JP2016032054A - To rare-earth bond magnet, manufacturing method for the same and motor - Google Patents

To rare-earth bond magnet, manufacturing method for the same and motor Download PDF

Info

Publication number
JP2016032054A
JP2016032054A JP2014154460A JP2014154460A JP2016032054A JP 2016032054 A JP2016032054 A JP 2016032054A JP 2014154460 A JP2014154460 A JP 2014154460A JP 2014154460 A JP2014154460 A JP 2014154460A JP 2016032054 A JP2016032054 A JP 2016032054A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
slidable
magnet powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014154460A
Other languages
Japanese (ja)
Inventor
慎一 堤
Shinichi Tsutsumi
慎一 堤
治彦 角
Haruhiko Sumi
治彦 角
近藤 憲司
Kenji Kondo
憲司 近藤
植田 浩司
Koji Ueda
浩司 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014154460A priority Critical patent/JP2016032054A/en
Publication of JP2016032054A publication Critical patent/JP2016032054A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare-earth bond magnet adopting high heat-resistance resin such as polyphenylene sulfide as thermoplastic resin which satisfies a requirement of necessitating antirust processing of magnet powder and neogenesis face occurring suppressing means to avoid deterioration of magnetic characteristics of the rare-earth bond magnet and secular change (deterioration) under the condition that the environmental temperature of the manufacturing process is higher than prior arts.SOLUTION: A weather resistance coating 2 is formed on rare-earth magnet powder 1, and then a sliding coating is formed on the weather resistance coating 2 to prepare sliding magnet powder 4. The coating portion of the rare-earth magnet powder 1 contains weather resistance (antirust material) as a main component of the coating layer of the lowermost layer on a side contacted with the surface of the rare-earth magnet powder and sliding material as a main component of the coating layer of the uppermost layer of the coating portion.SELECTED DRAWING: Figure 1

Description

本発明は、希土類系ボンド磁石、希土類系ボンド磁石の製造方法、希土類系ボンド磁石を搭載したモータに関する。   The present invention relates to a rare earth bond magnet, a method for producing a rare earth bond magnet, and a motor equipped with a rare earth bond magnet.

情報機器用、家電用、産業用、自動車用などに用いられるモータに搭載される磁石には、フェライト磁石や希土類焼結磁石、希土類系ボンド磁石などがある。特に高出力密度を求められる場合には、希土類系の磁石が使用される。希土類焼結磁石は現状、最も高い最大エネルギー積を有し、割れ、欠け、錆びなどの課題はあるものの、機器の小型、高出力化に貢献している。   Magnets mounted on motors used for information equipment, home appliances, industrial use, automobiles, etc. include ferrite magnets, rare earth sintered magnets, and rare earth bonded magnets. In particular, when a high power density is required, a rare earth magnet is used. Rare earth sintered magnets currently have the highest maximum energy product and contribute to miniaturization and high output of equipment, although there are problems such as cracking, chipping and rusting.

一方、希土類系ボンド磁石は、希土類であるNdを含むNd−Fe−B磁石粉末を樹脂で固めた樹脂結合型の磁石が一般的である。希土類系ボンド磁石は樹脂成分を含むために、希土類焼結磁石に比較し磁石成分が少なく、磁気特性は低くなるが、希土類系焼結磁石のように割れ、欠けの課題が少なく、成形後の後加工の必要もなく、一般に長尺、円筒、円筒や偏肉形状などの形状自由度が有効に働く、情報機器や家電等小型モータの高出力化に貢献している。   On the other hand, a rare-earth bonded magnet is generally a resin-bonded magnet in which Nd—Fe—B magnet powder containing Nd, which is a rare earth, is hardened with a resin. Rare earth-based bonded magnets contain a resin component, so there are fewer magnet components and lower magnetic properties than rare earth sintered magnets, but there are fewer problems of cracking and chipping like rare earth sintered magnets, and There is no need for post-processing, and in general, it contributes to high output of small motors such as information equipment and home appliances in which shape flexibility such as long, cylindrical, cylindrical and uneven thickness works effectively.

また近年、自動車のEV、HEV化の進展のため、自動車の動力となる主機モータ以外にも、油圧から電動へと変わるパーツも多く、小型モータの需要が拡大している。中でもエンジン周りに搭載されるオイルポンプなどのモータには、雰囲気温度やモータ内のコイルの発熱から150℃程度の高い耐熱要求もあり、形状自由度を活かした小型、高出力かつ高耐熱な希土類系ボンド磁石の開発が要望されている。   In recent years, due to the progress of EV and HEV in automobiles, there are many parts that change from hydraulic to electric in addition to the main motor that powers automobiles, and the demand for small motors is increasing. Among them, motors such as oil pumps mounted around the engine also have high heat resistance requirements of about 150 ° C due to the ambient temperature and heat generation of the coils in the motor, and are small, high power and high heat resistance rare earths that take advantage of shape flexibility. Development of bonded magnets is required.

このモータなどに使用される希土類系ボンド磁石の製造方法の成形工程における、代表的な成形工程は圧縮成形及び射出成形である。   Typical molding processes in the molding process of the manufacturing method of rare earth-based bonded magnets used for such motors are compression molding and injection molding.

希土類系ボンド磁石の製造方法の成形工程に圧縮成形を用いる場合は、磁石粉末と熱硬化性樹脂を混合した複合粉末を、円筒形状の金型内で圧縮成形し、その後熱硬化性樹脂の硬化しボンド磁石とする。この圧縮成形による希土類系ボンド磁石の成形体は生産性良く、高密度の磁石が作製できることもあり希土類系ボンド磁石では圧縮成形による磁石が広く用いられている。   When compression molding is used in the molding process of the rare earth bonded magnet manufacturing method, a composite powder in which magnet powder and thermosetting resin are mixed is compression molded in a cylindrical mold, and then the thermosetting resin is cured. And a bonded magnet. A compact of a rare earth-based bonded magnet by compression molding has good productivity, and a high-density magnet can be produced. As a rare-earth bonded magnet, a magnet by compression molding is widely used.

一方、希土類系ボンド磁石の製造方法の成形工程に射出成形を用いる場合は、磁石粉末と熱可塑性樹脂からなる複合材料を高温で溶融し、金型内に流し込み、冷却固化し磁石とすることで作製されるため、(1軸方向の圧縮によるため2次元平面的な形状の自由度しかない圧縮成形に比較し)、金型の形状を柔軟に変えることで3次元的な形状の自由度があり、モータ設計の幅を広げることが可能になるため、この近年は技術開発が盛んである。   On the other hand, when injection molding is used in the molding process of the manufacturing method of rare earth bonded magnets, a composite material composed of magnet powder and thermoplastic resin is melted at a high temperature, poured into a mold, and cooled and solidified into a magnet. Because it is manufactured (compared to compression molding that has only two-dimensional planar shape because of compression in one axis direction), the flexibility of three-dimensional shape can be improved by flexibly changing the shape of the mold. In recent years, technological development has been active because it is possible to expand the range of motor design.

そして、希土類系ボンド磁石及びその製造方法においては、従来から磁石粉末の性状に起因する特有の課題が存在する。この磁石粉末の性状に起因する課題は、磁石粉末が希土類元素を含む鉄系磁石合金であることから自明なとおり、磁石粉末自体が酸化し易く、この酸化によって希土類系ボンド磁石の磁気特性は低下する。したがって、磁気特性を低下させないために、何らかの防錆処理を施す必要がある。なお、磁石粉末の酸化は換言すれば、磁石粉末の錆び、とも表現し得る。   In the rare-earth bonded magnet and the manufacturing method thereof, there has been a specific problem due to the properties of the magnet powder. The problem due to the properties of this magnet powder is that the magnet powder itself is easily oxidized because the magnet powder is an iron-based magnet alloy containing a rare earth element, and this oxidation reduces the magnetic properties of the rare-earth bond magnet. To do. Therefore, in order not to deteriorate the magnetic characteristics, it is necessary to perform some rust prevention treatment. In other words, the oxidation of the magnet powder can be expressed as rusting of the magnet powder.

この種のボンド磁石の防錆処理に関しては、数々の提案が為されている。下記の特許文献等には、磁石粉末に防錆処理を施す方法や、希土類系ボンド磁石の完成品に防錆処理を施す方法や、磁石粉末及び希土類系ボンド磁石の完成品のいずれにも防錆処理を施す方法などが記されている。   Numerous proposals have been made regarding the anticorrosion treatment of this type of bonded magnet. In the following patent documents, etc., it is possible to prevent rust prevention treatment of magnet powder, rust prevention treatment of finished rare earth bonded magnets, and magnet powder and rare earth bonded magnet finished products. The method of applying rust treatment is described.

例えば、特許文献1などには、リン酸鉄と希土類金属リン酸塩を含む被膜が表面に形成された希土類元素を含む鉄系磁石合金からなる磁石粉末と、樹脂バインダーとして熱可塑性または熱硬化性樹脂を含有した樹脂結合型磁石用組成物について記されている。さらに、同文献には、テトラアルコシシラン化合物が、インテグラルブレンド法により配合されている樹脂結合型磁石用組成物などを用いることも記されている。   For example, in Patent Document 1 and the like, a magnet powder made of an iron-based magnet alloy containing a rare earth element having a coating containing iron phosphate and a rare earth metal phosphate formed on its surface, and thermoplastic or thermosetting as a resin binder. A resin-bonded magnet composition containing a resin is described. Furthermore, this document also describes the use of a resin-bonded magnet composition in which a tetraalkoxysilane compound is blended by an integral blend method.

その他にも、磁石粉末の酸化を抑制するために、粉末表面にリン酸塩処理やクロム酸塩処理などの化成処理を行うこと(特許文献2など)、亜鉛やアルミニウムを蒸着すること(特許文献3など)、高分子皮膜を形成すること(特許文献4など)、金属めっきをすること(特許文献5など)、磁石合金粉を皮膜処理する場合は、粉砕溶媒中にリン酸を添加し、希土類や鉄のリン酸塩を合金粉末表面に生成させる方法(特許文献6など)がある。   In addition, in order to suppress the oxidation of the magnet powder, the powder surface is subjected to chemical conversion treatment such as phosphate treatment or chromate treatment (Patent Document 2, etc.), and zinc or aluminum is deposited (Patent Document). 3), forming a polymer film (Patent Document 4 etc.), metal plating (Patent Document 5 etc.), when coating a magnetic alloy powder, add phosphoric acid into the grinding solvent, There is a method of generating rare earth or iron phosphates on the surface of the alloy powder (Patent Document 6, etc.).

しかしながら、上述のような防錆処理を施しても、次の課題を内包している。その課題とは、この磁石粉末の形状に起因するものである。この種の磁石粉末の形状は粒状ではなく、厚み20〜30μmで対角方向50〜150μmの不定形状の薄片であるため、希土類系ボンド磁石の製造工程における混錬工程や成形工程などの磁石粉末へ力学的負荷が加えられる工程によって、この磁石粉末はさらなる小片へと破砕され易い。   However, even if the rust prevention treatment as described above is performed, the following problems are included. The problem is caused by the shape of the magnet powder. Since this type of magnet powder is not granular, it is an irregularly shaped flake having a thickness of 20 to 30 μm and a diagonal direction of 50 to 150 μm. Due to the process in which the mechanical load is applied, the magnet powder is easily broken into smaller pieces.

この破砕された小片には磁石粉末の生地が露出した新生面が生じる。そして、この新生面に現れた生地は、大気中の酸素などと反応して、次第に酸化する。このようにして、希土類系ボンド磁石を構成する材料のうち、磁石粉末が酸化してしまうことから、希土類系ボンド磁石の磁気特性に経時的な変化(経時的な磁気特性値の低下)が起きる。   This crushed piece has a new surface with exposed magnet powder dough. The dough appearing on the new surface reacts with oxygen in the atmosphere and gradually oxidizes. In this way, among the materials constituting the rare earth bond magnet, the magnet powder is oxidized, so that the magnetic characteristics of the rare earth bond magnet change over time (decrease in magnetic characteristic value over time). .

したがって、特許文献7などのように単純にリン酸系皮膜のみを施したケースにおいては、圧縮成形時の高圧で磁石粉末に過剰な力が加わり、磁石粉末が破砕されリン酸系皮膜が施されていない新生面が発生し、その新生面から酸化が進行する。この課題に対しては、特許文献8などのように、防錆処理としてのリン酸系皮膜を施した磁石粉末と樹脂からなる混合粉末を圧縮成形した後に、再度、圧縮成形体をリン酸処理液に浸漬し圧縮成形体内部に浸透させることで、圧縮時の磁石粉末破砕によって生じた新生面へ耐候性処理し、耐熱性を高め、さらには希土類系ボンド磁石の完成品の表面に樹脂などの塗膜を施すことが記されている。   Therefore, in a case where only a phosphoric acid film is applied as in Patent Document 7, an excessive force is applied to the magnet powder at a high pressure during compression molding, and the magnet powder is crushed and the phosphoric acid film is applied. A new surface is generated, and oxidation proceeds from the new surface. For this problem, as in Patent Document 8, etc., after compression molding a mixed powder composed of a magnet powder and a resin subjected to a phosphoric acid-based coating as an antirust treatment, the compression molded body is subjected to phosphoric acid treatment again. By dipping in the liquid and infiltrating the inside of the compression molded body, the new surface generated by crushing the magnet powder during compression is treated with weather resistance, and heat resistance is increased. It is noted that a coating is applied.

さて、上記の課題解決を講じても、製造工程の途中で生じた磁石粉末の新生面は、新生面発生直後から酸化が始まり、徐々に酸化は磁石粉末の深部まで進行することが推測される。また、希土類系ボンド磁石の外表面全体を樹脂などの塗膜にて覆っても、塗膜には少なからずピンホールが生じているため、このピンホールを介して大気中の酸素と磁石粉末の新生面とが接し、新生面は酸化することが推測される。このようにして、磁石粉末の新生面の酸化や、磁石粉末の深部への酸化進行によって、希土類系ボンド磁石の磁気特性の経時的な変化(磁気特性の低下)が生じることが推測される。   Even if the above problem is solved, it is presumed that the new surface of the magnet powder generated during the manufacturing process starts to be oxidized immediately after the new surface is generated, and the oxidation gradually proceeds to the deep part of the magnet powder. In addition, even if the entire outer surface of the rare earth bond magnet is covered with a coating such as a resin, there are not a few pinholes in the coating, so oxygen and magnet powder in the atmosphere can be passed through the pinhole. It is speculated that the new surface comes into contact with the new surface and oxidizes. In this way, it is presumed that the magnetic characteristics of the rare-earth bonded magnet change with time (decrease in magnetic characteristics) due to the oxidation of the new surface of the magnet powder and the progress of the oxidation of the magnet powder to the deep part.

さて、上述の数々の課題を解決するとともに、希土類系ボンド磁石の更なる性能向上を図るため、高耐熱化が期待される熱可塑性樹脂のポリフェニレンサルファイドなどを用いた場合における、新たな課題の有無確認のために、以下に記す試作例にて、希土類系ボンド磁石のサンプルを作成した。   Now, in order to solve the above-mentioned problems and to further improve the performance of rare earth bonded magnets, there is a new problem when using polyphenylene sulfide, a thermoplastic resin that is expected to have high heat resistance For confirmation, a rare earth-based bonded magnet sample was created in the following prototype example.

(試作例)
急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12に耐候性皮膜(防錆膜)のリン酸塩皮膜を施し、信越化学工業性のシランカップリング剤である3―グリシドキシプロピルトリメトキシシランと混合し、さらにDIC株式会社製のポリフェニレンサルファイド熱可塑性樹脂粉末を混合した。この混合物を、2軸の押出混練機に投入し、複合材料を作製した。混練時の装置温度は310℃とした。
(Prototype example)
The Nd-Fe-B magnet powder MQP-14-12 manufactured by Magnequench manufactured by the quenching thin plate method is subjected to a phosphate coating of a weather resistant coating (rust preventive coating), and Shin-Etsu Chemical It was mixed with 3-glycidoxypropyltrimethoxysilane, which is a silane coupling agent, and further mixed with polyphenylene sulfide thermoplastic resin powder manufactured by DIC Corporation. This mixture was put into a biaxial extrusion kneader to produce a composite material. The apparatus temperature during kneading was 310 ° C.

この得られた複合材料を温度300℃で、射出圧力4ton/cm2の条件で射出成形し、直径5mm、高さ5mmの円柱状磁石を作製し、理研電子株式会社製のVSM(振動試料型磁力計)にて磁気特性を測定した。 The obtained composite material was injection molded at a temperature of 300 ° C. under an injection pressure of 4 ton / cm 2 to produce a cylindrical magnet having a diameter of 5 mm and a height of 5 mm. Magnetic properties were measured with a magnetometer.

本試作例の耐候性皮膜のみのボンド磁石の保磁力Hcbは、350kA/mと測定され、MQP−14−12の本来の保磁力Hcbの470kA/mに対して25%も低下することが確認された。   The coercive force Hcb of the bonded magnet with only the weather-resistant film of this prototype is measured at 350 kA / m, and it is confirmed that the coercive force Hcb is reduced by 25% with respect to 470 kA / m of the original coercive force Hcb of MQP-14-12. It was done.

つぎに、本試作例の熱可塑性樹脂のポリフェニレンサルファイドを採用した希土類系ボンド磁石の保磁力Hcbが低下した理由について考察する。   Next, the reason why the coercive force Hcb of the rare earth-based bonded magnet employing the thermoplastic resin polyphenylene sulfide of this prototype is lowered will be discussed.

まず、上記のポリフェニレンサルファイドなどの耐熱樹脂の場合では、融点が約280℃である為、その混練工程及び射出成形工程の材料の温度は300〜350℃の高温となる。通常常温で成形する熱硬化性樹脂の圧縮成形と異なり、熱可塑性樹脂の射出成型の場合は非常に高い温度(300〜350℃)での成形工程を経ることとなる。また、磁石粉末と熱可塑性樹脂の混練時の温度も同様に非常に高い温度(300〜350℃)での紺錬工程を経ることとなる。   First, in the case of the above heat-resistant resin such as polyphenylene sulfide, since the melting point is about 280 ° C., the temperature of the material in the kneading step and the injection molding step is as high as 300 to 350 ° C. Unlike compression molding of a thermosetting resin that is usually molded at normal temperature, injection molding of a thermoplastic resin undergoes a molding process at a very high temperature (300 to 350 ° C.). Moreover, the temperature at the time of kneading | mixing magnet powder and a thermoplastic resin will also pass through the refining process at very high temperature (300-350 degreeC) similarly.

当然、混練工程に使用する混練押出機のスクリューや壁面と磁石粉末との摩擦で磁石粉末は破砕されてしまう。そして、この破砕によって生じる新生面は、混練工程及び射出成形工程のいずれもが300℃以上の高熱環境中であるため従来よりも過度に(磁石粉末の深部まで)酸化し、角型性や保磁力などの磁気特性特が大幅に低下することが、推測された。   Naturally, the magnet powder is crushed by friction between the screw and wall surface of the kneading extruder used in the kneading step and the magnet powder. And the new surface produced by this crushing is oxidized more excessively (to the deep part of the magnet powder) than in the past because both the kneading process and the injection molding process are in a high heat environment of 300 ° C. or more, and the squareness and coercive force are increased. It was speculated that the magnetic characteristics such as

また、上記のとおり、破砕によって生じる磁石粉末の新生面の酸化劣化は、300℃以上の高熱環境中で発生しているため、従来よりも過度に磁石粉末の深部まで酸化が進行すると推定される。したがって、本試作例の射出成型を含む工程を経る場合の希土類系ボンド磁石の外表面全体を樹脂などの塗膜にて覆ったとしても、磁石粉末の酸化が進み過ぎているため、従来の通常常温で成形する熱硬化性樹脂の圧縮成形の場合のときほどの効果は発揮されないことも、推測された。   In addition, as described above, the oxidative deterioration of the new surface of the magnet powder caused by crushing occurs in a high-temperature environment of 300 ° C. or higher, so that it is estimated that the oxidation proceeds more deeply than in the past. Therefore, even if the entire outer surface of the rare earth bond magnet in the process including the injection molding of this prototype is covered with a coating film such as a resin, the oxidation of the magnet powder is too advanced, It was also speculated that the effect as in the case of compression molding of a thermosetting resin molded at room temperature is not exhibited.

特開2011−146416号公報JP 2011-146416 A 特開昭64−14902号公報JP-A 64-14902 特開昭64−15301号公報JP-A-64-15301 特開平4−257202号公報JP-A-4-257202 特開平7−142246号公報Japanese Patent Laid-Open No. 7-142246 特開2002−8911号公報JP 2002-8911 A 特開2003−7521号公報Japanese Patent Laid-Open No. 2003-7521 特開2005−268352号公報JP 2005-268352 A

熱可塑性樹脂のポリフェニレンサルファイド等の高耐熱樹脂を採用した希土類系ボンド磁石の製造工程においては、製造工程の環境温度が、従来よりも高温であり、希土類系ボンド磁石の磁気特性特の低下や、経時的変化(劣化)を回避するためには、磁石粉末の防錆処理は必須であり、かつ、磁石粉末の破砕による新生面の発生自体を抑制する、何らかの新生面発生抑制手段の必要性が新たに提起された。   In the manufacturing process of rare earth-based bonded magnets employing high heat-resistant resin such as polyphenylene sulfide of thermoplastic resin, the environmental temperature of the manufacturing process is higher than before, and the magnetic property characteristics of rare earth-based bonded magnets are reduced. In order to avoid changes (deterioration) over time, rust prevention treatment of magnet powder is essential, and there is a new need for some new surface generation suppression means that suppresses generation of new surface due to crushing of magnet powder. Was raised.

第1の発明は、希土類系磁石粉末と樹脂成分とを含む希土類系ボンド磁石において、前記希土類系磁石粉末はその表面を覆う皮膜部を具備し、この皮膜部には前記希土類系磁石粉末の表面と接する側の最下層の皮膜層の主成分に耐候性材料(防錆材料)を含み、かつ前記皮膜部の最上層の皮膜層の主成分には新生面発生抑制手段としての摺動性材料を含む希土類系ボンド磁石である。   In a first aspect of the present invention, there is provided a rare earth-based bonded magnet including a rare earth-based magnet powder and a resin component, wherein the rare earth-based magnet powder includes a coating portion that covers a surface of the rare earth-based magnet powder. The main component of the lowermost coating layer on the side in contact with the surface contains a weather resistant material (rust preventive material), and the main component of the uppermost coating layer of the coating portion contains a slidable material as a means for suppressing the generation of new surfaces. It is a rare earth bond magnet.

第2の発明は、第1の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはニッケル及びホウ素を含む希土類系ボンド磁石である。   A second invention is the rare earth bond magnet according to the first invention, wherein the weather resistant material contains phosphate, and the slidable material as the new surface generation suppressing means contains nickel and boron.

第3の発明は、第1の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石である。   According to a third invention, in the first invention, the weather-resistant material contains a phosphate, and the slidable material as a new surface generation suppressing means contains nickel and a fluorine-based polymer compound. It is.

第4の発明は、第1の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはリン酸マンガンを含む希土類系ボンド磁石である。   A fourth invention is the rare earth bond magnet according to the first invention, wherein the weather resistant material includes phosphate, and the slidable material as the new surface generation suppressing means includes manganese phosphate.

第5の発明は、第1の発明において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料には二硫化モリブデンを含む希土類系ボンド磁石である。   A fifth invention is the rare earth-based bonded magnet according to the first invention, wherein the weather-resistant material contains phosphate and the slidable material contains molybdenum disulfide.

第6の発明は、第1〜第5の発明の希土類系ボンド磁石を含む電動機である。   A sixth invention is an electric motor including the rare earth bond magnet of the first to fifth inventions.

第7の発明は、希土類系ボンド磁石の製造方法において、皮膜付き希土類系磁石粉末を用いる希土類系ボンド磁石の製造方法であり、前記皮膜付き希土類系磁石粉末の皮膜部の最下層の皮膜層の主成分に耐候性材料を含み、かつ前記皮膜部の最上層の皮膜層の主成分には新生面発生抑制手段としての摺動性材料を含む希土類系ボンド磁石の製造方法である。   A seventh invention is a method for producing a rare earth-based bonded magnet using a coated rare-earth magnet powder in a method for producing a rare-earth bonded magnet, wherein the lowermost coating layer of the coated portion of the coated rare-earth magnet powder is provided. This is a method for producing a rare earth-based bonded magnet, which includes a weather resistant material as a main component and a slidable material as a new surface generation suppressing means as a main component of the uppermost coating layer of the coating portion.

第8の発明は、第7の発明において、新生面発生抑制手段としての動摩擦係数の上限値が0.1である皮膜付き希土類系磁石粉末を用いる希土類系ボンド磁石の製造方法である。   The eighth invention is a method for producing a rare earth based bonded magnet using the coated rare earth based magnet powder having an upper limit value of the dynamic friction coefficient of 0.1 as the new surface generation suppressing means in the seventh invention.

第9の発明は、第7の発明において、皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練押出機を用いる工程を含み、前記混練押出機は、新生面発生抑制手段としての摺動性皮膜で被覆したスクリュー及び筐筒内面を備える希土類系ボンド磁石の製造方法である。   A ninth invention comprises the step of using a kneading extruder in the seventh invention, comprising a step of using a kneading extruder for mixing a coated rare earth magnet powder and a resin component and processing it into a resin composition for a bonded magnet, Is a method for producing a rare earth-based bonded magnet having a screw coated with a slidable film as a new surface generation suppressing means and a casing inner surface.

第10の発明は、第7の発明において、皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練押出機を用いる工程を含み、さらに、前記混練押出機は、その内部に不活性ガスを満たす希土類系ボンド磁石の製造方法である。   A tenth invention includes a step of using a kneading extruder for mixing the coated rare earth magnet powder and the resin component into a bonded magnet resin composition in the seventh invention, and further comprising the kneading An extruder is a method for producing a rare earth-based bonded magnet that fills an inert gas therein.

第11の発明は、第7の発明において、不活性ガスの雰囲気内にて皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練及び押出する工程を含む希土類系ボンド磁石の製造方法である。   The eleventh aspect of the invention is the seventh aspect of the invention, in which the step of kneading and extruding for mixing the coated rare earth magnet powder and the resin component in an inert gas atmosphere and processing it into a bonded magnet resin composition It is a manufacturing method of the rare earth type bonded magnet containing this.

第12の発明は、第7の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはニッケル及びホウ素を含む希土類系ボンド磁石の製造方法である。   A twelfth aspect of the invention is a method of manufacturing a rare-earth bond magnet according to the seventh aspect of the invention, wherein the weather resistant material includes phosphate, and the slidable material as a new surface generation suppressing means includes nickel and boron. is there.

第13の発明は、第7の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石の製造方法である。   A thirteenth invention is the rare earth bond magnet according to the seventh invention, wherein the weather resistant material contains phosphate, and the slidable material as the new surface generation suppressing means contains nickel and a fluorine polymer compound. It is a manufacturing method.

第14の発明は、第7の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料にはリン酸マンガンを含む希土類系ボンド磁石の製造方法である。   A fourteenth aspect of the invention is a method for manufacturing a rare earth-based bonded magnet according to the seventh aspect of the invention, wherein the weather resistant material contains phosphate, and the slidable material as the new surface generation suppressing means contains manganese phosphate. is there.

第15の発明は、第7の発明において、耐候性材料にはリン酸塩を含み、かつ、新生面発生抑制手段としての摺動性材料には二硫化モリブデンを含む希土類系ボンド磁石の製造方法である。   A fifteenth aspect of the invention is a method for producing a rare earth-based bonded magnet according to the seventh aspect of the invention, wherein the weather resistant material contains a phosphate, and the slidable material as a new surface generation suppressing means contains molybdenum disulfide. is there.

第16の発明は、第9の発明において、新生面発生抑制手段としての混練押出機の摺動性皮膜にニッケル及びホウ素を含む希土類系ボンド磁石の製造方法である。   A sixteenth aspect of the invention is a method for producing a rare earth-based bonded magnet according to the ninth aspect of the invention, wherein nickel and boron are included in the slidable film of the kneading extruder as the new surface generation suppressing means.

第17の発明は、第9の発明において、新生面発生抑制手段としての混練押出機の摺動性皮膜にニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石の製造方法。   A seventeenth aspect of the invention is a method for producing a rare earth-based bonded magnet according to the ninth aspect of the invention, wherein the sliding film of the kneading extruder as the new surface generation suppressing means contains nickel and a fluorine-based polymer compound.

第18の発明は、第9の発明において、新生面発生抑制手段としての混練押出機の摺動性皮膜にリン酸マンガンを含む希土類系ボンド磁石の製造方法である。   An eighteenth aspect of the invention is a method for producing a rare earth-based bonded magnet according to the ninth aspect of the invention, wherein manganese phosphate is included in the slidable film of the kneading extruder as the new surface generation suppressing means.

第19の発明は、第9の発明において、新生面発生抑制手段としての混練押出機の摺動性皮膜に二硫化モリブデンを含む希土類系ボンド磁石の製造方法である。   A nineteenth aspect of the invention is a method for producing a rare earth-based bonded magnet according to the ninth aspect of the invention, wherein the slidable film of the kneading extruder as the new surface generation suppressing means contains molybdenum disulfide.

本発明は、希土類系磁石粉末と樹脂成分から構成される希土類系ボンド磁石において、この希土類系磁石粉末の表面が耐候性皮膜で被覆され、さらにその上に、新生面発生抑制手段としての摺動性皮膜で被覆されたことを特徴とする希土類系ボンド磁石である。   The present invention relates to a rare earth bonded magnet composed of a rare earth magnet powder and a resin component, and the surface of the rare earth magnet powder is coated with a weather-resistant film, and further, slidability as a means for suppressing generation of a new surface. A rare-earth bonded magnet characterized by being coated with a film.

本発明によれば、磁石粉末と樹脂を混練する工程や射出成形する工程において、希土類系磁石粉末外周の摺動製皮膜が混練時や射出成形時のスクリューや壁面と磁石粉末、又は磁石粉末同士の摩擦を低減させ、磁石粉末に加わる圧力を分散し、磁石粉末の破砕を抑制し、新生面の発生を極力抑えるため、磁石粉末は耐候性皮膜に保護され、混練時や、射出成形時の高温による酸化劣化を抑制し、高耐熱のボンド磁石を提供できる。   According to the present invention, in the step of kneading the magnet powder and the resin or the step of injection molding, the sliding film on the outer periphery of the rare earth magnet powder is kneaded or injection molded with the screw or wall surface and the magnet powder, or between the magnet powders. In order to reduce the friction of the magnet, disperse the pressure applied to the magnet powder, suppress the crushing of the magnet powder, and minimize the generation of new surfaces, the magnet powder is protected by a weather-resistant film, and is heated at the time of kneading and injection molding. It is possible to provide a high heat-resistant bonded magnet that suppresses oxidative degradation due to the heat.

また、上記希土類系磁石粉末を被覆する新生面発生抑制手段としての摺動性皮膜の動摩擦係数の上限値が0.1であることを特徴とする希土類系ボンド磁石とすることで、破砕抑制効果を高めることができる。   Moreover, the rare earth-based bonded magnet is characterized in that the upper limit value of the dynamic friction coefficient of the slidable film as a new surface generation suppressing means for coating the rare earth-based magnet powder is 0.1, so that the effect of suppressing crushing is obtained. Can be increased.

さらに、上記希土類系磁石粉末と樹脂成分を混合しボンド磁石用樹脂組成物へと加工するための混練押出機のスクリューと筐筒内面が新生面発生抑制手段としての摺動性皮膜で被覆されたことを特徴とする希土類系ボンド磁石とすることで、特に、混練時や射出成形時のスクリューや壁面と磁石粉末の摩擦を低減させ、磁石粉末の破砕を抑制できる。   Furthermore, the screw and the inner surface of the kneading extruder for mixing the rare earth magnet powder and the resin component into a bonded magnet resin composition were coated with a slidable coating as a new surface generation suppressing means. By using the rare earth bond magnet characterized by the above, particularly, friction between the screw and the wall surface during kneading and injection molding and the magnet powder can be reduced, and crushing of the magnet powder can be suppressed.

さらにまた、上記希土類系磁石粉末と樹脂成分を混合しボンド磁石用樹脂組成物へと加工するため混練押出機内を不活性ガスで満たし作製したことを特徴とする希土類系ボンド磁石とすることで、上記磁石粉末破砕抑制でも防止できなかった破砕粉の新生面への酸素の結合確率を、低酸素の状態とすることで低下させることが可能となる。   Furthermore, by mixing the rare earth magnet powder and the resin component and processing the resin composition for a bond magnet into a kneading extruder filled with an inert gas, a rare earth bond magnet characterized by being prepared, It is possible to reduce the probability of oxygen binding to the new surface of the crushed powder, which could not be prevented by the above-described suppression of pulverization of the magnet powder, by making the state of low oxygen.

また、上記希土類系ボンド磁石を搭載したことを特徴とするモータとすることで、磁石粉末が有する本来の磁気特性を発揮させ、モータ製品としての出力密度を高めることができ、かつ長期的な高温環境での信頼性も得られる。   Moreover, by making the motor characterized by mounting the rare earth-based bonded magnet, the original magnetic properties of the magnet powder can be exhibited, the output density as a motor product can be increased, and long-term high temperature Environmental reliability is also obtained.

摺動性磁石粉末の模式図Schematic diagram of slidable magnet powder 摺動性磁石粉末と熱可塑性樹脂粉末の混合状態を示す図The figure which shows the mixed state of slidable magnet powder and thermoplastic resin powder 混練押出機の内部構造の概要を示す図Diagram showing the outline of the internal structure of the kneading extruder 摺動性磁石粉末混練時の混練押出機の内部を拡大した模式図Schematic diagram enlarging the inside of a kneading extruder when kneading slidable magnet powder 混練押出機で壁面やスクリュー及び磁石粉末同士にかかる力の模式図Schematic diagram of forces applied to wall surfaces, screws and magnet powders in a kneading extruder 摺動性磁石粉末同士の滑りによる材料整列の模式図Schematic diagram of material alignment by sliding between slidable magnet powders 押出混練機の壁面及びスクリューへの摺動性皮膜の模式図Schematic diagram of slidable coating on wall and screw of extrusion kneader 摺動性磁石粉末を用いたボンド磁石の模式図Schematic diagram of bonded magnet using slidable magnet powder 耐候性磁石粉末の模式図Schematic diagram of weather-resistant magnet powder 耐候性磁石粉末混練時の混練押出機の内部を拡大した模式図Schematic diagram enlarging the inside of a kneading extruder when kneading weather-resistant magnet powder 耐候性磁石粉末の破砕状態と酸化膜の模式図Schematic diagram of crushed state and oxide film of weather-resistant magnet powder 耐候性磁石粉末を用いたボンド磁石の模式図Schematic diagram of bonded magnet using weather-resistant magnet powder 本発明のボンド磁石を磁石埋め込み型コアに搭載したロータの外観図External view of a rotor in which the bonded magnet of the present invention is mounted on a magnet-embedded core 磁石埋め込み型ロータを搭載したモータの外観図External view of a motor with a magnet embedded rotor

以下、本発明について、図面及び表を参照しながら説明する。なお、以下の実施の形態及び実施例によって本発明が限定されるものではない。
(実施の形態)
図1は、希土類系磁石粉末1に耐候性皮膜2を施し、さらにその上に新生面発生抑制手段としての摺動性皮膜を施した摺動性磁石粉末4である。なお、希土類系磁石粉末1の皮膜部には、この希土類系磁石粉末の表面と接する側の最下層の皮膜層の主成分に耐候性材料(防錆材料)を含み、かつこの皮膜部の最上層の皮膜層の主成分に摺動性材料を含む構成を採用しても良い。
The present invention will be described below with reference to the drawings and tables. The present invention is not limited to the following embodiments and examples.
(Embodiment)
FIG. 1 shows a slidable magnet powder 4 obtained by applying a weatherable film 2 to a rare earth magnet powder 1 and further applying a slidable film as a new surface generation suppressing means. The film portion of the rare earth magnet powder 1 contains a weather-resistant material (rust preventive material) as a main component of the lowermost film layer on the side in contact with the surface of the rare earth magnet powder, and the outermost portion of this film portion. You may employ | adopt the structure which contains a slidable material in the main component of the upper film layer.

この摺動性磁石粉末4と熱可塑性樹脂粉末5とを混合し、図2の混合状態とした。この混合物を、図3に示す高温に加熱した混練押出機6に投入し、混練する。   The slidable magnet powder 4 and the thermoplastic resin powder 5 were mixed to obtain a mixed state shown in FIG. This mixture is put into a kneading extruder 6 heated to a high temperature as shown in FIG. 3 and kneaded.

図4に、摺動性磁石粉末混練時の混練押出機6の内部を拡大した模式図を示す。摺動性磁石粉末4や熱可塑性樹脂粉末5は図4のように、押出混練機内に配置され、スクリュー8が回転することで、スパイラル状に材料が流動する過程で溶融した熱可塑性樹脂粉末5の中に、摺動性磁石粉末4が練り込まれていく。その混練の際、摺動性磁石粉末には、図5のようなスクリューと筐筒の壁面とから受ける力10や磁石粉末同士の摩擦によって受ける力11などの力がかかる。   In FIG. 4, the schematic diagram which expanded the inside of the kneading extruder 6 at the time of slidable magnet powder kneading | mixing is shown. As shown in FIG. 4, the slidable magnet powder 4 and the thermoplastic resin powder 5 are arranged in an extrusion kneader, and the thermoplastic resin powder 5 melted in the process of flowing the material spirally as the screw 8 rotates. The slidable magnet powder 4 is kneaded inside. During the kneading, a force such as a force 10 received from the screw and the wall surface of the casing as shown in FIG. 5 and a force 11 received by friction between the magnet powders is applied to the slidable magnet powder.

しかし本発明の摺動性磁石粉末4は、磁石粉末最外周が摩擦係数の低い摺動性の膜で被覆されているため、スクリュー8、筐筒の壁面7から受ける力や磁石粉末同士の摩擦によって受ける力を分散し、磁石粉末の破砕を抑制する。   However, since the slidable magnet powder 4 of the present invention is coated with a slidable film having a low friction coefficient on the outermost periphery of the magnet powder, the force received from the screw 8 and the wall surface 7 of the casing and the friction between the magnet powders. Disperses the force received by, and suppresses crushing of magnet powder.

従って図6のように、摺動性磁石粉末4は、スクリュー8や筐筒の壁面7から受ける力を分散し、摺動性磁石粉末4の長軸が流動方向に整列するように流動し、摺動性磁石粉末の摺動による流動方向への整列状態12を形成する。   Therefore, as shown in FIG. 6, the slidable magnet powder 4 disperses the force received from the screw 8 or the wall surface 7 of the casing, and flows so that the long axis of the slidable magnet powder 4 is aligned in the flow direction, An alignment state 12 in the flow direction is formed by sliding of the slidable magnet powder.

また図7に示すように押出混練機の筐筒の壁面7及びスクリュー8への新生面発生抑制手段としての摺動性皮膜13、摺動性皮膜14を施した場合は、摺動性磁石粉末4の圧力分散の効果をさらに高めることができる。   In addition, as shown in FIG. 7, when the slidable film 13 and the slidable film 14 are provided as means for suppressing generation of a new surface on the wall surface 7 and the screw 8 of the casing of the extrusion kneader, the slidable magnet powder 4 The effect of pressure dispersion can be further enhanced.

なお、押出混練機の筐筒の壁面7、スクリュー8への新生面発生抑制手段としての摺動性皮膜13、摺動性皮膜14は、例えば、商業的呼称として無電解ニッケルボロンめっき又は無電解ニッケルPTFE複合めっきなどとして周知なものや、これと同等の性能を有するニッケル及びホウ素を含む皮膜や、ニッケル及びフッ素系高分子化合物を含む皮膜でも良い。また、リン酸マンガンを含む皮膜や、二硫化モリブデンを含む皮膜でも良い。   Incidentally, the slidable film 13 and the slidable film 14 as means for suppressing the generation of new surfaces on the casing wall 7 of the extrusion kneader and the screw 8 are, for example, electroless nickel boron plating or electroless nickel as commercial names. A film known as PTFE composite plating, a film containing nickel and boron having the same performance, or a film containing nickel and a fluorine-based polymer compound may be used. Alternatively, a film containing manganese phosphate or a film containing molybdenum disulfide may be used.

さらに押出混練機の材料流動空間9を不活性ガスで満たした場合、たとえ摺動性磁石粉末4の摺動効果が不十分で磁石粉末が破砕した場合でも、酸素濃度を低下させているため、酸素による磁石粉末の劣化を最小限に抑制することが可能となる。   Furthermore, when the material flow space 9 of the extrusion kneader is filled with an inert gas, even if the sliding effect of the slidable magnet powder 4 is insufficient and the magnet powder is crushed, the oxygen concentration is reduced, It is possible to minimize the deterioration of the magnet powder due to oxygen.

上記のように作製されたボンド磁石は、図8に示す摺動性磁石粉末を用いたボンド磁石15のような形態を取り、磁石粉末の破砕がなく、酸化による角型性や保磁力などの磁気特性の劣化のない高性能なボンド磁石となる。   The bonded magnet produced as described above takes the form of the bonded magnet 15 using the slidable magnet powder shown in FIG. 8, and there is no crushing of the magnet powder, and the squareness and coercive force due to oxidation are not affected. A high-performance bonded magnet with no deterioration in magnetic properties.

さらにまた、この摺動性磁石粉末を用いたボンド磁石15を搭載したモータは、角型性や保磁力の劣化がないため、磁石の動作点での発生磁束を高めることが可能となりモータの出力密度を高めることができ、さらに、磁石粉末の破砕が最小限に抑えられているため高温環境での長期安定性も兼ね備える。   Furthermore, since the motor equipped with the bonded magnet 15 using the slidable magnet powder does not deteriorate the squareness and the coercive force, it is possible to increase the generated magnetic flux at the operating point of the magnet, and the output of the motor. The density can be increased, and further, long-term stability in a high-temperature environment is also achieved since the magnet powder is crushed to a minimum.

つぎに、上述の試作例と本発明との比較を簡単に述べる。上述の試作例では摺動性皮膜を具備しない、耐候性皮膜のみを具備した磁石粉末と、熱可塑性樹脂を用いて射出成形にて希土類ボンド磁石を作成した。図9には耐候性磁石粉末16の模式図を示す。希土類系磁石粉末1に耐候性皮膜2を施した単純な構造である。図10には耐候性磁石粉末混練時の混練押出機の内部の拡大した模式図を示す。   Next, a comparison between the above-described prototype and the present invention will be briefly described. In the above-described prototype, a rare-earth bonded magnet was prepared by injection molding using a magnet powder having only a weather-resistant film and not having a slidable film, and a thermoplastic resin. FIG. 9 shows a schematic diagram of the weather-resistant magnet powder 16. This is a simple structure in which a rare earth magnet powder 1 is provided with a weather resistant coating 2. FIG. 10 shows an enlarged schematic diagram of the inside of the kneading extruder during kneading of the weather-resistant magnet powder.

摺動性磁石粉末4の混練時と同様に、押出混練機の筐筒の壁面7、スクリュー8から、又は磁石粉末同士の摩擦から磁石粉末は外力を受ける。しかし磁石粉末の最外周表面には摺動性皮膜がないために、摩擦による圧力を分散することができずに、そのまま外力を磁石粉末自体で受けてしまう。これにより、流動した材料は、図11の筐筒の壁面7やスクリュー8、磁石粉末同士の摩擦による磁石粉末破砕状態17のように、磁石粉末は流動方向11aに長軸を整列するようなこともなく、磁石粉末は破砕し、熱可塑性樹脂を溶融する加工温度によって、破砕によって生じた新生面の酸化膜18が形成され、磁石粉末の深部まで酸化が進行する。   Similarly to the kneading of the slidable magnet powder 4, the magnet powder receives an external force from the wall surface 7 of the casing of the extrusion kneader, the screw 8, or from friction between the magnet powders. However, since there is no slidable film on the outermost peripheral surface of the magnet powder, the pressure due to friction cannot be dispersed, and the external force is directly received by the magnet powder itself. As a result, the flowing material is such that the magnet powder is aligned with the major axis in the flow direction 11a, as in the case of the wall surface 7 of the casing 7 and the screw 8 and the magnet powder crushing state 17 caused by friction between the magnet powders. However, the magnet powder is crushed, and the oxide film 18 of the new surface generated by the crushing is formed by the processing temperature for melting the thermoplastic resin, and the oxidation proceeds to the deep part of the magnet powder.

このように作製された試作例の希土類ボンド磁石は、図12に示す耐候性磁石粉末を用いたボンド磁石19のような形態を取り、磁石粉末の破砕面が酸化し、角型性や保磁力などの磁気特性が劣化した希土類ボンド磁石に仕上がってしまう。   The rare earth bonded magnet of the prototype manufactured as described above takes a form like the bonded magnet 19 using the weather-resistant magnet powder shown in FIG. 12, and the crushed surface of the magnet powder is oxidized, and the squareness and coercive force are increased. The result is a rare earth bonded magnet with degraded magnetic properties.

さらにまた、試作例の希土類ボンド磁石19を搭載したモータは、希土類ボンド磁石の角型性や保磁力などの磁気特性が本発明よりも劣化しているため、磁石の動作点での発生磁束は低く、モータの出力密度も低下する。さらには、磁石粉末の破砕があるため高温環境での長期安定性も損なわれている。   Furthermore, the motor equipped with the rare earth bonded magnet 19 of the prototype example has deteriorated magnetic characteristics such as the squareness and coercive force of the rare earth bonded magnet as compared with the present invention, so the generated magnetic flux at the operating point of the magnet is It is low, and the output density of the motor is also reduced. Furthermore, since the magnetic powder is crushed, long-term stability in a high temperature environment is also impaired.

以下に実施例を示し、本発明を更に詳細に説明する。   The following examples illustrate the present invention in more detail.

急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12に耐候性材料(防錆材料)であるリン酸塩皮膜を施す。さらにその上に新生面発生抑制手段としての摺動性皮膜であるニッケル及びホウ素を含む皮膜を施し摺動性を高めた磁石粉末とした。この摺動性磁石粉末に信越化学工業性のシランカップリング剤である3―グリシドキシプロピルトリメトキシシランと混合し、さらにDIC株式会社製のポリフェニレンサルファイド熱可塑性樹脂粉末を混合した。この混合物を、2軸の押出混練機に投入し、複合材料を作製した。混練時の装置温度は310℃とした。   A phosphate film, which is a weather resistant material (rust preventive material), is applied to Nd-Fe-B magnet powder MQP-14-12 manufactured by Magnequench manufactured by a quenching thin plate method. Furthermore, a coating containing nickel and boron, which is a slidable coating as a new surface generation suppressing means, was applied thereon to obtain a magnet powder with improved slidability. This slidable magnet powder was mixed with 3-glycidoxypropyltrimethoxysilane, which is a Shin-Etsu Chemical silane coupling agent, and further mixed with polyphenylene sulfide thermoplastic resin powder manufactured by DIC Corporation. This mixture was put into a biaxial extrusion kneader to produce a composite material. The apparatus temperature during kneading was 310 ° C.

なお、新生面発生抑制手段としての摺動性皮膜であるニッケル及びホウ素を含む皮膜は、皮膜どうしの動摩擦係数が0.1を下回る皮膜が好適であるが、皮膜どうしの動摩擦係数が0.1を多少上回る皮膜であっても有用である。本実施例では、商業的呼称として無電解ニッケルボロンめっきとして、周知のものを採用したが、これに限らず、同等な効果を発揮する皮膜であれば良く、その皮膜の具体的な様態は問わない。   The film containing nickel and boron, which is a slidable film as a new surface generation suppressing means, is preferably a film having a dynamic friction coefficient of less than 0.1 between the films, but the dynamic friction coefficient between the films is 0.1. Even a slightly larger film is useful. In this example, a well-known electroless nickel boron plating was adopted as a commercial name. However, the present invention is not limited to this, and any film that exhibits an equivalent effect may be used. Absent.

また、耐候性材料(防錆材料)であるリン酸塩皮膜であるが、これに限らず、同等な効果を発揮する皮膜であれば良く、特に限定しない。   Moreover, although it is a phosphate membrane | film | coat which is a weather resistant material (rust prevention material), it is not restricted to this, What is necessary is just a membrane | film | coat which exhibits an equivalent effect, and it does not specifically limit.

上述の製造方法にて得られた複合材料を射出成形し、直径5mm、高さ5mmの円柱状磁石を作製し、理研電子製のVSMにて磁気特性を測定する。   The composite material obtained by the above-described manufacturing method is injection-molded to produce a cylindrical magnet having a diameter of 5 mm and a height of 5 mm, and the magnetic properties are measured with a VSM manufactured by Riken Electronics.

また、図14に示すように、回転軸方向に積層された打ち抜き鋼板よりなるロータコア20へ、複合材料を射出成形し、摺動性磁石粉末を用いた耐候性ボンド磁石21を搭載したロータ22を構成する。   Further, as shown in FIG. 14, a rotor 22 in which a composite material is injection-molded onto a rotor core 20 made of stamped steel sheets stacked in the direction of the rotation axis and a weather-resistant bonded magnet 21 using slidable magnet powder is mounted. Configure.

そのロータ22を図15のように、ステータコア23と固定子巻線24からなるステータに搭載し、モータとして構成する。   The rotor 22 is mounted on a stator composed of a stator core 23 and a stator winding 24 as shown in FIG.

急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12に(防錆材料)であるリン酸塩皮膜を施す。さらにその上に新生面発生抑制手段としての摺動性皮膜であるニッケル及びフッ素系高分子化合物を含む皮膜を施し摺動性を高めた磁石粉末とした。   The phosphate film which is (rust prevention material) is given to the Nd-Fe-B type | system | group magnet powder MQP-14-12 made from a magnetic quench (Magnequench) company produced by the rapid-cooling thin plate method. Furthermore, a film containing nickel and a fluorine-based polymer compound, which is a slidable film as a new surface generation suppressing means, was applied thereon to obtain a magnet powder having improved slidability.

なお、ニッケル及びフッ素系高分子化合物を含む皮膜は、皮膜どうしの動摩擦係数が0.1を下回る皮膜が好適であるが、皮膜どうしの動摩擦係数が0.1を多少上回る皮膜であっても有用である。フッ素系高分子化合物は、ポリテトラフルオロエチレン、ポリ4フッ化エチレンなどと呼称されるものが代表的な材料である。本実施例では、商業的呼称として無電解ニッケルPTFE複合めっきとして、周知のものを採用したが、これに限らず、同等な効果を発揮する皮膜であれば良く、その皮膜の具体的な様態は問わない。   The film containing nickel and the fluorine-based polymer compound is preferably a film having a coefficient of dynamic friction between the films of less than 0.1, but is useful even if the coefficient of dynamic friction between the films is slightly more than 0.1. It is. Typical examples of the fluorine-based polymer compound include those called polytetrafluoroethylene, polytetrafluoroethylene, and the like. In this example, a well-known electroless nickel PTFE composite plating was adopted as a commercial name. However, the present invention is not limited to this, and any film that exhibits an equivalent effect may be used. It doesn't matter.

また、耐候性材料(防錆材料)であるリン酸塩皮膜であるが、これに限らず、同等な効果を発揮する皮膜であれば良く、特に限定しない。以下は、実施例1と同様の手順である。   Moreover, although it is a phosphate membrane | film | coat which is a weather resistant material (rust prevention material), it is not restricted to this, What is necessary is just a membrane | film | coat which exhibits an equivalent effect, and it does not specifically limit. The following is the same procedure as in the first embodiment.

急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12に(防錆材料)であるリン酸塩皮膜を施し、さらにその上にリン酸マンガンを含む皮膜を施し摺動性を高めた磁石粉末とした。   A phosphate film as (rust preventive material) is applied to Nd-Fe-B magnet powder MQP-14-12 manufactured by Magnequench manufactured by a quenching thin plate method, and manganese phosphate is further formed thereon. A magnet powder having a slidability enhanced by applying a coating containing

なお、新生面発生抑制手段としての摺動性皮膜であるリン酸マンガンを含む皮膜は、皮膜どうしの動摩擦係数が0.1を下回る皮膜が好適であるが、皮膜どうしの動摩擦係数が0.1を多少上回る皮膜であっても有用である。また、その皮膜の具体的な様態は問わない。   The film containing manganese phosphate, which is a slidable film as a new surface generation suppressing means, is preferably a film having a coefficient of dynamic friction between the films of less than 0.1, but the coefficient of dynamic friction between the films is 0.1. Even a slightly larger film is useful. Moreover, the specific aspect of the film is not ask | required.

また、耐候性材料(防錆材料)であるリン酸塩皮膜であるが、これに限らず、同等な効果を発揮する材料であれば良く、特に限定しない。以下は、実施例1と同様の手順である。   Moreover, although it is a phosphate membrane | film | coat which is a weather-resistant material (rust prevention material), it should just be a material which exhibits not only this but an equivalent effect, It does not specifically limit. The following is the same procedure as in the first embodiment.

急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12に(防錆材料)であるリン酸塩皮膜を施す。さらにその上に新生面発生抑制手段としての摺動性皮膜である二硫化モリブデンを含む皮膜を施し摺動性磁石粉末とした。   The phosphate film which is (rust prevention material) is given to the Nd-Fe-B type | system | group magnet powder MQP-14-12 made from a magnetic quench (Magnequench) company produced by the rapid-cooling thin plate method. Furthermore, a film containing molybdenum disulfide, which is a slidable film as a means for suppressing generation of a new surface, was applied thereon to obtain a slidable magnet powder.

なお、新生面発生抑制手段としての摺動性皮膜である二硫化モリブデンを含む皮膜は、皮膜どうしの動摩擦係数が0.1を下回る皮膜が好適であるが、皮膜どうしの動摩擦係数が0.1を多少上回る皮膜であっても有用である。また、その皮膜の具体的な様態は問わない。   The film containing molybdenum disulfide, which is a slidable film as a new surface generation suppression means, is preferably a film having a coefficient of dynamic friction between the films of less than 0.1, but the coefficient of dynamic friction between the films is 0.1. Even a slightly larger film is useful. Moreover, the specific aspect of the film is not ask | required.

また、耐候性材料(防錆材料)であるリン酸塩皮膜であるが、これに限らず、同等な効果を発揮する材料であれば良く、特に限定しない。以下は、実施例1と同様の手順である。
(試作例の評価)
上述の比較例を評価する。試作例は、上述のとおり、急冷薄板法により作製されるマグネクエンチ(Magnequench)社製のNd−Fe−B系磁石粉末MQP−14−12にリン酸塩皮膜を施す。つぎに、実施例1と同様に、信越化学工業性のシランカップリング剤である3―グリシドキシプロピルトリメトキシシランと混合し、さらにDIC株式会社製のポリフェニレンサルファイド熱可塑性樹脂粉末を混合する。この混合物を、2軸の押出混練機に投入し、複合材料を作製した。混練時の装置温度は310℃とした。
Moreover, although it is a phosphate membrane | film | coat which is a weather-resistant material (rust prevention material), it should just be a material which exhibits not only this but an equivalent effect, It does not specifically limit. The following is the same procedure as in the first embodiment.
(Evaluation of prototype)
The above comparative example is evaluated. In the prototype, as described above, a phosphate coating is applied to the Nd—Fe—B magnet powder MQP-14-12 manufactured by Magnequench manufactured by the quenching thin plate method. Next, similarly to Example 1, 3-glycidoxypropyltrimethoxysilane, which is a Shin-Etsu Chemical industrial silane coupling agent, is mixed, and further, polyphenylene sulfide thermoplastic resin powder manufactured by DIC Corporation is mixed. This mixture was put into a biaxial extrusion kneader to produce a composite material. The apparatus temperature during kneading was 310 ° C.

この得られた複合材料を温度300℃で、射出圧力4ton/cm2の条件で射出成形し、直径5mm、高さ5mmの円柱状磁石を作製し、理研電子株式会社製のVSM(振動試料型磁力計)にて磁気特性を測定した。 The obtained composite material was injection molded at a temperature of 300 ° C. under an injection pressure of 4 ton / cm 2 to produce a cylindrical magnet having a diameter of 5 mm and a height of 5 mm. Magnetic properties were measured with a magnetometer.

本試作例の耐候性皮膜のみのボンド磁石の保磁力Hcbは、350kA/mと測定され、MQP−14−12の本来の保磁力Hcbの470kA/mに対し25%も低下していた。   The coercive force Hcb of the bonded magnet with only the weather-resistant film of this prototype was measured at 350 kA / m, which was 25% lower than the original coercive force Hcb of MQP-14-12, 470 kA / m.

(実施例及び試作例の比較)
表1に各実施例、試作例の磁石粉末の皮膜構成とボンド磁石の磁気特性、モータに搭載した際の出力密度を示す。モータに搭載する際には、各実施例、試作例のボンド磁石の磁気特性の違いを、モータのロータの電磁鋼鈑の積厚を変えて調整し、モータの効率を略同等に合わせて、出力密度を算出した。
(Comparison of Example and Prototype)
Table 1 shows the coating composition of the magnetic powders of each example and prototype, the magnetic properties of the bonded magnet, and the output density when mounted on a motor. When mounting on the motor, adjust the difference in magnetic characteristics of the bond magnets of each example and trial example by changing the thickness of the electromagnetic steel plate of the rotor of the motor, and adjust the motor efficiency to approximately the same, The power density was calculated.

試作例の摺動性皮膜を施していない耐候性皮膜のみのボンド磁石の保磁力Hcbは350kA/mとMQP−14−12の本来の保磁力Hcb=470kA/mに対し25%も低下しているのに対し、実施例1〜4の摺動性膜を施した摺動性磁石粉末を用いたボンド磁石の磁気特性は、MQP−14−12の本来の保磁力Hcb=470kA/mに略等しい値を得ている。角型性も同様の傾向を示し、効率を略同等に調整したモータの出力密度は1.2倍まで向上可能であることを確認した。   The coercive force Hcb of the bonded magnet with only the weather-resistant film without the slidable film of the prototype is 350 kA / m, which is 25% lower than the original coercive force Hcb = 470 kA / m of MQP-14-12. On the other hand, the magnetic properties of the bonded magnet using the slidable magnet powder having the slidable film of Examples 1 to 4 are substantially equal to the original coercive force Hcb = 470 kA / m of MQP-14-12. Equal value is obtained. The squareness also showed the same tendency, and it was confirmed that the output density of the motor whose efficiency was adjusted to approximately the same could be improved up to 1.2 times.

Figure 2016032054
Figure 2016032054

小型、高出力かつ耐熱性の高い希土類系ボンド磁石とそれを搭載した高性能なモータを提供可能である。   It is possible to provide a small-sized, high-power, high-heat resistance rare earth-based bonded magnet and a high-performance motor equipped with it.

1 希土類系磁石粉末
2 耐候性皮膜
5 熱可塑性樹脂粉末
6 混練押出機
7 筐筒の壁面
8 スクリュー
9 材料流動空間
10 スクリューと筐筒の壁面とから受ける力
11 磁石粉末同士の摩擦によって受ける力
12 摺動性磁石粉末の摺動による流動方向への整列状態
16 耐候性磁石粉末
18 破砕によって生じた新生面の酸化膜
20 ロータコア
23 ステータコア
24 固定子巻線
DESCRIPTION OF SYMBOLS 1 Rare earth magnet powder 2 Weather-resistant film 5 Thermoplastic resin powder 6 Kneading extruder 7 Wall surface of the casing 8 Screw 9 Material flow space 10 Force received from the screw and the wall surface of the casing 11 Force received by friction between magnet powders 12 Alignment state in flow direction by sliding of slidable magnet powder 16 Weather resistant magnet powder 18 Oxide film of new surface caused by crushing 20 Rotor core 23 Stator core 24 Stator winding

Claims (19)

希土類系磁石粉末と樹脂成分とを含む希土類系ボンド磁石において、前記希土類系磁石粉末はその表面を覆う皮膜部を具備し、この皮膜部には前記希土類系磁石粉末の表面と接する側の最下層の皮膜層の主成分に耐候性材料を含み、かつ前記皮膜部の最上層の皮膜層の主成分には摺動性材料を含む希土類系ボンド磁石。 In the rare earth bond magnet including the rare earth magnet powder and the resin component, the rare earth magnet powder has a coating portion covering the surface thereof, and the coating layer has a lowermost layer on the side in contact with the surface of the rare earth magnet powder. A rare earth-based bond magnet including a weather resistant material as a main component of the coating layer and a sliding material as a main component of the uppermost coating layer of the coating portion. 請求項1記載の希土類系ボンド磁石において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはニッケル及びホウ素を含む希土類系ボンド磁石。 2. The rare earth bonded magnet according to claim 1, wherein the weather resistant material includes phosphate, and the slidable material includes nickel and boron. 請求項1記載の希土類系ボンド磁石において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石。 2. The rare earth bond magnet according to claim 1, wherein the weather resistant material includes phosphate, and the slidable material includes nickel and a fluorine polymer compound. 請求項1記載の希土類系ボンド磁石において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはリン酸マンガンを含む希土類系ボンド磁石。 2. The rare earth bonded magnet according to claim 1, wherein the weather resistant material includes phosphate and the slidable material includes manganese phosphate. 請求項1記載の希土類系ボンド磁石において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料には二硫化モリブデンを含む希土類系ボンド磁石。 2. The rare earth bond magnet according to claim 1, wherein the weather resistant material includes phosphate and the slidable material includes molybdenum disulfide. 請求項1から請求項5のいずれかに記載の希土類系ボンド磁石を含むモータ。 A motor comprising the rare earth-based bonded magnet according to any one of claims 1 to 5. 希土類系ボンド磁石の製造方法において、皮膜付き希土類系磁石粉末を用いる希土類系ボンド磁石の製造方法であり、前記皮膜付き希土類系磁石粉末の皮膜部の最下層の皮膜層の主成分に耐候性材料を含み、かつ前記皮膜部の最上層の皮膜層の主成分には摺動性材料を含む希土類系ボンド磁石の製造方法。 In the method for producing a rare earth bond magnet, a rare earth bond magnet production method using a coated rare earth magnet powder, wherein the main component of the lowermost coating layer of the film portion of the coated rare earth magnet powder is a weather resistant material And the main component of the uppermost coating layer of the coating portion includes a slidable material, and a method for producing a rare earth bond magnet. 請求項7記載の希土類系ボンド磁石の製造方法において、動摩擦係数の上限値が0.1である皮膜付き希土類系磁石粉末を用いる希土類系ボンド磁石の製造方法。 8. The method for producing a rare earth based bonded magnet according to claim 7, wherein the coated rare earth based magnet powder having an upper limit value of a dynamic friction coefficient of 0.1 is used. 請求項7記載の希土類系ボンド磁石の製造方法において、皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練押出機を用いる工程を含み、前記混練押出機は、摺動性皮膜で被覆したスクリュー及び筐筒内面を備える希土類系ボンド磁石の製造方法。 8. The method for producing a rare earth based bonded magnet according to claim 7, comprising a step of using a kneading extruder for mixing the coated rare earth based magnetic powder and the resin component to process into a bonded magnet resin composition. The extruder is a method for producing a rare earth-based bonded magnet having a screw coated with a slidable film and an inner surface of a casing. 請求項7記載の希土類系ボンド磁石の製造方法において、皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練押出機を用いる工程を含み、さらに、前記混練押出機は、その内部に不活性ガスを満たす希土類系ボンド磁石の製造方法。 The method for producing a rare earth-based bonded magnet according to claim 7, further comprising the step of using a kneading extruder for mixing the coated rare-earth magnet powder and the resin component and processing it into a resin composition for a bonded magnet, The kneading extruder is a method for producing a rare earth bonded magnet that fills an inert gas therein. 請求項7記載の希土類系ボンド磁石の製造方法において、不活性ガスの雰囲気内にて皮膜付き希土類系磁石粉末と樹脂成分とを混合しボンド磁石用樹脂組成物へと加工するための混練及び押出する工程を含む希土類系ボンド磁石の製造方法。 8. A method for producing a rare earth bond magnet according to claim 7, wherein kneading and extrusion for mixing a coated rare earth magnet powder and a resin component in an inert gas atmosphere to process into a bond magnet resin composition. The manufacturing method of the rare earth-based bond magnet including the process to do. 請求項7記載の希土類系ボンド磁石の製造方法において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはニッケル及びホウ素を含む希土類系ボンド磁石の製造方法。 8. The method for manufacturing a rare earth bond magnet according to claim 7, wherein the weather resistant material includes phosphate, and the slidable material includes nickel and boron. 請求項7記載の希土類系ボンド磁石の製造方法において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石の製造方法。 8. The method for producing a rare earth bonded magnet according to claim 7, wherein the weather resistant material includes a phosphate, and the slidable material includes nickel and a fluorine polymer compound. 請求項7記載の希土類系ボンド磁石の製造方法において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料にはリン酸マンガンを含む希土類系ボンド磁石の製造方法。 8. The method for producing a rare earth bonded magnet according to claim 7, wherein the weather resistant material includes a phosphate and the slidable material includes manganese phosphate. 請求項7記載の希土類系ボンド磁石の製造方法において、耐候性材料にはリン酸塩を含み、かつ、摺動性材料には二硫化モリブデンを含む希土類系ボンド磁石の製造方法。 8. The method of manufacturing a rare earth based bonded magnet according to claim 7, wherein the weather resistant material includes phosphate and the slidable material includes molybdenum disulfide. 請求項9記載の希土類系ボンド磁石の製造方法において、混練押出機の摺動性皮膜にニッケル及びホウ素を含む希土類系ボンド磁石の製造方法。 10. The method for producing a rare earth bond magnet according to claim 9, wherein the sliding film of the kneading extruder includes nickel and boron. 請求項9記載の希土類系ボンド磁石の製造方法において、混練押出機の摺動性皮膜にニッケル及びフッ素系高分子化合物を含む希土類系ボンド磁石の製造方法。 The method for producing a rare earth bond magnet according to claim 9, wherein the slidable film of the kneading extruder includes nickel and a fluorine polymer compound. 請求項9記載の希土類系ボンド磁石の製造方法において、混練押出機の摺動性皮膜にリン酸マンガンを含む希土類系ボンド磁石の製造方法。 10. The method for producing a rare earth bond magnet according to claim 9, wherein the slidable film of the kneading extruder includes manganese phosphate. 請求項9記載の希土類系ボンド磁石の製造方法において、混練押出機の摺動性皮膜に二硫化モリブデンを含む希土類系ボンド磁石の製造方法。 10. The method for producing a rare earth bond magnet according to claim 9, wherein the slidable film of the kneading extruder includes molybdenum disulfide.
JP2014154460A 2014-07-30 2014-07-30 To rare-earth bond magnet, manufacturing method for the same and motor Pending JP2016032054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154460A JP2016032054A (en) 2014-07-30 2014-07-30 To rare-earth bond magnet, manufacturing method for the same and motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154460A JP2016032054A (en) 2014-07-30 2014-07-30 To rare-earth bond magnet, manufacturing method for the same and motor

Publications (1)

Publication Number Publication Date
JP2016032054A true JP2016032054A (en) 2016-03-07

Family

ID=55442261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154460A Pending JP2016032054A (en) 2014-07-30 2014-07-30 To rare-earth bond magnet, manufacturing method for the same and motor

Country Status (1)

Country Link
JP (1) JP2016032054A (en)

Similar Documents

Publication Publication Date Title
US20100079015A1 (en) Dust core, method for producing the same, electric motor, and reactor
US20100045120A1 (en) Magnetic powder, dust core, motor, and reactor
JP6427862B2 (en) Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
WO2010071111A1 (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
EP1447824B1 (en) Composite magnetic material producing method
JP2002305108A (en) Composite magnetic material, magnetic element and manufacturing method of them
JP2007129154A (en) Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact
JP2010232468A (en) Rare earth bonded magnet
JP2021136838A (en) Magnetic wedge, rotary electric machine, and manufacturing method of magnetic wedge
JP4917355B2 (en) Dust core
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
KR101963265B1 (en) Inductor component
JPWO2005013294A1 (en) Soft magnetic material, dust core, transformer core, motor core, and method for manufacturing dust core
Deshpande Recent advances in materials for use in permanent magnet machines-a review
JP2017107889A (en) Isotropic bond magnet, electric motor element, electric motor and device
JP2017055509A (en) Electric motor element manufacturing method, electric motor element, electric motor and device
EP1662518A1 (en) Soft magnetic material and method for producing same
JP2016032054A (en) To rare-earth bond magnet, manufacturing method for the same and motor
JP2007254814A (en) Fe-Ni-BASED SOFT MAGNETIC ALLOY POWDER, GREEN COMPACT, AND COIL-SEALED DUST CORE
JP3731597B2 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and manufacturing method thereof
JP2009295991A (en) Method of manufacturing pressed powder magnetic core
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2004047872A (en) Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP3933040B2 (en) Rare earth bonded magnet manufacturing method and permanent magnet motor having the same
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520