JP2016032635A - フォトンカウンティング型x線ct装置 - Google Patents

フォトンカウンティング型x線ct装置 Download PDF

Info

Publication number
JP2016032635A
JP2016032635A JP2015149477A JP2015149477A JP2016032635A JP 2016032635 A JP2016032635 A JP 2016032635A JP 2015149477 A JP2015149477 A JP 2015149477A JP 2015149477 A JP2015149477 A JP 2015149477A JP 2016032635 A JP2016032635 A JP 2016032635A
Authority
JP
Japan
Prior art keywords
ray
data
image
unit
photon counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015149477A
Other languages
English (en)
Inventor
恵美 田村
Emi Tamura
恵美 田村
斉藤 泰男
Yasuo Saito
泰男 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2015149477A priority Critical patent/JP2016032635A/ja
Publication of JP2016032635A publication Critical patent/JP2016032635A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Abstract

【課題】フォトンカウンティングCTにより得られる画像の画質を向上させるフォトンカウンティング型X線CT装置を提供する。
【解決手段】フォトンカウンティング型X線CT装置は、検出器13と、第1の収集部142と、第2の収集部143と、画像再構成部36とを備える。検出器13は、X線を検出し、信号を出力する。第1の収集部142は、検出器13により出力された信号を用いて、エネルギー帯ごとにX線の光子の計数データを所定の時間幅で収集する。第2の収集部143は、検出器13により出力された信号を用いて、信号を所定の時間幅で積分した積分データを収集する。画像再構成部36は、積分データを用いて計数データを補正する。画像再構成部36は、補正した計数データに対する再構成処理を行うことにより再構成画像を生成する。
【選択図】図1

Description

本発明の実施形態は、フォトンカウンティング型X線CT装置に関する。
近年、フォトンカウンティング(Photon Counting)方式の検出器を用いてフォトンカウンティングCT(Computed Tomography)を行なうフォトンカウンティング型X線CT装置の開発が進められている。従来のX線CT装置で用いられている積分型の検出器と異なり、フォトンカウンティング方式の検出器は、被検体を透過したX線光子を個々に計数可能な信号を出力する。従って、フォトンカウンティングCTでは、SN比(Signal to Noise)の高いX線CT画像を再構成可能となる。
上述したフォトンカウンティングCTでは、検出器として、CdTe(テルル化カドミウム:cadmium telluride)やCdZnTe(テルル化カドミウム亜鉛:cadmium Zinc telluride)などの直接変換型半導体検出器や、シンチレータなどの間接変換型検出器などが用いられるが、このような検出器の信号は微弱であり、一般にはASIC(Application Specific Integrated Circuit)などの集積回路が検出器付近に配置される。
フォトンカウンティングCTの検出器で用いられるASICは、例えば、初段に前置増幅器が配置されて信号増幅を行い、その後段で波形整形し、入射したX線光子のエネルギーに応じてそれらを複数のエネルギー帯に弁別する。これにより、フォトンカウンティングCTでは、複数のエネルギー帯での画像を同時に取得し、複数の物質の再構成画像を取得することができる。
特開2012−34901号公報
本発明が解決しようとする課題は、フォトンカウンティングCTにより得られる画像の画質を向上させることができるフォトンカウンティング型X線CT装置を提供することである。
実施形態のフォトンカウンティング型X線CT装置は、検出器と、第1の収集部と、第2の収集部と、補正部と、画像再構成部とを備える。検出器は、X線を検出し、信号を出力する。第1の収集部は、前記検出器により出力された信号を用いて、エネルギー帯ごとに前記X線の光子の計数データを所定の時間幅で収集する。第2の収集部は、前記検出器により出力された信号を用いて、前記信号を前記所定の時間幅で積分した積分データを収集する。補正部は、前記積分データを用いて前記計数データを補正する。画像再構成部は、前記補正部により補正された計数データに対する再構成処理を行うことにより再構成画像を生成する。
図1は、第1の実施形態に係るフォトンカウンティング型X線CT装置の構成の一例を示す図である。 図2は、第1の実施形態に係る検出器の一例を説明するための図である。 図3は、従来技術に係るフォトンカウンティング型X線CT装置が備える検出回路の一例を示す図である。 図4Aは、従来技術の課題を説明するための図である。 図4Bは、従来技術の課題を説明するための図である。 図5は、第1の実施形態に係る検出回路の一例を示す図である。 図6は、第1の実施形態に係る画像再構成部による処理を説明するための図である。 図7は、第1の実施形態に係るフォトンカウンティング型X線CT装置の処理の一例を説明するためのフローチャートである。 図8は、第2の実施形態に係る検出回路の一例を示す図である。 図9は、第2の実施形態に係るゲイン補正を説明するための図である。
以下、添付図面を参照して、フォトンカウンティング型X線CT装置の実施形態を詳細に説明する。以下の実施形態では、同一の参照符号を付した部分は同様の動作を行うものとして、重複する説明を適宜省略する。
(第1の実施形態)
まず、第1の実施形態に係るフォトンカウンティング型X線CT装置の構成について説明する。図1は、第1の実施形態に係るフォトンカウンティング型X線CT装置の構成の一例を示す図である。図1に示すように、第1の実施形態に係るフォトンカウンティング型X線CT装置は、架台装置10と、寝台装置20と、コンソール装置30とを有する。
架台装置10は、被検体PにX線を照射し、被検体Pを透過したX線を計数する装置であり、X線照射制御部11と、X線発生装置12と、検出器13と、収集部14と、回転フレーム15と、架台駆動部16とを有する。
回転フレーム15は、X線発生装置12と検出器13とを被検体Pを挟んで対向するように支持し、後述する架台駆動部16によって被検体Pを中心した円軌道にて高速に回転する円環状のフレームである。
X線発生装置12は、X線を発生し、発生したX線を被検体Pへ照射する装置であり、X線管12aと、ウェッジ12bと、コリメータ12cとを有する。
X線管12aは、後述するX線照射制御部11により供給される高電圧により被検体PにX線ビームを照射する真空管であり、回転フレーム15の回転にともなって、X線ビームを被検体Pに対して照射する。X線管12aは、ファン角及びコーン角を持って広がるX線ビームを発生する。
ウェッジ12bは、X線管12aから曝射されたX線のX線量を調節するためのX線フィルタである。具体的には、ウェッジ12bは、X線管12aから被検体Pへ照射されるX線が、予め定められた分布になるように、X線管12aから曝射されたX線を透過して減衰するフィルタである。例えば、ウェッジ12bは、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。なお、ウェッジは、ウェッジフィルター(wedge filter)や、ボウタイフィルター(bow-tie filter)とも呼ばれる。
コリメータ12cは、後述するX線照射制御部11の制御により、ウェッジ12bによってX線量が調節されたX線の照射範囲を絞り込むためのスリットである。
X線照射制御部11は、高電圧発生部として、X線管12aに高電圧を供給する装置であり、X線管12aは、X線照射制御部11から供給される高電圧を用いてX線を発生する。X線照射制御部11は、X線管12aに供給する管電圧や管電流を調整することで、被検体Pに対して照射されるX線量を調整する。また、X線照射制御部11は、ウェッジ12bの切り替えを行なう。また、X線照射制御部11は、コリメータ12cの開口度を調整することにより、X線の照射範囲(ファン角やコーン角)を調整する。
架台駆動部16は、回転フレーム15を回転駆動させることによって、被検体Pを中心とした円軌道上でX線発生装置12と検出器13とを旋回させる。
検出器13は、X線光子が入射するごとに、当該X線光子のエネルギー値を計測可能な信号を出力する。X線光子は、例えば、X線管12aから照射され被検体Pを透過したX線光子である。検出器13は、X線光子が入射するごとに、1パルスの電気信号(アナログ信号)を出力する複数の検出素子を有する。フォトンカウンティング型X線CT装置は、電気信号(パルス)の数を計数することで、各検出素子に入射したX線光子の数を計数することが可能である。また、フォトンカウンティング型X線CT装置は、この信号に対して、処理の演算処理を行なうことで、当該信号の出力を引き起こしたX線光子のエネルギー値を計測することができる。
上記の検出素子は、例えば、テルル化カドミウム(CdTe)や、テルル化カドミウム亜鉛(CdZnTe)などの半導体素子である。かかる場合、図1に示す検出器13は、入射したX線光子を、直接、電気信号に変換する直接変換型の検出器となる。また、上記の検出素子は、例えば、シンチレータと光電子増倍管等の光センサとにより構成される場合でも良い。かかる場合、図1に示す検出器13は、入射したX線光子をシンチレータによりシンチレータ光に変換し、シンチレータ光を光電子増倍管等の光センサにより電気信号に変換する間接変換型の検出器となる。
図2は、第1の実施形態に係る検出器の一例を説明するための図である。例えば、図1に示す検出器13は、図2に示すように、テルル化カドミウムにより構成される検出素子131が、チャンネル方向(図1中のY軸方向)にN列、体軸方向(図1中のZ軸方向)にM列配置された面検出器である。検出素子131は、光子が入射すると、1パルスの電気信号を出力する。フォトンカウンティング型X線CT装置は、検出素子131が出力した個々のパルスを弁別することで、検出素子131に入射したX線光子の数を計数することができる。また、フォトンカウンティング型X線CT装置は、パルスの強度に基づく演算処理を行なうことで、計数したX線光子のエネルギー値を計測することができる。
ここで、検出素子131から出力される電気信号は、X線光子の入射に伴って発生する電子が正電位の集電電極へ向かって走行することで出力される。または、X線光子の入射により出力される電気信号は、X線光子の入射に伴って発生する正孔が負電位の集電電極へ向かって走行することで出力される。
図1に戻って、収集部14は、出力部141と、第1の収集部142と、第2の収集部143と、制御回路144とを有し、検出器13から出力される信号を用いて種々のデータを収集する。具体的には、収集部14は、複数の検出素子131から出力される信号それぞれを用いて種々のデータを収集する。例えば、収集部14は、被検体を透過したX線に由来する光子(X線光子)をエネルギー帯ごとに計数した計数データと、所定の時間幅で検出素子131から出力された信号を積分した積分データとを収集する。すなわち、収集部14は、フォトンカウンティング型のデータと、従来の積分型(電流モード計測方式)のデータとを収集する。なお、出力部141、第1の収集部142、第2の収集部143及び制御回路144の詳細については後述する。
寝台装置20は、被検体Pを載せる装置であり、天板22と、寝台駆動装置21とを有する。天板22は、被検体Pが載置される板であり、寝台駆動装置21は、天板22をZ軸方向へ移動して、被検体Pを回転フレーム15内に移動させる。
コンソール装置30は、操作者によるフォトンカウンティング型X線CT装置の操作を受け付けるとともに、架台装置10によって収集されたデータを用いてX線CT画像データを再構成する装置である。コンソール装置30は、図1に示すように、入力装置31と、表示装置32と、スキャン制御部33と、前処理部34と、投影データ記憶部35と、画像再構成部36と、画像記憶部37と、制御部38とを有する。
入力装置31は、フォトンカウンティング型X線CT装置の操作者が各種指示や各種設定の入力に用いるマウスやキーボード等を有し、操作者から受け付けた指示や設定の情報を、制御部38に転送する。例えば、入力装置31は、操作者から、X線CT画像データの撮影条件や、X線CT画像データを再構成する際の再構成条件や、X線CT画像データに対する画像処理条件等を受け付ける。
表示装置32(表示部)は、操作者によって参照されるモニタであり、制御部38による制御のもと、X線CT画像データを操作者に表示したり、入力装置31を介して操作者から各種指示や各種設定等を受け付けるためのGUI(Graphical User Interface)を表示したりする。
スキャン制御部33は、後述する制御部38の制御のもと、X線照射制御部11、架台駆動部16、収集部14及び寝台駆動装置21の動作を制御することで、架台装置10におけるデータの収集処理を制御する。
前処理部34は、収集部14から送信されたデータに対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の補正処理を行なうことで、投影データを生成する。具体的には、前処理部34は、収集部14から送信された計数データ及び積分データに対して上述した各処理を行うことで、それぞれの投影データを生成する。
投影データ記憶部35は、前処理部34により生成された投影データ(計数データから生成された投影データ及び積分データから生成された投影データ)を記憶する。また、投影データ記憶部35は、画像再構成部36によって補正された投影データを記憶する。すなわち、投影データ記憶部35は、X線CT画像データを再構成するための投影データ(補正済み計数情報)を記憶する。
画像再構成部36は、投影データ記憶部35が記憶する投影データ(計数データから生成された投影データ及び積分データから生成された投影データ)を用いてX線CT画像データを再構成する。画像再構成部36は、再構成方法として、種々の方法を用いて画像再構成を行うことができる。例えば、画像再構成部36は、FBP(Filtered Back Projection)法や、逐次近似法などによりX線CT画像データを再構成する。また、画像再構成部36は、X線CT画像データに対して各種画像処理を行なうことで、画像データ(表示画像)を生成する。画像再構成部36は、再構成したX線CT画像データや、各種画像処理により生成した画像データを画像記憶部37に格納する。ここで、画像再構成部36は、補正部とも呼ばれ、積分データから生成された投影データを用いて、計数データから生成された投影データを補正して、補正した投影データを投影データ記憶部35に格納する。なお、画像再構成部36による補正処理の詳細については、後に詳述する。
ここで、本実施形態に係る画像再構成部36は、計数データから生成された投影データ及び積分データから生成された投影データを用いて、フォトンカウンティングCTにより得られる画像の画質を向上させたX線CT画像データを再構成する。具体的には、画像再構成部36は、計数データから生成された投影データを用いてX線画像データを再構成する際に、積分データから生成された投影データを用いて再構成する。なお、この再構成の詳細については、後述する。画像記憶部37は、X線CT画像データや、画像データ(表示画像)を記憶する。また、画像記憶部37は、応答関数に関する情報を記憶する。なお、応答関数に関する情報の詳細については、後に詳述する。
制御部38は、架台装置10、寝台装置20及びコンソール装置30の動作を制御することによって、X線CT装置の全体制御を行う。具体的には、制御部38は、スキャン制御部33を制御することで、架台装置10で行なわれるCTスキャンを制御する。また、制御部38は、前処理部34や、画像再構成部36を制御することで、コンソール装置30における画像再構成処理や画像生成処理を制御する。また、制御部38は、画像記憶部37が記憶する各種画像データを、表示装置32に表示するように制御する。
以上、第1の実施形態に係るフォトンカウンティング型X線CT装置の全体構成について説明した。かかる構成のもと、第1の実施形態に係るフォトンカウンティング型X線CT装置は、以下、詳細に説明する収集部14及び画像再構成部36の処理により、フォトンカウンティングCTにより得られる画像の画質を向上させる。
ここで、まず、従来のフォトンカウンティング型X線CT装置において、画質が劣化する場合について説明する。図3は、従来技術に係るフォトンカウンティング型X線CT装置が備える検出回路の一例を示す図である。例えば、従来のフォトンカウンティング型X線CT装置においては、検出器近くに図3に示すような検出回路が配置され、検出素子131が出力した各信号を弁別して計数する。例えば、従来の検出回路は、図3に示すように、プリアンプ201と、コンデンサ202と、整形器203と、DAC(Digital to Analog Converter)204及び205と、コンパレータ206及び207と、カウンタ208及び209とを有する。
そして、検出素子131によって信号(電荷パルス)が出力されると、プリアンプ201とコンデンサ202とが電荷によって発生するパルスを電圧に変換して、電圧パルスを出力する。そして、整形器203が電圧パルスの波形を整形してコンパレータ206及び207に出力する。ここで、コンパレータ206及び207は、DAC204及び205によってそれぞれアナログ信号に変換された閾値と入力された電圧パルスとを比較して電圧パルスの値が閾値を超えている場合に、後段のカウンタに電気信号を出力する。カウンタ208及び209は、コンパレータ206及び207から出力された電気信号をそれぞれカウントする。
ここで、DACから入力される閾値を任意の値に設定することで、X線の光子を所望のエネルギー帯ごとに計数することができる。このように、従来のフォトンカウンティング型X線CT装置においては、図3に示すような検出回路によって計数データを収集するが、検出素子131に入射するX線の強度が強い場合に、個々のパルスが弁別できなくなり画質が劣化する場合があった。図4A及び図4Bは、従来技術の課題を説明するための図である。ここで、図4Aにおいては、検出素子131に入射するX線の強度が弱い場合に出力されるパルスについて示す。また、図4Bにおいては、検出素子131に入射するX線の強度が強い場合に出力されるパルスについて示す。
例えば、X線の強度が弱い場合には入射する光子の入射間隔がまばらとなるため、図4Aに示すように、同一検出素子に入射した2つの光子に由来する2つのパルスP1及びP2が弁別可能である。ここで、フォトンカウンティング型X線CT装置においては、図4Aに示すように、検出器と電気回路とから決定される時定数(τ)があり、この時定数によって信号に対する応答性が決まる。例えば、時定数が100ns(=1×107s)である場合、理論的に107個/sを超えて入射する光子を計数することはできない。
フォトンカウンティング型X線CT装置が計数するX線の光子は、一定間隔で入射するものではなく、ランダムに入射することから、X線の強度が強くなると時定数よりも短い間隔で光子が入射するようになる。このような場合、例えば、図4Bに示すように、1つめのパルスP3に対して2つのパルスP4が積み重なり(パイルアップ:pile up)、見かけ上1つのパルスとして弁別されてしまう。すなわち、パルスP3とパルスP4を弁別できず、1つのパルスP3としてカウンタ208又はカウンタ209にカウントされることとなる。その結果、従来のフォトンカウンティング型X線CT装置では、データが欠損したり、電圧パルスの値が間違うこととなり、生成した画像の画質が劣化してしまう。
このようなパイルアップに対しては、検出器の応答関数を変形することで画質の劣化を最小限にする手法も知られているが、検出器系や回路系においてそれぞれの特性にばらつきがあるため、応答関数の変形にもばらつきが生じてしまう。また、応答関数はX線の線量によっても変化するため、補正しきれない場合もある。このように、上述した手法による画質劣化の抑制には一定の限界があった。
そこで、第1の実施形態に係るフォトンカウンティング型X線CT装置では、収集部14と画像再構成部36の処理により、フォトンカウンティングCTにより得られる画像の画質を向上させる。具体的には、収集部14における出力部141が、X線を検出する検出器13によって出力された信号を異なる出力先へそれぞれ出力する。第1の収集部142が、出力部141から出力された一方のうち所定の時間幅で出力された信号を用いて、エネルギー帯ごとにX線の光子の計数データを収集する。第2の収集部143が、出力部141から出力された他方のうち前記所定の時間幅で出力された信号を用いて、信号を前記所定の時間幅で積分した積分データを収集する。画像再構成部36が、積分データを用いて計数データを補正する。さらに、画像再構成部36は、積分データを用いて補正した計数データに対して再構成処理を実行することによって、X線CT画像データを再構成する。なお、収集部14における制御回路144は、出力部141、第1の収集部142及び第2の収集部143をそれぞれ制御する。
すなわち、第1の実施形態に係るフォトンカウンティング型X線CT装置は、検出素子131によって出力された信号を用いて、フォトンカウンティング型の計数データと積分型の積分データとをそれぞれ収集し、収集した計数データから生成した投影データを用いてX線CT画像データを再構成する際に、積分データを用いた補正を行う。
以下、上述した出力部141、第1の収集部142、及び第2の収集部143を実現するための検出回路、及び、画像再構成部36による処理の詳細について説明する。図5は、第1の実施形態に係る検出回路の一例を示す図である。図5に示すように、検出回路は、プリアンプ14aと、コンデンサ14cと、アンプ14dと、アンプ14eと、整形器14fと、DAC14gと、DAC14hと、コンパレータ14iと、コンパレータ14jと、カウンタ14kと、カウンタ14lと、アンプ14nと、コンデンサ14oと、スイッチ14pと、ADC(Analog to Digital Converter)14qとを有する。
ここで、図5に示す検出回路においては、図示するように、アンプ14eが出力部141に相当し、整形器14f、DAC14g、DAC14h、コンパレータ14i、コンパレータ14j、カウンタ14k及びカウンタ14lが第1の収集部142に相当し、アンプ14n、コンデンサ14o、スイッチ14p及びADC14qが第2の収集部143に相当する。
プリアンプ14aとコンデンサ14cは、検出素子131によって出力され、検出回路に入力(Input)された信号(電荷パルス)によって発生するパルスを増幅する。アンプ14dは、制御回路144によって制御されるゲイン(Adjustable gain)に応じて、電圧パルスを増幅する。なお、制御回路144によって制御されるゲインは、入力装置31を介した操作者による操作により任意に設定(調整)される。例えば、操作者は、検出器の特性のばらつきや、撮像モードに応じて適宜設定することができる。
出力部141に相当するアンプ14eは、第1の収集部142に相当する回路(フォトンカウンティング型CT回路)、及び、第2の収集部143に相当する回路(積分型CT回路)にそれぞれ電流パルスを出力する。例えば、アンプ14eは、カレントミラー回路、又は、カレントコンベア回路を備え、入力された電流パルスを複製して、フォトンカウンティング型CT回路、及び、積分型CT回路にそれぞれ電流パルスを出力する。すなわち、アンプ14eは、フォトンカウンティング型CT回路、及び、積分型CT回路にそれぞれ同一の電流パルスを出力する。
ここで、アンプ14eは、フォトンカウンティング型CT回路(第1の収集部142に相当する回路)、及び、積分型CT回路(第2の収集部143に相当する回路)に対してそれぞれウェイトをかけた電流パルスを出力することができる。例えば、検出器を構成する光センサがアバランシェフォトダイオードや、シリコンフォトマルチプライヤなどの場合、センサ内部に信号増幅機構を有するため、そのまま積分型CT回路に出力すると積分型CT回路が飽和する。そこで、アンプ14eは、積分型CT回路に出力する信号を小さくするようにウェイトをかける。すなわち、アンプ14eは、フォトンカウンティング型CT回路に出力する信号に対するウェイトを「1」とすると、積分型CT回路に出力する信号に対して「1」未満のウェイトをかけることで、積分型CT回路に出力する信号を小さくする。なお、同一の電流パルスを出力する場合、アンプ14eは、フォトンカウンティング型CT回路及び積分型CT回路に出力する電流パルスそれぞれに対してウェイト「1」をかける。
以下、フォトンカウンティング型CT回路について説明する。整形器14fは、アンプ14eによって出力された電圧パルスの波形を整形してコンパレータ14i及びコンパレータ14jに出力する。DAC14g及びDAC14hは、制御回路144によって制御される閾値をアナログ信号に変換してコンパレータ14i及びコンパレータ14jにそれぞれ出力する。なお、制御回路144によって制御される閾値は、入力装置31を介した操作者による操作により任意にレベル調整される(Adjustable level)。
コンパレータ14i及びコンパレータ14jは、DAC14g及びDAC14hから入力された閾値と、整形器14fから入力された電圧パルスとを比較して電圧パルスの強度が閾値を超えている場合に、後段のカウンタに電気信号を出力する。カウンタ14k及びカウンタ14lは、コンパレータ14i及びコンパレータ14jから出力された電気信号をそれぞれカウントし、カウントした計数値をコンソール装置30に出力する。ここで、カウンタ14k及びカウンタ14lは、制御回路144から入力されるトリガ信号(Trigger)に基づいて、カウント(計数)、計数値の出力(Output1)、計数値のリセットを行う。例えば、制御回路144は、スキャン制御部33の制御のもと、ビューごとにトリガ信号を出力して、回転フレーム15の回転と同期して計数データを出力するようにカウンタ14k及びカウンタ14lを制御する。
なお、図5に示す検出回路では、DAC、コンパレータ及びカウンタがそれぞれ2つずつ備えられ、2つのエネルギー帯(エネルギーウィンド)の計数データを収集する場合について示しているが、実施形態はこれに限定されるものではなく、DAC、コンパレータ及びカウンタがそれぞれ3つ以上ずつ備えられ、3つ以上のエネルギー帯(エネルギーウィンド)の計数データを収集する場合であってもよい。
次に、積分型CT回路について説明する。アンプ14nとコンデンサ14oは、アンプ14eによって出力された電圧パルスを増幅する。コンデンサ14oは、アンプ14eにより増幅された電流パルスを蓄積し、スイッチ14pによるON・OFFの切り替えに応じて蓄積した電圧信号(積分データ)をADC14qに出力する。
スイッチ14pは、制御回路144から入力されるトリガ信号(Trigger)に基づいて、ON・OFFを切り替えることで、コンデンサ14oによる積分データの出力を制御する。例えば、制御回路144は、スキャン制御部33の制御のもと、ビューごとにトリガ信号を出力して、回転フレーム15の回転と同期して積分データを出力するようにスイッチ14pを制御する。ADC14qは、受信した電圧信号(積分データ)をデジタル形式の電気信号に変換して出力する(Output2)。なお、図5においては、検出回路内(第2の収集部に相当する回路内)にADC14qが備えられる場合について示したが、実施形態はこれに限定されるものではなく、例えば、検出回路外にADC14qが備えられる場合であってもよい。
このように、第1の実施形態に係る収集部14においては、検出素子131ごとに図5に示す検出回路が接続され、検出素子131から出力された信号を用いて、フォトンカウンティング型の計数データ及び積分型の積分データが収集される。そして、収集部14は、収集した計数データ及び積分データをコンソール装置30の前処理部34に送信する。前処理部34は、受信した計数データ及び積分データそれぞれの投影データを生成して投影データ記憶部35に格納する。
画像再構成部36は、投影データ記憶部35に記憶された計数データ及び積分データを取得し、積分データを用いて計数データを補正し、補正した計数データからX線CT画像データを再構成する。具体的には、画像再構成部36は、積分データに近似するように応答関数を変化させることで計数データを補正する。すなわち、画像再構成部36は、パイルアップの影響を受けた計数データを、パイルアップの影響を受けていない積分データに近似させるように処理を行うことで、計数データを補正する。ここで、画像再構成部36による補正の概念について、図6を用いて説明する。
図6は、第1の実施形態に係る画像再構成部36による処理を説明するための図である。ここで、図6においては、実際のエネルギースペクトルS1と、パイルアップによって実際のエネルギースペクトルS1がシフトしたエネルギースペクトルS2について示す。すなわち、エネルギースペクトルS1は、パイルアップの影響を受けなかった場合のエネルギースペクトルを示し、エネルギースペクトルS2は、パイルアップの影響を受けた場合のエネルギースペクトルを示す。
ここで、積分データは、パイルアップの影響を受けていないデータであり、積分データは、図6のエネルギースペクトルS1をエネルギーに重みをかけて積分した値に相当する。一方、対応する計数データは、パイルアップの影響を受けたデータであり、計数データのエネルギースペクトルは、図6のエネルギースペクトルS2に相当する。そこで、画像再構成部36は、計数データのエネルギースペクトルの積分値が積分データに近似するように補正処理を行う。すなわち、画像再構成部36は、図6の矢印に示すように、エネルギースペクトルS2をエネルギースペクトルS1に近似させる。
例えば、画像再構成部36は、下記の式(1)で示される計数データにおける応答関数を、下記の式(2)で示される積分データに近似させるように変化させる。ここで、式(1)における「DPC(view)(E)」は、所定のビューにおける計数データ(検出スペクトラム)を示し、「RPC(E)」は、計数データにおける応答関数を示す。ここで、「RPC(E)」は、単色X線に対する検出器13とフォトンカウンティング型CT回路(フォトンカウンティング型システム)の応答を示す。また、下記の式(2)における「Dinteg(view)」は、所定のビューにおける積分データを示し、「Rinteg(E)」は、積分データにおける応答関数を示す。ここで、「Rinteg(E)」は、単色X線に対する検出器13と積分型CT回路(積分型システム)の応答を示す。さらに、式(1)及び式(2)における「S(E)」はX線管12aから発生されるX線のスペクトラムを示し、「exp(1−μL)」は被検体による吸収を示し、「*」はコンボリューションを示す。
Figure 2016032635
Figure 2016032635
例えば、計数データは、式(1)に示すように、X線管12aから発生され被検体によって吸収されたX線と、フォトンカウンティング型システムの応答関数とから算出される。一方、積分データは、式(2)に示すように、X線管12aから発生され被検体によって吸収されたX線と、積分型システムの応答関数とから算出される。式(1)及び式(2)に示すように、これら2つのデータにおいては、「S(E)」と「exp(1−μL)」とは同一であり、それぞれの応答関数が異なる。すなわち、式(1)における応答関数「RPC(E)」はパイルアップの影響を受けたものであるのに対して、応答関数「Rinteg(E)」はパイルアップの影響を受けたものではない。そこで、画像再構成部36は、計数データに基づく画像データが、積分データに基づく画像データに近似するように、応答関数「RPC(E)」を変化させることで、「RPC(E)」を補正する。
例えば、画像再構成部36は、下記の式(3)で示す計数データに基づく画像データと、下記の式(4)で示す積分データに基づく画像データとが近似するように、応答関数「RPC(E)」を変化させる。ここで、積分データはすべてのエネルギー帯の情報を含んでいることから、計数データに基づく画像データは、式(3)に示すように、所定のビューにおけるエネルギー帯ごとの計数データを積分することで所定のビューにおける各計数データがまとめられる。
Figure 2016032635
Figure 2016032635
上述した式(1)及び式(2)で示したように、計数データと積分データとは、「S(E)」及び「exp(1−μL)」が同一であり、応答関数が異なる。従って、応答関数「RPC(E)」を正しく補正すると、式(3)の値は式(4)の値となる。そこで、画像再構成部36は、上述したように、計数データに基づく画像データと積分データに基づく画像データとが近似するように、応答関数「RPC(E)」を変化させる。これにより、パイルアップの影響を除いた計数データを算出することができる。ここで、画像再構成部36は、応答関数「RPC(E)」を変化させるパラメータとして、X線のエネルギー、X線の強度、検出器13を含むシステムの動作温度、及び、システムの経年劣化のうち、少なくとも1つを用いる。
上述したように、応答関数は、単色X線に対するシステムの応答である。すなわち、応答関数は、X線のエネルギー、強度ごとに変化する関数である。また、応答関数は、システムの動作温度及び経年劣化によっても変化する。そこで、画像再構成部36は、予め記憶された応答関数を用いることで、計数データに基づく画像データと積分データに基づく画像データとが近似するように、応答関数「RPC(E)」を変化させる。一例を挙げると、画像記憶部37が予め種々の応答関数を記憶しておき、画像再構成部36が画像記憶部37から応答関数を読み出して用いる。
例えば、エネルギー「30kev」で、強度「10個/s」、「102個/s」、「103個/s」、「104個/s」、「105個/s」、106個/s」、「107個/s」及び108個/s」の場合の各応答関数が条件(動作温度、経年数など)ごとに予め計測されて、画像記憶部37に格納される。同様に、「40kev」、「50kev」、「60kev」、「70kev」、「80kev」、「90kev」及び「100kev」で各強度、各条件の応答関数がそれぞれ計測されて、画像記憶部37に格納される。画像再構成部36は、これらの応答関数を読み出して、上記した補正に用いる。一例を挙げると、画像再構成部36は、まず、現時点のシステムの条件における応答関数を読み出して上記した式(1)に適用し、式(3)の値を算出して、式(4)の値と比較する。ここで、式(3)の値と式(4)の値との差が所定の閾値を超えていた場合には、画像再構成部36は、例えば、強度を変化させた場合の応答関数を読み出して上述した処理を再度実行する。画像再構成部36は、式(3)の値と式(4)の値との差が所定の閾値未満になるまで、応答関数を変化させる。
そして、式(3)の値と式(4)の値との差が所定の閾値未満になると、画像再構成部36は、エネルギー帯ごとに、検出スペクトラムと、差が所定の閾値未満になった応答関数とを用いた式(1)の逆畳み込みにより、式(1)における「S(E)×exp(1−μL)」を導出する。そして、画像再構成部36は、導出した「S(E)×exp(1−μL)」を、既知である「S(E)」によって除算することで、被検体による吸収「exp(1−μL)」を算出する。画像再構成部36は、ビューごとに上述した処理を実行して、各ビューのエネルギー帯ごとの「exp(1−μL)」を算出し、算出した「exp(1−μL)」を用いてX線CT画像データ(再構成画像)を生成する。
なお、上述した例はあくまでも一例であり、実施形態はこれに限定されるものではない。すなわち、予め記憶される応答関数は上述した例に限られず、任意の条件の応答関数が予め計測され、記憶される場合であってもよい。また、応答関数を変化させるパラメータは、上述した4つだけではなく、任意に設定することができる。例えば、回路ごとの応答の差(製造時に生じるムラ)などが用いられる場合であってもよい。また、応答関数を変化させる際に、X線の強度を変化させるだけではなく、任意の条件を変化させてもよい。例えば、エネルギーを変化させることで応答関数を変化させる場合であってもよい。
なお、システムの応答における実際に入射したX線と検出したX線との関係は、あるところまではリニアな関係を保つが、X線の強度が高くなるとシステムの応答が飽和状態となる。すなわち、X線の強度が高くなるにつれて、入射するX線が増加しても、検出されるX線が変化しなくなる。従って、パイルアップが生じる強度の場合、強度をパラメータとして応答関数を変化させることで、より正確に補正することができる。
例えば、画像再構成部36は、図6に示すエネルギー帯「1」〜「4」の計数データからX線CT画像データをそれぞれ再構成する場合、まず、エネルギースペクトルS1に相当する積分データに計数データのエネルギースペクトルの積分値が近似するように上述した補正処理を行う。そして、画像再構成部36は、補正処理後のデータを用いて、エネルギー帯「1」〜「4」のX線CT画像データをそれぞれ再構成する。なお、エネルギー帯ごとの計数データからのX線CT画像データの再構成は、エネルギー帯ごとに順番に実行される場合であってもよく、或いは、同時に平行して実行される場合であってもよい。
上述したように、画像再構成部36は、パイルアップの影響を受けていない積分データを用いて、パイルアップの影響を受けた計数データを補正し、補正した計数データを用いてX線CT画像データを再構成する。従って、上述したように再構成したX線CT画像データを用いて表示画像を生成することで、パイルアップの影響を受けていない高画質の表示画像を生成して表示することができる。例えば、画像再構成部36は、各エネルギー帯のX線CT画像データの各画素にエネルギー帯に応じた色調を割り当て、エネルギー帯に応じて色分けされた複数の表示画像や、これら複数の表示画像を重畳した重畳画像を高画質で生成することができる。
さらに、画像再構成部36は、再構成処理の処理回数を減らし、処理速度を向上させるために、積分データに基づく画像データを初期画像とした逐次近似再構成により、計数データからX線CT画像データを再構成する。例えば、画像再構成部36は、ART法、SIRT法、ML−EM法、OS−EM法などの逐次近似法を用いて計数データからX線CT画像データを再構成する際に、積分データを初期画像として用いる。
例えば、画像再構成部36は、所定のビューの積分データの投影データを初期画像として、対応するビューの補正後の計数データとの比(或いは、差)を算出し、算出した比(或いは、差)を逆投影した逆投影画像を生成する。そして、画像再構成部36は、生成した逆投影画像を初期画像に乗算(或いは、加算)した更新画像を生成(フィードバック)し、生成した更新画像を初期画像として、上記した処理を収束するまで繰り返し実行する。画像再構成部36は、積分データを初期画像として、エネルギー帯ごとの補正後の計数データそれぞれのX線CT画像データを再構成する。
上述したように、積分データの投影データを初期画像として用いることで、逐次近似が収束するまでの処理回数を減らすことができ、表示画像を生成して表示するまでの時間を短縮することができる。その結果、第1の実施形態に係るフォトンカウンティング型X線CT装置は、診断効率を向上させることができる。
また、第1の実施形態に係るフォトンカウンティング型X線CT装置では、積分データに基づく表示画像を表示させることで、診断にかかるワークフローを改善することも可能である。具体的には、第1の実施形態に係るフォトンカウンティング型X線CT装置では、被検体に対してCTスキャンが実行され、計数データ及び積分データを収集すると、画像再構成部36は、上述した計数データの補正及び再構成処理を実行しつつ、FBP法などにより積分データの投影データからX線CT画像データを再構成する。そして、画像再構成部36は、積分データの投影データから再構成したX線CT画像データを用いて表示画像を生成して画像記憶部37に格納する。制御部38は、格納された表示画像を表示装置32に表示させる。すなわち、制御部38は、画像再構成部36によって計数データから画像データが再構成されている間に、積分データに基づく表示画像を表示装置32に表示させる。
エネルギー帯ごとの補正後の計数データに対して逐次近似法によって画像再構成を行う場合、表示画像を生成して表示するまでに時間を要する場合もある。そこで、上述したように、積分データに基づく表示画像をプレビューで使用することで、操作者は、迅速に画像を確認することができ、再撮影するか否かを判断するまでの時間を短縮することができる。ここで、積分データに基づく表示画像を観察した結果、再撮影する場合には、操作者は、入力装置31を操作して計数データからのX線CT画像データの再構成を中断させ、再撮影を実行させることができる。すなわち、画像再構成部36は、表示装置32によって表示された積分データに基づく表示画像の観察結果に応じた指示に基づいて、計数データの再構成を中断する。
次に、図7を用いて、第1の実施形態に係るフォトンカウンティング型X線CT装置の処理について説明する。図7は、第1の実施形態に係るフォトンカウンティング型X線CT装置の処理の一例を説明するためのフローチャートである。
図7に示すように、第1の実施形態に係るフォトンカウンティング型X線CT装置における制御部38は、操作者から撮影開始要求を受け付けたか否かを判定する(ステップS101)。ここで、撮影開始要求を受け付けない場合(ステップS101否定)、制御部38は、撮影開始要求を受け付けるまで待機する。
一方、撮影開始要求を受け付けた場合(ステップS101肯定)、制御部38は、撮影開始要求とともに受け付けたX線照射条件に基づいて、CTスキャンを実行させる(ステップS102)。そして、出力部141(アンプ14e)は、検出素子から出力された信号をフォトンカウンティング型CT回路及び積分型CT回路にそれぞれ出力する(ステップS103)。フォトンカウンティング型CT回路及び積分型CT回路は、計数データ及び積分データをそれぞれ収集する(ステップS104)。
そして、画像再構成部36は、積分データを用いて計数データを補正し(ステップS105)、補正した計数データを用いて再構成画像(X線CT画像データ)を生成する(ステップS106)。ここで、画像再構成部36が積分データに基づく表示画像を生成して、制御部38が表示画像を表示装置32に表示させ(ステップS107)、再撮影要求が入力されたか否かを判定する(ステップS108)。
ここで、再撮影要求が入力された場合には(ステップS108肯定)、制御部38は、画像再構成部36による計数データの再構成を中断させ、ステップS102に戻って、新たに入力された撮影条件などに基づいたCTスキャンを実行させる。一方、再撮影要求が入力されていない場合には(ステップS108否定)、画像再構成部36が、再構成画像を用いて表示画像を生成し、制御部38が、表示画像を表示装置32に表示させて(ステップS109)、処理を終了する。
上述したように、第1の実施形態によれば、出力部141が、X線を検出する検出器によって出力された信号を異なる出力先へそれぞれ出力する。第1の収集部142が、出力部141から出力された一方のうち所定の時間幅で出力された信号を用いて、エネルギー帯ごとにX線の光子の計数データを収集する。第2の収集部143が、出力部141から出力された他方のうち所定の時間幅で出力された信号を用いて、信号を所定の時間幅で積分した積分データを収集する。画像再構成部36が、積分データを用いて計数データを補正する。そして、画像再構成部36は、補正した計数データに対する再構成処理を行うことにより再構成画像を生成する。従って、第1の実施形態に係るフォトンカウンティング型X線CT装置は、フォトンカウンティングCTによる画像の画質を向上させることを可能にする。例えば、第1の実施形態に係るフォトンカウンティング型X線CT装置では、回路系が高線量を前提に十分な容量を保持することで、低線量から高線量まで幅広く線形な出力を可能にし、線量による検出器及び回路の応答の変化がなく画質の劣化を抑止することができる。
また、第1の実施形態によれば、画像再構成部36は、積分データに基づく画像データを初期画像とした逐次近似再構成により、計数データからX線CT画像データを再構成する。従って、第1の実施形態に係るフォトンカウンティング型X線CT装置は、高画質の画像を迅速に表示することを可能にする。
また、第1の実施形態によれば、画像再構成部36は、積分データに近似するように計数データ用の応答関数を変化させることで計数データを補正する。また、画像再構成部36は、計数データ用の応答関数を変化させるパラメータとして、X線のエネルギー、X線の強度、検出器を含むシステムの動作温度、及び、システムの経年劣化のうち、少なくとも1つを用いる。従って、第1の実施形態に係るフォトンカウンティング型X線CT装置は、X線の強度が強い場合であっても、パイルアップの影響がないフォトンカウンティングCTの画像を表示することを可能にする。
また、第1の実施形態によれば、制御部38が、画像再構成部36によって計数データから画像データが再構成されている間に、積分データに基づく表示画像を表示装置32(表示部)に表示させる。従って、第1の実施形態に係るフォトンカウンティング型CT装置は、診断画像を迅速に表示することができ、診断に係るワークフローを改善することができる。
また、第1の実施形態によれば、画像再構成部36は、表示装置32によって表示画像を表示している間に受け付けた指示に基づいて、計数データの再構成を中断する。従って、第1の実施形態に係るフォトンカウンティング型X線CT装置は、診断に係るワークフローを改善することを可能にする。
また、第1の実施形態によれば、出力部141は、カレントミラー回路、又は、カレントコンベア回路である。従って、第1の実施形態に係るフォトンカウンティング型X線CT装置は、同一の信号から計数データと積分データをそれぞれ収集することができ、正確に補正することを可能にする。
(第2の実施形態)
第1の実施形態では、図5に示す検出回路を用いる場合について説明した。第2の実施形態では、異なる検出回路を用いる場合について説明する。図8は、第2の実施形態に係る検出回路の一例を示す図である。なお、図8においては、図5の検出回路と比較して、第1の収集部142に相当する回路(フォトンカウンティング型CT回路)のみが異なる。以下、これを中心に説明する。
第2の実施形態に係るフォトンカウンティング型CT回路は、図8に示すように、ADC14rと、Digital filter14sと、カウンタ群14tとを有する。ADC14rは、アンプ14dから出力された電圧パルスをデジタル信号に変換して、Digital filter14sに出力する。Digital filter14sは、ADC14rから入力されたデジタル信号に対してゲイン補正、パイルアップ補正などを実行して対応するエネルギー値に変換する。
図9は、第2の実施形態に係るゲイン補正を説明するための図である。例えば、X線CT装置においては、画素ごとに電圧とエネルギーの変換割合(ゲイン)が異なる。一例を挙げると、図9に示すように、「1V」を「30keV」に変換するゲイン「30keV/V」の画素や、「1V」を「40keV」に変換するゲイン「40keV/V」の画素などがある。ここで、例えば、図9に示すエネルギー帯「1」〜「4」を「30keV/V」を用いて定義すると(図9の上側の図で定義すると)、図9の下側の図(40keV/Vの画素)では正しいエネルギースペクトルを得ることができない。一例を挙げると、図9に示すようにエネルギー帯「1」〜「4」で弁別するように設定した場合、ゲイン「30keV/V」の画素で設定した閾値「30keV」が、ゲイン「40keV/V」の画素では、「40keV」に相当することとなり、エネルギースペクトルS3及びエネルギースペクトルS4を同一条件で正確に弁別することにはならない。
そこで、Digital filter14sは、図9の下側の図に示すように、エネルギースペクトルS4をエネルギースペクトルS4`にシフトさせるように補正を行う。また、Digital filter14sは、同時に、既存のパイルアップ補正を適宜行うことができる。
カウンタ群14tは、図8に示すように、複数のコンパレータと、それに対応するカウンタとを備え、Digital filter14sを介して入力された信号を計数し、計数データをコンソール装置30に出力する(Output1)。ここで、カウンタ群14tは、制御回路144によって制御され、制御に応じてエネルギー帯ごとの計数データをコンソール装置30に出力する。カウンタ群14tから出力される計数データは、操作者が入力装置31を介して指定した状態でまとめて出力される。
上述したように、第2の実施形態によれば、デジタルデータで計数データを計数する場合にも適用することができ、第2の実施形態に係るフォトンカウンティング型X線CT装置は、フォトンカウンティングCTにより得られる画像の画質を容易に向上させることができる。
(第3の実施形態)
さて、これまで第1及び第2の実施形態について説明したが、上記した第1及び第2の実施形態以外にも、種々の異なる形態にて実施されてよいものである。
上述した第1及び第2の実施形態では、収集部14が検出回路を有する場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、検出器13が有する場合であってもよい。かかる場合には、検出器13が、出力部141、第1の収集部142、第2の収集部143、制御回路144を有することとなる。
また、第1及び第2の実施形態で図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、或いは、ワイヤードロジックによるハードウェアとして実現され得る。
また、第1及び第2の実施形態で説明した制御方法は、予め用意された制御プログラムをパーソナルコンピュータやワークステーション等のコンピュータで実行することによって実現することができる。この制御プログラムは、インターネット等のネットワークを介して配布することができる。また、この制御プログラムは、ハードディスク、フレキシブルディスク(FD)、CD−ROM、MO、DVD等のコンピュータで読み取り可能な記録媒体に記録され、コンピュータによって記録媒体から読み出されることによって実行することもできる。
以上、説明したとおり、第1の実施形態〜第3の実施形態によれば、フォトンカウンティングCTにより得られる画像の画質を向上させることが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
13 検出器
14 収集部
36 画像再構成部
141 出力部
142 第1の収集部
143 第2の収集部

Claims (7)

  1. X線を検出し、信号を出力する検出器と、
    前記検出器により出力された信号を用いて、エネルギー帯ごとに前記X線の光子の計数データを所定の時間幅で収集する第1の収集部と、
    前記検出器により出力された信号を用いて、前記信号を前記所定の時間幅で積分した積分データを収集する第2の収集部と、
    前記積分データを用いて前記計数データを補正する補正部と、
    前記補正部により補正された計数データに対する再構成処理を行うことにより再構成画像を生成する画像再構成部と、
    を備える、フォトンカウンティング型X線CT装置。
  2. 前記画像再構成部は、前記積分データに基づく画像データを初期画像とした逐次近似再構成により、前記再構成画像を生成する、請求項1に記載のフォトンカウンティング型X線CT装置。
  3. 前記補正部は、前記積分データに近似するように前記計数データ用の応答関数を変化させることで前記計数データを補正する、請求項1又は2に記載のフォトンカウンティング型X線CT装置。
  4. 前記補正部は、前記応答関数を変化させるパラメータとして、前記X線のエネルギー、前記X線の強度、前記検出器を含むシステムの動作温度、及び、前記システムの経年劣化のうち、少なくとも1つを用いる、請求項3に記載のフォトンカウンティング型X線CT装置。
  5. 前記画像再構成部によって前記計数データから前記再構成画像が生成されている間に、前記積分データに基づく表示画像を表示部に表示させる制御部をさらに備える、請求項1〜4のいずれか1つに記載のフォトンカウンティング型CT装置。
  6. 前記画像再構成部は、前記表示部によって前記表示画像を表示している間に受け付けた指示に基づいて、前記計数データに対する再構成処理を中断する、請求項5に記載のフォトンカウンティング型X線CT装置。
  7. 前記信号は、カレントミラー回路、又は、カレントコンベア回路によって出力される、請求項1〜6のいずれか1つに記載のフォトンカウンティング型X線CT装置。
JP2015149477A 2014-07-30 2015-07-29 フォトンカウンティング型x線ct装置 Pending JP2016032635A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149477A JP2016032635A (ja) 2014-07-30 2015-07-29 フォトンカウンティング型x線ct装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014155508 2014-07-30
JP2014155508 2014-07-30
JP2015149477A JP2016032635A (ja) 2014-07-30 2015-07-29 フォトンカウンティング型x線ct装置

Publications (1)

Publication Number Publication Date
JP2016032635A true JP2016032635A (ja) 2016-03-10

Family

ID=55179819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149477A Pending JP2016032635A (ja) 2014-07-30 2015-07-29 フォトンカウンティング型x線ct装置

Country Status (2)

Country Link
US (1) US9971047B2 (ja)
JP (1) JP2016032635A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083298A (ja) * 2015-10-28 2017-05-18 浜松ホトニクス株式会社 読み出し回路
JP2018118038A (ja) * 2017-01-24 2018-08-02 キヤノンメディカルシステムズ株式会社 X線ct装置及び再構成処理装置
JP2019532699A (ja) * 2016-09-22 2019-11-14 ゼネラル・エレクトリック・カンパニイ スペクトルコンピュータ断層撮影法(ct)のスペクトル較正
WO2024048374A1 (ja) * 2022-08-29 2024-03-07 キヤノン株式会社 画像処理装置、撮影システム、画像処理方法、及びプログラム
WO2024062894A1 (ja) * 2022-09-22 2024-03-28 キヤノン株式会社 医用画像処理装置およびその制御方法、医用画像処理プログラム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871496B1 (en) * 2013-11-12 2020-01-01 Samsung Electronics Co., Ltd Radiation detector and computed tomography apparatus using the same
CN106574978B (zh) * 2014-09-17 2018-11-23 株式会社日立制作所 X射线拍摄装置
US10159450B2 (en) * 2014-10-01 2018-12-25 Toshiba Medical Systems Corporation X-ray CT apparatus including a photon-counting detector, and an image processing apparatus and an image processing method for correcting detection signals detected by the photon-counting detector
KR101725099B1 (ko) * 2014-12-05 2017-04-26 삼성전자주식회사 컴퓨터 단층 촬영장치 및 그 제어방법
US10117626B2 (en) * 2015-09-29 2018-11-06 General Electric Company Apparatus and method for pile-up correction in photon-counting detector
US11029425B2 (en) * 2016-06-16 2021-06-08 Koninklijke Philips N.V. Photon-counting in a spectral radiation detector
US11076823B2 (en) * 2017-06-28 2021-08-03 Canon Medical Systems Corporation X-ray CT apparatus including a photon-counting detector and circuitry configured to set a control parameter corresponding to a position of each detecting element in the photon-counting detector
EP3494889B1 (de) 2017-12-11 2020-06-17 Siemens Healthcare GmbH Verfahren zur kalibrierung einer röntgenmesseinrichtung
US11344266B2 (en) * 2019-09-16 2022-05-31 Redlen Technologies, Inc. Calibration methods for improving uniformity in X-ray photon counting detectors
EP3842839A1 (en) * 2019-12-27 2021-06-30 Koninklijke Philips N.V. Compensation of polarization effects in photon counting detectors
CN112149787B (zh) * 2020-09-11 2022-11-25 上海联影医疗科技股份有限公司 基于电容反馈电荷灵敏放大电路的计数装置及计数系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3529874B2 (ja) * 1995-01-31 2004-05-24 株式会社東芝 X線コンピュータ断層撮影装置
JP2009513220A (ja) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 分光コンピュータ断層撮影の方法および装置
JP5653121B2 (ja) 2010-08-09 2015-01-14 株式会社東芝 X線ct装置、方法およびプログラム
JP5875786B2 (ja) 2011-06-14 2016-03-02 株式会社東芝 X線コンピュータ断層撮影装置及び放射線検出器
US9119589B2 (en) * 2012-03-22 2015-09-01 Kabushiki Kaisha Toshiba Method and system for spectral computed tomography (CT) with sparse photon counting detectors
US9579075B2 (en) * 2012-10-02 2017-02-28 Analogic Corporation Detector array comprising energy integrating and photon counting cells

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017083298A (ja) * 2015-10-28 2017-05-18 浜松ホトニクス株式会社 読み出し回路
JP2019532699A (ja) * 2016-09-22 2019-11-14 ゼネラル・エレクトリック・カンパニイ スペクトルコンピュータ断層撮影法(ct)のスペクトル較正
JP7042806B2 (ja) 2016-09-22 2022-03-28 ゼネラル・エレクトリック・カンパニイ スペクトルコンピュータ断層撮影法(ct)のスペクトル較正
JP2018118038A (ja) * 2017-01-24 2018-08-02 キヤノンメディカルシステムズ株式会社 X線ct装置及び再構成処理装置
WO2024048374A1 (ja) * 2022-08-29 2024-03-07 キヤノン株式会社 画像処理装置、撮影システム、画像処理方法、及びプログラム
WO2024062894A1 (ja) * 2022-09-22 2024-03-28 キヤノン株式会社 医用画像処理装置およびその制御方法、医用画像処理プログラム

Also Published As

Publication number Publication date
US9971047B2 (en) 2018-05-15
US20160033654A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP2016032635A (ja) フォトンカウンティング型x線ct装置
JP6073675B2 (ja) X線ct装置及び制御プログラム
JP6415867B2 (ja) X線ct装置及び医用画像診断装置
US10357214B2 (en) Photon counting CT apparatus, light detection device, radiation detection device, and radiation analysis device
JP6242683B2 (ja) X線ct装置及び制御方法
JP6178272B2 (ja) 放射線計測装置、および放射線計測プログラム
JP6448930B2 (ja) フォトンカウンティング型x線ct装置及びフォトンカウンティング型イメージングプログラム
US10154821B2 (en) Radiation measuring apparatus, computer program product, and radiation computed tomography apparatus
JP2016061729A (ja) 光子検出素子、光子検出装置、及び放射線分析装置
WO2014125888A1 (ja) X線コンピュータ断層撮影装置およびフォトンカウンティング方法
JP2016019725A (ja) フォトンカウンティング型x線ct装置及びフォトンカウンティング型x線診断装置
JP2018057655A (ja) 放射線診断装置及び方法
JP2016061655A (ja) シンチレータ、放射線検出装置および放射線検査装置
US11076823B2 (en) X-ray CT apparatus including a photon-counting detector and circuitry configured to set a control parameter corresponding to a position of each detecting element in the photon-counting detector
JP6747774B2 (ja) 集積回路、光子検出装置、及び放射線分析装置
JP6968593B2 (ja) X線ct装置
US11644587B2 (en) Pixel summing scheme and methods for material decomposition calibration in a full size photon counting computed tomography system
US10070840B2 (en) X-ray computed tomography apparatus and radiation medical imaging diagnostic apparatus
JP2018175866A (ja) X線ct装置
JP2022013686A (ja) X線ct装置、データ処理方法及びプログラム
JP2022013739A (ja) X線ct装置及び方法
JP2017086901A (ja) データ収集装置、x線ct装置及び核医学診断装置
JP6605211B2 (ja) 光子検出装置及び放射線分析装置
JP2016067947A (ja) X線ct装置、画像処理装置及び画像処理プログラム
JP2015075376A (ja) 放射線検出装置および放射線検査装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021