす。この明細書では、“大半”、“主に”、“優勢な”という用語は、50%超を意味する。この明細書では、“機械式撹拌”という用語は、反応媒体に対して、または反応媒体の中で、堅固な部品または可撓性のある部品を物理的に運動させることによって起こる反応媒体の撹拌を表わす。例えば機械式撹拌は、反応媒体の中に位置する内部撹拌機、パドル、バイブレータ、音響膜を回転および/または振動させることによって実現できる。この明細書では、“流れ撹拌”という用語は、反応媒体の中に1種類以上の流体を高速で注入することによって、または反応媒体の中で1種類以上の流体を循環させることによって起こる反応媒体の撹拌を表わす。例えば流れ撹拌は、ノズル、および/またはイジェクタ、および/またはエダクタによって実現できる。
さまざまな実施態様では、気泡塔反応器の中で酸化中に機械式撹拌および/または流れ撹拌によって撹拌される反応媒体の割合は、約40%未満、または約20%未満、または約5%未満にすることができる。それに加え、酸化中に反応媒体に与えられる機械式撹拌および/または流れ撹拌のエネルギーは、反応媒体1m3につき約3キロワット未満、または約2キロワット未満、または1キロワット未満にすることができる。
ここで図1を参照すると、反応区画24と解放区画26を有する容器シェル22を備える気泡塔反応器20が図示されている。反応区画24は反応ゾーン28を規定しているのに対し、解放区画26は解放ゾーン30を規定している。供給物入口32a、32b、32c、32dを通じて液相が優勢な供給物流を反応ゾーン28に導入することができる。反応ゾーン28の下部に位置する酸化剤スパージャー34を通じて気相が優勢な酸化剤流を反応ゾーン28に導入することができる。液相供給物流と気相酸化剤流が合わさって、反応ゾーン28の中で多相反応媒体36を形成する。さまざまな実施態様では、多相反応媒体36は、液相と気相を含むことができる。別のさまざまな実施態様では、多相反応媒体36は、固相成分と液相成分と気相成分を有する三相媒体を含むことができる。多相反応媒体36の固相成分は、多相反応媒体36の液相中で起こる酸化反応の結果として反応ゾーン28の中に沈殿することができる。気泡塔反応器20は、反応ゾーン28の底部の近くに位置するスラリー出口38と、解放ゾーン30の頂部の近くに位置する気体出口40を備えている。多相反応媒体36の液相成分と固相成分を含むスラリー流出物は、スラリー出口38を通じて反応ゾーン28から取り出せるのに対し、気体が優勢な流出物は、気体出口40を通じて解放ゾーン30から取り出すことができる。
供給物入口32a、32b、32c、32dを通じて気泡塔反応器20に導入される液相供給物流は、酸化可能な化合物、溶媒、触媒系を含むことができる。
液相供給物流の中に存在している酸化可能な化合物は、少なくとも1つのヒドロカルビル基を含むことができる。さまざまな実施態様では、酸化可能な化合物として芳香族化合物が可能である。さらに、酸化可能な化合物は、少なくとも1つのヒドロカルビル基、または少なくとも1つの置換されたヒドロカルビル基、または少なくとも1つのヘテロ原子、または少なくとも1つのカルボン酸基(-COOH)が結合した芳香族化合物であってもよい。1つ以上の実施態様では、酸化可能な化合物として、少なくとも1つのヒドロカルビル基または少なくとも1つの置換されたヒドロカルビル基が結合した芳香族化合物が可能である。ただし結合したそれぞれの基は、1〜5個の炭素原子を含んでいる。それに加え、酸化可能な化合物として、正確に2個の基が結合した芳香族化合物が可能である。ただし結合したそれぞれの基は正確に1個の炭素原子を含んでいて、メチル基および/または置換されたメチル基および/または最大で1個のカルボン酸基からなる。酸化可能な化合物として使用される適切な化合物の例として、パラ-キシレン、メタ-キシレン、パラ-トルアルデヒド、メタ-トルアルデヒド、パラ-トルイル酸、メタ-トルイル酸、アセトアルデヒドなどが挙げられるが、これだけに限定されない。1つ以上の実施態様では、酸化可能な化合物はパラ-キシレンである。
この明細書では、“ヒドロカルビル基”は、少なくとも1個の炭素原子で、水素原子または他の炭素原子だけに結合しているものと定義される。この明細書では、“置換されたヒドロカルビル基”は、少なくとも1個のヘテロ原子と少なくとも1個の水素原子に結合した少なくとも1個の炭素原子と定義される。この明細書では、“ヘテロ原子”は、炭素原子と水素原子以外のあらゆる原子と定義される。この明細書で定義する芳香族化合物は、芳香族環を含んでいる。そのような芳香族化合物は、少なくとも6個の炭素原子を含むことができ、さまざまな実施態様では、環の一部として炭素原子だけを含むことができる。そのような芳香族環の適切な例として、ベンゼン、ビフェニル、テルフェニル、ナフタレン、炭素系の他の縮合芳香族環などが挙げられるが、これだけに限定されない。
液相供給物流の中に存在している酸化可能な化合物が、通常は固体の化合物である(すなわち標準的な温度と圧力で固体である)場合には、その酸化可能な化合物は、反応ゾーン28の中に導入されたときに溶媒に実質的に溶けることができる。大気圧における酸化可能な化合物の沸点は、少なくとも約50℃、または約80〜約400℃の範囲、または125〜155℃の範囲にすることができる。液相供給物流の中に存在している酸化可能な化合物の量は、約2〜約40重量%の範囲、または約4〜約20重量%の範囲、または6〜15重量%の範囲にすることができる。
液相供給物流の中に存在している酸化可能な化合物は、2種類以上の異なる酸化可能な化学物質の組み合わせを含んでいてもよいことをここで指摘しておく。2種類以上の異なる酸化可能なこれらの化学物質は、液相供給物流の中に混合して供給してもよいし、多数の供給物流に分離して供給してもよい。例えばパラ-キシレン、メタ-キシレン、パラ-トルアルデヒド、パラ-トルイル酸、アセトアルデヒドを含む酸化可能な化合物は、単一の入口または多数の入口を通じて反応器に供給することができる。
液相供給物流の中に存在している溶媒は、酸成分と水分を含むことができる。溶媒は、液相供給物流の中に約60〜約98重量%の範囲、または約80〜約96重量%の範囲、または85〜94重量%の範囲の濃度で存在することができる。溶媒の酸成分として、主に、1〜6個の炭素原子または2個の炭素原子を有する有機低分子量モノカルボン酸が可能である。さまざまな実施態様では、溶媒の酸成分として、主に酢酸が可能である。酸成分は、溶媒の少なくとも約75重量%、または少なくとも約80重量%、または85〜98重量%の範囲を占めることができ、残りは水または主に水である。気泡塔反応器20に導入される溶媒には少量の不純物(例えばパラ-トルアルデヒド、テレフタルアルデヒド、4-カルボキシベンズアルデヒド(“4-CBA”)、安息香酸、パラ-トルイル酸、パラ-トルイルアルデヒド、α-ブロモ-パラ-トルイル酸、イソフタル酸、フタル酸、トリメリット酸、ポリ芳香族化合物、懸濁した粒子)が含まれている可能性がある。さまざまな実施態様では、気泡塔反応器20に導入される溶媒中の不純物の合計量は、約3重量%未満にすることができる。
液相供給物流の中に存在している触媒系として、酸化可能な化合物の酸化(部分的酸化も含む)を促進することのできる一様な液相触媒系が可能である。さまざまな実施態様では、触媒系は、少なくとも1種類の多価遷移金属を含むことができる。1つ以上の実施態様では、多価遷移金属はコバルトを含むことができる。それに加え、触媒系は、コバルトと臭素を含むことができる。さらに、触媒系は、コバルトと臭素とマンガンを含むことができる。
コバルトが触媒系の中に存在しているときには、液相供給物流の中に存在しているコバルトの量は、反応媒体36の液相中に存在するコバルトの濃度が約300〜約6,000重量部/100万(“ppmw”)の範囲、または約700〜約4,200 ppmwの範囲、または1,200〜3,000 ppmwの範囲に維持されるようにできる。臭素が触媒系の中に存在しているときには、液相供給物流の中に存在している臭素の量は、反応媒体36の液相中に存在する臭素の濃度が約300〜約5,000 ppmwの範囲、または約600〜約4,000 ppmwの範囲、または900〜3,000 ppmwの範囲に維持されるようにできる。マンガンが触媒系の中に存在しているときには、液相供給物流の中に存在しているマンガンの量は、反応媒体36の液相中に存在するマンガンの濃度が約20〜約1,000 ppmwの範囲、または約40〜約500 ppmwの範囲、または50〜200 ppmwの範囲に維持されるようにできる。
反応媒体36の液相に含まれるコバルトおよび/または臭素および/またはマンガンの上記の濃度は、時間平均体積平均で表現される。この明細書では、“時間平均”という用語は、少なくとも100秒の連続した期間にわたって同様にして行なった少なくとも10回の測定の平均を表わす。この明細書では、“体積平均”という用語は、所定の体積全体に対して一様な三次元の間隔にして少なくとも10回の測定の平均を表わす。
反応ゾーン28に導入される触媒系に含まれるコバルトと臭素の重量比(Co:Br)は、約0.25:1〜約4:1の範囲、または約0.5:1〜約3:1の範囲、または0.75:1〜2:1の範囲にすることができる。反応ゾーン28に導入される触媒系に含まれるコバルトとマンガンの重量比(Co:Mn)は、約0.3:1〜約40:1の範囲、または約5:1〜約30:1の範囲、または10:1〜25:1の範囲にすることができる。
気泡塔反応器20に導入される液相供給物流には少量の不純物(例えばトルエン、エチルベンゼン、パラ-トルアルデヒド、テレフタルアルデヒド、4-CBA、安息香酸、パラ-トルイル酸、パラ-トルイルアルデヒド、α-ブロモ-パラ-トルイル酸、イソフタル酸、フタル酸、トリメリット酸、ポリ芳香族化合物、懸濁した粒子)が含まれている可能性がある。テレフタル酸の製造に気泡塔反応器20を用いるときには、メタ-キシレンとオルト-キシレンも不純物と考えられる。さまざまな実施態様では、気泡塔反応器20に導入される液相供給物流に含まれる不純物の合計量は、約3重量%未満にすることができる。
図1は、酸化可能な化合物、溶媒、触媒系が混合されて気泡塔反応器20に単一の供給物流として導入される一実施態様を示しているが、別の一実施態様では、酸化可能な化合物、溶媒、触媒系を別々に気泡塔反応器20に導入することができる。例えば溶媒と触媒の入口とは別の入口を通じて純粋なパラ-キシレン流を気泡塔反応器20に供給することが可能である。
酸化物スパージャー34を通じて気泡塔反応器20に導入される気相が優勢な酸化剤流は、分子酸素(O2)を含んでいる。さまざまな実施態様では、酸化剤流は、約5〜約40モル%の範囲、または約15〜約30モル%の範囲、または18〜24モル%の範囲の分子酸素を含んでいる。酸化剤流の残りは、主に、酸化にとって不活性な気体(例えば窒素)で構成することができる。1つ以上の実施態様では、酸化剤流は、主に分子酸素と窒素で構成することができる。さまざまな実施態様では、酸化剤流として、約21モル%の酸素と、約78〜約81モル%の窒素を含む乾燥空気が可能である。別の実施態様では、気相酸化剤として酸素を豊富にした空気が可能であり、気相酸化剤は、25モル%、または30モル%、または35モル%、または40モル%、または50モル%、または55モル%、または60モル%、または70モル%、または80モル%の分子酸素を含むことができる。さらに別の実施態様では、酸化剤流は、実質的に純粋な酸素を含むことができる。
やはり図1を参照すると、気泡塔反応器20には、反応媒体36の上面44よりも上に位置するリフラックス供給装置42を取り付けることができる。リフラックス供給装置42は、公知の任意の液滴形成法によって液相が優勢な還流物流の液滴を解放ゾーン30に導入することができる。さまざまな実施態様では、リフラックス供給装置42は、反応媒体36の上面44に向かう下向きの液滴スプレーを発生させることができる。下向きのこの液滴スプレーは、解放ゾーン30の最大水平断面積の少なくとも約50%、または少なくとも約75%、または少なくとも90%に効果を与える(すなわち関与して影響を与える)ことができる。下向きのこの還流液スプレーは、反応媒体36の上面44の位置またはそれよりも上に泡が形成されるのを阻止しやすくするとともに、気体出口40に向かって上方に移動する気体に伴われるあらゆる液体または液滴状スラリーを解放しやすくすることもできる。さらに、液体リフラックスは、気体出口40を通じて解放ゾーン30から取り出される気体状流出物の中に出ていく粒子と沈殿する可能性のある化合物(例えば溶けた安息香酸、パラ-トルイル酸、4-CBA、テレフタル酸、触媒金属塩)の量を減らすのに役立つ。それに加え、解放ゾーン30へのリフラックスの液滴の導入を利用して、蒸留作用により、気体出口40を通じて取り出される気体状流出物の組成を調節することができる。
リフラックス供給装置42を通じて気泡塔反応器20に導入される液体還流物流は、供給物入口32a、32b、32c、32dを通じて気泡塔反応器20に導入される液相供給物流の溶媒成分と同じかほぼ同じ組成を持つことができる。したがって液体還流物流は、酸成分と水を含むことができる。還流物流の酸成分として、1〜6個の炭素原子または2個の炭素原子を有する低分子量有機モノカルボン酸が可能である。さまざまな実施態様では、還流物流の酸成分として酢酸が可能である。さらに、酸成分は、還流物流の少なくとも約75重量%、または少なくとも約80重量%、または85〜98重量%の範囲を占めることができ、残りは水または主に水である。還流物流は、一般に、液相供給物流に含まれる溶媒と同じか実質的に同じ組成を持つことができるため、この明細書で反応器に導入される“全溶媒”に言及するとき、そのような“全溶媒”には、還流物流と、供給物流の溶媒部分の両方が含まれる。
気泡塔反応器20の中で液相酸化を実施している間、供給物流、酸化剤流、還流物流は、実質的に連続的に反応ゾーン28に導入できるのに対し、気体とスラリーの流出物流は、実質的に連続的に反応ゾーン28から取り出される。この明細書では、“実質的に連続的に”という表現は、中断期間が10分間未満の少なくとも10時間にわたる期間を意味する。酸化中、酸化可能な化合物(例えばパラ-キシレン)は、少なくとも約8,000 kg/時の速度で、または約15,000〜約200,000 kg/時の範囲の速度で、または約22,000〜約150,000 kg/時の範囲の速度で、または30,000〜100,000 kg/時の範囲の速度で反応ゾーン28に実質的に連続的に導入することができる。入ってくる供給物流、酸化剤流、還流物流の流速は実質的に一定にできるが、一実施態様では、入ってくる供給物流、および/または酸化剤流、および/または還流物流をパルスにして混合と大量輸送を改善することが考えられることをここに指摘しておく。入ってくる供給物流、および/または酸化剤流、および/または還流物流がパルス式に導入されるとき、その流速は、この明細書に記載した安定状態の流速の約0〜約500%、またはこの明細書に記載した安定状態の流速の約30〜約200%、またはこの明細書に記載した安定状態の流速の80〜120%の範囲で変えることができる。
気泡塔反応器20内での反応の平均空間-時間速度(“STR”)は、単位時間に単位体積の反応媒体36あたりに供給される酸化可能な化合物の質量(例えば1時間に1m3あたりに供給されるパラ-キシレンのkg数)と定義される。従来の用法では、生成物に変換されない酸化可能な化合物の量は、一般に、STRを計算する前に、供給物流に含まれる酸化可能な化合物の量から差し引かれることになろう。しかしこの明細書で言及する酸化可能な化合物の多く(例えばパラ-キシレン)の変換率と収率は一般に大きいため、この明細書ではこの用語を上記のように定義するのが便利である。特に資本コストと運転備品を理由として、反応は大きなSTRで実施することができる。しかしより大きなSTRで反応させると、部分酸化の品質または収率に影響する可能性がある。気泡塔反応器20は、酸化可能な化合物(例えばパラ-キシレン)のSTRが約25 kg/m3/時〜約400 kg/m3/時の範囲、または約30 kg/m3/時〜約250 kg/m3/時の範囲、または約35 kg/m3/時〜約150 kg/m3/時の範囲、または40 kg/m3/時〜100 kg/m3/時の範囲であるときに特に有用である可能性がある。
気泡塔反応器20内の酸素-STRは、単位時間に単位体積の反応媒体36あたりに消費される分子酸素の重量(例えば1時間に1m3あたりに消費される分子酸素のkg数)と定義される。特に資本コストと溶媒の酸化による消費を理由として、反応は大きな酸素-STRで実施することができる。しかしより大きな酸素-STRで反応させると、場合によっては部分酸化の品質または収率が低下する。理論に囚われないとすると、これは、界面領域における気相から液体の中への、したがってバルクの液体中への分子酸素の移動速度とおそらく関係しているように思われる。酸素-STRが大きすぎると、おそらく反応媒体のバルクの液相に溶ける酸素の量が少なくなりすぎる。
この明細書では、全体的平均酸素-STRは、単位時間に反応媒体36の全体積中で消費されるあらゆる酸素の重量(例えば1時間に1m3あたりに消費される分子酸素のkg数)と定義される。気泡塔反応器20は、全体的平均酸素-STRが約25 kg/m3/時〜約400 kg/m3/時の範囲、または約30 kg/m3/時〜約250 kg/m3/時の範囲、または約35 kg/m3/時〜約150 kg/m3/時の範囲、または40 kg/m3/時〜100 kg/m3/時の範囲であるときに特に有用である可能性がある。
気泡塔反応器20内での酸化中、(供給物流と還流物流の両方からの)全溶媒の質量流速と、反応ゾーン28に入る酸化可能な化合物の質量流速の比は、約2:1〜約50:1の範囲、または約5:1〜約40:1の範囲、または7.5:1〜25:1の範囲に維持することができる。さまざまな実施態様では、供給物流の一部として導入される溶媒の質量流速と還流物流の一部として導入される溶媒の質量流速の比は、約0.5:1〜還流物流なしの範囲、または約0.5:1〜約4:1の範囲、または約1:1〜約2:1の範囲、または1.25:1〜1.5:1の範囲に維持することができる。
気泡塔反応器20内での液相酸化中、酸化物流は、化学量論的酸素需要量をわずかに超える分子酸素を供給する量で気泡塔反応器20の中に導入することができる。特定の酸化可能な化合物を用いて最良の結果を得るのに必要とされる過剰な分子酸素の量は、液相酸化の全体的な経済に影響を与える。気泡塔反応器20内での液相酸化中、気泡塔反応器20に入る酸化物流の質量流速と酸化可能な有機化合物(例えばパラ-キシレン)の質量流速の比は、約0.5:1〜約20:1の範囲、または約1:1〜約10:1の範囲、または2:1〜6:1の範囲に維持することができる。
やはり図1を参照すると、気泡塔反応器20に導入される供給物流、酸化剤流、還流物流は、合わさって多相反応媒体36の少なくとも一部を形成することができる。反応媒体36として、固相と液相と気相を含む3相媒体が可能である。上述のように、酸化可能な化合物(例えばパラ-キシレン)の酸化は、反応媒体36の液相中で優勢に起こることができる。したがって反応媒体36の液相は、溶けた酸素と酸化可能な化合物を含むことができる。気泡塔反応器20の中で起こる酸化反応の発熱特性により、供給物入口32a、32b、32c、32dを通じて導入される溶媒(例えば酢酸と水)の一部を沸騰/気化させることができる。したがって気泡塔反応器20中の反応媒体36の気相は、主に、気化した溶媒と、酸化剤流の溶けていない未反応の部分とから形成することができる。
従来のいくつかの酸化反応器では、反応媒体を加熱または冷却するため熱交換管/フィンが用いられている。しかしそのような熱交換構造は、この明細書に記載する本発明の反応器と方法では望ましくない可能性がある。したがってさまざまな実施態様では、気泡塔反応器20の設計にあたって、反応媒体36と接触する面が実質的に含まれておらず、時間平均熱流束が30,000ワット/m2を超えるようにすることができる。それに加え、さまざまな実施態様では、反応媒体36の反応の時間平均熱の約50%未満、または約30%未満、または10%未満が熱交換面によって除去される。
反応媒体36の液相に溶ける酸素の濃度は、気相からの質量移動速度と液相内での反応による消費の速度の間の動的なバランスである(すなわち濃度は、供給する気相中の分子酸素の部分圧だけでは決まらないが、これは溶ける酸素の供給速度に関係する1つの因子であるため、溶ける酸素の濃度の上限に実際に影響を与える)。溶ける酸素の量は局所的に変化しており、泡の界面近くでより多い。全体として、溶ける酸素の量は、反応媒体36の異なる領域における供給因子と需要因子のバランスに依存する。時間的には、溶ける酸素の量は、化合物消費速度に対する気体と液体の混合の一様性に依存する。反応媒体36の液相に溶ける酸素の供給と需要がうまく一致するよう、設計する際には、反応媒体36の液相中の時間平均体積平均酸素濃度を約1 ppmモルよりも大きな値、または約4〜約1,000 ppmモルの範囲、または約8〜約500 ppmモルの範囲、または12〜120 ppmモルの範囲に維持することができる。
気泡塔反応器20の中で行なわれる液相酸化反応として、固体を生成させる沈殿反応が可能である。さまざまな実施態様では、気泡塔反応器20の中で行なわれる液相酸化反応により、反応ゾーン28に導入される酸化可能な化合物(例えばパラ-キシレン)の少なくとも約10重量%、または少なくとも約50重量%、または少なくとも90重量%から反応媒体36中に固体化合物(例えば粗テレフタル酸粒子)を形成することができる。1つ以上の実施態様では、反応媒体36中の固体の合計量は、時間平均体積平均で、約3重量%超、または約5〜約40重量%の範囲、または約10〜約35重量%の範囲、または15〜30重量%の範囲にすることができる。さまざまな実施態様では、気泡塔反応器20の中で生成する酸化生成物(例えばテレフタル酸)のかなりの部分が、反応媒体36の液相中に溶けたまま残るのではなく、反応媒体36中に固体として存在することができる。反応媒体36の中に存在する固相酸化生成物の量は、反応媒体36中の全酸化生成物(固相と液相)の少なくとも約25重量%、または少なくとも約75重量%、または少なくとも95重量%にすることができる。反応媒体36中の固体の量に関する上記の数値範囲は、気泡塔反応器20の始動時、停止時、最適ではない運転時ではなく、連続した長期の期間にわたって気泡塔反応器20を実質的に定常状態で運転しているときに適用される。反応媒体36中の固体の量は、重量測定法によって測定される。この重量測定法では、スラリーの代表的な部分が反応媒体から採取されて計量される。反応媒体の中に存在する全体的な固体-液体の分割をうまく維持する条件で、沈殿する固体の損失が実質的になく、かつ初期の液体質量の約10%未満が固体の部分とともに残るようにして、自由な液体を固体部分から沈降または濾過によって取り出す。固体の表面に残っている液体を固体の昇華なしにうまく蒸発させて乾燥させる。固体の残部を計量する。固体のその部分の重量とスラリーの初期部分の重量の比が固体の分率であり、一般に%で表わされる。
気泡塔反応器20の中で行なわれる沈殿反応により、反応媒体36と接触するある種の堅固な構造の表面に付着(すなわち固体の積み重なり)が起こる可能性がある。したがって一実施態様では、気泡塔反応器20は、反応ゾーン28の内部に実質的に熱交換構造、撹拌構造、バッフル構造が含まれないように設計することができる。なぜならそのような構造があると付着が起こりやすくなると考えられるからである。内部構造が反応ゾーン28に存在している場合には、上向きの平坦面領域がかなり多く含まれる外面を有する内部構造を避けることが望ましい。なぜならそのような上向きの平坦面だと付着が大いに起こる傾向があると考えられるからである。したがって何らかの内部構造が反応ゾーン28に存在している場合には、そのような内部構造の露出した上向きの面の約20%未満は、水平から約15°未満傾いた実質的に平坦な面によって形成されねばならない。このタイプの構成になった内部構造をこの明細書では“非付着”構造を持つと呼ぶ。
再び図1を参照すると、気泡塔反応器20の物理的構成は、不純物の生成を最少にして酸化可能な化合物(例えばパラ-キシレン)の最適な酸化を提供するのを助ける。さまざまな実施態様では、容器シェル22の細長い反応区画24は、実質的に円筒形の主要本体46と下方ヘッド48を備えることができる。反応ゾーン28の上端は、円筒形主要本体46の頂部を横断して延びる水平面50によって規定される。反応ゾーン28の下端52は、下方ヘッド48の内面最下部によって規定される。一般に反応ゾーン28の下端52は、スラリー出口38の開口部の近くに位置する。したがって気泡塔反応器20の中に規定されている細長い反応ゾーン28は、反応ゾーン28の上端50から下端52まで円筒形主要本体46の長軸に沿って測定した最大長“Lp”を持つ。反応ゾーン28の長さ“Lp”は、約10〜約100メートルの範囲、または約20〜約75メートルの範囲、または25〜50メートルの範囲が可能である。反応ゾーン28は、円筒形主要本体46の最大内径と一般に等しい最大直径(幅)“Dp”を持つ。反応ゾーン28の最大直径Dpは、約1〜約12メートルの範囲、または約2〜約10メートルの範囲、または約3.1〜約9メートルの範囲、または4〜8メートルの範囲が可能である。1つ以上の実施態様では、反応ゾーン28は、長さと直径の比“Lp:Dp”を約6:1〜約30:1の範囲、または約8:1〜約20:1の範囲、または9:1〜15:1の範囲にすることができる。
上述のように、気泡塔反応器20の反応ゾーン28には多相反応媒体36が収容される。反応媒体36は、反応ゾーン28の下端52と一致する下端と、上面44に位置する上端を有する。反応媒体36の上面44は、反応ゾーン28の内容物が気相連続状態から液相連続状態に変化する鉛直位置で反応ゾーン28を横断している水平面に沿って規定される。上面44は、反応ゾーン28の内容物に関係する薄い水平なスライスの局所的時間平均気体ホールド-アップが0.9である鉛直位置に位置することができる。
反応媒体36は、その上端と下端の間で測定した最大高“Hp”を持つ。反応媒体36の最大幅“Wp”は、一般に円筒形主要本体46の最大直径“Dp”に等しい。気泡塔反応器20の中での液相酸化中、Hpは、Lpの約60〜約120%、またはLpの約80〜約110%、またはLpの85〜100%に維持することができる。さまざまな実施態様では、反応媒体36は、高さと幅の比“Hp:Dp”を約3:1超にすること、約7:1〜約25:1の範囲にすること、または約8:1〜約20:1の範囲にすること、または9:1〜15:1の範囲にすることができる。本発明の一実施態様では、Lp=HpかつDp=Wpであるため、LpとDpに関してこの明細書に提示するさまざまなサイズまたは比もHpとWpに適用され、逆も同様である。
本発明の一実施態様において提供される比較的大きな比Lp:DpとHp:Dpは、本発明のシステムの重要ないくつかの利点に寄与することができる。以下により詳しく説明するように、比Lp:DpとHp:Wpがより大きいと、以下に説明する他のいくつかの特徴と同様、反応媒体36中の分子酸素および/または酸化可能な化合物(例えばパラ-キシレン)の濃度の鉛直方向の勾配を好ましい状態にできることが見いだされた。全体が比較的一様な濃度であるよく混合された反応媒体が好ましいと考えられている従来の知見とは逆に、酸素および/または酸化可能な化合物の濃度が鉛直方向の段階的に変化することによってより効果的かつ経済的な酸化反応が容易になることが見いだされた。反応媒体36の頂部近くの酸素および/または酸化可能な化合物の濃度を最小にすることで、上方気体出口40を通って出ていく反応していない酸素と反応していない酸化可能な化合物の損失を回避しやすくすることができる。しかし酸化可能な化合物と反応していない酸素の濃度が反応媒体36全体で低い場合には、酸化の速度および/または選択性は低下する。したがってさまざまな実施態様では、分子酸素および/または酸化可能な化合物の濃度は、反応媒体36の頂部近くよりも反応媒体36の底部近くで著しく大きくすることができる。
それに加え、大きな比Lp:DpとHp:Wpによって反応媒体36の底部の圧力を反応媒体36の頂部の圧力よりも実質的に大きくすることができる。この鉛直方向の圧力勾配は、反応媒体36の高さと密度の結果である。この鉛直方向の圧力勾配の1 つの利点は、容器の底部が高圧になっていることで、浅い反応器における同等な温度と頂部圧力で実現できるよりも酸素溶解度と質量輸送が大きくなることである。したがって酸化反応をより浅い容器において必要とされるよりも低い温度で実施することができる。パラ-キシレンの酸化によって粗テレフタル酸(CTA)を得るのに気泡塔反応器20を用いるとき、酸素質量輸送速度を同じかより大きくしてより低い反応温度で運転できることには多くの利点がある。例えばパラ-キシレンを低温で酸化すると、反応中に燃やされる溶媒の量が減る。以下により詳しく説明するように、低温で酸化すると、小さくて、表面積が大きく、ゆるく結合していて、容易に溶けるCTA粒子の形成も促進される。このようなCTA粒子には、従来の高温酸化法によって製造される大きくて、表面積が小さく、密なCTA粒子よりも経済的な精製技術を適用することができる。
気泡塔反応器20の中での酸化中、反応媒体36の時間平均体積平均温度を約125〜約200℃の範囲、または約140〜約180℃の範囲、または150〜170℃の範囲に維持することができる。反応媒体36の上方の頂部圧力は、約1〜約20バールのゲージ圧(“barg”)の範囲、または約2〜約12 bargの範囲、または4〜8 bargの範囲に維持することができる。反応媒体36の頂部と底部の間の圧力差は、約0.4〜約5バールの範囲、または約0.7〜約3バールの範囲、または1〜2バールの範囲にすることができる。反応媒体36の上方の頂部圧力は一般に比較的一定の値に維持できるが、一実施態様では、頂部圧力をパルス化して反応媒体36中の混合および/または質量輸送を改善しやすくすることを考える。頂部圧力をパルス化するとき、パルス化された圧力は、この明細書に記載した安定状態の頂部圧力の約60〜約140%の範囲、または約85〜約115%の範囲、または95〜105%の範囲にすることができる。
反応ゾーン28の比Lp:Dpが大きいことのさらに別の利点は、反応媒体36の平均表面速度の増大に寄与できることである。この明細書で反応媒体36 に関連して用いられる“表面速度”と“表面気体速度”という用語は、反応器のある高さ位置における反応媒体36の気相の体積流速を、その高さ位置におけるその反応器の水平断面積で割った値を表わす。反応ゾーン28の比Lp:Dpが大きいことによって表面速度が増大することにより、局所的な混合を促進することと、反応媒体36の気体ホールド-アップを大きくすることができる。反応媒体36の1/4の高さ、および/または半分の高さ、および/または3/4の高さにおける反応媒体36の時間平均表面速度は、約0.3 m/秒超、または約0.8〜5 m/秒の範囲、または約0.9〜4 m/秒の範囲、または1〜3 m/秒の範囲にすることができる。
やはり図1を参照すると、気泡塔反応器20の解放区画26として、単純に、反応区画24の直上に位置する容器シェル22の広い部分が可能であることがわかる。解放区画26により、気相が反応媒体36の上面44よりも上に上昇して気体出口40に近づくにつれ、気泡塔反応器20の中で上向きに流れる気相の速度が小さくなる。気相の上向きの速度がこのように低下すると、上向きに流れる気相に伴われる液体および/または固体を除去しやすくなり、そのことによって反応媒体36の液相中に存在するいくつかの成分が失われるという望ましくないことが減る。
解放区画26は、一般に円錐台形の移行壁部54と、一般に円筒形の広い側壁部56と、上部ヘッド58を備えることができる。移行壁部54の狭い下端は、反応区画24の円筒形主要本体46の頂部につながっている。移行壁部54の広い上端は、広い側壁部56の底部につながっている。移行壁部54は、鉛直方向から約10〜約70°の範囲、または鉛直方向から約15〜約50°の範囲、または鉛直方向から15〜45°の範囲の角度で狭い下端から上方外側に向かって延びることができる。広い側壁部56は、一般に反応区画24の最大直径Dpよりも大きい最大直径“X”を持つが、反応区画24の上部が反応区画24の全体的な最大直径よりも小さな直径を持つときには、Xは実際にはDpよりも小さくなろう。さまざまな実施態様では、広い側壁部56の直径と反応区画24の最大直径の比“X:Dp”は、約0.8:1〜約4:1の範囲、または1.1:1〜2:1の範囲が可能である。上部ヘッド58は、広い側壁部56の頂部につながっている。上部ヘッド58として、気体が気体出口40を通って解放ゾーン30から逃げ出せるようにできる中央開口部を規定する一般に楕円形の頭部部材が可能である。あるいは上部ヘッド58は、円錐形などの任意の形状にすることができる。解放ゾーン30は、反応ゾーン28の頂部50から解放ゾーン30の最上部まで測定した最大高“Y”を持つ。反応ゾーン28の長さと解放ゾーン30の高さの比“Lp:Y”は、約2:1〜約24:1の範囲、または約3:1〜約20:1の範囲、または4:1〜16:1の範囲が可能である。
やはり図1を参照すると、運転中に酸化剤入口66a、66bと酸化剤スパージャー34を通じて気相酸化剤(例えば空気)を反応ゾーン28の中に導入することができる。酸化剤スパージャー34は、気相酸化剤を反応ゾーン28の中に導入できる任意の形状または構成にすることができる。例えば酸化剤スパージャー34は、複数の酸化剤放出開口部を規定する円形または多角形(例えば八角形)の環状部材を備えることができる。さまざまな実施態様では、酸化剤放出開口部のいくつかまたはすべてを、気相酸化剤が一般に下方に向けて放出される構成にすることができる。酸化剤スパージャー34の具体的な構成に関係なく、酸化剤スパージャーは、酸化剤放出開口部を通って反応ゾーンに入る酸化剤流の放出に伴う圧力低下が最小になるように物理的に構成して運転することができる。このような圧力低下は、酸化剤スパージャーの酸化剤入口66a、66bの位置にある流れ管の内側の酸化剤流の時間平均静圧から、酸化剤流の半分がその高さ位置よりも上に導入され、酸化剤流の半分がその高さ位置よりも下に導入されるという高さ位置での反応ゾーン内の時間平均静圧を差し引いて計算される。さまざまな実施態様では、酸化剤スパージャー34からの酸化剤流の放出に伴う時間平均した圧力低下は、約0.3メガパスカル(“MPa”)未満、または約0.2 MPa未満、または約0.1 MPa未満、または0.05 MPa未満にすることができる。
場合によっては、酸化剤スパージャー34に液体(例えば酢酸、および/または水、および/またはパラ-キシレン)を連続的または間欠的に勢い供給してその酸化剤スパージャーに固体が詰まるのを阻止することができる。このように液体を勢いよく流すとき、1日に少なくとも1回、1分間よりも長い時間にわたって有効量の液体(すなわち、酸化剤流の中に自然に存在する可能性のあるほんのわずかな量の液滴ではない)が酸化剤スパージャーを通過して酸化剤用開口部から外に出るようにすることができる。液体が酸化剤スパージャー34から連続的または定期的に放出されるとき、酸化剤スパージャーを通過する液体の質量流速と酸化剤スパージャーを通過する分子酸素の質量流速の時間平均比は、約0.05:1〜約30:1の範囲、または約0.1:1〜約2:1の範囲、または0.2:1〜1:1の範囲にすることができる。
多相反応媒体を収容する従来の多くの気泡塔反応器では、酸化剤スパージャー(または酸化剤流を反応ゾーンに導入するための他の機構)よりも下に位置する反応媒体の実質的にすべてが非常に小さな気体ホールド-アップ値を持つ。従来技術で知られているように、“気体ホールド-アップ”は、単純に、気相状態になっている多相媒体の体積分率である。媒体中で気体ホールド-アップが小さいゾーンは、“非通気”ゾーンと呼ぶこともできる。多くのスラリー気泡塔反応器では、反応媒体の全体積のかなりの部分が酸化剤スパージャー(または酸化剤流を反応ゾーンに導入するための他の機構)よりも下に位置する。したがって従来の気泡塔反応器の底部に存在する反応媒体のかなりの部分は通気されない。
気泡塔反応器の中で酸化される反応媒体のうちで非通気ゾーンにある量を最少にすると、望ましくないある種の不純物の生成を最少にできることが見いだされた。反応媒体の非通気ゾーンには、酸化剤の泡が相対的にほとんど含まれていない。酸化剤の泡の体積がこのように少ないと、反応媒体の液相に溶かすのに利用できる分子酸素の量が減る。したがって反応媒体の非通気ゾーン中の液相は、分子酸素の濃度が比較的小さい。このように酸素が欠乏した反応媒体の非通気ゾーンでは、望む酸化反応ではなくて望ましくない副反応が促進される傾向がある。例えばパラ-キシレンの一部を酸化してテレフタル酸を形成するとき、反応媒体の液相中で利用できる酸素が不十分だと、望ましくないくらいに大量の安息香酸と縮合芳香族環(その中には特に、フルオレノンやアントラキノンとして知られる非常に望ましくない着色分子が含まれる)が形成される可能性がある。
1つ以上の実施態様によると、液相酸化は、小さな気体ホールド-アップ値を持つ反応媒体の体積分率が最少となるように構成されて運転する気泡塔反応器の中で実施することができる。非通気ゾーンのこのような最少化は、反応媒体の全体積を体積が同じ2,000個の個別の水平なスライスに理論的に分割することによって定量化できる。それぞれの水平なスライスは、最上部と最下部の水平なスライスを除き、反応器の側壁を両側の境界とし、想像上の水平面を上下の境界とする個別の体積である。最上部の水平なスライスは、想像上の水平面を底部の境界とし、反応媒体の上面を頂部の境界としている。最下部の水平なスライスは、想像上の水平面を頂部の境界とし、容器の下端を底部の境界としている。反応媒体を体積が同じ2,000個の個別の水平なスライスに理論的に分割すると、水平な各スライスの時間平均体積平均気体ホールド-アップを決定することができる。非通気ゾーンの量を定量化するこの方法を利用すると、時間平均体積平均気体ホールド-アップが0.1未満の水平なスライスの数は、30個未満、または15個未満、または6個未満、または4個未満、または2個未満になる可能性がある。さらに、気体ホールド-アップが0.2未満の水平なスライスの数は、80個未満、または40個未満、または20個未満、または12個未満、または5個未満になる可能性がある。また、気体ホールド-アップが0.3未満の水平なスライスの数は、120個未満、または80個未満、または40個未満、または20個未満、または15個未満になる可能性がある。
やはり図1を参照すると、酸化剤スパージャー34を反応ゾーン28の中で下方に配置するといくつかの利点(例えば反応媒体36中の非通気ゾーンの量の減少)が得られることが見いだされた。反応媒体36の高さ“Hp”、反応ゾーン28の長さ“Lp”、反応ゾーン28の最大直径“Dp”が与えられると、酸化剤流の大半を反応ゾーン28の下端から約0.025 Hp以内に、および/または約0.022Lp以内に、および/または約0.25Dp以内に、または反応ゾーン28の下端から約0.02Hp以内に、および/または約0.0118Lp以内に、および/または約0.2Dp以内に、または反応ゾーン28の下端から0.015Hp以内に、および/または0.013Lp以内に、および/または0.15Dp以内に導入することができる。
反応媒体36中の非通気ゾーン(すなわち気体ホールド-アップが小さいゾーン)が最少になることによる利点に加え、反応媒体36全体の気体ホールド-アップを最大化することによって酸化を増やせることが見いだされた。反応媒体36は、少なくとも約0.4、または約0.6〜約0.9の範囲、または0.65〜0.85の範囲の時間平均体積平均気体ホールド-アップを持つことができる。気泡塔反応器20のいくつかの物理的属性と操作上の属性が、上記の大きな気体ホールド-アップに寄与する。例えば反応器のサイズと酸化剤流が与えられると、反応ゾーン28の大きなLp:Dp比によって直径がより小さくなる。すると反応媒体36の表面速度が増大し、そのことによって今度は気体ホールド-アップが増大する。しかも気泡塔反応器の実際の直径とLp:Dp比が、一定の表面速度においてさえ平均気体ホールド-アップに影響を与えることが知られている。それに加え、特に反応ゾーン28の底部における非通気ゾーンの最少化は、気体ホールド-アップ値の増大に寄与する。さらに、この明細書に開示されているように表面速度と気体ホールド-アップ値が大きいと、気泡塔反応器の頂部の圧力と物理的構成が、操作の安定性に影響を与える可能性がある。
やはり図1を参照すると、鉛直方向に離れた複数の位置で反応ゾーン28に液相供給物流を導入することによって反応媒体36中の酸化可能な化合物(例えばパラ-キシレン)の分布を改善できることが見いだされた。さまざまな実施態様では、液相供給物流は、少なくとも3つまたは4つの供給用開口部を通じて反応ゾーン28に導入することができる。この明細書では、“供給用開口部”という用語は、液相供給物流を反応ゾーン28に放出して反応媒体36と混合するための開口部を意味する。1つ以上の実施態様では、少なくとも2つの供給用開口部を鉛直方向に少なくとも約0.5Dp、または少なくとも約1.5Dp、または少なくとも3Dpの距離互いに離すことができる。しかし最も高い位置にある供給用開口部は、最も低い位置にある供給用開口部と鉛直方向に約0.75Hpおよび/または約0.65Lpおよび/または約8Dp以下の距離、または約0.5Hpおよび/または約0.4Lpおよび/または約5Dp以下の距離、または0.4Hpおよび/または0.35Lpおよび/または4Dp以下の距離離すことができる。
液相供給物流は複数の鉛直位置で導入することが望ましいが、液相供給物流の大半を反応媒体36および/または反応ゾーン28の下半分に導入すると反応媒体36中の酸化可能な化合物の分布が改善されることも見いだされた。さまざまな実施態様では、少なくとも約75重量%、または少なくとも90重量%の液相供給物流を反応媒体36および/または反応ゾーン28の下半分に導入することができる。それに加え、少なくとも約30重量%の液相供給物流を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約1.5Dp以内の位置で反応ゾーン28に導入することができる。酸化剤流が反応ゾーン28に導入されるこの最も低い鉛直位置は、一般には酸化剤スパージャー34の底部にある。しかしさまざまな実施態様では、酸化剤流を反応ゾーン28に導入するための別のさまざまな構成が考えられる。1つ以上の実施態様では、少なくとも約50重量%の液相供給物流を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約2.5Dp以内の位置で導入することができる。別の実施態様では、少なくとも約75重量%の液相供給物流を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約5Dp以内の位置で導入することができる。
それぞれの供給用開口部は、供給物が放出される開口面積を規定している。さまざまな実施態様では、あらゆる供給物入口の累積開口面積の少なくとも約30%を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約1.5Dp以内に位置させることができる。別の実施態様では、あらゆる供給物入口の累積開口面積の少なくとも約50%を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約2.5Dp以内に位置させることができる。さらに別の実施態様では、あらゆる供給物入口の累積開口面積の少なくとも約75%を、酸化剤流が反応ゾーン28に導入される鉛直方向の最低位置から約5Dp以内に位置させることができる。
やはり図1を参照すると、1つ以上の実施態様では、供給物入口32a、32b、32c、32dは、単に、容器シェル22の一方の側に沿って鉛直方向に並んだ一連の入口にすることができる。これらの供給物入口は、約7 cm未満、または約0.25〜約5 cmの範囲、または0.4〜2 cmの範囲の実質的に同様の直径を持つことができる。気泡塔反応器20には、各供給物入口から出る液相供給物流の流速を制御するシステムを取り付けることができる。このような流れ制御システムは、それぞれの供給物入口32a、32b、32c、32dのための個別の流れ制御弁74a、74b、74c、74dを備えることができる。それに加え、気泡塔反応器20には、液相供給物流の少なくとも一部を反応ゾーン28に少なくとも約2 m/秒、または少なくとも約5 m/秒、または少なくとも約6 m/秒、または8〜20 m/秒の範囲の大きな入口表面速度で導入できる流れ制御システムを取り付けることができる。この明細書では、“入口表面速度”という用語は、供給用開口部から出る供給物流の時間平均体積流速をその供給用開口部の面積で割った値を意味する。さまざまな実施態様では、少なくとも約50重量%の供給物流を反応ゾーン28に大きな入口表面速度で導入することができる。1つ以上の実施態様では、実質的にすべての供給物流を反応ゾーン28に大きな入口表面速度で導入することができる。
ここで図2を参照すると、第1の酸化反応器102と第2の酸化反応器104を備える反応器システム100が示されている。第1の酸化反応器102は、図1を参照して上に説明した気泡塔反応器20と実質的に同じ構成にして実質的に同じように操作することができる。
1つ以上の実施態様では、第1の酸化反応器102と第2の酸化反応器104は気泡塔反応器である。第1の酸化反応器102は、第1の反応容器106と第1の酸化剤スパージャー108を備えることができるのに対し、第2の酸化反応器104は、第2の反応容器110と下方酸化剤スパージャー112を備えることができる。あとでより詳しく説明するように、第2の酸化反応器104は、場合によっては1つ以上の上方酸化剤スパージャーも備えることができる。1つ以上の実施態様では、第1の反応容器106と第2の反応容器110は、それぞれ、一般に円筒形の構成の直立した側壁を備えることができる。第2の反応容器110の直立した側壁の最大高と第1の反応容器106の直立した側壁の最大高の比は、約0.1:1〜約0.9:1の範囲、または約0.2:1〜約0.8:1の範囲、または0.3:1〜0.7:1の範囲にすることができる。
第1の反応容器106は、その内部に第1の反応ゾーン116を規定しているのに対し、第2の反応容器110は、その内部に第2の反応ゾーン118を規定している。さまざまな実施態様では、第2の反応ゾーン118と第1の反応ゾーン116の最大水平断面積の比は、約0.01:1〜約0.75:1の範囲、または約0.02:1〜約0.5:1の範囲、または0.04:1〜0.3:1の範囲にすることができる。それに加え、第1の反応ゾーン116と第2の反応ゾーン118の体積比は、約1:1〜約100:1の範囲、または約4:1〜約50:1の範囲、または8:1〜30:1の範囲にすることができる。さらに、第1の反応ゾーン116は、最大鉛直高と最大水平直径の比を約3:1〜約30:1の範囲、または約6:1〜約20:1の範囲、または9:1〜15:1の範囲にすることができる。
図2に示してあるように、第2の反応ゾーン118は、最大鉛直長Lsと最大水平直径Dsを持つことができる。1つ以上の実施態様では、第2の反応ゾーン118は、最大鉛直長と最大水平直径の比“Ls:Ds”を約14:1〜約28:1の範囲、または約16:1〜約26:1の範囲、または約18:1〜約24:1の範囲、または約20:1〜約23:1の範囲、または21:1〜22:1の範囲にすることができる。さまざまな実施態様では、第2の反応ゾーン118のDsを約0.1〜約5 mの範囲、または約0.3〜約4 mの範囲、または1〜3 mの範囲にすることができる。さらに、第2の反応ゾーン118のLsを約1〜約100 mの範囲、または約3〜約50 mの範囲、または10〜40 mの範囲にすることができる。
図1を参照して上に説明した気泡塔反応器20と同様、第1の反応ゾーン116は、最大鉛直長Lpと最大水平直径Dpを持つことができる。さまざまな実施態様では、第2の反応ゾーン118の最大水平直径と第1の反応ゾーン116の最大水平直径の比“Ds:Dp”は、約0.05:1〜約0.8:1の範囲、または約0.1:1〜約0.6:1の範囲、または0.2:1〜0.5:1の範囲にすることができる。さらに、第2の反応ゾーン118の最大鉛直長と第1の反応ゾーン116の最大鉛直長の比“Ls:Lp”は、約0.03:1〜約1:1の範囲、または約0.1:1〜約0.9:1の範囲、または0.3:1〜0.8:1の範囲にすることができる。
さまざまな実施態様では、第2の酸化反応器104は、第1の酸化反応器102の近くに配置することができる(すなわち第1の酸化反応器102と第2の酸化反応器104の少なくとも一部が共通の高さ位置にある)。上に指摘したように、第1の酸化反応器102の第1の反応ゾーン116は、最大直径Dpを持つ。1つ以上の実施態様では、第2の反応ゾーン118の体積中心は、第1の反応ゾーン116の体積中心から少なくとも約0.5Dp、または0.75Dp、または1.0Dpかつ約30Dp未満、または10Dp未満、または3Dp未満の距離水平方向に離すことができる。
第1の反応容器106とその付属品に関してこの明細書に現われるあらゆるパラメータ(例えば高さ、幅、面積、体積、相対的な水平位置、相対的な鉛直位置)は、第1の反応容器106によって規定される第1の反応ゾーン116にも適用され、逆も同様である。さらに、第2の反応容器110とその付属品に関してこの明細書に現われるあらゆるパラメータは、第2の反応容器110によって規定される第2の反応ゾーン118にも適用され、逆も同様である。
反応器システム100が正常に動作しているとき、反応媒体120は、第1の酸化反応器102の第1の反応ゾーン116で最初に酸化させることができる。その後、反応媒体120aを第1の反応ゾーン116から取り出し、管105を通じて第2の反応ゾーン118に移すことができる。第2の反応ゾーン118では、反応媒体120bの液相および/または固相をさらに酸化することができる。さまざまな実施態様では、第1の反応ゾーン116から取り出された少なくとも約50重量%、または75重量%、または95重量%、または99重量%の液相および/または固相を第2の反応ゾーン118で処理することができる。頂部の気体は、第2の酸化反応器104の上方気体出口から出ることができ、管107を通じて第1の酸化反応器102に戻すことができる。反応媒体120bのスラリー相は第2の酸化反応器104の下方スラリー出口122から出ることができ、その後さらに下流で処理することができる。
入口管105は、第1の酸化反応器102の任意の高さ位置に取り付けることができる。図2には示していないが、望むのであれば、反応媒体120を機械で第2の反応ゾーン118にポンピングすることができる。しかし反応媒体120を第1の反応ゾーン116から管105を通じて第2の反応ゾーン118に入れるのに位置エネルギー(重力)を用いることもできる。したがって入口管105は、一端を、第1の反応ゾーン116の全高および/または全体積の上から50%、または30%、または20%、または10%の位置に接続することができる。別のさまざまな実施態様では、反応媒体120aが第1の酸化反応器102を出て入口管105に入るときに通過するスラリー出口(図示せず)は、第1の反応ゾーン116の通常の上端と通常の下端のそれぞれから少なくとも約0.1Lp、または少なくとも約0.2Lp、または少なくとも0.3Lpの距離離すことができる。
さまざまな実施態様では、入口管105の他端は、第2の反応ゾーン118の全高および/または全体積の上から30%、または20%、または10%、または5%の位置にあって流体流でつながっているスラリー入口(図示せず)に接続することができる。別の実施態様では、第2の酸化反応器104のスラリー入口は、第2の反応ゾーン118の底部から、約0.3 Ls〜約0.9 Lsの範囲、または約0.4 Ls〜約0.8 Lsの範囲、または約0.5 Ls〜約0.8Lsの範囲、または0.55 Ls〜0.6 Lsの範囲の距離離れた中位レベルのスラリー入口にすることができる。それに加え、第2の酸化反応器104のスラリー入口は、第2の反応ゾーンの底部から約9 Ds〜約15 Dsの範囲、または約10 Ds〜約14 Dsの範囲、または11Ds〜13 Dsの範囲の距離離すことができる。運転中は、中位レベルのスラリー入口を通じて反応媒体120aの少なくとも一部を第2の反応ゾーン118に導入することができる。さまざまな実施態様では、第2の反応ゾーン118に導入される反応媒体120aの全量の少なくとも5体積%、または少なくとも10体積%、または少なくとも20体積%、または少なくとも30体積%、または少なくとも50体積%、または少なくとも75体積%、または100体積%を中位レベルのスラリー入口を通じて導入することができる。
さまざまな実施態様では、入口管105は、水平にすること、および/または実質的に水平にすること、および/または第1の酸化反応器102から第2の酸化反応器104に向かって下向きにすることができる。1つ以上の実施態様では、入口管105は水平または実質的に水平であり、まっすぐまたは実質的にまっすぐにすることができる。したがって1つ以上の実施態様では、第1の酸化反応器102からのスラリー出口(図示せず)は、第2の酸化反応器104のスラリー入口(図示せず)と鉛直方向で同じか実質的に同じ高さに位置することができる。
さまざまな実施態様では、出口管107は、第2の酸化反応器104の任意の高さ位置に取り付けることができる。さまざまな実施態様では、出口管107は、入口管105を取り付けたよりも高い位置で第2の酸化反応器104に接続することができる。さらに、出口管107は、第2の酸化反応器104の頂部に取り付けることができる。出口管107は、入口管105を取り付けたよりも高い位置で第1の酸化反応器102に取り付けることができる。さまざまな実施態様では、出口管107は、第1の反応ゾーン116の全高および/または全体積の上から30%、または20%、または10%、または5%の位置に接続することができる。出口管107は、水平にすること、および/または第2の酸化反応器104から第1の酸化反応器102に向かって上向きにすることができる。図2には示していないが、出口管107は、第1の酸化反応器102の頂部から気体流出物を取り出す気体出口管に直接取り付けてもよい。
第1の反応ゾーン116の上端は、第2の反応ゾーン118の上端よりも上にあっても下にあってもよい。さまざまな実施態様では、第1の反応ゾーン116の上端は、第2の反応ゾーン118の上端から10 m上〜50 m下の範囲、または2 m下〜40 m下の範囲、または5m下〜30 m下の範囲にすることができる。第2の反応ゾーン118の下端は、第1の反応ゾーン116の下端よりも上にあっても下にあってもよい。さまざまな実施態様では、第1の反応ゾーン116の下端は、第2の反応ゾーン118の下端よりも約40m、または約20m、または約5m、または約2m上または下の範囲の高さに存在することができる。
下方スラリー出口122は、第2の酸化反応器104の任意の高さ位置から出ることができる。さまざまな実施態様では、下方スラリー出口122は、入口管105を取り付けたよりも低い位置で第2の酸化反応器104に接続することができる。さまざまな実施態様では、下方スラリー出口122は、図2に示したように第2の酸化反応器104の底部に取り付けることができる。
第2の酸化反応器104は、追加の分子酸素を第2の反応ゾーン118に放出することのできる少なくとも1つの酸化剤入口を備えることができる。1つ以上の実施態様では、第2の酸化反応器104は、少なくとも1つの法線方向により低い位置にある酸化剤入口と、少なくとも1つの法線方向により高い位置にある酸化剤入口を備えることができる。さまざまな実施態様では、法線方向により低い位置にある酸化剤入口は、第2の反応ゾーン118の底部から0.5Ls未満、または0.4Ls未満、または0.3Ls未満、または0.2Ls未満の距離離すことができる。それに加え、法線方向により高い位置にある酸化剤入口は、第2の反応ゾーン118の底部から少なくとも0.5Ls、または少なくとも0.6Ls、または少なくとも0.7Ls、または少なくとも0.8Ls、または少なくとも0.9Lsの距離離すことができる。1つ以上の実施態様では、第2の酸化反応器104は、法線方向により高い位置にある酸化剤入口を少なくとも2つ備えることができ、そのそれぞれは、第2の反応ゾーン118の底部から少なくとも0.5Ls、または少なくとも0.55Ls、または少なくとも0.6Ls、または少なくとも0.7Ls、または少なくとも0.8Ls、または少なくとも0.9Lsの距離離れている。それに加え、上に指摘したように、第2の酸化反応器104は、入口管105と流体流で通じたスラリー入口を備えることができる。さまざまな実施態様では、法線方向により高い位置にある酸化剤入口は、第2の酸化反応器104のスラリー入口から少なくとも0.4Ls、または少なくとも0.3Ls、または少なくとも0.2Ls、または少なくとも0.1Lsの距離離すことができる。別の実施態様では、法線方向により高い位置にある酸化剤入口は、スラリー入口よりも上方に0.4Ls未満、または0.3Ls未満、または0.2Ls未満、または0.1Ls未満の距離離すことができる。
運転中は、第2の反応ゾーン118に導入される気相酸化剤の第1の部分は、法線方向により高い位置にある酸化剤入口を通じて導入できるのに対し、気相酸化剤の第2の部分は、法線方向により低い位置にある酸化剤入口を通じて導入できる。さまざまな実施態様では、法線方向により高い位置にある酸化剤入口を通じて導入される気相酸化剤の第1の部分は、第2の反応ゾーン118に導入される気相酸化剤の全体積の約5〜約49%の範囲、または約5〜約35%の範囲、または約10〜約20%の範囲、または10〜15%の範囲を占めることができる。したがって法線方向により高い位置にある酸化剤入口と法線方向により低い位置にある酸化剤入口は、その両者の間に、気相酸化剤を第2の反応ゾーン118に導入するための完全自由領域を規定することができる。1つ以上の実施態様では、法線方向により高い位置にある酸化剤入口は、完全自由領域の約5〜約49%の範囲、または約5〜約35%の範囲、または約10〜約20%の範囲、または10〜15%の範囲を影響範囲とすることができる。
図2に示してあるように、上記の下方酸化剤入口は、下方酸化剤スパージャー112を備えることができる。それに加え、上記の上方酸化剤入口は、1つ以上の上方酸化剤スパージャー114a、114b、114cを備えることができる。ここで図3を参照すると、第2の酸化反応器104の切断線3-3による断面図が示されており、ここには特に上方酸化剤スパージャー114aが見られる。図3からわかるように、上方酸化剤スパージャー114aは、気相酸化剤を第2の反応ゾーン118に導入するための複数の酸化剤放出開口部124を備えることができる。図示していないが、上方酸化剤スパージャー114bと114cも、複数の酸化剤放出開口部を備えることができる。同様に、下方酸化剤スパージャー112も複数の酸化剤放出開口部を備えることができる。1つ以上の実施態様では、上方酸化剤スパージャー114a、114b、114cの酸化剤放出開口部124の少なくとも50%、または少なくとも60%、または少なくとも70%、または少なくとも80%、または少なくとも90%、または少なくとも95%、または少なくとも99%は、法線方向に下向きに気相酸化剤を放出する向きにすることができる。この明細書では、“下向き”という用語は、上方酸化剤スパージャー114a、114b、114cの法線方向に下側で下方に向かって鉛直方向から15°以内の任意の向きに延びることを意味する。さまざまな実施態様では、下方酸化剤スパージャー112の中に位置する酸化剤放出開口部の少なくとも50%、または少なくとも60%、または少なくとも70%、または少なくとも80%、または少なくとも90%、または少なくとも95%、または少なくとも99%は、法線方向に下向きに、および/または鉛直方向下方から45°または約45°離れた角度に向けて気相酸化剤を放出できる。
上に指摘したように、第2の反応ゾーン118に導入される気相酸化剤と反応媒体120aの少なくとも一部をまとめて反応媒体120bを形成することができる。1つ以上の実施態様では、反応媒体120bにとって酸素濃度の低いゾーンができるだけ少ないことが望ましい可能性がある。酸素濃度の低いゾーンのこのような最少化は、反応媒体120bの全体積を体積が同じ20個の個別の水平なスライスに理論的に分割することによって定量化できる。それぞれの水平なスライスは、最上部と最下部の水平なスライスを除き、反応器の側壁を両側の境界とし、想像上の水平面を上下の境界とする個別の体積である。最上部の水平なスライスは、想像上の水平面を底部の境界とし、反応媒体の上面(液体が満たされたカラムの場合には容器の上端)を頂部の境界としている。最下部の水平なスライスは、想像上の水平面を頂部の境界とし、容器の下端を底部の境界としている。さまざまな実施態様では、反応媒体120bの全体積を体積が同じ20個の個別の水平なスライスに理論的に分割するとき、隣り合ったどの2つのスライスも、合計した時間平均体積平均酸素濃度が7 ppmw未満、または8 ppmw未満、または9 ppmw未満、または10 ppmw未満でない。別の実施態様では、20個の水平なスライスのどれも、時間平均体積平均酸素濃度が7 ppmw未満、または8 ppmw未満、または9 ppmw未満、または10 ppmw未満でない。
再び図2を参照すると、一般に、供給物流、酸化剤流、還流物流を第1の酸化反応器102に導入する方法と、第1の酸化反応器102を操作する方法は、図1の気泡塔反応器20に関して上に説明したのと実質的に同じである。しかし第1の酸化反応器102(図2)と気泡塔反応器20(図1)の間の1つの違いは、第1の酸化反応器102が、下流での処理のために反応媒体120aのスラリー相を第1の反応容器106から直接放出できる出口を備えていないことである。むしろ第1の酸化反応器102は、反応媒体120aのスラリー相を最初に第2の酸化反応器104を通過させた後、反応器システム100から放出させる必要がある。上述のように、第2の酸化反応器104の第2の反応ゾーン118では、反応媒体120bをさらに酸化させてその反応媒体120bの液相および/または固相を精製しやすくする。
パラ-キシレンを反応ゾーン116に供給する1つの方法では、反応ゾーン116から出て第2の反応ゾーン118に入る反応媒体120aの液相は、一般に、少なくともいくらかのパラ-トルイル酸を含んでいる。さまざまな実施態様では、第2の反応ゾーン118に入るパラ-トルイル酸のかなりの部分を第2の反応ゾーン118で酸化することができる。したがって第2の反応ゾーン118から出る反応媒体120bの液相中のパラ-トルイル酸の時間平均濃度は、第2の反応ゾーン118に入る反応媒体120a/bの液相中のパラ-トルイル酸の時間平均濃度よりも低くすることができる。さまざまな実施態様では、第2の反応ゾーン118から出る反応媒体120bの液相中のパラ-トルイル酸の時間平均濃度は、第2の反応ゾーン118に入る反応媒体120a/bの液相中のパラ-トルイル酸の時間平均濃度の約50%未満、または約10%未満、または約5%未満にすることができる。第2の反応ゾーン118に入る反応媒体120a/bの液相中のパラ-トルイル酸の時間平均濃度は、少なくとも約250 ppmw、または約500〜6,000 ppmwの範囲、または1,000〜4,000 ppmwの範囲にすることができる。比較すると、第2の反応ゾーン118から出る反応媒体120bの液相中のパラ-トルイル酸の時間平均濃度は、約1,000 ppmw未満、または250 ppmw未満、または50 ppmw未満にすることができる。
反応媒体120bは第2の酸化反応器104の第2の反応ゾーン118で処理されるため、反応媒体120bの気体ホールド-アップは、反応媒体120bのスラリー相が第2の反応ゾーン118を通って下方に流れるにつれて小さくすることができる。さまざまな実施態様では、第2の反応ゾーン118に入る反応媒体120a/bと第2の反応ゾーン118から出る反応媒体120bの時間平均気体ホールド-アップ比は、少なくとも約2:1、または少なくとも10:1、または少なくとも25:1にすることができる。それに加え、第2の反応ゾーン118に入る反応媒体120a/bの時間平均気体ホールド-アップは、約0.4〜約0.9の範囲、または約0.5〜約0.8の範囲、または0.55〜0.7の範囲にすることができる。さらに、第2の反応ゾーン118から出る反応媒体120bの時間平均気体ホールド-アップは、約0.1未満、または0.05未満、または0.02未満にすることができる。1つ以上の実施態様では、第1の反応ゾーン116の中の反応媒体120aと第2の反応ゾーン118の中の反応媒体120bの時間平均気体ホールド-アップの比は、約1:1超、または約1.25:1〜約5:1の範囲、または1.5:1〜4:1の範囲にすることができる。ただしその気体ホールド-アップ値は、第1の反応ゾーン116と第2の反応ゾーン118の任意の高さで、および/または第1の反応ゾーン116と第2の反応ゾーン118の対応する任意の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の1/4の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の1/2の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の3/4の高さで測定される、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の全高にわたる平均値である。さまざまな実施態様では、第1の反応ゾーン116の中の反応媒体120aの部分の時間平均気体ホールド-アップは、約0.4〜約0.9の範囲、または約0.5〜約0.8の範囲、または0.55〜0.7の範囲にすることができる。ただしその気体ホールド-アップは、第1の反応ゾーン116の任意の高さで、および/または第1の反応ゾーン116の1/4の高さで、および/または第1の反応ゾーン116の1/2の高さで、および/または第1の反応ゾーン116の3/4の高さで測定される、および/または第1の反応ゾーン116の全高にわたる平均値である。それに加え、第2の反応ゾーン118の中の反応媒体120bの部分の時間平均気体ホールド-アップは、約0.01〜約0.6の範囲、または約0.03〜約0.3の範囲、または0.08〜0.2の範囲にすることができる。ただしその気体ホールド-アップは、第2の反応ゾーン118の任意の高さで、および/または第2の反応ゾーン118の1/4の高さで、および/または第2の反応ゾーン118の1/2の高さで、および/または第2の反応ゾーン118の3/4の高さで測定される、および/または第2の反応ゾーン118の全高にわたる平均値である。
反応媒体120の温度は、第1の反応ゾーン116と第2の反応ゾーン118においてほぼ同じにすることができる。さまざまな実施態様では、そのような温度は、約125〜約200℃の範囲、または約140〜約180℃の範囲、または150〜170℃の範囲にすることができる。しかし温度差が第1の反応ゾーン116の中に形成される可能性がある。これについては図4を参照してあとでより詳しく説明する。さまざまな実施態様では、同程度の温度差が、第2の反応ゾーン118の中と、第1の反応ゾーン116と第2の反応ゾーン118の間にも存在する可能性がある。こうした追加の温度勾配は、第2の反応ゾーン118で起こる化学反応、第2の反応ゾーン118への追加の酸化剤の導入、第1の反応ゾーン116と比較して第2の反応ゾーン118に存在する静圧と関係している。上に開示してあるように、さまざまな実施態様では、泡ホールド-アップは、第2の反応ゾーン118よりも第1の反応ゾーン116において大きくすることができる。したがって第1の反応ゾーン116における静圧は、第2の反応ゾーン118におけるよりも大きくすることができる。この圧力差は、液体またはスラリーの密度と、2つの反応ゾーンの間の泡ホールド-アップの差に依存する。この圧力差は、第2の反応ゾーン118の上端よりも下がるにつれて大きくなる。
図2からわかるように、反応器システム100に供給される全分子酸素の一部は、下方酸化剤スパージャー112を通じて、そして場合によってはさらに1つ以上の上方酸化剤スパージャー114a、114b、114cを通じて第2の酸化反応器104の第2の反応ゾーン118に導入される。さまざまな実施態様では、反応器システム100に供給される全分子酸素の大半を第1の反応ゾーン116に導入することができ、残りは第2の反応ゾーン118に導入される。1つ以上の実施態様では、反応器システム100に供給される全分子酸素の少なくとも約70モル%、または少なくとも約90モル%、または少なくとも約95モル%、または少なくとも約98モル%を第1の反応ゾーン116に導入することができる。さらに、第1の反応ゾーン116に導入される分子酸素の量と第2の反応ゾーン118に導入される分子酸素の量のモル比は、少なくとも約2:1、または約4:1〜約200:1の範囲、または10:1〜100:1の範囲にすることができる。溶媒および/または酸化可能な化合物(例えばパラ-キシレン)の幾分かは第2の反応ゾーン118に直接供給できるが、さまざまな実施態様では、反応器システム100に供給される溶媒および/または酸化可能な化合物の全量の約10重量%未満、または5重量%未満、または1重量%未満が第2の反応ゾーン118に直接供給される。
第1の反応容器106の第1の反応ゾーン116の中の反応媒体120aの体積、滞留時間、空間時間速度は、さまざまな実施態様では、第2の反応容器110の第2の反応ゾーン118の中の反応媒体120bの体積、滞留時間、空間時間速度よりも実質的に大きくすることができる。したがって反応器システム100に供給される酸化可能な化合物(例えばパラ-キシレン)の大半を第1の反応ゾーン116の中で酸化することができる。さまざまな実施態様では、反応器システム100の中で酸化されるあらゆる酸化可能な化合物の少なくとも80重量%、または少なくとも90重量%、または少なくとも95重量%を第1の反応ゾーン116の中で酸化することができる。
1つ以上の実施態様では、第1の反応ゾーン116の中の反応媒体120aの時間平均表面気体速度は、少なくとも約0.2 m/秒、または少なくとも約0.4 m/秒、または少なくとも約0.8 m/秒、または少なくとも約1 m/秒にすることができる。ただしその表面気体速度は、第1の反応ゾーン116の任意の高さで、および/または第1の反応ゾーン116の1/4の高さで、および/または第1の反応ゾーン116の1/2の高さで、および/または第1の反応ゾーン116の3/4の高さで測定される、および/または第1の反応ゾーン116の全高にわたる平均値である。第2の反応ゾーン118の中の反応媒体120bは第1の反応ゾーン116の中の反応媒体120aと同じ表面気体速度を持てるが、さまざまな実施態様では、第2の反応ゾーン118の中の反応媒体120bの時間平均表面気体速度は、第1の反応ゾーン116の中の反応媒体120aの時間平均表面気体速度よりも小さくすることができる。第2の反応ゾーン118におけるこの小さな表面気体速度は、例えば第1の反応ゾーン116と比べて第2の反応ゾーン118における分子酸素の需要を少なくすることによって可能になる。第1の反応ゾーン116の中の反応媒体120aと第2の反応ゾーン118の中の反応媒体120bの時間平均表面気体速度の比は、少なくとも約1.25:1、または少なくとも2:1、または少なくとも5:1にすることができる。ただしその表面気体速度は、第1の反応ゾーン116と第2の反応ゾーン118の任意の高さで、および/または第1の反応ゾーン116と第2の反応ゾーン118の対応する任意の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の1/4の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の1/2の高さで、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の3/4の高さで測定される、および/または第1の反応ゾーン116および/または第2の反応ゾーン118の全高にわたる平均値である。さまざまな実施態様では、第2の反応ゾーン118の中の反応媒体120bの時間平均表面気体速度は、約0.2 m/秒未満、または0.1 m/秒未満、または0.06 m/秒未満にすることができる。ただしその表面気体速度は、第2の反応ゾーン118の任意の高さで、および/または第2の反応ゾーン118の1/4の高さで、および/または第2の反応ゾーン118の1/2の高さで、および/または第2の反応ゾーン118の3/4の高さで測定される、および/または第2の反応ゾーン118の全高にわたる平均値である。表面気体速度がこのようにより小さいと、第2の反応ゾーン118の中で反応媒体120bのスラリー相の下向きの流れを作り出して押し出し流になるようにすることができる。例えばパラ-キシレンを酸化してTPAを形成しているとき、パラ-トルイル酸の液相流の相対的な鉛直方向の勾配は、第1の反応ゾーン116よりも第2の反応ゾーン118においてはるかに大きくすることができる。これは、第2の反応ゾーン118が、液体とスラリー組成物を軸方向に混合させる気泡塔であることを考えると驚くことではない。第2の反応ゾーン118の中の反応媒体120bのスラリー相(固体+液体)と液相の時間平均表面速度は、約0.2 m/秒未満、または約0.1 m/秒未満、または約0.06 m/秒未満にすることができる。ただしその表面速度は、第2の反応ゾーン118の任意の高さで、および/または第2の反応ゾーン118の1/4の高さで、および/または第2の反応ゾーン118の1/2の高さで、および/または第2の反応ゾーン118の3/4の高さで測定される、および/または第2の反応ゾーン118の全高にわたる平均値である。
さまざまな実施態様では、第2の反応ゾーン118の中に位置する反応媒体120bの液相は、少なくとも約1分間、または約2〜約60分間の範囲、または5〜30分間という第2の反応ゾーン118の中での質量平均滞留時間を持つことができる。
上述のように、図1を参照して上に説明したような気泡塔反応器のいくつかの物理的特徴と操作上の特徴により、処理される反応媒体の圧力、温度、反応媒体(すなわち酸素と酸化可能な化合物)の濃度に鉛直方向の勾配が与えられる。上述のように、こうした鉛直方向の勾配により、従来の酸化法と比べてより効率的かつ経済的な酸化法を提供することができ、全体を通じて比較的一様な圧力、温度、反応媒体の濃度になったよく混合された反応媒体になることが促進される。本発明の一実施態様による酸化システムを利用することで、酸素、酸化可能な化合物(例えばパラ-キシレン)、温度の鉛直方向の勾配が可能になることを、これからより詳しく説明する。
ここで図4を参照すると、気泡塔反応器の中で酸化しているときの反応媒体中に存在する濃度勾配を定量化するため、反応媒体の全体積を体積が同じ30個の個別の水平なスライスに理論的に分割することができる。図4は、反応媒体を体積が同じ30個の個別の水平なスライスに分割する考え方を示している。それぞれの水平なスライスは、最上部と最下部の水平なスライスを除き、反応器の側壁を両側の境界とし、想像上の水平面を上下の境界とする個別の体積である。最上部の水平なスライスは、想像上の水平面を底部の境界とし、反応媒体の上面を頂部の境界としている。最下部の水平なスライスは、想像上の水平面を頂部の境界とし、容器シェルの底部を底部の境界としている。反応媒体が体積が同じ30個の個別の水平なスライスに理論的に分割されると、それぞれの水平なスライスの時間平均体積平均濃度を明らかにすることができる。全部で30個ある水平なスライスの中で最高の濃度を持つ個別の水平なスライスは、“C最大の水平なスライス”と認定することができる。C最大の水平なスライスよりも上に位置していて、C最大の水平なスライスよりも上に位置するすべての水平なスライスのうちで最低の濃度を持つ個別の水平なスライスは、“C最低の水平なスライス”と認定することができる。すると鉛直方向の濃度勾配は、C最大の水平なスライスの濃度とC最低の水平なスライスの濃度の比として計算することができる。
酸素濃度勾配の定量化に関し、反応媒体を体積が同じ30個の個別の水平なスライスに理論的に分割するとき、O2最大の水平なスライスは、全部で30個ある水平なスライスのうちで酸素濃度が最大のものと認定され、O2最低の水平なスライスは、O2最大の水平なスライスよりも上に位置する水平なスライスのうちで酸素濃度が最低のものと認定される。水平なスライスの酸素濃度は、反応媒体の気相中で、時間平均体積平均モル湿潤ベースで測定される。さまざまな実施態様では、O2最大の水平なスライスの酸素濃度とO2最低の水平なスライスの酸素濃度の比は、約2:1〜約25:1の範囲、または約3:1〜約15:1の範囲、または4:1〜10:1の範囲にすることができる。
一般に、O2最大の水平なスライスは、反応媒体の底部近くに位置することになるのに対し、O2最低の水平なスライスは、反応媒体の頂部近くに位置することになる。1つ以上の実施態様では、O2最低の水平なスライスは、30個の個別の水平なスライスのうちの最も上にある5個の水平なスライスのうちの1つである可能性がある。それに加え、O2最低の水平なスライスは、図4に示してあるように、30個の個別の水平なスライスのうちの最も上にある水平なスライスである可能性がある。さまざまな実施態様では、O2最大の水平なスライスは、30個の個別の水平なスライスのうちの最も下にある10個の水平なスライスのうちの1つである可能性がある。それに加え、O2最大の水平なスライスは、30個の個別の水平なスライスのうちの最も下にある5個の水平なスライスのうちの1つである可能性がある。例えば図4では、反応器の底部から3番目の水平なスライスをO2最大の水平なスライスとしてある。1つ以上の実施態様では、O2最低の水平なスライスとO2最大の水平なスライスの鉛直方向の間隔は、少なくとも約2Wp、または少なくとも約4Wp、または少なくとも6Wpにすることができる。それに加え、O2最低の水平なスライスとO2最大の水平なスライスの鉛直方向の間隔は、少なくとも約0.2Hp、または少なくとも約0.4Hp、または少なくとも0.6Hpにすることができる。
O2最低の水平なスライスの湿潤ベースでの時間平均体積平均酸素濃度は、約0.1〜約3モル%の範囲、または約0.3〜約2モル%の範囲、または0.5〜1.5モル%の範囲にすることができる。O2最大の水平なスライスの時間平均体積平均酸素濃度は、約4〜約20モル%の範囲、または約5〜約15モル%の範囲、または6〜12モル%の範囲にすることができる。反応容器から気体出口を通じて放出される気相流出物の中の乾燥ベースでの酸素の時間平均濃度は、約0.5〜約9モル%の範囲、または約1〜約7モル%の範囲、または1.5〜5モル%の範囲にすることができる。
酸素濃度は反応媒体の頂部に向かって急速に小さくなるため、反応媒体の頂部では酸素の需要を減らすことができる。反応媒体の頂部でこのように酸素の需要を少なくすることは、酸化可能な化合物(例えばパラ-キシレン)の濃度に鉛直方向の勾配を作り出すことによって可能である。なお酸化可能な化合物の最低濃度は、反応媒体の頂部付近で見られる。
酸化可能な化合物(OC)(例えばパラ-キシレン)の濃度勾配の定量化に関し、反応媒体を体積が同じ30個の個別の水平なスライスに理論的に分割するとき、OC最大の水平なスライスは、全部で30個ある水平なスライスのうちで酸化可能な化合物の濃度が最大のものと認定され、OC最低の水平なスライスは、OC最大の水平なスライスよりも上に位置する水平なスライスのうちで酸化可能な化合物の濃度が最低のものと認定される。水平なスライスの酸化可能な化合物の濃度は、液相中で、時間平均体積平均質量分率をベースとして測定される。さまざまな実施態様では、OC最大の水平なスライスの酸化可能な化合物の濃度とOC最低の水平なスライスの酸化可能な化合物の濃度の比は、約5:1よりも大きくすること、または約10:1よりも大きくすること、または約20:1よりも大きくすること、または40:1〜1000:1の範囲にすることができる。
一般に、OC最大の水平なスライスは、反応媒体の底部近くに位置することになるのに対し、OC最低の水平なスライスは、反応媒体の頂部近くに位置することになる。1つ以上の実施態様では、OC最低の水平なスライスは、30個の個別の水平なスライスのうちの最も上にある5個の水平なスライスのうちの1つである可能性がある。それに加え、OC最低の水平なスライスは、図4に示してあるように、30個の個別の水平なスライスのうちの最も上にある水平なスライスである可能性がある。さまざまな実施態様では、OC最大の水平なスライスは、30個の個別の水平なスライスのうちの最も下にある10個の水平なスライスのうちの1つである可能性がある。それに加え、OC最大の水平なスライスは、30個の個別の水平なスライスのうちの最も下にある5個の水平なスライスのうちの1つである可能性がある。例えば図4では、反応器の底部から5番目の水平なスライスをOC最大の水平なスライスとしてある。さまざまな実施態様では、OC最低の水平なスライスとOC最大の水平なスライスの鉛直方向の間隔は、少なくとも約2Wp(ただし“Wp”は、反応媒体の最大幅である)、または少なくとも約4Wp、または少なくとも6Wpにすることができる。反応媒体の高さ“Hp”が与えられると、OC最低の水平なスライスとO2最大の水平なスライスの鉛直方向の間隔は、少なくとも約0.2Hp、または少なくとも約0.4Hp、または少なくとも0.6Hpにすることができる。
OC最低の水平なスライスの液相中の酸化可能な化合物(例えばパラ-キシレン)の時間平均体積平均濃度は、約5,000 ppmw未満、または約2,000 ppmw未満、または約400 ppmw未満、または1 ppmw〜100 ppmwの範囲にすることができる。OC最大の水平なスライスの液相中の酸化可能な化合物の時間平均体積平均濃度は、約100 ppmw〜約10,000 ppmwの範囲、または約200 ppmw〜約5,000 ppmwの範囲、または500 ppmw〜3,000 ppmwの範囲にすることができる。
気泡塔反応器は酸化可能な化合物の濃度に鉛直方向の勾配を与えることができるが、液相中の酸化可能な化合物の濃度が1,000 ppmwを超える反応媒体の体積%も最小にすることができる。さまざまな実施態様では、液相中の酸化可能な化合物の濃度が1,000 ppmwを超える反応媒体の時間平均体積%は、約9%未満、または約6%未満、または3%未満にすることができる。それに加え、液相中の酸化可能な化合物の濃度が2,500 ppmwを超える反応媒体の時間平均体積%は、約1.5%未満、または約1%未満、または0.5%未満にすることができる。さらに、液相中の酸化可能な化合物の濃度が10,000 ppmwを超える反応媒体の時間平均体積%は、約0.3%未満、または約0.1%未満、または0.03%未満にすることができる。また、液相中の酸化可能な化合物の濃度が25,000 ppmwを超える反応媒体の時間平均体積%は、約0.03%未満、または約0.015%未満、または0.007%未満にすることができる。発明者は、酸化可能な化合物のレベルが高い反応媒体の体積が単一の連続体積の中に存在していなくてもよいことを指摘する。多くの場合、気泡塔反応器の中のカオス的な流れパターンにより、酸化可能な化合物のレベルが高い反応媒体の連続しているが個別の2つ以上の部分が同時に生成する。時間平均で使用するたびごとに、全反応媒体の0.0001体積%よりも大きいそのような連続しているが個別のすべての体積を足し合わせ、液相中で酸化可能な化合物のレベルが高い全体積を明らかにする。
上に説明した酸素と酸化可能な化合物の濃度勾配に加え、反応媒体には温度勾配が存在できる。再び図4を参照すると、この温度勾配は、体積が同じ30個の個別の水平なスライスに理論的に分割することにより、濃度勾配と同様の方法で各スライスの時間平均体積平均温度を測定して定量化することができる。最も下にある15個の水平なスライスの内で温度が最低の水平なスライスは、T最低の水平なスライスと認定することができ、T最低の水平なスライスよりも上に位置していてT最低の水平なスライスよりも上にあるすべてのスライスのうちで最高温度を持つ水平なスライスは、T最高の水平なスライスと認定することができる。さまざまな実施態様では、T最高の水平なスライスの温度は、T最低の水平なスライスよりも少なくとも約1℃高くすること、またはT最低の水平なスライスよりも約1.25〜約12℃の範囲高くすること、またはT最低の水平なスライスよりも約2〜8℃の範囲高くすることができる。T最高の水平なスライスの温度は、約125〜約200℃の範囲、または約140〜約180℃の範囲、または150〜170℃の範囲が可能である。
一般に、T最高の水平なスライスの温度は、反応媒体の中心付近に位置するのに対し、T最低の水平なスライスは、反応媒体の底部付近に位置することになる。さまざまな実施態様では、T最低の水平なスライスは、最も下にある15個の水平なスライスのうちの下側10個の水平なスライスのうちの1つ、または最も下にある15個の水平なスライスのうちの下側5個の水平なスライスのうちの1つである可能性がある。例えば図4には、反応器の底部から2番目の水平なスライスをT最低の水平なスライスとして示してある。さまざまな実施態様では、T最高の水平なスライスは、30個の個別の水平なスライスのうちの中央の20個の水平なスライスのうちの1つ、または30個の個別の水平なスライスのうちの中央の14個の水平なスライスのうちの1つである可能性がある。例えば図4には、反応器の底部から20番目の水平なスライス(すなわち中央の10個のスライスのうちの1つ)をT最高の水平なスライスとして示してある。T最低の水平なスライスとT最高の水平なスライスの鉛直方向の間隔は、少なくとも約2Wp、または少なくとも約4Wp、または少なくとも6Wpにすることができる。T最低の水平なスライスとT最高の水平なスライスの鉛直方向の間隔は、少なくとも約0.2Hp、または少なくとも約0.4Hp、または少なくとも0.6Hpにすることができる。
上に説明したように、反応媒体に鉛直方向の温度勾配が存在するときには、反応媒体の温度が最高である高い位置にある反応媒体を取り出すことが、特に取り出される生成物をより高温にてさらに下流で処理する場合に有利である可能性がある。したがって図2に示してあるように反応媒体120を反応ゾーンから1つ以上の高い出口を通じて取り出すとき、その高い出口は、T最高の水平なスライスの近くに位置させることができる。さまざまな実施態様では、高い出口は、T最高の水平なスライスから水平なスライス10個以内に位置させること、またはT最高の水平なスライスから水平なスライス5個以内に位置させること、またはT最高の水平なスライスから水平なスライス2個以内に位置させることができる。
この明細書に記載した本発明の特徴の多くは、単一の酸化反応器を使用するシステムだけでなく、多くの酸化反応器システムでも利用できることに注意されたい。それに加え、この明細書に記載した本発明の特徴のいくつかは、泡で撹拌する反応器(すなわち気泡塔反応器)だけでなく、機械式撹拌および/または流れによる撹拌を行なう酸化反応器で利用することができる。例えば発明者は、反応媒体全体を通じて酸素濃度および/または酸素消費速度を段階化すること/変えることに伴ういくつかの利点を見いだした。反応媒体中の酸素濃度および/または酸素消費速度の段階化によって実現される利点は、反応媒体の全体積が単一の容器に含まれているか複数の容器に含まれているかに関係なく実現できる。さらに、反応媒体中の酸素濃度および/または酸素消費速度の段階化によって実現される利点は、反応容器が機械式撹拌であること、および/または流れによる撹拌であること、および/または泡による撹拌であることとは関係なく実現できる。
反応媒体中の酸素の濃度および/または消費速度を定量化する1つの方法は、反応媒体の2つ以上の個別の20%の連続体積と比較することである。20%の連続体積は、何らかの特定の形によって規定する必要はない。しかしそれぞれの20%の連続体積は、反応媒体の連続した体積で形成されていなければならず(すなわち各体積は“連続である”)、互いに重複してはならない(すなわちその体積は“離散している”)。20%の連続体積は、同じ反応容器の中、または複数の反応容器の中に位置させることができる。ここで図5を参照すると、第1の20%の連続体積37と第2の20%の連続体積39を含む反応媒体を収容した気泡塔反応器が示されている。
反応媒体中で利用できる酸素の段階化は、反応媒体のうちで気相状態の酸素のモル分率が最も高い20%の連続体積と、反応媒体ののうちで気相状態の酸素のモル分率が最も低い20%の連続体積を参照することによって定量化できる。反応媒体のうちで最も高濃度の酸素を含む個別の20%の連続体積の気相中では、湿潤ベースの時間平均体積平均酸素濃度は、約3〜約18モル%の範囲、または約3.5〜約14モル%の範囲、または4〜10モル%の範囲が可能である。反応媒体のうちで最も低濃度の酸素を含む個別の20%の連続体積の気相中では、湿潤ベースの時間平均体積平均酸素濃度は、約0.3〜約5モル%の範囲、または約0.6〜約4モル%の範囲、または0.9〜3モル%の範囲が可能である。さらに、反応媒体のうちで酸素が最も豊富な20%の連続体積と反応媒体のうちで酸素が最も欠乏した20%の連続体積における湿潤ベースでの時間平均体積平均酸素濃度の比は、約1.5:1〜約20:1の範囲、または約2:1〜約12:1の範囲、または3:1〜9:1の範囲にすることができる。
反応媒体中の酸素消費速度の段階化は、最初のほうの部分に記載した酸素-STRに関して定量化できる。酸素-STRは、前には全体的な意味で(すなわち反応媒体全体の平均酸素-STRの観点から)説明したが、反応媒体全体を通じた酸素消費の段階化を定量化するために局所的な意味でも考えることができる。
発明者は、反応媒体中の圧力と反応媒体の気相中の分子酸素のモル分率に関してこの明細書に開示した望ましい勾配と全体的に調和するように酸素-STRを反応媒体全体で変化させると有用である可能性があることを見いだした。例えばさまざまな実施態様では、反応媒体の第1の個別の20%の連続体積と反応媒体の第2の個別の20%の連続体積の比は、約1.5:1〜約20:1の範囲、または約2:1〜約12:1の範囲、または3:1〜9:1の範囲にすることができる。一実施態様では、“第1の個別の20%の連続体積”は、“第2の個別の20%の連続体積”よりも、分子酸素が反応媒体の中に最初に導入される位置の近くに配置することができる。酸素-STRのこうした大きな勾配は、部分的に酸化する反応媒体が気泡塔酸化反応器に含まれていようが、反応媒体の気相中の分子酸素の圧力および/またはモル分率に勾配が生じる他のどのようなタイプの反応容器(例えば、鉛直方向に配置された複数の撹拌ゾーンを備える機械式撹拌容器の中で、鉛直方向に配置された各撹拌ゾーンの中では酸化剤流のかなりの逆混合が起こる可能性があり、鉛直方向に隣り合って配置された撹拌ゾーンの間では酸化剤流のいくらかの逆混合が起こる可能性があるにもかかわらず、反応容器の下部に近い供給源から一般に上方に向かって上昇する酸化剤流が存在していて、おそらくは一般に水平なバッフル組立体によって増大する強力な径方向の流れを持つ複数の羽根を用いることによって実現される)に含まれていようが、望ましい可能性がある。すなわち、反応媒体の気相中の分子酸素の圧力および/またはモル分率に勾配が存在するときには、溶けた酸素の化学的需要に同様の勾配を作り出すと望ましい可能性があることを発明者は見いだした。
局所的な酸素-STRを変化させる1つの方法は、この明細書の他の開示内容に従い、酸化可能な化合物を供給する位置を制御し、さらに反応媒体の液相の混合を制御することによって酸化可能な化合物の濃度勾配を制御するというものである。局所的な酸素-STRを変化させる別の有用な手段には、(例えば追加の気体を導入して反応媒体の特定の一部を蒸発させて冷却することによって、および/またはより多くの水を含む溶媒流を添加して反応媒体の特定の一部の活性を低下させることによって)局所的に温度を変化させることと、触媒成分と溶媒成分の局所的混合を変化させることによって反応活性を変化させることが含まれる。
ここで図6を参照すると、第1の酸化反応器200aと第2の酸化反応器200bを備える酸化反応器システム200を用いて精製されたテレフタル酸(“PTA”)の製造方法が示されている。図6に示した構成では、第1のスラリーを第1の酸化反応器200aから製造することができ、その後そのスラリーを、第2の酸化反応器200bを含む精製システム202の中で精製することができる。第1の酸化反応器200aから取り出された第1のスラリーは、固体の粗テレフタル酸(“CTA”)粒子と母液を含んでいる可能性がある。一般に、第1のスラリーは、約10〜約50重量%の範囲の固体CTA粒子を含んでいる可能性があり、残りが母液である。第1の酸化反応器200aから取り出された第1のスラリーの中に存在する固体CTA粒子は、少なくとも約400 ppmwの4-カルボキシベンズアルデヒド(“4-CBA”)、または少なくとも約800 ppmwの4-CBA、または1,000〜15,000 ppmwの4-CBAを含んでいる可能性がある。
精製システム202は、第1の酸化反応器200aから取り出された第1のスラリーを受け入れ、CTAの中に存在する4-CBAとそれ以外の不純物の濃度を下げる。より純粋な/精製されたスラリーは精製システム202から製造され、分離システム204で分離して乾燥させることができる。すると約400 ppmw未満、または約250 ppmw未満、または10〜200 ppmwの範囲の4-CBAを含むより純粋なテレフタル酸粒子が得られる。
精製システム202は、第2の酸化反応器200bと、温浸器206と、単一の結晶化装置208を備えている。第2の酸化反応器200bでは、第1のスラリーが、図2の第2の酸化反応器104を参照して上に説明したような条件で酸化される。第2の酸化反応器200bを出たスラリーは温浸器206に導入される。温浸器206では、第1の酸化反応器200aで用いたよりもわずかに高い温度でさらに酸化反応を実施することができる。
第1の酸化反応器200aで製造されるCTAは表面積が大きく、粒径が小さく、密度が小さいため、CTA粒子の中にいくつかの不純物を捕捉し、温浸器206の中での酸化に利用することができる。そのとき温浸器206の中でCTA粒子を完全に溶解させる必要はない。したがって温浸器206内の温度を多くの似た従来法よりも低くすることができる。温浸器206の中でさらに酸化すると、CTAに含まれる4-CBAの濃度を少なくとも200ppmw、または少なくとも400ppmw、または600〜6,000 ppmwの範囲だけ減らすことができる。温浸器206内の温浸温度は、反応器200a内の第1の酸化温度よりも少なくとも約10℃高くすること、または反応器200a内の第1の酸化温度よりも約20〜約80℃高くすること、または反応器200a内の第1の酸化温度よりも30〜50℃高くすることができる。温浸温度は、約160〜約240℃の範囲、または約180〜約220℃の範囲、または190〜210℃の範囲が可能である。さまざまな実施態様では、温浸器206からの精製された生成物は、結晶化装置208の中で1回の結晶化ステップを必要とするだけであり、その後分離システム204で分離する。適切な第2の酸化/温浸法は、アメリカ合衆国特許第7,132,566号にさらに詳しく記載されている(その開示内容の全体が参考としてこの明細書に明示的に組み込まれている)。
図6に示したシステムで製造されるテレフタル酸(“PTA”)は、平均粒径が少なくとも約40マイクロメートル(μm)、または約50〜約2,000μmの範囲、または60〜200μmの範囲のPTA粒子で形成することができる。PTA粒子は、約0.25 m2/g未満、または約0.005〜約0.2 m2/gの範囲、または0.01〜0.18 m2/gの範囲の平均BET表面積を持つことができる。図6に示したシステムで製造されるPTAは、PETを製造する際の供給原料として用いるのに適している。一般に、PETは、エチレングリコールを用いてテレフタル酸をエステル化した後、縮重合させることによって製造される。さまざまな実施態様では、本発明の一実施態様によって製造されるテレフタル酸を、アメリカ合衆国特許第6,861,494号に記載されているパイプ反応器PET法(その開示内容の全体が参考としてこの明細書に明示的に組み込まれている)への供給源として用いることができる。
この明細書に開示した形態を持つCTA粒子は、上記の酸化温浸法において4-CBAの含有量を減らすのに特に有用である可能性がある。それに加え、CTA粒子は、その粒子の溶解および/または化学反応を含む他のさまざまな後処理において利点を提供することができる。そうした追加の後処理として、少なくとも1種類のヒドロキシル含有化合物と反応させてエステル化合物を形成すること(特にCTAをメタノールと反応させてテレフタル酸ジメチルと不純物のエステルを形成すること);少なくとも1種類のジオールと反応させてエステル・モノマー化合物および/またはポリマー化合物を形成すること(特にCTAをエチレングリコールと反応させてポリテレフタル酸エチレン(PET)を形成すること);溶媒(水、酢酸、N-メチル-2-ピロリドンなどがあるが、これだけに限定されない)に完全に、または部分的に溶かすことなどがあるが、これだけに限定されない。後処理には、さらなる処理、例えばより純粋なテレフタル酸の再沈殿および/またはカルボン酸基以外のカルボニル基の選択的化学反応などが含まれるが、これだけに限定されない。特に、水を含む溶媒にCTAを実質的に溶かすことと部分的な水素添加を組み合わせ、アルデヒド(特に4-CBA)、および/またはフルオレノン、および/またはフェノン、および/またはアントラキノンの量を減らすことが含まれる。
定義
以下の記載では、定義する用語の全リストを意図してはいないことを理解されたい。上記の説明では他の定義が与えられている可能性もある。それは例えば、定義した用語が文脈の中で使用されるときである。
この明細書では、“1つの”や“その”という単語は、1つ以上を意味する。
この明細書では、2つ以上の事項のリストで用いるときの“および/または”という単語は、そのリストにある事項のうちのどれかを単独で使用できること、またはそのリストにある事項のうちの任意の組み合わせを使用できることを意味する。例えばある組成物が成分Aおよび/またはBおよび/またはCを含んでいると記載されている場合、その組成物はAだけを含むこと、またはBだけを含むこと、またはCだけを含むこと、またはAとBを組み合わせて含むこと、またはAとCを組み合わせて含むこと、またはBとCを組み合わせて含むこと、またはAとBとCを組み合わせて含むことができる。
この明細書では、“備えている”、“備える”という単語は、この単語の前に記載されている主語から、この単語のあとに記載されている1つ以上の要素に移行するのに用いられる移行語であり、数の制限がないため、この移行語のあとに挙げられている1つまたは複数の要素だけが主語を構成している必要はない。
この明細書では、“有する”、“持つ”という単語は、上に示した“備えている”、“備える”という単語と同じで数の制限がない。
この明細書では、“含んでいる”、“含む”という単語は、上に示した“備えている”、“備える”という単語と同じで数の制限がない。
数値範囲
本明細書では、発明に関係する所定のパラメータを定量化するのに数値範囲を利用する。数値範囲が与えられている場合には、そのような範囲は、範囲の下限だけを記載している請求項の制限と、範囲の上限だけを記載している請求項の制限を文字通り裏付けているものと理解されたい。例えば開示されているのが10〜100という数値範囲である場合、“10超”(上限なし)と記載している請求項と、“100未満”(下限なし)と記載している請求項を文字通り裏付けている。
本明細書では、本発明に関係するいくつかのパラメータを定量化するのに、ある数値範囲の一部であることが明示されてはいない具体的な数値を利用する。この明細書で与えた具体的な各数値は、広い範囲、中間範囲、狭い範囲を文字通り裏付けていると理解すべきである。具体的な各数値に付随する広い範囲は、その数値±その数値の60%を有効数字2桁に丸めた数値である。具体的な各数値に付随する中間範囲は、その数値±その数値の30%を有効数字2桁に丸めた数値である。具体的な各数値に付随する狭い範囲は、その数値±その数値の15%を有効数字2桁に丸めた数値である。例えば明細書に62°Fという具体的な数値が記載されている場合、そのような記載は、25°F 〜99°Fという広い範囲(62°F±37°F)、43°F 〜81°Fという中間範囲(62°F±19°F)、53°F〜71°Fという狭い範囲(62°F±9°F)を文字通り裏付けている。これらの広い範囲、中間範囲、狭い範囲は、具体的な数値に適用されるだけでなく、これらの具体的な数値の差にも適用されるべきである。明細書に110 psiaという第1の圧力と48 psiaという第2の圧力(差は62 psi)が記載されている場合、これら2つの流れの圧力差についての広い範囲、中間範囲、狭い範囲は、それぞれ25〜99 psi、43〜81 psi、53〜71 psiになろう。
開示されていない実施態様には限定されない請求項
上に説明した本発明の形態は説明のためにだけ利用されるべきであり、本発明の範囲を解釈するために制限する意味で利用してはならない。上記の実施態様に対する改変は、当業者であれば、本発明の精神を逸脱することなく容易に実施できよう。

Claims (22)

  1. スラリーを気相酸化剤と接触させることによってポリカルボン酸を製造するためのシステムであって、このシステムが、
    第1のスラリー出口を有する第1の酸化反応器と;
    スラリー入口と第2のスラリー出口を有する第2の酸化反応器を備えていて、
    前記スラリー入口が、前記第1のスラリー出口に下流方向の流体流で通じていて、
    前記第2の酸化反応器が、最大長Lsと最大直径Dsを有する第2の反応ゾーンを含み、
    前記スラリー入口が、前記第2の反応ゾーンの底部から0.3Ls〜0.9Lsの範囲の距離離れており、
    前記第2の酸化反応器が、法線方向により高い位置にある前記スラリー入口から0.4 Ls未満離れた酸化剤入口を含み、
    前記第2の酸化反応器が、法線方向により低い位置にある前記第2の反応ゾーンの底部から0.3Ls未満離れた酸化剤入口を含む、前記システム。
  2. 前記第1の酸化反応器が酸化剤スパージャーを具備した反応ゾーンを含み、前記酸化剤スパージャーが該反応ゾーンの下部に位置した第1の酸化剤スパージャーからなる、請求項1に記載のシステム。
  3. 前記法線方向により高い位置にある酸化剤入口が、前記第2の反応ゾーンの底部から少なくとも0.5Ls離れている、請求項1に記載のシステム。
  4. 前記第1の酸化反応器が、最大長Lpと最大直径Dpを有する反応ゾーンを含み、かつ、比率Lp/Dpが6/1〜30/1の範囲内にある、請求項2に記載のシステム。
  5. 前記スラリー入口が、前記第2の反応ゾーンの底部から0.5Ls〜0.8Lsの範囲の距離離れている、請求項1に記載のシステム。
  6. 前記スラリー入口が、前記第2の反応ゾーンの底部から9Ds〜15Dsの範囲の距離離れている、請求項1に記載のシステム。
  7. 前記第2の反応ゾーンが14:1〜28:1の範囲のLs:Ds比を有する、請求項1に記載のシステム。
  8. 前記第1のスラリー出口と前記スラリー入口とが鉛直方向で実質的に同じ高さに位置し、かつ、前記第1のスラリー出口と前記スラリー入口とが実質的にまっすぐで実質的に水平な導管を介して流体連絡している、請求項1に記載のシステム。
  9. 前記第1の酸化反応器が気泡塔反応器であり、かつ、前記第2の酸化反応器が気泡塔反応器である、請求項1に記載のシステム。
  10. 前記第1のスラリー出口が、前記第1の反応ゾーンの法線方向に上端と法線方向に下端のそれぞれから少なくとも0.1Lp離れている、請求項4に記載のシステム。
  11. 前記第1の反応ゾーンと前記第2の反応ゾーンの体積比が4:1〜50:1の範囲である、請求項10に記載のシステム。
  12. ポリカルボン酸組成物を製造する方法であって、この方法が、
    (a)第1の酸化反応器の中に規定されている第1の反応ゾーンにおいて、酸化可能な化合物を含む第1の多相反応媒体を酸化することによって第1のスラリーを製造し;
    (b)第2の酸化反応器の中に規定されている第2の反応ゾーンにおいて、前記第1のスラリーの少なくとも一部を気相酸化剤と接触させることにより第2のスラリーを製造する操作を含んでいて、
    前記第2の反応ゾーンが最大長Lsと最大直径Dsを持ち、
    法線方向により高い位置にある前記スラリー入口から0.4 Ls未満離れた酸化剤入口を含み、
    法線方向により低い位置にある前記第2の反応ゾーンの底部から0.3Ls未満離れた酸化剤入口を含み、
    前記第1のスラリーの少なくとも一部が、前記第2の反応ゾーンの底部から0.3Ls〜0.94Lsの範囲の距離離れたスラリー入口領域で前記第2の反応ゾーンに導入される方法。
  13. 前記第1の酸化反応器が酸化剤スパージャーを具備した反応ゾーンを含み、前記酸化剤スパージャーが該反応ゾーンの下部に位置した第1の酸化剤スパージャーからなる、請求項12に記載の方法。
  14. 前記第1の酸化剤入口が、前記第2の反応ゾーンの底部から少なくとも0.5Ls離れている、請求項13に記載の方法。
  15. 前記第1の酸化反応器が、最大長Lpと最大直径Dpを有する反応ゾーンを含み、かつ、比率Lp/Dpが6/1〜30/1の範囲内にある、請求項13に記載の方法。
  16. 前記第1のスラリーの少なくとも75質量%が前記スラリー入口領域にて前記第2の反応ゾーンに導入され、前記スラリー入口領域が、前記第2の反応ゾーンの底部から0.5Ls〜0.8Lsの範囲の距離離れている、請求項12に記載の方法。
  17. 前記気相酸化剤の少なくとも一部と前記第1のスラリーの少なくとも一部が前記第2の反応ゾーンの中で合わさって第2の多相反応媒体を形成し、その第2の多相反応媒体の全体積を体積が同じ20個の個別の水平なスライスに理論的に分割するとき、隣り合ったどの2つの水平なスライスも、合計した時間平均体積平均酸素含量が7重量部/100万(“ppmw”)未満でない、請求項12に記載の方法。
  18. 前記水平なスライスのうち時間平均体積平均酸素含量が7ppmw未満であるものはない、請求項17に記載の方法。
  19. 前記第1のスラリーと前記第2のスラリーが、それぞれ、液相のパラ-トルイル酸を含んでおり、前記第2のスラリーに含まれる液相パラ-トルイル酸の時間平均体積平均濃度が、前記第1のスラリーに含まれる液相パラ-トルイル酸の時間平均体積平均濃度の50%未満である、請求項12に記載の方法。
  20. 前記酸化可能な化合物がパラ-キシレンであり、前記ポリカルボン酸がテレフタル酸であり、前記気相酸化剤が空気である、請求項12に記載の方法。
  21. 前記第1の酸化反応器が気泡塔反応器であり、前記第2の酸化反応器が気泡塔反応器である、請求項12に記載の方法。
  22. 前記反応ゾーンが14:1〜28:1の範囲のLs:Ds比を有する、請求項12に記載の方法。
JP2015223669A 2010-01-29 2015-11-16 側方取り出し式の第2の反応器を備える酸化システム Active JP6329117B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US29945510P 2010-01-29 2010-01-29
US29945010P 2010-01-29 2010-01-29
US29945310P 2010-01-29 2010-01-29
US61/299,455 2010-01-29
US61/299,450 2010-01-29
US61/299,453 2010-01-29
US12/957,733 2010-12-01
US12/957,733 US8968686B2 (en) 2010-01-29 2010-12-01 Oxidation system with sidedraw secondary reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012551153A Division JP2013518105A (ja) 2010-01-29 2010-12-09 側方取り出し式の第2の反応器を備える酸化システム

Publications (2)

Publication Number Publication Date
JP2016040312A true JP2016040312A (ja) 2016-03-24
JP6329117B2 JP6329117B2 (ja) 2018-05-23

Family

ID=43640535

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012551153A Pending JP2013518105A (ja) 2010-01-29 2010-12-09 側方取り出し式の第2の反応器を備える酸化システム
JP2015223669A Active JP6329117B2 (ja) 2010-01-29 2015-11-16 側方取り出し式の第2の反応器を備える酸化システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012551153A Pending JP2013518105A (ja) 2010-01-29 2010-12-09 側方取り出し式の第2の反応器を備える酸化システム

Country Status (15)

Country Link
US (1) US8968686B2 (ja)
EP (1) EP2528887B1 (ja)
JP (2) JP2013518105A (ja)
KR (3) KR20120120952A (ja)
CN (1) CN102811994B (ja)
BR (1) BR112012018896B1 (ja)
CA (1) CA2787901C (ja)
ES (1) ES2669568T3 (ja)
IN (1) IN2012DN06565A (ja)
LT (1) LT2528887T (ja)
MX (1) MX344136B (ja)
PL (1) PL2528887T3 (ja)
PT (1) PT2528887T (ja)
RU (1) RU2578663C2 (ja)
WO (1) WO2011093950A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8936767B2 (en) 2010-01-29 2015-01-20 Grupo Petrotemex. S.A. de C.V. Oxidation system with sidedraw secondary reactor
US8790601B2 (en) * 2010-01-29 2014-07-29 Grupo Petrotemex, S.A. De C.V. Oxidation system with sidedraw secondary reactor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220157A (ja) * 1989-11-29 1991-09-27 Amoco Corp アルキル芳香族化合物の酸化法
JPH09278709A (ja) * 1996-02-13 1997-10-28 Mitsubishi Chem Corp 芳香族カルボン酸の製造方法
JPH10330292A (ja) * 1996-12-12 1998-12-15 Praxair Technol Inc 気泡塔反応器への直接的酸素注入法
JP2004168716A (ja) * 2002-11-20 2004-06-17 Mitsubishi Chemicals Corp テレフタル酸の製造方法
JP2005145947A (ja) * 2003-11-14 2005-06-09 Bp Corp North America Inc 段階的向流酸化
US20070155985A1 (en) * 2006-01-04 2007-07-05 Wonders Alan G Oxidation system with internal secondary reactor
JP2008511649A (ja) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー 最適化液相酸化
JP2009528350A (ja) * 2006-03-01 2009-08-06 イーストマン ケミカル カンパニー サイドドロー二次反応器を備えた酸化システム
JP2013518104A (ja) * 2010-01-29 2013-05-20 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ 側流抜き出し二次反応器を有する酸化システム
JP2013518103A (ja) * 2010-01-29 2013-05-20 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ 側方取り出し式の第2の反応器を備える酸化システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278846A (en) * 1975-12-25 1977-07-02 Matsuyama Sekyu Kagaku Kk Continuous production of high purity telephthalic acid
US7060853B2 (en) * 2000-01-12 2006-06-13 Invista North America S.A R.L. Method for increasing oxidation reactor production capacity
CN1280331C (zh) 2000-12-07 2006-10-18 伊斯曼化学公司 使用管式反应器的聚酯工艺
US7196215B2 (en) * 2001-06-04 2007-03-27 Eastman Chemical Company Process for the production of purified terephthalic acid
US7132566B2 (en) 2003-09-22 2006-11-07 Eastman Chemical Company Process for the purification of a crude carboxylic acid slurry

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03220157A (ja) * 1989-11-29 1991-09-27 Amoco Corp アルキル芳香族化合物の酸化法
JPH09278709A (ja) * 1996-02-13 1997-10-28 Mitsubishi Chem Corp 芳香族カルボン酸の製造方法
JPH10330292A (ja) * 1996-12-12 1998-12-15 Praxair Technol Inc 気泡塔反応器への直接的酸素注入法
JP2004168716A (ja) * 2002-11-20 2004-06-17 Mitsubishi Chemicals Corp テレフタル酸の製造方法
JP2005145947A (ja) * 2003-11-14 2005-06-09 Bp Corp North America Inc 段階的向流酸化
JP2008511649A (ja) * 2004-09-02 2008-04-17 イーストマン ケミカル カンパニー 最適化液相酸化
US20070155985A1 (en) * 2006-01-04 2007-07-05 Wonders Alan G Oxidation system with internal secondary reactor
JP2009528350A (ja) * 2006-03-01 2009-08-06 イーストマン ケミカル カンパニー サイドドロー二次反応器を備えた酸化システム
JP2013518104A (ja) * 2010-01-29 2013-05-20 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ 側流抜き出し二次反応器を有する酸化システム
JP2013518103A (ja) * 2010-01-29 2013-05-20 グルーポ ペトロテメックス,ソシエダ アノニマ デ カピタル バリアブレ 側方取り出し式の第2の反応器を備える酸化システム

Also Published As

Publication number Publication date
CN102811994B (zh) 2015-12-09
MX344136B (es) 2016-12-06
EP2528887B1 (en) 2018-03-14
EP2528887A1 (en) 2012-12-05
US8968686B2 (en) 2015-03-03
KR20180067734A (ko) 2018-06-20
US20110190537A1 (en) 2011-08-04
MX2012008672A (es) 2012-08-23
KR20200058607A (ko) 2020-05-27
WO2011093950A1 (en) 2011-08-04
ES2669568T3 (es) 2018-05-28
JP6329117B2 (ja) 2018-05-23
PT2528887T (pt) 2018-06-06
RU2578663C2 (ru) 2016-03-27
CA2787901C (en) 2018-05-08
IN2012DN06565A (ja) 2015-10-23
RU2012136134A (ru) 2014-02-27
CA2787901A1 (en) 2011-08-04
BR112012018896B1 (pt) 2018-11-21
BR112012018896A2 (pt) 2016-04-12
PL2528887T3 (pl) 2018-07-31
KR20120120952A (ko) 2012-11-02
KR102270535B1 (ko) 2021-06-28
JP2013518105A (ja) 2013-05-20
LT2528887T (lt) 2018-05-25
CN102811994A (zh) 2012-12-05

Similar Documents

Publication Publication Date Title
KR20080081950A (ko) 향상된 유체 역학용 내부 구조체를 사용하는 산화 시스템
KR102150777B1 (ko) 사이드드로 제 2 반응기를 갖는 산화 시스템
JP6542849B2 (ja) 側方取り出し式の第2の反応器を備える酸化システム
JP6329117B2 (ja) 側方取り出し式の第2の反応器を備える酸化システム
KR20070054696A (ko) 최적화된 액상 산화 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6329117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250