JP2015075376A - 放射線検出装置および放射線検査装置 - Google Patents

放射線検出装置および放射線検査装置 Download PDF

Info

Publication number
JP2015075376A
JP2015075376A JP2013211206A JP2013211206A JP2015075376A JP 2015075376 A JP2015075376 A JP 2015075376A JP 2013211206 A JP2013211206 A JP 2013211206A JP 2013211206 A JP2013211206 A JP 2013211206A JP 2015075376 A JP2015075376 A JP 2015075376A
Authority
JP
Japan
Prior art keywords
wavelength
scintillation
scintillator
detector
photon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013211206A
Other languages
English (en)
Inventor
和典 宮崎
Kazunori Miyazaki
和典 宮崎
啓太 佐々木
Keita Sasaki
啓太 佐々木
励 長谷川
Tsutomu Hasegawa
励 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Priority to JP2013211206A priority Critical patent/JP2015075376A/ja
Publication of JP2015075376A publication Critical patent/JP2015075376A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】正確な放射線のフォトンカウンティングを可能とする。
【解決手段】第1面を含む第1部分と、第1面と対向する第2面を含む第2部分とを有するシンチレータと、第1部分を覆い、第1の波長で入射する光を第2の波長で出射させることが可能な波長変換部と、第2面を除く第2部分を覆う光反射性の反射部と、第2の波長を含む波長帯の光を光電変換する検出素子とを設ける。
【選択図】図6

Description

本発明の実施形態は、放射線検出装置および放射線検査装置に関する。
今日において、フォトンカウンティング(Photon Counting)方式の検出器を用いたフォトンカウンティングCT装置(CT:Computed Tomography)が知られている。フォトンカウンティング方式の検出器は、積分型の検出器と異なり、被検体を透過したX線光子を個々に計数可能な信号を出力する。従って、フォトンカウンティングCT装置は、SN比(signal to noise ratio)の高いX線CT画像の再構成が可能となる。
また、フォトンカウンティング方式の検出器が出力した信号は、X線光子のエネルギーの計測(弁別)に用いることができる。従って、フォトンカウンティングCT装置では、1種類の管電圧のX線を曝射することで収集された投影データを、複数のエネルギー成分に分けて画像化することができる。
フォトンカウンティング方式の検出器としては、入射したX線光子をシンチレータにより、一旦、可視光(シンチレータ光)に変換し、シンチレータ光を光電子増倍管等の光センサで電気信号に変換する「間接変換型の検出器」が知られている。光センサは、シンチレータにより放射線から変換されたシンチレーション光子を一つ一つ検出し、シンチレータに入射した放射線の検出及びその放射線のエネルギーの測定を行う。光センサとしては、ガイガーモードで動作する複数のアバランシェフォトダイオード(APD)がアレイ状に配置されたものがある。
ここで、放射線のエネルギーを測定するためには、発生したシンチレーション光子数を正確に測定することが重要である。シンチレータ内で発生したシンチレーション光子は、直接、フォトカウンティングセンサに入射する。または、シンチレーション光子は、シンチレータの側面、または上面での反射を繰り返した後、フォトカウンティングセンサに入射する。多くの場合、シンチレーション光子は、シンチレータの放射線入射面近傍で発生する。この場合、シンチレーション光子の発生位置と、フォトカウンティングセンサとの間に多少の距離があるため、シンチレーション光子は、フォトンカウンティングセンサに対して一様に入射する(=適当な広がりを持ってセンサの略々全面に入射する)。
しかし、シンチレーション光子が、シンチレータとフォトンカウンティングセンサとの接合面近傍で発生した場合、大部分のシンチレーション光子が、フォトンカウンティングセンサに局所的に入射する。これにより、正確なシンチレーション光子のカウントが困難となる問題があった。
特表2010−515075号公報 特開平11−211836号公報 特開2010−127900号公報
本発明が解決しようとする課題は、より正確に放射線のカウントを可能とする放射線検出装置および放射線検査装置を提供することである。
実施形態によれば、第1面を含む第1部分と、第1面と対向する第2面を含む第2部分とを有するシンチレータと、第1部分を覆い、第1の波長で入射する光を第2の波長で出射させることが可能な波長変換部と、第2面を除く第2部分を覆う光反射性の反射部と、第2の波長を含む波長帯の光を光電変換する検出素子とを設ける。
図1は、実施形態のフォトンカウンティングCT装置の構成を示す図である。 図2は、実施形態のフォトンカウンティングCT装置に設けられている検出器の平面図である。 図3は、実施形態のフォトンカウンティングCT装置のコンソール装置のハードウェア構成図である。 図4は、シンチレータと検出器との接合面近傍で発生した大部分のシンチレーション光子が、局所的に検出器に入射する様子を示す図である。 図5は、実施形態のフォトンカウンティングCT装置に設けられている検出器の部分的な斜視図である。 図6は、実施形態のフォトンカウンティングCT装置に設けられている検出器の機能を説明するための図である。
以下、放射線検出装置および放射線検査装置を適用した実施形態のフォトンカウンティングCT装置を、図面を参照して詳細に説明する。
フォトンカウンティングCT装置は、被検体を透過したX線光子を、フォトンカウンティング方式の検出器を用いて計数することで、SN比の高いX線CT画像データを再構成する。個々のX線光子は、異なるエネルギーを有する。フォトンカウンティングCT装置は、X線光子のエネルギー値の計測を行うことで、X線のエネルギー成分の情報を得る。フォトンカウンティングCT装置は、1種類の管電圧でX線管を駆動して収集された投影データを複数のエネルギー成分に分けて画像化する。
図1に、実施形態のフォトンカウンティングCT装置の構成を示す。図1に示すように、フォトンカウンティングCT装置は、架台装置10と、寝台装置20と、コンソール装置30(画像生成部の一例)とを有する。
架台装置10は、照射制御部11と、X線発生装置12と、検出器13と、収集部14と、回転フレーム15と、駆動部16とを有する。架台装置10は、被検体PにX線を曝射し、被検体Pを透過したX線を計数する。
回転フレーム15は、X線発生装置12と検出器13とを被検体Pを挟んで対向するように支持している。回転フレーム15は、後述する駆動部16によって、被検体Pを中心とした円軌道にて高速に回転する円環状のフレームである。
X線発生装置12は、X線管12aと、ウェッジ12bと、コリメータ12cとを有する。X線発生装置12は、X線を発生して被検体Pへ曝射する装置である。X線管12aは、後述するX線発生装置12から供給される高電圧により、被検体PにX線を曝射する真空管である。X線管12aは、回転フレーム15の回転に従って回転しながら、被検体Pに対してX線ビームを曝射する。X線管12aは、ファン角およびコーン角を持って広がるX線ビームを発生する。
ウェッジ12bは、X線管12aから曝射されたX線のX線量を調節するためのX線フィルタである。具体的には、ウェッジ12bは、X線管12aから被検体Pへ曝射されるX線が、予め定められた分布になるように、X線管12aから曝射されたX線を透過して減衰するフィルタである。
例えば、ウェッジ12bは、所定のターゲット角度や所定の厚みとなるようにアルミニウムを加工したフィルタである。なお、ウェッジは、ウェッジフィルター(wedge filter)、または、ボウタイフィルター(bow-tie filter)とも呼ばれる。コリメータ12cは、後述する照射制御部11の制御により、ウェッジ12bによってX線量が調節されたX線の曝射範囲を絞り込むためのスリットである。
照射制御部11は、高電圧発生部として、X線管12aに高電圧を供給する装置であり、X線管12aは、照射制御部11から供給される高電圧を用いてX線を発生する。照射制御部11は、X線管12aに供給する管電圧や管電流を調整することで、被検体Pに対して曝射されるX線量を調整する。また、照射制御部11は、コリメータ12cの開口度を調整することにより、X線の曝射範囲(ファン角やコーン角)を調整する。
駆動部16は、回転フレーム15を回転駆動させることによって、被検体Pを中心とした円軌道上でX線発生装置12と検出器13とを旋回させる。検出器13は、X線光子が入射する毎に、当該X線光子のエネルギー値を計測可能な信号を出力する。X線光子は、例えばX線管12aから曝射され被検体Pを透過したX線光子である。検出器13は、X線光子が入射する毎に、1パルスの電気信号(アナログ信号)を出力する複数の検出素子を有する。検出素子は、例えば光電変換素子である。電気信号(パルス)の数を計数することで、各検出素子に入射したX線光子の数を計数することができる。また、この信号に対して、処理の演算処理を行うことで、当該信号の出力を引き起こしたX線光子のエネルギー値を計測することができる。
検出器13の検出素子は、シンチレータと光電子増倍管等の光センサとにより構成されている。検出器13は、「間接変換型の検出器」となっている。検出器13は、入射したX線光子をシンチレータにより、一旦、可視光(シンチレータ光)に変換し、シンチレータ光を光電子増倍管等の光センサで電気信号に変換する。
図2に、検出器13の一例を示す。検出器13は、シンチレータと光電子増倍管等の光センサにより構成される検出素子40が、チャンネル方向(図1中のY軸方向)にN列、体軸方向(図1中のZ軸方向)にM列配置された面検出器となっている。検出素子40は、光子が入射すると、1パルスの電気信号を出力する。検出素子40が出力した個々のパルスを弁別することで、検出素子40に入射したX線光子の数を計数することができる。また、パルスの強度に基づく演算処理を行うことで、計数したX線光子のエネルギー値を計測することができる。
なお、図示していないが、検出器13の後段には、複数の検出素子40ごとに増幅器が設置され、増幅器は、前段の検出素子40から出力された電気信号を増幅して、図1に示す収集部14に出力する。
収集部14は、検出器13の出力信号を用いた計数処理の結果である計数情報を収集する。すなわち、収集部14は、検出器13から出力される個々の信号を弁別して、計数情報を収集する。計数情報は、X線管12aから曝射され被検体Pを透過したX線光子が入射する毎に検出器13(複数の検出素子40)が出力した個々の信号から収集される情報である。具体的には、計数情報は、検出器13(複数の検出素子40)に入射したX線光子の計数値とエネルギー値とが対応付けられた情報である。収集部14は、収集した計数情報を、コンソール装置30に送信する。
すなわち、収集部14は、検出素子40が出力した各パルスを弁別して計数したX線光子の入射位置(検出位置)と、計数値と、当該X線光子のエネルギー値とを計数情報として、予め定めた時間毎に収集する。収集部14は、例えば、計数に用いたパルス(電気信号)を出力した検出素子40の位置を、入射位置として収集する。また、収集部14は、電気信号に対して、所定の演算処理を行うことも可能である。
次に、図1に示す寝台装置20は、被検体Pを載せる装置であり、天板22と、寝台駆動装置21とを有する。天板22は、被検体Pを載置する板であり、寝台駆動装置21は、天板22をZ軸方向へ移動して、被検体Pを回転フレーム15内に移動させる。
なお、架台装置10は、例えば、天板22を移動させながら回転フレーム15を回転させて被検体Pを螺旋状にスキャンするヘリカルスキャンを実行する。または、架台装置10は、天板22を移動させた後に、被検体Pの位置を固定したままで回転フレーム15を回転させて被検体Pを円軌道にてスキャンするコンベンショナルスキャンを実行する。または、架台装置10は、天板22の位置を一定間隔で移動させてコンベンショナルスキャンを複数のスキャンエリアで行うステップアンドシュート方式でコンベンショナルスキャンを実行する。
次に、コンソール装置30は、入力部31と、表示部32と、スキャン制御部33と、前処理部34と、第1記憶部35と、再構成部36と、第2記憶部37と、制御部38とを有する。コンソール装置30は、操作者によるX線CT装置の操作を受け付けると共に、架台装置10によって収集された計数情報を用いてX線CT画像を再構成する。
入力部31は、X線CT装置の操作者が各種指示や各種設定の入力に用いるマウスやキーボード等を有し、操作者から受け付けた指示や設定の情報を、制御部38に転送する。例えば、入力部31は、操作者から、X線CT画像データの撮影条件や、X線CT画像データを再構成する際の再構成条件およびX線CT画像データに対する画像処理条件等を受け付ける。
表示部32は、操作者によって参照されるモニタ装置であり、制御部38による制御のもと、X線CT画像データを表示し、また、入力部31を介して操作者から各種指示および各種設定等を受け付けるためのGUI(Graphical User Interface)を表示する。
スキャン制御部33は、制御部38の制御のもと、照射制御部11、駆動部16、収集部14および寝台駆動装置21の動作を制御することで、架台装置10における計数情報の収集処理を制御する。
前処理部34は、収集部14から送信された計数情報に対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の補正処理を行うことで、投影データを生成する。
第1記憶部35は、前処理部34により生成された投影データを記憶する。すなわち、第1記憶部35は、X線CT画像データを再構成するための投影データ(補正済み計数情報)を記憶する。
再構成部36は、第1記憶部35が記憶する投影データを用いてX線CT画像データを再構成する。再構成方法としては、種々の方法があり、例えば、逆投影処理が挙げられる。また、逆投影処理としては、例えば、FBP(Filtered Back Projection)法による逆投影処理が挙げられる。また、再構成部36は、X線CT画像データに対して各種画像処理を行うことで、画像データを生成する。再構成部36は、再構成したX線CT画像データや、各種画像処理により生成した画像データを第2記憶部37に格納する。
ここで、フォトンカウンティングCTで得られる計数情報から生成された投影データには、被検体Pを透過したX線のエネルギー情報が含まれている。このため、再構成部36は、例えば、特定のエネルギー成分のX線CT画像データを再構成することができる。また、再構成部36は、例えば、複数のエネルギー成分それぞれのX線CT画像データを再構成することができる。
また、再構成部36は、例えば、各エネルギー成分のX線CT画像データの各画素にエネルギー成分に応じた色調を割り当て、エネルギー成分に応じて色分けされた複数のX線CT画像データを生成することができ、更に、これら複数のX線CT画像データを重畳した画像データを生成することができる。
制御部38は、架台装置10、寝台装置20およびコンソール装置30の動作を制御することによって、X線CT装置の全体制御を行う。具体的には、制御部38は、スキャン制御部33を制御することで、架台装置10で行われるCTスキャンを制御する。また、制御部38は、前処理部34や、再構成部36を制御することで、コンソール装置30における画像再構成処理や画像生成処理を制御する。また、制御部38は、第2記憶部37が記憶する各種画像データを表示部32に表示制御する。
このようなコンソール装置30は、一例として図3に示すハードウェア構成とすることができる。この図3に示す例において、コンソール装置30は、CPU50と、ROM51と、RAM52と、HDD53と、入出力I/F54と、通信I/F55と、入力部31と、表示部32とを有している。CPUは、「Central Processing Unit」の略記である。ROMは、「Read Only Memory」の略記である。RAMは、「Random Access Memory」の略記である。HDDは、「Hard Disk Drive」の略記である。I/Fは、「Interface」の略記である。
CPU50、ROM51、RAM52、HDD53、入出力I/F54、および通信I/F55は、バスライン56を介して相互に接続されている。また、入力部31および表示部32は、入出力I/F54を介してCPU50等に接続されている。また、通信I/F55は、架台装置10に接続されている。CPU50は、スキャン制御部33,前処理部34,再構成部36または制御部38に相当する。ROM51,RAM52およびHDD53は、第1記憶部35または第2記憶部37に相当する。
ここで、図4に、間接変換型の検出器を、X線の入射方向に沿って切断した部分的な断面図の一例を示す。図4において、(a)の符号を付した図は、X線の入射面近傍でシンチレーション光子が発生した様子を示している。これに対して、図4において、(b)の符号を付した図は、シンチレータ60と検出素子62との接合面の近傍でシンチレーション光子が発生した様子を示している。
図4のような間接変換型の検出器は、各検出素子62に対してシンチレータ60をそれぞれ接合すると共に、各シンチレータ60を反射フィルム61で全体的に被覆して形成されている。透影時または撮像時に曝射されたX線は、X線エネルギーが大きいため、反射フィルム61を透過してシンチレータ60に入射する。シンチレータ60にX線が入射することでシンチレーションが発生する。シンチレータ60に入射したX線は、シンチレーションにより例えば可視光に変換され、検出素子62に入射する。
具体的には、図4の(a)の符号を付した図に示すように、X線の入射面近傍でシンチレーションが発生した場合、シンチレーション光子は、反射フィルム61によりシンチレータ60内を反射し、または直接的に、検出素子62に入射する。このため、X線の入射面近傍でシンチレーションが発生した場合、検出素子62の検出面62aに対して略々均一にシンチレーション光子が入射する。すなわち、検出器の検出面前面に対して略々均一にシンチレーション光子が入射する。
これに対して、図4の(b)の符号を付した図に示すように、シンチレータ60と検出素子62との接合面近傍(=シンチレーション光子の出射面近傍)でシンチレーションが発生した場合、大部分のシンチレーション光子が、略々直接的に検出素子62に入射する。このため、シンチレータ60と検出素子62との接合面近傍でシンチレーションが発生した場合、検出素子62の検出面62aに、局所的にシンチレーション光子が入射する。
検出素子62は、複数のAPD(Avalanche Photo Diode)で構成されている。各APDは、入射したシンチレーション光子をカウント(フォトンカウンティング)するが、一度フォトンカウンティング動作を行うと、次にフォトンカウンティング動作を行うまでに多少の時間(準備時間)を必要とする。このため、シンチレーション光子が局所的に入射する状況となると、カウント動作が困難となる準備時間内に、大部分のシンチレーション光子が検出器に入射し、正確なシンチレーション光子のカウントが困難となる。
シンチレーションは、シンチレータ60のX線の入射面近傍での発生頻度が高く、X線の入射面から離れるに連れて発生頻度が低くなる。しかし、シンチレータ60内におけるシンチレーションの発生場所を制御することは困難である。
また、検出器とシンチレータ60との接合面近傍でのシンチレーションの発生を抑制する目的で、シンチレータ60の厚さを増すことを考える。この場合、上述の入射面と接合面との間の距離が長くなり、接合面近傍でのシンチレーションの発生を抑制可能かと思われる。しかし、この場合、入射面と接合面との間の距離が長くなることで、シンチレーション光子がシンチレータ60内で反射を起こす回数が増加する。このため、検出器に入射する前に、シンチレーション光子がシンチレータ60内で吸収される可能性が高くなる。
また、シンチレータ60として、ルテチウム(Lu)等のβ崩壊を起こす成分を含むシンチレータを用いることを考える。なお、β崩壊とは、中性子が陽子に変換する現象である。この場合、低頻度ではあるものの、シンチレータ60内で均一にシンチレーションが発生すると考えられる。このため、接合面近傍でのシンチレーションも一定の頻度で発生し、上述のカウントが困難となる問題も、一定の頻度で発生する。
図5に、実施形態のフォトンカウンティングCT装置に設けられている検出器13の部分的な斜視図を示す。図5に示すように検出器13は、一例として角柱形状の複数のシンチレータ70を有している。例えば検出素子40は複数がマトリクス状に設けられている。例えばシンチレータ70は、検出素子40と対向するようにマトリクス状に複数設けられている。シンチレータ70は、X線が入射する側の端面(入射面、第1面)70bと検出素子40と対向する側の端面(第2面)70aとを有する。端面70aと端面70bは対向する。各シンチレータ70は、2つの狭い面積となる端面のうち、一方の端面70aが各検出素子40にそれぞれ接続されている。
なお、この例では、シンチレータ70の形状は、角柱形状としたが、例えば円柱形状、または台形形状等の他の形状としてもよい。いずれの場合も、各検出素子40の形状および大きさに、シンチレータのシンチレーション光子の出射面の形状および大きさを合わせることが好ましいであろう。
シンチレータ70は、第1面を含むX線が入射する側の第1部分が、波長変換フィルム(波長変換部)71で覆われている。すなわち、各シンチレータ70は、X線の入射面70bが波長変換フィルム71で被覆されている。また、例えば各シンチレータ70は、入射面70bから全長の2/3程度の長さに相当する外周部70cの部分が、波長変換フィルム71で被覆されている。換言すると、各シンチレータ70は、X線の入射面70b側が、全長の2/3程度にわたって波長変換フィルム71で被覆されている。このとき、第1部分は全長の3分の2よりも入射面70b側である。さらに換言すると、シンチレータ70は、シンチレーション光子の出射面近傍以外の部分が、波長変換フィルム71で被覆されている。
この例においては、シンチレータ70の全長の2/3程度を波長変換フィルム71で被覆することとした。ここで、シンチレータ70の全長とは、入射面70bと検出素子40と対向する面である端面70aとの距離である。波長変換フィルム71で被覆する範囲としては、シンチレーション光子が検出器13に対して局所的に入射する可能性の低い発生位置に対応する、シンチレータ70の外周部の範囲となっている。換言すると、シンチレーション光子が検出器13に対して局所的に入射する可能性の高い、シンチレーション光子の出射面近傍以外の部分が波長変換フィルム71で被覆されている。そして、この例の場合、出射面近傍以外の部分は、シンチレータ70の全長の2/3程度に相当し、この部分を波長変換フィルム71で被覆している。
なお、波長変換フィルム71で被覆する範囲は、シンチレータの形状、大きさ、または材質等によっても変化する。このため、シンチレータ70を波長変換フィルム71で被覆する範囲は、各シンチレータのシンチレーション光子の発生の仕方を勘案し、シンチレーション光子が検出器13に対して局所的に入射する可能性の低いシンチレーション光子の発生位置に対応する範囲とすればよい。
なお、図5においては、シンチレータ70の全4面の外周部70cのうち、相対向する2面が波長変換フィルム71により被覆されているように図示されている。しかし、実際には、外周部70cの4つの全ての面における、シンチレータ70の全長の2/3程度に相当する部分が波長変換フィルム71により被覆されているものと理解されたい。
波長変換フィルム71は、シンチレータ70内で発生したシンチレーション光子の波長λ1(第1の波長の一例)を、異なる波長λ2(第2の波長の一例)のシンチレーション光子に変換する機能を有している。すなわち、波長変換フィルム71は、第1の波長で入射する光を第2の波長で出射させる。例えば、第1の波長は第2の波長よりも短い。後述するが、検出器13の各検出素子40は、波長λ1のシンチレーション光子に対する感度は低く、波長変換フィルム71により波長変換された波長λ2のシンチレーション光子に対する感度は高くなっている。すなわち、検出器13の各検出素子40は、波長λ2のシンチレーション光子を受光する感度に調整されている。例えば、波長変換フィルム71によって波長を変換されたあとのシンチレーション光子のピーク波長をλ2とする。検出素子40が光電変換可能な入射光の波長領域に波長λ2が含まれることとすることができる。
また、シンチレータ70の端面70a側の第2部分は、端面70aを除いて、反射フィルム(反射部)80によって覆われている。第2部分は、例えばシンチレータ70のうち第1部分以外の部分である。反射フィルム80は、さらに波長変換フィルム71を覆ってもよい。例えば、シンチレータ70は、検出素子40に接続される端面70a(=シンチレーション光子の出射面)を除き、全体を、波長変換フィルム71の上から、反射フィルム80(反射部材の一例)で被覆されている。換言すると、シンチレータ70は、X線の入射面70bが、波長変換フィルム71の上から反射フィルム80で被覆されている。また、シンチレータ70は、外周部70cの4つの全ての面が、波長変換フィルム71の上から反射フィルム80で被覆されている。
なお、図5においては、シンチレータ70の全4面の外周部70cのうち、相対向する2面が反射フィルム80で被覆されているように図示されている。しかし、実際には、外周部70cの4つの全ての面全体が、波長変換フィルム71の上から反射フィルム80で被覆されているものと理解されたい。また、この例では、シンチレーション光子の出射面を除き、シンチレータ70全体を、波長変換フィルム71の上から反射フィルム80で被覆することとした。しかし、シンチレータ70のうち、シンチレーション光子の出射面、および波長変換フィルム71で被覆されている部分以外の部分を反射フィルム80で被覆してもよい。
反射フィルム80は、シンチレーションにより発生したシンチレーション光子を反射する。この例の場合、シンチレータ70は、入射されたX線を可視光に変換する。このため、反射フィルム80としては、可視光を反射する反射フィルムが設けられる。
なお、この例では、フィルム状の波長変換フィルム71および反射フィルム80がシンチレータ70に貼り付けられていることとして説明を進めるが、波長変換フィルム71に用いる変換部材および反射フィルム80に用いる反射部材は、これらに限られるものではない。変換部材は、シンチレーション光子の波長λ1を異なる波長λ2に変換する機能を有していればどのような部材であってもよい。例えば、変換部材として、波長変換機能を有する塗料をシンチレータ70に塗布してもよい。また、反射部材は、シンチレーション光子を反射する機能を有していればどのような部材であってもよい。例えば、反射部材として、シンチレーション光子の反射機能を有する塗料をシンチレータ70に塗布してもよい。いずれの場合でも、後述する効果を得ることができる。
検出器13の各検出素子40は、波長変換フィルム71で変換されたシンチレーション光子の波長に対して高い感度となる特性を有している。すなわち、シンチレータ70のシンチレーションにより発生したシンチレーション光子の波長をλ1とする。また、波長λ1のシンチレーション光子は、波長変換フィルム71により波長λ2のシンチレーション光子に変換されるものとする。検出器13の各検出素子40は、波長変換フィルム71により変換された波長λ2のシンチレーション光子に対する感度が高く、波長変換フィルム71に波長変換される前の波長λ1のシンチレーション光子に対する感度が低い特性を有している(波長λ2のシンチレーション光子を受光する感度に調整されている)。
図6に、シンチレータ70内の各位置で発生したシンチレーション光子に対する検出器13の受光状態を示す。まず、シンチレータ70の図6に点Aとして示すX線の入射面近傍で、波長λ1のシンチレーション光子が発生したとする。この点Aで発生した波長λ1のシンチレーション光子は、波長変換フィルム71により波長λ2のシンチレーション光子に変換される。なお、図6中、シンチレーション光子の光路のうち、実線の光路は、波長λ1の状態での光路を示している。また、図6中、シンチレーション光子の光路のうち、一点鎖線の光路は、波長λ2の状態での光路を示している。波長変換フィルム71によりλ2の波長に変換されたシンチレーション光子は、反射フィルム80で反射されながら検出器13の検出素子40に入射する。
上述のように、検出器13は波長λ2のシンチレーション光子に対する感度が高くなるように調整されている。このため、検出器13は、点Aで発生し、波長がλ2に変換されたシンチレーション光子を良好に受光し、フォトンカウンティング動作を行う。なお、図6中、点Aで発生し、検出器13に入射したシンチレーション光子を示す「○」の印は、検出器13でシンチレーション光子が良好に受光されることを意味している。
次に、シンチレータ70の図6に点Bとして示すシンチレータ70と検出素子40との接合面近傍で、波長λ1のシンチレーション光子が発生したとする。そして、この接合面近傍の点Bで発生した波長λ1のシンチレーション光子が、X線の入射面方向に進行して波長変換フィルム71に入射したとする。この場合、点Bで発生した波長λ1のシンチレーション光子は、波長変換フィルム71により波長λ2のシンチレーション光子に変換される。そして、波長λ2のシンチレーション光子は、反射フィルム80で反射されながら検出器13の検出素子40に入射する。
接合面近傍の点Bで発生したシンチレーション光子は、直接的に検出器13に入射される可能性が高い。しかし、直接的に検出器13に入射せずに、波長変換フィルム71で波長λ2のシンチレーション光子に変換されたうえで検出器13の検出素子40に入射した場合には、上述の点Aで発生したシンチレーション光子と同様に、検出器13で良好に受光される。検出器13は、接合面近傍の点Bで発生したシンチレーション光子を受光して、フォトンカウンティング動作を行う。なお、図6中、点Bで発生し、検出器13に入射したシンチレーション光子を示す「○」の印は、検出器13でシンチレーション光子が良好に受光されることを意味している。
次に、シンチレータ70の図6に点Cとして示すシンチレータ70と検出素子40との接合面近傍で、波長λ1のシンチレーション光子が発生したとする。そして、この接合面近傍の点Cで発生した波長λ1のシンチレーション光子が、検出器13に対して直接的かつ局所的に入射したとする。
上述のように、検出器13は波長λ1のシンチレーション光子に対する感度が低くなるように調整されている。このため、検出器13は、点Cで発生した波長がλ1のままのシンチレーション光子はカウントしない。これにより、接合面近傍で発生し、直接的かつ局所的に検出器13に入射する波長λ1のシンチレーション光子の受光を抑制することができる。なお、図6中、点Cで発生し、検出器13に入射したシンチレーション光子を示す「×」の印は、検出器13でシンチレーション光子がほとんど受光されないことを意味している。
以上の説明から明らかなように、実施形態のフォトンカウンティングCT装置は、シンチレータ70と検出素子40との接合面近傍以外で発生する波長λ1のシンチレーション光子を波長λ2のシンチレーション光子に変換するように、シンチレータ70に対して波長変換フィルム71を設ける。また、波長変換フィルム71を設けたうえで、シンチレータ70を反射フィルム80で被覆する。そして、波長λ2のシンチレーション光子を受光するように、検出器13の感度を調整する。
これにより、接合面近傍で発生し直接的かつ局所的に入射される波長λ1のシンチレーション光子の受光を抑制することができる。そして、接合面近傍以外の、例えば入射面近傍で発生して波長λ2に変換されて入射されるシンチレーション光子を優先的に検出器13で受光することができる。換言すると、検出器13で受光するシンチレーション光子のシンチレータ70内の発生位置を、接合面近傍以外の入射面近傍にシフトして、接合面近傍以外で発生し、波長λ2に変換されて入射されるシンチレーション光子を検出器13の受光面全体で均一に受光しながらフォトンカウンティング動作を行うことができる。
検出素子を構成するAPDは、一度フォトンカウンティング動作を行うと、次にフォトンカウンティング動作を行うまでに多少の時間(準備時間)を必要とする。このため、シンチレーション光子が局所的に入射すると、カウント動作が困難となる準備時間内に、大部分のシンチレーション光子が検出器に入射し、正確なシンチレーション光子のカウントが困難となる。
しかし、実施形態のフォトンカウンティングCT装置の場合、検出器13の受光面全体で均一に受光しながらフォトンカウンティング動作を行うことができるため、正確なシンチレーション光子のカウントを可能とすることができる。また、局所的に入射されたシンチレーション光子をカウントする不都合を防止できるため、測定ノイズの発生も防止することができる。
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態およびその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 架台装置
11 照射制御部
12 X線発生装置
13 検出器
14 収集部
15 回転フレーム
16 駆動部
20 寝台装置
21 寝台駆動装置
22 天板
30 コンソール装置
31 入力部
32 表示部
33 スキャン制御部
34 前処理部
35 第1記憶部
36 画像再構成部
37 第2記憶部
38 制御部
40 検出素子
50 CPU
51 ROM
52 RAM
53 HDD
54 入出力I/F
55 通信I/F
70 シンチレータ
70a 一方の端面
70b 入射面
70c 外周部
71 波長変換フィルム
80 反射フィルム

Claims (4)

  1. 第1面を含む第1部分と、前記第1面と対向する第2面を含む第2部分とを有するシンチレータと、
    前記第1部分を覆い、第1の波長で入射する光を第2の波長で出射させることが可能な波長変換部と、
    前記第2面を除く前記第2部分を覆う光反射性の反射部と、
    前記第2の波長を含む波長帯の光を光電変換する検出素子と
    を有する放射線検出装置。
  2. 前記反射部は、さらに前記波長変換部を覆う、
    請求項1に記載の放射線検出装置。
  3. 前記第1部分は、前記第1面と前記第2面の距離の3分の2よりも第1面側である、
    請求項1または2に記載の放射線検出装置。
  4. 第1面を含む第1部分と、前記第1面と対向する第2面を含む第2部分とを有するシンチレータと、
    前記第1部分を覆い、第1の波長で入射する光を第2の波長で出射させることが可能な波長変換部材と、
    前記第2面を除く前記第2部分を覆う光反射性の反射部と、
    前記第2の波長を含む波長帯の光を光電変換する検出素子と、
    を備えた検出器と、
    前記検出器の出力する電気信号から画像を生成する画像生成部と
    を有する放射線検査装置。
JP2013211206A 2013-10-08 2013-10-08 放射線検出装置および放射線検査装置 Pending JP2015075376A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211206A JP2015075376A (ja) 2013-10-08 2013-10-08 放射線検出装置および放射線検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211206A JP2015075376A (ja) 2013-10-08 2013-10-08 放射線検出装置および放射線検査装置

Publications (1)

Publication Number Publication Date
JP2015075376A true JP2015075376A (ja) 2015-04-20

Family

ID=53000343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211206A Pending JP2015075376A (ja) 2013-10-08 2013-10-08 放射線検出装置および放射線検査装置

Country Status (1)

Country Link
JP (1) JP2015075376A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433391B2 (en) 2014-09-17 2016-09-06 Kabushiki Kaisha Toshiba Scintillator and radiation detection device
CN110136860A (zh) * 2019-05-25 2019-08-16 钱铁威 一种快中子筛选装置及筛选方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098311A1 (en) * 2007-03-05 2010-04-22 Koninklijke Philips Electronics N. V. Light detection in a pixelated pet detector
JP2010169674A (ja) * 2008-12-26 2010-08-05 Tohoku Univ 放射線検出器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098311A1 (en) * 2007-03-05 2010-04-22 Koninklijke Philips Electronics N. V. Light detection in a pixelated pet detector
JP2010169674A (ja) * 2008-12-26 2010-08-05 Tohoku Univ 放射線検出器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9433391B2 (en) 2014-09-17 2016-09-06 Kabushiki Kaisha Toshiba Scintillator and radiation detection device
CN110136860A (zh) * 2019-05-25 2019-08-16 钱铁威 一种快中子筛选装置及筛选方法

Similar Documents

Publication Publication Date Title
JP6242683B2 (ja) X線ct装置及び制御方法
JP5268499B2 (ja) 計算機式断層写真法(ct)イメージング・システム
JP6257916B2 (ja) 光検出装置、放射線検出装置、放射線分析装置及び光検出方法
JP6178272B2 (ja) 放射線計測装置、および放射線計測プログラム
JP2016032635A (ja) フォトンカウンティング型x線ct装置
US9877689B2 (en) Detection device and data processing method
US9433391B2 (en) Scintillator and radiation detection device
JP2018057655A (ja) 放射線診断装置及び方法
US11045153B2 (en) Device for acquiring pulse height spectrum, method for acquiring pulse height spectrum, program for acquiring pulse height spectrum, and radiation imaging apparatus
JP2015075376A (ja) 放射線検出装置および放射線検査装置
JP7106392B2 (ja) 感度補正方法及び光子計数型検出器
JP6968593B2 (ja) X線ct装置
JP2020188893A (ja) 放射線検出器、及びx線ct装置
US11229412B2 (en) X-ray imaging apparatus and monochromatic x-ray generating method
JP2015031683A (ja) 放射線検出装置、放射線分析装置及び放射線検出方法
JP2017086901A (ja) データ収集装置、x線ct装置及び核医学診断装置
US9933530B2 (en) Photon detector, radiation analyzer, and computer program product
JP6956626B2 (ja) X線ct装置及び再構成処理装置
US20240099670A1 (en) X-ray ct apparatus
JP2015152356A (ja) ダークカウントレス放射線検出エネルギー弁別イメージングシステム
JP7249831B2 (ja) 医用画像診断装置および点検用画像生成方法
US20230346323A1 (en) X-ray ct apparatus
JP7301607B2 (ja) 放射線診断装置
JP2024030533A (ja) 光子計数型のx線画像診断装置及びパイルアップ補正用の較正データの生成方法
JP2024008043A (ja) X線ct装置、及びスキャン条件決定方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205