JP2007129154A - Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact - Google Patents

Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact Download PDF

Info

Publication number
JP2007129154A
JP2007129154A JP2005322489A JP2005322489A JP2007129154A JP 2007129154 A JP2007129154 A JP 2007129154A JP 2005322489 A JP2005322489 A JP 2005322489A JP 2005322489 A JP2005322489 A JP 2005322489A JP 2007129154 A JP2007129154 A JP 2007129154A
Authority
JP
Japan
Prior art keywords
powder
magnetic powder
insulating layer
magnet
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005322489A
Other languages
Japanese (ja)
Inventor
Yuuichi Satsuu
祐一 佐通
Matahiro Komuro
又洋 小室
Noboru Baba
馬場  昇
Kazuo Asaka
一夫 浅香
Chio Ishihara
千生 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2005322489A priority Critical patent/JP2007129154A/en
Publication of JP2007129154A publication Critical patent/JP2007129154A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a green compact composed of magnetic powders with heat resistant insulating films, and powder magnetic cores having high specific resistance and low iron loss. <P>SOLUTION: This green compact composed of magnetic powders has an insulating film formed at the surface of alloy powders whose main constituents are iron powders or iron. This green compact also depends on the powder magnetic cores, magnetic powders for obtaining the magnetic cores, and their treatment liquid. As the characteristics of the above powder magnetic cores, density is 7.5 g/cm<SP>3</SP>or higher, average grain diameter of these magnetic powders is 30 to 200 μm, the average thickness of the insulating film is 1 to 700 nm, hysteresis loss Wh<SB>1T/400 Hz</SB>is 45 W/kg or lower; a specific resistance is 1,000 μΩ cm or higher, eddy current loss We<SB>1T/400 Hz</SB>is 510 W/kg or lower, and iron loss W<SB>1T/400 Hz</SB>is 50 W/kg or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軟磁性圧粉体、磁性粉および軟磁性体の処理液ならびに処理方法、圧粉体を用いたモータに関する。   The present invention relates to a soft magnetic green compact, a processing liquid and processing method for magnetic powder and soft magnetic material, and a motor using the green compact.

上記のような用途に用いられる圧粉磁心は、低鉄損でかつ高磁束密度であることは勿論のこと、それらの磁気特性が低周波から高周波の領域においても低下しないことが求められている。鉄損には磁心の比抵抗と関係の大きい渦電流損と鉄粉の製造の過程およびその後のプロセス履歴から生じる鉄粉内の歪に影響を受けるヒステリシス損とがある。そして、鉄損(W)は下記(式1)のように渦電流損(We)とヒステリシス損(Wh)の和で示すことができる。(式1)中、fは周波数、Bmは励磁磁束密度、ρは比抵抗、tは材料の厚さ、kとkは係数である。
W=We+Wh=(kBm/ρ)f+kBm1.6f・・・・(式1)
(式1)から、渦電流損(We)は周波数fの二乗に比例して大きくなるので、特に、高周波での磁気特性を低下させないためには、その渦電流損(We)の抑制が不可欠である。圧粉磁心の渦電流の発生を抑えるためには、用いる磁粉のサイズを小さくし、かつ、磁粉一つ一つの表面に絶縁膜を形成させ、その磁粉を用い圧縮成形した圧粉磁心を用いる必要がある。
The dust cores used for the above applications are required to have low iron loss and high magnetic flux density as well as their magnetic properties do not deteriorate even in the low to high frequency region. . Iron loss includes eddy current loss, which has a large relationship with the specific resistance of the magnetic core, and hysteresis loss, which is affected by distortion in the iron powder resulting from the iron powder manufacturing process and the subsequent process history. The iron loss (W) can be represented by the sum of eddy current loss (We) and hysteresis loss (Wh) as shown below (Formula 1). In (Expression 1), f is a frequency, Bm is an exciting magnetic flux density, ρ is a specific resistance, t is a thickness of the material, and k 1 and k 2 are coefficients.
W = We + Wh = (k 1 Bm 2 t 2 / ρ) f 2 + k 2 Bm 1.6 f (Equation 1)
From (Equation 1), since the eddy current loss (We) increases in proportion to the square of the frequency f, it is indispensable to suppress the eddy current loss (We) particularly in order not to deteriorate the magnetic characteristics at high frequencies. It is. In order to suppress the generation of eddy currents in the dust core, it is necessary to reduce the size of the magnet powder to be used, and to form an insulating film on the surface of each magnet powder, and to use a dust core that is compression-molded using the magnet powder There is.

このような圧粉磁心において、絶縁が不十分であると比抵抗ρが低下して、渦電流損(We)が大きくなる。一方、絶縁性を高めるために絶縁被膜を厚くすると、磁心中の軟磁性粉の占める容積の割合が低下し、磁束密度が低下する。また、磁束密度を向上させるために、軟磁性粉の圧縮成形を高圧で行って、軟磁性粉の密度を増加させると、成形時の軟磁性粉の歪が避けられず、ヒステリシス損(Wh)が大きくなるため、結果として鉄損(W)の抑制は難しい。特に、低周波領域においては渦電流損(We)が小さいため、鉄損(W)中のヒステリシス損(Wh)の影響が大きくなる。   In such a dust core, if the insulation is insufficient, the specific resistance ρ is reduced, and the eddy current loss (We) is increased. On the other hand, when the insulating film is thickened to increase the insulation, the volume ratio of the soft magnetic powder in the magnetic core is reduced, and the magnetic flux density is reduced. Also, in order to improve the magnetic flux density, if the density of the soft magnetic powder is increased by compressing the soft magnetic powder at a high pressure, the distortion of the soft magnetic powder during molding cannot be avoided, and the hysteresis loss (Wh) As a result, it is difficult to suppress iron loss (W). In particular, since the eddy current loss (We) is small in the low frequency region, the influence of the hysteresis loss (Wh) in the iron loss (W) becomes large.

従来の圧粉磁心の製造方法として、軟磁性粉と絶縁性粒子を混合して軟磁性粉粒子の表面に絶縁層を形成する方法(特許文献1)がある。また、絶縁層が形成された軟磁性粉に結着剤として樹脂を混合後、圧縮成形により圧粉磁心を製造する方法(特許文献2)が知られている。   As a conventional method for producing a dust core, there is a method (Patent Document 1) in which soft magnetic powder and insulating particles are mixed to form an insulating layer on the surface of the soft magnetic powder particles. Further, a method (Patent Document 2) is known in which a powder magnetic core is manufactured by compression molding after mixing a resin as a binder with soft magnetic powder on which an insulating layer is formed.

特開2003−332116号公報JP 2003-332116 A 特開2004−288983号公報JP 2004-288893 A

しかしながら、上記のような製造方法では、絶縁層による絶縁が不十分であると、渦電流損(We)が大きくなるという欠点がある。絶縁性を良くするために絶縁層を厚くすることが考えられるが、絶縁層が厚くなると軟磁性粉の占積率が低下し、上記したように磁束密度が低下してしまう。また、磁束密度を向上させるために密度を上げようとして、高圧力で圧縮成形すると、形成された絶縁層が破壊されて渦電流損(We)が増加したり、軟磁性粉に残留する成形時の歪が大きくなり、ヒステリシス損(Wh)が大きくなるため、最終的に鉄損(W)が増加する。   However, the above-described manufacturing method has a drawback that eddy current loss (We) increases if insulation by the insulating layer is insufficient. In order to improve the insulation, it is conceivable to increase the thickness of the insulating layer. However, as the insulating layer becomes thicker, the space factor of the soft magnetic powder decreases, and the magnetic flux density decreases as described above. In addition, when compression molding is performed at a high pressure in order to increase the density in order to improve the magnetic flux density, the formed insulating layer is destroyed and eddy current loss (We) increases, or during molding that remains in the soft magnetic powder Since the distortion of the steel increases and the hysteresis loss (Wh) increases, the iron loss (W) finally increases.

一方、通常信頼性の高い絶縁層は無機物であり、無機物は硬度が高いため、無機絶縁層を磁粉表面に形成した磁粉を用いた圧縮成形による磁心は空隙率が高く、磁心の磁束密度は低下し易い。その際、磁心中の軟磁性粉の密度を向上させるために、圧縮成形の圧力を大きくすると、成形時の磁粉の歪が大きくなり、ヒステリシス損(Wh)の増大を招くため、鉄損(W)の抑制は難しくなる。特に、低周波領域においては渦電流損(We)が小さいため、鉄損(W)中のヒステリシス損(Wh)の影響が大きくなる。そのため、広い周波数帯で用いる磁心は渦電流損(We)とヒステリシス損(Wh)の両方を小さくすることが必要不可欠となる。しかし、このヒステリシス損(Wh)の低減については絶縁層の耐熱性向上の対策が難しく、良好な解決法がなかったのが現状である。   On the other hand, a highly reliable insulating layer is usually an inorganic substance, and since the inorganic substance has a high hardness, the magnetic core formed by compression molding using magnetic powder having the inorganic insulating layer formed on the surface of the magnetic powder has a high porosity, and the magnetic flux density of the magnetic core decreases. Easy to do. At that time, if the compression molding pressure is increased to increase the density of the soft magnetic powder in the magnetic core, the distortion of the magnetic powder at the time of molding increases and the hysteresis loss (Wh) increases. ) Becomes difficult to control. In particular, since the eddy current loss (We) is small in the low frequency region, the influence of the hysteresis loss (Wh) in the iron loss (W) becomes large. Therefore, it is indispensable for the magnetic core used in a wide frequency band to reduce both eddy current loss (We) and hysteresis loss (Wh). However, as for the reduction of the hysteresis loss (Wh), it is difficult to take measures to improve the heat resistance of the insulating layer, and there is no good solution at present.

本発明は、軟磁性粉の占積率を高めて磁束密度を向上させるとともに、軟磁性粉表面の絶縁層による被覆を良好なものとし、渦電流損(We)を抑制しつつ、軟磁性粉中の圧縮残留歪によるヒステリシス損(Wh)を抑えた圧粉磁心用軟磁性粉を提供することが目的である。またそれを用いて得られる圧粉成形体ならびに磁性紛の絶縁層の形成処理液とそれを用いて絶縁層を形成した磁粉を用いて形成した圧粉磁心とその製造方法を提供することを目的とする。   The present invention improves the magnetic flux density by increasing the space factor of the soft magnetic powder, improves the coating with the insulating layer on the surface of the soft magnetic powder, suppresses eddy current loss (We), and reduces the soft magnetic powder. An object of the present invention is to provide a soft magnetic powder for a dust core in which hysteresis loss (Wh) due to compression residual strain therein is suppressed. It is another object of the present invention to provide a powder molded body obtained by using the same, a processing solution for forming an insulating layer of magnetic powder, a magnetic powder formed using the magnetic powder formed with the insulating layer, and a method for producing the same. And

上記課題を解決するため、本発明は、高密度で、抵抗値が高く、磁気特性に優れた圧粉磁心とそれを得るのに適した磁性粉を提供するものである。   In order to solve the above problems, the present invention provides a dust core having a high density, a high resistance value, and excellent magnetic properties, and a magnetic powder suitable for obtaining the dust core.

本発明による圧粉磁心は、鉄粉末または鉄を主成分とする合金粉末の表面に形成された絶縁膜を有する磁性粉の圧粉成形体であって、密度が7.5g/cm以上で、上記磁性粉の平均粒径が30〜200μmであって、上記絶縁膜の平均厚さが1〜700nmであって、実質的に残留応力が認められず、ヒステリシス損Wh1T/400Hzが45W/kg以下であり、比抵抗が1000μΩ・cm以上であり、渦電流損We1T/400Hzが510W/kg以下であり、鉄損W1T/400Hzが50W/kg以下であることを特徴とするものである。 A dust core according to the present invention is a powder compact of magnetic powder having an insulating film formed on the surface of iron powder or an alloy powder containing iron as a main component, and has a density of 7.5 g / cm 3 or more. The average particle diameter of the magnetic powder is 30 to 200 μm, the average thickness of the insulating film is 1 to 700 nm, substantially no residual stress is observed, and the hysteresis loss Wh 1T / 400 Hz is 45 W / kg or less, specific resistance is 1000 μΩ · cm or more, eddy current loss We 1T / 400 Hz is 510 W / kg or less, and iron loss W 1T / 400 Hz is 50 W / kg or less. is there.

また、本発明による磁性粉は、鉄粉末または鉄を主成分とする合金粉末の表面に形成された絶縁膜を有する磁性粉であって、上記磁性粉の平均粒径が30〜200μmであって、上記絶縁膜の平均厚さが1〜700nmであって、密度が7.5g/cmの圧粉成形体を製造したときに、ヒステリシス損Wh1T/400Hzが45W/kg以下であり、比抵抗が1000μΩ・cm以下であり、渦電流損We1T/400Hzが10W/kg以下であり、鉄損W1T/400Hzが50W/kg以下である特性を与えることができることを特徴とするものである。この磁性粉は、上記圧粉磁心を得るのに適している。 The magnetic powder according to the present invention is a magnetic powder having an insulating film formed on the surface of an iron powder or an alloy powder containing iron as a main component, and the average particle size of the magnetic powder is 30 to 200 μm. The hysteresis loss Wh 1T / 400 Hz is 45 W / kg or less when a green compact having an average thickness of 1 to 700 nm and a density of 7.5 g / cm 3 is manufactured. The resistance is 1000 μΩ · cm or less, the eddy current loss We 1T / 400 Hz is 10 W / kg or less, and the iron loss W 1T / 400 Hz is 50 W / kg or less. . This magnetic powder is suitable for obtaining the powder magnetic core.

上記の磁気特性は、圧粉磁心を製造するのに最も標準的であると考えられる600℃で圧粉成形体を焼鈍した時の磁気特性を基準として示した。従って、焼鈍温度が変われば磁気的特性も当然変わり得るが、本発明はこれらを排除するものではないことは当然である。例えば、表1に示した本発明の実施例のデータに拠れば、焼鈍温度が700℃、800℃、900℃と上昇するにつれて、ヒステリシス損は減少する傾向にあり、比抵抗も同様である。渦電流損および鉄損は温度の上昇とともにやや増加する傾向にある。しかし、600℃での特性が上記の特性を満足するならば、本発明の目的を達成することができる。従って本発明の範囲内である。   The above magnetic characteristics are shown based on the magnetic characteristics when the powder compact is annealed at 600 ° C., which is considered to be the most standard for producing a dust core. Therefore, if the annealing temperature changes, the magnetic characteristics can naturally change, but the present invention naturally does not exclude them. For example, according to the data of the examples of the present invention shown in Table 1, as the annealing temperature increases to 700 ° C., 800 ° C., and 900 ° C., the hysteresis loss tends to decrease, and the specific resistance is the same. Eddy current loss and iron loss tend to increase slightly with increasing temperature. However, if the characteristics at 600 ° C. satisfy the above characteristics, the object of the present invention can be achieved. Therefore, it is within the scope of the present invention.

本発明において、磁性粉の絶縁膜が3〜500nmの時に600℃で焼鈍して得られる圧粉磁心(焼成体)の残留応力は実質的に認められず、ヒステリシス損Wh1T/400Hzが、45W/kg以下であり、比抵抗は1000〜5000μΩ・cmであり、渦電流損We1T/400Hzが510W/kg以下であり、鉄損W1T/400Hzが4550W/kg以下であることが望ましい。 In the present invention, the residual stress of the powder magnetic core (fired body) obtained by annealing at 600 ° C. when the magnetic powder insulating film is 3 to 500 nm is substantially not observed, and the hysteresis loss Wh 1T / 400 Hz is 45 W. It is desirable that the specific resistance is 1000 to 5000 μΩ · cm, the eddy current loss We 1T / 400 Hz is 510 W / kg or less, and the iron loss W 1T / 400 Hz is 4550 W / kg or less.

本発明による圧粉磁心用軟磁性粉の絶縁層形成処理液は、アルコキシシランおよびその誘導体から選ばれる1種以上と、アルコールおよび水を含有するものである。   The insulating layer forming treatment liquid for soft magnetic powder for dust core according to the present invention contains at least one selected from alkoxysilane and derivatives thereof, and alcohol and water.

本発明によれば、耐熱性が高く、比抵抗の高い高密度圧粉成形体およびそれを得ることができる磁性粉ならびにその磁性粉を製造するのに好適な処理剤を得ることができる。   According to the present invention, it is possible to obtain a high-density powder compact having high heat resistance and high specific resistance, a magnetic powder capable of obtaining it, and a treatment agent suitable for producing the magnetic powder.

最初に本発明に磁性粉と公知の磁性粉との相違点について図面を用いて説明する。図4は本発明による圧粉磁心の断面構造を模式的に示し、5は絶縁被覆6を有する磁性粉5である。図1は本発明による磁性粉の断面構造を模式的に示すものであって、鉄または鉄を主体とする合金の粉末の粒子1の表面に、酸化物などの絶縁性膜2が形成されている。この絶縁性磁性粉の平均粒径は30〜200μmが好ましく、特に40〜100μmがより好ましい。絶縁性膜2は磁性粉を製造した際は、実質的に連続している。その理由は後で説明する処理液中で金属粉(軟磁性粉)を処理するいわば、湿式法をとるためである。しかしこの磁性粉を成形し焼鈍すると、図2に示すように、金属粉と絶縁膜の熱膨張係数の違いにより、絶縁膜2’に亀裂が入り、図1の絶縁膜と比べると、絶縁膜の連続性または被覆率は低下する。   First, the difference between the magnetic powder and the known magnetic powder in the present invention will be described with reference to the drawings. FIG. 4 schematically shows a cross-sectional structure of a dust core according to the present invention, and 5 is a magnetic powder 5 having an insulating coating 6. FIG. 1 schematically shows a cross-sectional structure of a magnetic powder according to the present invention, in which an insulating film 2 such as an oxide is formed on the surface of powder particles 1 of iron or an alloy mainly composed of iron. Yes. The average particle size of the insulating magnetic powder is preferably 30 to 200 μm, more preferably 40 to 100 μm. The insulating film 2 is substantially continuous when the magnetic powder is manufactured. The reason for this is that the metal powder (soft magnetic powder) is treated in a treatment liquid, which will be described later, so to take a wet method. However, when this magnetic powder is molded and annealed, as shown in FIG. 2, the insulating film 2 ′ is cracked due to the difference in thermal expansion coefficient between the metal powder and the insulating film, and the insulating film is compared with the insulating film of FIG. The continuity or coverage is reduced.

図1および図2における絶縁性膜2、2’の平均厚さは1〜700nmで、好ましくは30〜200nm、特に好ましくは40〜100nmである。この絶縁膜の厚さは、処理時間、温度、処理液の組成などにより調節することができる。   The average thickness of the insulating films 2 and 2 ′ in FIGS. 1 and 2 is 1 to 700 nm, preferably 30 to 200 nm, and particularly preferably 40 to 100 nm. The thickness of the insulating film can be adjusted by the processing time, temperature, composition of the processing solution, and the like.

しかし、図3の公知の方法による絶縁粒子4が金属粒子3に付着しているものとは異なり、本発明の磁性粉には実質的に絶縁膜の連続性があり、従って抵抗値が高くなる。また、絶縁膜の連続性あるいは被覆率が図3のものよりもはるかに優れているために、漏れ磁束が少なく、圧粉磁心の磁気特性が優れているのである。   However, unlike the case where the insulating particles 4 by the known method of FIG. 3 are attached to the metal particles 3, the magnetic powder of the present invention has substantially the continuity of the insulating film, and therefore the resistance value becomes high. . Further, since the continuity or coverage of the insulating film is far superior to that of FIG. 3, the leakage magnetic flux is small and the magnetic characteristics of the dust core are excellent.

図3の磁性粉の構造は、特許文献1に記載した方法によるもので、金属粉3と酸化物粒子4をいわば乾式方法で混合して、金属粉粒子の表面に酸化物粒子を付着させたものであり、従って、本発明の磁性粉よりも絶縁膜の連続性は明らかに劣るのである。   The structure of the magnetic powder of FIG. 3 is based on the method described in Patent Document 1, and the metal powder 3 and the oxide particles 4 are mixed by a so-called dry method, and the oxide particles are adhered to the surface of the metal powder particles. Therefore, the continuity of the insulating film is clearly inferior to that of the magnetic powder of the present invention.

また、特許文献2においては、シリコーン樹脂を金属粒子に被覆して熱処理する技術が開示されているが、シリコーン樹脂の炭素分が磁性粉の粒子内に拡散するため、磁性粉の磁気特性が低下することが懸念される。本発明で好適な処理液はそのような問題が無い。しかも公知の燐酸成分含有液で処理して得られる絶縁性被膜の耐熱性が低いという問題があるが、本発明の処理液を用いて得られる絶縁膜は、耐熱性があり、従って十分高い温度で焼鈍または熱処理することができるので、圧粉磁心の磁気特性が優れている。   Patent Document 2 discloses a technique in which a silicone resin is coated on metal particles and heat-treated. However, since the carbon content of the silicone resin diffuses into the magnetic powder particles, the magnetic properties of the magnetic powder deteriorate. There is a concern to do. The treatment liquid suitable for the present invention does not have such a problem. Moreover, although there is a problem that the heat resistance of the insulating coating obtained by processing with a known phosphoric acid component-containing liquid is low, the insulating film obtained using the processing liquid of the present invention has heat resistance, and therefore has a sufficiently high temperature. Therefore, the magnetic properties of the dust core are excellent.

本発明の磁性粉は、樹脂を含有しない無機物からなる絶縁層で表面が絶縁被覆処理された軟磁性粉末粒子であり、かつ軟磁性粉末粒子に圧縮残留歪がないことを特徴としている。上記構成の圧粉磁心にあっては、樹脂を含有しない無機物からなる被覆の平均厚さが1〜700nmの絶縁層で表面が絶縁被覆処理された軟磁性粉末粒子のみで構成されている。従って、絶縁層の絶縁性が高く、結果として、軟磁性粉の占積率を高めて磁束密度を向上させることができ、渦電流損(We)を小さく抑えることができる。また、絶縁層が600℃以上の耐熱性を有するSiOであるため、上記構成の圧粉磁心は600℃以上の温度で焼鈍が可能であり、軟磁性粉の圧縮残留歪を減少させることが可能である。更に、ヒステリシス損(Wh)を小さく抑えることができ、結果として極めて低く抑えた鉄損(W)を実現することができる。 The magnetic powder of the present invention is a soft magnetic powder particle whose surface is insulation-coated with an insulating layer made of an inorganic material that does not contain a resin, and the soft magnetic powder particle has no compressive residual strain. The powder magnetic core having the above-described configuration is composed only of soft magnetic powder particles whose surface is insulation-coated with an insulating layer having an average thickness of 1 to 700 nm that is made of an inorganic material that does not contain a resin. Therefore, the insulating property of the insulating layer is high, and as a result, the space factor of the soft magnetic powder can be increased, the magnetic flux density can be improved, and the eddy current loss (We) can be kept small. In addition, since the insulating layer is made of SiO 2 having heat resistance of 600 ° C. or higher, the powder magnetic core having the above-described configuration can be annealed at a temperature of 600 ° C. or higher, and the compression residual strain of the soft magnetic powder can be reduced. Is possible. Furthermore, the hysteresis loss (Wh) can be kept small, and as a result, the iron loss (W) kept extremely low can be realized.

ここで、上記圧粉磁心は、望まれる磁気特性を確実に得るために、密度比が95%以上であり、かつ圧粉磁心中の軟磁性粉の占積率が90%以上であることが望ましく、これまで多用されている珪素鋼板の飽和磁束密度1.8〜1.9T(テスラ)程度の飽和磁束密度が得られる。なお、この場合の占積率は、絶縁層を除いた軟磁性粉そのものの占積率である。   Here, the dust core has a density ratio of 95% or more and a space factor of the soft magnetic powder in the dust core of 90% or more in order to surely obtain desired magnetic characteristics. Desirably, a saturation magnetic flux density of about 1.8 to 1.9 T (tesla) of a silicon steel plate that has been frequently used so far can be obtained. The space factor in this case is the space factor of the soft magnetic powder itself excluding the insulating layer.

軟磁性粉末表面の絶縁層であるSiOの平均厚さは1〜700nmが好ましい。絶縁層が1nm以下の厚さになるとトンネル電流が発生し、絶縁性を低下させる。一方、絶縁層が700nmになると圧粉磁心中のSiOの占積率が無視できなくなり、さらに硬度の高い絶縁層を表面に有する軟磁性粉末は圧縮成形による軟磁性粉の高密度化が困難となり、結果的に高磁束密度を得ることが出来ない。 The average thickness of SiO 2 that is the insulating layer on the surface of the soft magnetic powder is preferably 1 to 700 nm. When the insulating layer has a thickness of 1 nm or less, a tunnel current is generated and the insulating property is lowered. On the other hand, when the insulating layer is 700 nm, the space factor of SiO 2 in the dust core cannot be ignored, and it is difficult to increase the density of the soft magnetic powder by compression molding for the soft magnetic powder having a hard insulating layer on the surface. As a result, a high magnetic flux density cannot be obtained.

尚、圧粉磁心に対して機械的強度が必要な場合は、SiOによる表面処理後の軟磁性粉末の表面に無機バインダーとして使用可能な水に溶解したNaO/SiO系水ガラスまたは燐酸/硼酸/マグネシア系の溶液を用いた表面処理を行い、圧縮成形後に焼鈍を実施すれば良い。600℃以上の温度での焼鈍の際に前記無機バインダーは軟化し、SiOによる表面処理後の軟磁性粉末の表面に前記無機バインダー材は濡れ拡がり、焼鈍終了後に前記無機バインダー材は固化し、圧粉磁心の強度は確保される。その際、固化した無機バインダー材の圧粉磁心中の体積分率は磁気特性を確保するため3vol%以下である必要がある。 In the case the mechanical strength is required for the dust core, SiO 2 Na 2 O / SiO 2 based water glass or dissolved in water can be used as the inorganic binder to the surface of the soft magnetic powder after surface treatment with A surface treatment using a phosphoric acid / boric acid / magnesia-based solution may be performed, and annealing may be performed after compression molding. The inorganic binder softens during annealing at a temperature of 600 ° C. or higher, the inorganic binder material wets and spreads on the surface of the soft magnetic powder after the surface treatment with SiO 2 , and the inorganic binder material solidifies after completion of annealing, The strength of the dust core is ensured. In that case, the volume fraction in the powder magnetic core of the solidified inorganic binder material needs to be 3 vol% or less in order to ensure magnetic characteristics.

本発明の圧粉磁心は低鉄損を目的とした磁心であることから、使用する軟磁性粉末は平均で30〜200μmの粒径サイズを有することが望ましい。圧粉磁心を使用する周波数領域に依存するが、軟磁性粉末の平均粒径サイズが200μmより大きくなると、軟磁性粉末内で発生する粒内渦電流の値が大きくなる。一方、軟磁性粉末の平均粒径サイズが30μmより小さくなると軟磁性粉末に対する絶縁層の厚さが無視できなくなり、圧粉磁心における絶縁層の占積率を小さくすることが難しくなると同時に、硬度の高い絶縁層により軟磁性粉末の圧縮性が著しく低下し、高磁束密度を得ることが出来なくなる。   Since the dust core of the present invention is a core intended for low iron loss, it is desirable that the soft magnetic powder used has an average particle size of 30 to 200 μm. Although depending on the frequency region in which the dust core is used, when the average particle size of the soft magnetic powder is larger than 200 μm, the value of the intragranular eddy current generated in the soft magnetic powder increases. On the other hand, if the average particle size of the soft magnetic powder is smaller than 30 μm, the thickness of the insulating layer relative to the soft magnetic powder cannot be ignored, and it becomes difficult to reduce the space factor of the insulating layer in the dust core, A high insulating layer significantly reduces the compressibility of the soft magnetic powder, making it impossible to obtain a high magnetic flux density.

本発明の代表的な実施形態は次の通りである。圧粉磁心用軟磁性粉の表面に絶縁層を形成する絶縁層形成処理液が、アルコキシシランおよびその誘導体の少なくとも一種を含み、アルコールと水、更には必要な場合加水分解用触媒を含有してなることを特徴とする圧粉磁心用軟磁性粉の絶縁層形成処理液である。   A representative embodiment of the present invention is as follows. An insulating layer forming treatment liquid for forming an insulating layer on the surface of the soft magnetic powder for dust core contains at least one of alkoxysilane and its derivatives, and contains alcohol and water, and further, if necessary, a hydrolysis catalyst. An insulating layer forming treatment liquid of soft magnetic powder for a dust core characterized by comprising:

また、本発明は軟磁性粉の表面に絶縁層を形成する圧粉磁心用軟磁性粉の絶縁層形成方法を提供するものである。すなわち、絶縁層形成処理液がアルコキシシランおよびその誘導体の少なくとも一種を含み、アルコールと水、更には必要な場合加水分解用触媒を含み、前記軟磁性粉に絶縁層形成処理液を混合し、所定温度で熱処理することにより平均厚さが1〜700nmの絶縁層を形成することができる。アルコキシシランの誘導体とは、上記のようにアルコキシシランの加水分解生成物、その脱水縮合物およびアルコキシシロキサンを含む。   The present invention also provides a method for forming an insulating layer of a soft magnetic powder for a dust core, wherein an insulating layer is formed on the surface of the soft magnetic powder. That is, the insulating layer forming treatment liquid contains at least one of alkoxysilane and derivatives thereof, alcohol and water, and further, if necessary, a hydrolysis catalyst, and the soft magnetic powder is mixed with the insulating layer forming treatment liquid, An insulating layer having an average thickness of 1 to 700 nm can be formed by heat treatment at a temperature. As described above, the alkoxysilane derivative includes a hydrolysis product of alkoxysilane, a dehydration condensate thereof, and alkoxysiloxane.

また、軟磁性粉の表面に絶縁層を形成する圧粉磁心用軟磁性粉の絶縁層形成処理液が、アルコキシシランおよびその誘導体の少なくとも一種と、アルコールおよび水、更には必要な場合加水分解用触媒を含むものである。これにより、前記軟磁性粉に絶縁層形成処理液を混合し、所定温度で熱処理することにより平均厚さが1〜700nmの絶縁層を形成することができる。   Also, an insulating layer forming treatment solution for soft magnetic powder for dust cores that forms an insulating layer on the surface of soft magnetic powder is used for at least one of alkoxysilane and its derivatives, alcohol and water, and if necessary, for hydrolysis. It contains a catalyst. Thereby, an insulating layer having an average thickness of 1 to 700 nm can be formed by mixing an insulating layer forming treatment liquid with the soft magnetic powder and performing a heat treatment at a predetermined temperature.

絶縁膜の平均厚さが1〜700nmの絶縁層を表面に有する圧粉磁心用軟磁性粉を用いて加圧成形した圧粉磁心は600〜900℃の熱処理を施すことで、鉄損、特にヒステリシス損の低減化を可能にした。本発明の圧粉磁心はより高い磁束密度が必要なモータ用鉄心やディーゼルエンジンおよびガソリンエンジンの電子制御式燃料噴射装置に組み込まれる電磁弁用のソレノイドコア(固定鉄心)及びプランジャ、その他各種アクチュエータ用のコア部品として適用できる。   A powder magnetic core formed by pressing using a soft magnetic powder for a powder magnetic core having an insulating layer having an insulating layer with an average thickness of 1 to 700 nm on the surface is subjected to heat treatment at 600 to 900 ° C., thereby causing iron loss, particularly Hysteresis loss can be reduced. The dust core of the present invention is used for motor cores requiring higher magnetic flux density, solenoid cores (fixed cores) for solenoid valves incorporated in electronically controlled fuel injection devices of diesel engines and gasoline engines, plungers, and other various actuators. It can be applied as a core part.

絶縁層形成処理液中のアルコキシシロキサンおよびアルコキシシランの一般式はそれぞれ(式1)および(式2)で表され、それぞれに示すような末端基及び側鎖にアルコキシ基を有する化合物が挙げられる。   The general formulas of alkoxysiloxane and alkoxysilane in the insulating layer forming treatment liquid are represented by (Formula 1) and (Formula 2), respectively, and examples thereof include compounds having an alkoxy group in the terminal group and side chain as shown.

Figure 2007129154
Figure 2007129154

Figure 2007129154
また、溶媒のアルコールにはアルコキシシロキサン、アルコキシシラン中のアルコキシ基と同じ骨格の化合物が好ましいがこれらに限られるものではない。具体的にはメタノール、エタノール、プロパノール、イソプロパノール等が挙げられる。
Figure 2007129154
Further, the alcohol of the solvent is preferably a compound having the same skeleton as the alkoxy group in alkoxysiloxane or alkoxysilane, but is not limited thereto. Specific examples include methanol, ethanol, propanol, isopropanol and the like.

また、加水分解及び脱水縮合用触媒としては酸触媒、塩基触媒、中性触媒のいずれでも良いが中性触媒が金属の腐食を最小限に抑えられるので最も好ましい。中性触媒としては、オルガノスズ触媒が効果的で、具体的にはビス(2−エチルヘキサノエート)スズ、n−ブチルトリス(2−エチルヘキサノエート)スズ、ジ−n−ブチルビス(2−エチルヘキサノエート)スズ、ジ−n−ブチルビス(2,4−ペンタンジオネート)スズ、ジ−n−ブチルジラウリルスズ、ジメチルジネオデカノエートスズ、ジオクチルジラリル酸スズ、ジオクチルジネオデカノエートスズ等が挙げられるがこれらに限られるものではない。また、酸触媒としては希塩酸、希硫酸、希硝酸、蟻酸、酢酸等が、塩基触媒としては水酸化ナトリウム、水酸化カリウム、アンモニア水等が挙げられるがこれらに限られるものではない。   Further, the catalyst for hydrolysis and dehydration condensation may be any of an acid catalyst, a base catalyst, and a neutral catalyst, but the neutral catalyst is most preferable because corrosion of the metal can be minimized. As the neutral catalyst, an organotin catalyst is effective. Specifically, bis (2-ethylhexanoate) tin, n-butyltris (2-ethylhexanoate) tin, di-n-butylbis (2-ethyl) Hexanoate) tin, di-n-butyl bis (2,4-pentanedionate) tin, di-n-butyl dilauryl tin, dimethyl dineodecanoate tin, dioctyl dilarylate tin, dioctyl dineodecano Examples include, but are not limited to, ate tin. Examples of the acid catalyst include dilute hydrochloric acid, dilute sulfuric acid, dilute nitric acid, formic acid, acetic acid, and the like, and examples of the base catalyst include sodium hydroxide, potassium hydroxide, aqueous ammonia, and the like, but are not limited thereto.

絶縁層形成処理液中の、アルコキシシロキサン、アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量は体積分率として0.2〜60vol%が好ましい。アルコキシシロキサン、アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が0.2vol%以下になると、加水分解時にアルコキシシロキサン、アルコキシシランに対する水の添加量の制御が難しくなる。即ち、アルコール中の水及び絶縁層形成処理時の水の混入量が処理液中の水に対して無視できなくなるからである。一方、アルコキシシロキサン、アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が60vol%以上になると、絶縁層形成処理時に軟磁性粉が凝集し易くなり、その後の圧粉磁心製造時に、圧粉磁心中の軟磁性粉の占める容積の割合に低下が生じる。   The total content of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof in the insulating layer forming treatment liquid is preferably 0.2 to 60 vol%. When the total content of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof is 0.2 vol% or less, it becomes difficult to control the amount of water added to alkoxysiloxane and alkoxysilane during hydrolysis. That is, the amount of water in the alcohol and the amount of water mixed during the insulating layer formation process cannot be ignored with respect to the water in the treatment liquid. On the other hand, when the total content of alkoxysiloxane, alkoxysilane, hydrolysis product thereof, and dehydration condensate thereof is 60 vol% or more, soft magnetic powder tends to aggregate during the insulating layer forming process, and the subsequent production of a dust core Occasionally, the volume ratio of the soft magnetic powder in the dust core decreases.

絶縁層形成処理液中のアルコキシシロキサンと水とは化学反応式(1)に示した加水分解反応を生じ、アルコキシシランと水とは化学反応式(2)に示した加水分解反応を生じる。   The alkoxysiloxane and water in the insulating layer forming treatment liquid cause a hydrolysis reaction shown in the chemical reaction formula (1), and the alkoxysilane and water cause a hydrolysis reaction shown in the chemical reaction formula (2).

Figure 2007129154
Figure 2007129154

Figure 2007129154
この際、水の添加量がアルコキシシロキサン又はアルコキシシランの加水分解反応の進行度を支配する因子の一つとなる。加水分解反応は軟磁性粉の表面処理を行う上で必要である。それはシラノールのOH基が軟磁性粉表面のO原子又はOH基と相互作用が強いからである。しかしながら、加水分解反応が進みシラノール基の濃度が高くなるとシラノール基を含む有機ケイ素化合物(アルコキシシロキサン又はアルコキシシランの加水分解生成物)同士の脱水縮合反応が進行し、有機ケイ素化合物の分子量が大きくなる。その結果、処理液による軟磁性粉表面の被覆率の低下、軟磁性粉同士の凝集が発生し易くなる。これは表面処理液としては適正な状態ではない。従って、絶縁層形成処理液中のアルコキシシロキサン又はアルコキシシランに対する適正な水の添加量が必要となる。ここで、絶縁層形成処理液中の水の添加量として、化学反応式(2)に示した加水分解反応における反応当量の1/10〜11/10が好ましい。
Figure 2007129154
At this time, the amount of water added is one of the factors governing the progress of the hydrolysis reaction of alkoxysiloxane or alkoxysilane. The hydrolysis reaction is necessary for the surface treatment of the soft magnetic powder. This is because the OH group of silanol has a strong interaction with the O atom or OH group on the surface of the soft magnetic powder. However, if the hydrolysis reaction proceeds and the concentration of the silanol group increases, the dehydration condensation reaction between organosilicon compounds containing silanol groups (alkoxysiloxane or alkoxysilane hydrolysis products) proceeds, and the molecular weight of the organosilicon compound increases. . As a result, the coverage of the surface of the soft magnetic powder by the treatment liquid is reduced, and the soft magnetic powder is easily aggregated. This is not a proper state as a surface treatment liquid. Therefore, an appropriate amount of water added to the alkoxysiloxane or alkoxysilane in the insulating layer forming treatment liquid is required. Here, the addition amount of water in the insulating layer forming treatment liquid is preferably 1/10 to 11/10 of the reaction equivalent in the hydrolysis reaction shown in the chemical reaction formula (2).

水の添加量が化学反応式(2)に示した加水分解反応における反応当量の1/10以下では、有機ケイ素化合物のシラノール基の濃度が低いため、有機ケイ素化合物と軟磁性粉表面との相互作用が低く、軟磁性粉に対する適切な絶縁処理が難しい。一方、水の添加量が化学反応式(2)に示した加水分解反応における反応当量の11/10以上では、有機ケイ素化合物の分子量が大きくなるため、処理液による軟磁性粉表面の被覆率の低下、軟磁性粉同士の凝集が発生し易くなる。   When the amount of water added is 1/10 or less of the reaction equivalent in the hydrolysis reaction shown in the chemical reaction formula (2), the concentration of silanol groups in the organosilicon compound is low. It has a low effect and it is difficult to properly insulate the soft magnetic powder. On the other hand, when the amount of water added is 11/10 or more of the reaction equivalent in the hydrolysis reaction shown in the chemical reaction formula (2), the molecular weight of the organosilicon compound increases, so the coverage of the surface of the soft magnetic powder by the treatment liquid Decrease and aggregation of soft magnetic powders easily occur.

絶縁層形成処理液の添加量は、軟磁性粉1kgに対して25〜200mlが望ましく、200mlより多いと軟磁性粉表面の絶縁被膜が厚くなり過ぎるのと、軟磁性粉同士の凝集が発生し易くなるために圧粉磁心作製時の磁束密度の低下又はヒステリシス損の増加を招く。また、25mlより少ないと絶縁性が悪く、処理液で軟磁性粉が濡れない部分が生じ、磁心中での渦電流損の増加が生じる。   The addition amount of the insulating layer forming treatment liquid is desirably 25 to 200 ml per 1 kg of the soft magnetic powder. If the amount exceeds 200 ml, the insulation coating on the surface of the soft magnetic powder becomes too thick, and the soft magnetic powder aggregates. This facilitates a decrease in magnetic flux density or an increase in hysteresis loss during the production of the dust core. On the other hand, when the amount is less than 25 ml, the insulating property is poor, and a portion where the soft magnetic powder does not get wet with the treatment liquid is generated, resulting in an increase in eddy current loss in the magnetic core.

また、軟磁性粉としては純鉄、Fe−Si合金、Fe−Al合金、パーマロイ、センダストなどの鉄系合金粉末であれば良いが、磁束密度が高く、成形性が良好で価格の安い純鉄が望ましい。   The soft magnetic powder may be pure iron, Fe-Si alloy, Fe-Al alloy, permalloy, sendust, or other iron-based alloy powder. However, pure magnetic iron has high magnetic flux density, good formability, and low price. Is desirable.

[実施例]本発明を実施例に基づき具体的に説明する。
[実施例1]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を2.5ml、水0.48ml、脱水メチルアルコール47.5ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは40nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
[Examples] The present invention will be specifically described based on examples.
[Example 1]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 2.5 ml, water 0.48 ml, dehydrated methanol 47.5 ml and 0.025 ml of dibutyltin dilaurate were mixed and a solution was used that was allowed to stand at a temperature of 25 ° C. overnight.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 40 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあった。しかし、900℃以下の熱処理では試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600〜900℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。   As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, in the heat treatment at 900 ° C. or less, the eddy current loss of the test piece is a constant value, so there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to heat treatment at 600 to 900 ° C. was good in terms of reducing the iron loss.

Figure 2007129154
[実施例2]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を25ml、水4.8ml、脱水メチルアルコール20.2ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは500nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
Figure 2007129154
[Example 2]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. As the insulating layer forming treatment liquid, 25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, the average is 4), 4.8 ml of water, and dehydrated methyl alcohol 20. 2 ml and 0.025 ml of dibutyltin dilaurate were mixed, and a solution which was allowed to stand at a temperature of 25 ° C. overnight was used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 500 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加とともに減少する傾向にあった。しかし、1000℃以下の熱処理で試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600〜1000℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。
[実施例3]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を0.25ml、水0.048ml、脱水メチルアルコール49.8ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは3nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, since the eddy current loss of the test piece is a constant value at a heat treatment of 1000 ° C. or less, there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to heat treatment at 600 to 1000 ° C. was good in terms of reducing the iron loss.
[Example 3]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. 0.25 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average is 4), 0.048 ml of water, dehydrated methyl alcohol A solution obtained by mixing 49.8 ml and 0.025 ml of dibutyltin dilaurate and allowing to stand at a temperature of 25 ° C. overnight was used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 3 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあった。しかし、900℃以下の熱処理では試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600〜900℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。
[実施例4]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはSi(CHO)を2.5ml、水0.59ml、脱水メチルアルコール47ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは25nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, in the heat treatment at 900 ° C. or less, the eddy current loss of the test piece is a constant value, so there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to heat treatment at 600 to 900 ° C. was good in terms of reducing the iron loss.
[Example 4]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming treatment solution is a solution of 2.5 ml of Si (CH 3 O) 4 , 0.59 ml of water, 47 ml of dehydrated methyl alcohol, and 0.025 ml of dibutyltin dilaurate, and left at a temperature of 25 ° C. overnight. Was used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulating film thickness was 25 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあった。しかし、600℃以下の熱処理では試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。
[比較例1]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはリン酸1g、ほう酸0.2g、酸化マグネシウム0.2g、パーフルオロ系界面活性剤0.05g、水49gを混合した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは40nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, in the heat treatment at 600 ° C. or lower, the eddy current loss of the test piece is a constant value, so there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to the heat treatment at 600 ° C. was good in reducing the iron loss.
[Comparative Example 1]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. As the insulating layer forming treatment solution, a solution in which 1 g of phosphoric acid, 0.2 g of boric acid, 0.2 g of magnesium oxide, 0.05 g of a perfluorosurfactant, and 49 g of water were used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 40 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片の外周面について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表2に示した。   Various magnetic properties were measured on the outer peripheral surface of the obtained test piece under the conditions of 1T and 400 Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 2 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあり、500℃以上の熱処理で試験片の渦電流損は上昇するため、ヒステリシス損および渦電流損の低減可能な熱処理温度が見出せない。従って、本比較例の作製法では鉄損を低減化した試験片の作製が困難であることが分かった。
[比較例2]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を40ml、水7.7ml、脱水メチルアルコール2.3ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、鉄粉は凝集がひどく、また平均絶縁被膜は1000nmより厚く観測された。
(2)(1)で作製した処理鉄粉を成形型に充填し、20t/cmの圧力で圧粉磁心の成形を試みたが密度比が76%の試験片しか得られなかった。また、その試験片は機械強度に乏しく各種磁気特性の評価は困難であった。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tends to decrease with an increase in the heat treatment temperature, and the eddy current loss of the test piece increases with a heat treatment of 500 ° C. or higher. Therefore, the heat treatment temperature at which hysteresis loss and eddy current loss can be reduced. Cannot be found. Therefore, it was found that it was difficult to produce a test piece with reduced iron loss by the production method of this comparative example.
[Comparative Example 2]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. As the insulating layer forming treatment solution, 40 ml of CH 3 O— (Si (CH 3 O) 2 —O) m —CH 3 (m is 3 to 5, average is 4), 7.7 ml of water, dehydrated methyl alcohol 2. 3 ml and 0.025 ml of dibutyltin dilaurate were mixed, and a solution which was allowed to stand at a temperature of 25 ° C. overnight was used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The iron powder was agglomerated and the average insulating film was observed to be thicker than 1000 nm.
(2) The treated iron powder prepared in (1) was filled into a mold and an attempt was made to form a dust core with a pressure of 20 t / cm 2 , but only a test piece with a density ratio of 76% was obtained. Further, the test piece was poor in mechanical strength, and it was difficult to evaluate various magnetic properties.

従って、本比較例のように絶縁層形成処理液中のアルコキシシロキサンの加水分解生成物、及びその脱水縮合物総和の体積分率が70vol%以上になると表面鉄粉の凝集の程度が大きく、圧粉磁心の密度比が95%以上の試験片の作製が困難であることが分かった。
[比較例3]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を0.025ml、水0.0048ml、脱水メチルアルコール50ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは観測が難しく1nm未満であった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
Therefore, when the volume fraction of the hydrolysis product of the alkoxysiloxane in the insulating layer forming treatment liquid and the total dehydrated condensate thereof is 70 vol% or more as in this comparative example, the degree of aggregation of the surface iron powder is large, and the pressure It was found that it was difficult to produce a test piece having a powder magnetic core density ratio of 95% or more.
[Comparative Example 3]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 0.025 ml, water 0.0048Ml, dehydrated methanol A solution which was mixed with 50 ml and 0.025 ml of dibutyltin dilaurate and allowed to stand at a temperature of 25 ° C. overnight was used.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was less than 1 nm, which was difficult to observe.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表2に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 2 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあり、400℃以上の熱処理で試験片の渦電流損は上昇するため、ヒステリシス損および渦電流損の低減可能な熱処理温度が見出せない。従って、本比較例のように鉄粉表面の絶縁被膜厚さが1nm未満になると渦電流損の上昇を抑えることが難しく、鉄損を低減化した試験片の作製が困難であることが分かった。
[実施例5]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を2.5ml、水0.048ml、脱水メチルアルコール47.5ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは20nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tends to decrease as the heat treatment temperature increases, and the eddy current loss of the test piece increases with heat treatment at 400 ° C. or higher, so that the heat treatment temperature at which hysteresis loss and eddy current loss can be reduced. Cannot be found. Therefore, it was found that when the insulation film thickness on the iron powder surface was less than 1 nm as in this comparative example, it was difficult to suppress an increase in eddy current loss, and it was difficult to produce a test piece with reduced iron loss. .
[Example 5]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 2.5 ml, water 0.048 ml, dehydrated methanol 47.5 ml and 0.025 ml of dibutyltin dilaurate were mixed and a solution was used that was allowed to stand at a temperature of 25 ° C. overnight.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 20 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあった。しかし、900℃以下の熱処理では試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600〜900℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。比較例において得られた磁性粉を用いた圧粉成形体の特性を表2に示す。   As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, in the heat treatment at 900 ° C. or less, the eddy current loss of the test piece is a constant value, so there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to heat treatment at 600 to 900 ° C. was good in terms of reducing the iron loss. Table 2 shows the characteristics of the green compact using the magnetic powder obtained in the comparative example.

Figure 2007129154
[実施例6]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を2.5ml、水0.96ml、脱水メチルアルコール47.5ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは50nmであった。
(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。
(3)(2)で作製した試験片について400から1000℃の熱処理をフッ化英雰囲気中で2時間実施した。
Figure 2007129154
[Example 6]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 2.5 ml, water 0.96 ml, dehydrated methanol 47.5 ml and 0.025 ml of dibutyltin dilaurate were mixed and a solution was used that was allowed to stand at a temperature of 25 ° C. overnight.
(1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulation film thickness was 50 nm.
(2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.
(3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. in a fluorinated atmosphere for 2 hours.

得られた試験片について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表1に示した。   About the obtained test piece, various magnetic characteristics were measured on conditions of 1T and 400Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 1 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不充分であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することができた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあった。しかし、900℃以下の熱処理では試験片の渦電流損は一定値であるため、絶縁性に問題はない。従って、600〜900℃の熱処理を施した試験片は鉄損の低減化に関して良好であることが確認できた。
〔実施例7〕
図5は、本発明の中空軸となる永久磁石モータの断面図を示す。図において、101は回転子バックヨークコア(圧粉磁心成形体)、102は回転子磁石、103はシャフト、104は固定子バックヨークコア、105は固定子コイルである。この例は回転子磁極数110、固定子コイル数112の3相ブラシレスモータである。固定子側は、固定子ヨークを実施例1〜6に示した高密度な圧粉磁心とし、径方向に極めて薄いコイル成形体で固定子側を構成している。
As a result, although the release of the residual stress of the iron powder is insufficient with the heat treatment at 500 ° C. or lower, the residual stress of the iron powder is reduced with the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss can be reduced. On the other hand, the specific resistance of the test piece tended to decrease as the heat treatment temperature increased. However, in the heat treatment at 900 ° C. or less, the eddy current loss of the test piece is a constant value, so there is no problem in insulation. Therefore, it was confirmed that the test piece subjected to heat treatment at 600 to 900 ° C. was good in terms of reducing the iron loss.
Example 7
FIG. 5 shows a cross-sectional view of a permanent magnet motor serving as a hollow shaft of the present invention. In the figure, 101 is a rotor back yoke core (a powder magnetic core molded body), 102 is a rotor magnet, 103 is a shaft, 104 is a stator back yoke core, and 105 is a stator coil. This example is a three-phase brushless motor having 110 rotor magnetic poles and 112 stator coils. On the stator side, the stator yoke is made of the high-density powder magnetic core shown in Examples 1 to 6, and the stator side is constituted by a coil molded body that is extremely thin in the radial direction.

この固定子に圧粉磁心を用いる理由としては、このモータが多極であり、回転磁界によって発生する渦電流を小さくするために必須となっているためである。回転子側は、粉末材料を成形して構成し、その成形体は結合材および磁石粉末を主とするボンド磁石部と、結合材および軟磁性粉末を主とする軟磁性部とを有し、圧縮成形手段を用いて形成された永久磁石型のロータであって、前記ボンド磁石部は磁極の少なくとも1面が前記軟磁性部に機械的に結合されていることを特徴とするロータ構造とすることで課題を解決しようとするものである。また、そのボンド磁石はセグメント毎に仮成形によって製作されるもので、仮成形時に異方性を付与し、その異方性を付与された仮成形体を、複数極を有するロータとして本成形により成形してロータを得た後に、着磁磁界によって着磁される構造のモータ用ロータとなることを特徴とする。   The reason why a dust core is used for this stator is that this motor has multiple poles and is essential for reducing the eddy current generated by the rotating magnetic field. The rotor side is configured by molding a powder material, and the molded body has a bond magnet part mainly composed of a binder and magnet powder, and a soft magnetic part mainly composed of a binder and soft magnetic powder, A rotor of a permanent magnet type formed using compression molding means, wherein the bonded magnet portion has a rotor structure in which at least one surface of a magnetic pole is mechanically coupled to the soft magnetic portion. This is to solve the problem. Also, the bonded magnet is manufactured by temporary molding for each segment, and anisotropy is imparted at the time of temporary molding, and the temporary molded body to which the anisotropy is imparted is formed by a main molding as a rotor having a plurality of poles. After obtaining the rotor by molding, the motor rotor is structured to be magnetized by a magnetizing magnetic field.

図6には回転子磁石の仮成形方法を示す。図において、108は磁石粉末、109はバインダー(樹脂)、111は仮成形金型(ダイ)、112は磁界発生用コイル、113は仮成形金型(パンチ)、115はコイルの電源である。図6(a)は磁性紛とバインダー樹脂との混合工程を示し、図6(b)は圧粉成形体の成形工程を示す。   FIG. 6 shows a method for temporarily forming the rotor magnet. In the figure, 108 is a magnet powder, 109 is a binder (resin), 111 is a temporary mold (die), 112 is a magnetic field generating coil, 113 is a temporary mold (punch), and 115 is a power source for the coil. FIG. 6A shows a mixing step of magnetic powder and binder resin, and FIG. 6B shows a forming step of the green compact.

磁石の仮成形は、磁場配向可能な金型を用いて行なう。磁石粉末と熱可塑性、または熱硬化性の結合材とでなる材料を必要な磁気特性を得ることが可能な適正配合量でブレンドし、金型内に充填し、圧縮成形、または、射出成形などの手段を用いて成形する。その際、金型内に配置した、磁場配向用のコイルに通電しながら成形を行なうことにより、磁石の磁場を精度良く配向させることができる。次に磁場配向を精度良くした仮成形体は、圧粉磁心ヨークと一体成形(本成形)する。   The temporary molding of the magnet is performed using a mold capable of magnetic field orientation. A material composed of magnet powder and thermoplastic or thermosetting binder is blended in an appropriate blending amount capable of obtaining the required magnetic properties, filled in a mold, compression molding, injection molding, etc. It shape | molds using the means of. At that time, the magnetic field of the magnet can be oriented with high accuracy by performing molding while energizing the magnetic field orientation coil disposed in the mold. Next, the temporary molded body having a high magnetic field orientation is integrally formed (mainly formed) with the dust core yoke.

図7に本成形のイメージを示す。図において、101aは圧粉磁心材料、102aは磁石仮成形体、103はシャフト、121は本成形金型(下型)である。   FIG. 7 shows an image of the main molding. In the figure, 101a is a dust core material, 102a is a magnet temporary molded body, 103 is a shaft, and 121 is a main mold (lower mold).

また、図8には圧縮成形金型構造を示す。図において、121は本成形金型(下型)、122は本成形金型(中子)、123は本成形金型(上プレート)、124は本成形金型(シャフト押えプレート)、125は本成形金型(第1パンチ)、126は本成形金型(第2パンチ)である。   FIG. 8 shows a compression mold structure. In the figure, 121 is a main mold (lower mold), 122 is a main mold (core), 123 is a main mold (upper plate), 124 is a main mold (shaft pressing plate), and 125 is A main molding die (first punch) 126 is a main molding die (second punch).

図9は、圧縮成形状態の金型の位置関係を示す。図8と同じ符号は同じ意味である。図9(a)は成形工程を示し、図9(b)は本発明によって製造されたロータの斜視図を示し、図9(c)は圧粉粒子の結合状態を説明する図である。   FIG. 9 shows the positional relationship of the mold in the compression molding state. The same reference numerals as those in FIG. 8 have the same meaning. FIG. 9A shows a molding process, FIG. 9B shows a perspective view of a rotor manufactured according to the present invention, and FIG. 9C is a diagram for explaining a combined state of dust particles.

まず、金型中へ、シャフト103、圧粉磁心材料粉101a、ボンド磁石仮成形体102aをそれぞれ必要な位置に配置する。このとき、仮成形体は、周方向には充分な隙間を空けて簡単に配置でき、かつ、しっくりと配置される寸法関係となっている。シャフトは、外径部分を下型121によって保持し、内径を中子122によって保持する。シャフト103と磁石の間には圧粉磁心材料粉101aを配置し、成形後に所定の密度となるような量を計量して挿入する。   First, the shaft 103, the powder magnetic core material powder 101a, and the bonded magnet temporary molded body 102a are respectively disposed in necessary positions in the mold. At this time, the temporary molded body has a dimensional relationship in which it can be easily arranged with a sufficient gap in the circumferential direction, and is arranged neatly. The shaft has an outer diameter portion held by the lower mold 121 and an inner diameter held by the core 122. The powder magnetic core material powder 101a is disposed between the shaft 103 and the magnet, and is measured and inserted in such an amount that a predetermined density is obtained after molding.

シャフトは上部より押えプレート124によって軸方向に固定された状態で、上パンチの独立して上下する第1パンチ125と第2パンチ126がそれぞれ圧縮力を伝える構造とする。例には、上プレート23からバネを介して圧縮力を伝える構造を示す。この構造は、それぞれが独立した圧縮機構となっていても良い。上プレートがプレス等の圧縮駆動源によって下降すると、バネ力によって中子と第2パンチ126へそのバネたわみ量分の加圧力が加わる。第1パンチは上プレートと直接結合され、上プレートの圧縮応力を直接圧粉磁心の圧縮成形力として伝え、その必要寸法での圧縮を行なう。その際、第2プレートにも、充分な圧縮力がかかるものとし、もとの仮成形体の軸方向寸法を縮める寸法関係までの圧縮を行なうものとする。圧縮後のパンチの位置関係は図9に示すとおりとなり、シャフトを金型内に挿入した状態で圧粉磁心ヨーク1とボンド磁石成形体2を一体成形(2色成形と呼ぶ)するものである。   The shaft is fixed in the axial direction by the presser plate 124 from above, and the first punch 125 and the second punch 126 that move up and down independently of the upper punch respectively transmit the compression force. In the example, a structure for transmitting a compressive force from the upper plate 23 via a spring is shown. This structure may be an independent compression mechanism. When the upper plate is lowered by a compression drive source such as a press, a pressing force corresponding to the amount of spring deflection is applied to the core and the second punch 126 by the spring force. The first punch is directly coupled to the upper plate, transmits the compressive stress of the upper plate directly as the compression molding force of the dust core, and performs compression at the required size. At that time, it is assumed that a sufficient compressive force is also applied to the second plate, and compression is performed up to a dimensional relationship that reduces the axial dimension of the original temporary molded body. The positional relationship of the punches after compression is as shown in FIG. 9, and the dust core yoke 1 and the bonded magnet molded body 2 are integrally molded (referred to as two-color molding) with the shaft inserted into the mold. .

図9(b)に金型から取り出した成形体の斜視図を示す。シャフト103、圧粉磁心ヨーク部101,ボンド磁石成形体102が強固に結合した成形体を得ることができる。その結合部分をミクロに見た状態を図9(c)に示す。圧粉磁心粉と磁石仮成形体の磁石粉は、その結合面で、バインダー(樹脂材料)による接着効果での結合のほかに、機械的に圧縮成形時の塑性変形による、粉粒子同士の絡みつきが発生し、その結合面の機械的強度を高くすることができる。   FIG. 9B shows a perspective view of the molded body taken out from the mold. A molded body in which the shaft 103, the dust core yoke portion 101, and the bonded magnet molded body 102 are firmly bonded can be obtained. FIG. 9C shows a state in which the bonding portion is viewed microscopically. The magnetic powder of the powder magnetic core powder and the magnet pre-molded body is entangled between the powder particles by the plastic deformation during mechanical compression molding, in addition to the bonding effect of the binder (resin material) on the bonding surface. And the mechanical strength of the bonding surface can be increased.

従来、焼結で得られる焼結希土類リング磁石、セグメント磁石や射出成形で得られるボンド磁石を接着によってシャフトに結合する場合には、ガラス、炭素繊維入りのバインドテープなどでの表面側保護が必要であったが、本方法によれば、その保護が必要ない程度の引張り強さ(40〜60MPa)を得ることができる。これにより、ガラス、炭素繊維入りのバインドテープなどでの表面側保護の不要な回転子を得ることが可能となる。   Conventionally, when bonding sintered rare earth ring magnets obtained by sintering, segment magnets or bonded magnets obtained by injection molding to the shaft by adhesion, surface side protection with glass, carbon fiber binding tape, etc. is required However, according to this method, it is possible to obtain a tensile strength (40 to 60 MPa) that does not require protection. This makes it possible to obtain a rotor that does not require surface-side protection with glass, carbon fiber-containing bind tape, or the like.

図11にはこの回転子構造を採用した中空軸コアレスモータの構造例を示す。まず、固定子側には、珪素鋼板積層、圧粉磁心などを用いたリング状のバックヨークに径方向に非常に薄いコイルを円周状に配置する。そのコイル、コアをモールド、あるいは接着などの手段によって、コイルが電磁力で動くことがないように一体化して固定する。回転子側では、前述の2色成形により径寸法、軸方向、同心度などの精度の非常に良い回転子を得る。このとき、固定子と回転子の機械的空隙寸法は、少ない組立公差を考慮した設計とすることができる。   FIG. 11 shows a structural example of a hollow shaft coreless motor employing this rotor structure. First, on the stator side, a very thin coil is arranged circumferentially on a ring-shaped back yoke using a silicon steel sheet laminate, a dust core, or the like. The coil and core are integrated and fixed by means of molding or adhesion so that the coil does not move by electromagnetic force. On the rotor side, a rotor with very good accuracy such as diameter, axial direction and concentricity is obtained by the above-described two-color molding. At this time, the mechanical gap size between the stator and the rotor can be designed in consideration of a small assembly tolerance.

この回転子磁石は、希土類ボンド磁石のため、焼結希土類磁石に比べて磁石の最大エネルギー積が小さい。このため、出来るかぎり磁石の外径部を大きくして有効な誘起電圧を大きくする設計とすることが望ましい。このため、内径部分は不要な部分となるため、図示するようにシャフト103の内径は中空とする設計となる。これらの固定子と回転子を組立して得られるモータ構造を図11(c)に示す。固定子コアはハウジングによって保持され、ハウジングの両端には、インロー部分によってエンドブラケット(軸受保持部)が配置される。そのエンドブラケットには、軸受が保持され、軸受を介してシャフトが保持される構造となっている。前述したとおり、回転子磁石の径を大きくして、固定子コイルを薄くしているため、シャフトは中空構造となる。   Since this rotor magnet is a rare earth bonded magnet, the maximum energy product of the magnet is smaller than that of a sintered rare earth magnet. For this reason, it is desirable to design the effective induced voltage to be large by increasing the outer diameter portion of the magnet as much as possible. For this reason, since the inner diameter portion becomes an unnecessary portion, the inner diameter of the shaft 103 is designed to be hollow as illustrated. A motor structure obtained by assembling these stator and rotor is shown in FIG. The stator core is held by a housing, and end brackets (bearing holding portions) are disposed at both ends of the housing by inlay portions. The end bracket has a structure in which a bearing is held and a shaft is held via the bearing. As described above, since the diameter of the rotor magnet is increased and the stator coil is thinned, the shaft has a hollow structure.

図10には、本発明のモータと従来構造のモータの構造比較を示す。固定子の外径寸法と軸方向長さを固定して検討した例を示す。(a)図には本発明のコアレス方式、2色成形回転子を備える中空軸モータを示す。固定子の内径は58mmとし、回転子外径を57.2mmとした。0.4mmの空隙寸法は、2色成形することによるシャフトからの磁石表面寸法公差を考慮しても充分達成可能な空隙寸法である。磁石の残留磁束密度はBr=0.88Tとし、図示する方向の異方性を設けた2色成形で製作するものとした。   FIG. 10 shows a structural comparison between the motor of the present invention and a conventional motor. An example in which the outer diameter and the axial length of the stator are fixed and examined will be shown. (A) The figure shows a hollow shaft motor provided with a coreless system, two-color molding rotor of the present invention. The inner diameter of the stator was 58 mm, and the outer diameter of the rotor was 57.2 mm. The gap size of 0.4 mm is a gap size that can be sufficiently achieved even if the tolerance of the magnet surface size from the shaft by two-color molding is taken into consideration. The residual magnetic flux density of the magnet was Br = 0.88T, and the magnet was manufactured by two-color molding with anisotropy in the direction shown in the drawing.

(b)図には、従来のスロット型コア付モータを示す。固定子の内径寸法は、34.8mm、回転子外径を34mmとし、空隙寸法は0.4mmと(a)の構造のものと同じとした。磁石の残留磁束密度はBr=1.2Tであり、焼結のリング磁石で厚さ3mmを採用した。小径のリング磁石の場合、内径側に0.1mm程度の接着領域を設け、粘性の高い接着剤にて接着することにより充分な接着強度を得られるため、よほど過酷な温度条件で用いないかぎりギャップは0.4mmで構わない為、本発明のギャップ寸法と同程度に設定した。この構造は従来モータとして多い構造であるが、中空軸とならない。   FIG. 2 (b) shows a conventional slotted core motor. The inner diameter of the stator was 34.8 mm, the outer diameter of the rotor was 34 mm, and the gap dimension was 0.4 mm, which was the same as that of the structure (a). The residual magnetic flux density of the magnet was Br = 1.2T, and a thickness of 3 mm was adopted for the sintered ring magnet. In the case of a small-diameter ring magnet, a bonding area of about 0.1 mm is provided on the inner diameter side, and sufficient adhesive strength can be obtained by bonding with a highly viscous adhesive. Therefore, the gap should be used unless it is used under extremely severe temperature conditions. Since 0.4 mm may be sufficient, it was set to the same extent as the gap size of the present invention. This structure has many structures as a conventional motor, but does not become a hollow shaft.

(c)図には、コアレス方式で焼結希土類ラジアルリング磁石を用いる場合の構造を示す。この場合には、トルク伝達径が大きくなっているため、磁石の厚みを4mmまで大きくした。磁石の厚みを大きくすることで、磁束量増加、機械的強度は増すが、磁石の成形時に精度の良いラジアル配向を得ることが困難となるため、残留磁束密度を1.05Tと設定した。また、ラジアル異方性を有する場合、径方向と周方向に著しく熱膨張係数が異なる為、径の大きい本構造では磁石の強度確保が必須となる。このため、磁石の組立時の内径側の接着領域103と磁石の表面のガラス、炭素繊維入りのバインドテープ、またはステンレスなどの薄い非磁性体による表面保護領域が必要となる。このため、磁気回路的に見た空隙寸法は(a)の構造に比べて大きくなり、固定子内径を同一の58mmとした場合の回転子外径は、56mmとせざるを得ないことになる。   (C) The structure in the case of using a sintered rare earth radial ring magnet by a coreless system is shown in the figure. In this case, since the torque transmission diameter is large, the thickness of the magnet is increased to 4 mm. Increasing the thickness of the magnet increases the amount of magnetic flux and increases the mechanical strength, but it is difficult to obtain a highly accurate radial orientation during molding of the magnet, so the residual magnetic flux density was set to 1.05 T. In addition, in the case of having radial anisotropy, the coefficient of thermal expansion is remarkably different between the radial direction and the circumferential direction. Therefore, it is essential to ensure the strength of the magnet in this structure having a large diameter. For this reason, a bonding area 103 on the inner diameter side at the time of assembling the magnet and a surface protection area made of a thin non-magnetic material such as glass on the surface of the magnet, a binding tape containing carbon fiber, or stainless steel are required. For this reason, the space | gap dimension seen from the magnetic circuit becomes large compared with the structure of (a), and when the stator inner diameter is the same 58 mm, the rotor outer diameter must be 56 mm.

本実施例の2色成形回転子を有するモータは磁石の残留磁束密度が小さいにも関わらず、大きい出力を得ながら中空軸構造とすることができる。   The motor having the two-color molded rotor of the present embodiment can have a hollow shaft structure while obtaining a large output even though the residual magnetic flux density of the magnet is small.

本実施例では内転形モータの例を示したが、回転子が外側となる外転形のモータにおいても同様の結果となる。
〔実施例8〕
次に第8の実施例を説明する。本発明の中空軸永久磁石モータの圧粉磁心と磁石は、成形密度が高く、かつ、絶縁性に優れているほどモータとしての特性が向上する。成形密度を向上するためにはプレス成形する圧力を高くする必要があるが、圧力が高すぎると磁性粉表面の絶縁被膜が破壊され、渦電流損が増加する。絶縁性保護の為に絶縁被膜を厚めに設定すると磁石のエネルギー積の低下や、密度不足による透磁率低下となり、モータ特性が著しく低下してしまう。この相反する特性を同時に満足する為に磁性粉の被膜を強化する方法が考えられる。
In the present embodiment, an example of an internal rotation type motor is shown, but the same result is obtained even in an external rotation type motor having a rotor on the outside.
Example 8
Next, an eighth embodiment will be described. The powder magnetic core and the magnet of the hollow shaft permanent magnet motor of the present invention have a higher molding density, and the better the insulating properties, the better the motor characteristics. In order to improve the molding density, it is necessary to increase the pressure for press molding. However, if the pressure is too high, the insulating coating on the surface of the magnetic powder is destroyed and eddy current loss increases. If the insulating coating is set thicker for insulation protection, the magnet's energy product decreases and the permeability decreases due to insufficient density, and the motor characteristics are remarkably deteriorated. In order to satisfy these contradictory characteristics at the same time, a method of strengthening the magnetic powder coating can be considered.

絶縁膜を形成する方法として、粒界に板状のフッ素化合物を形成しフッ素化合物と主相との界面を増やすこと、フッ素化合物の厚さを薄くすること、あるいはフッ素化合物を強磁性相にすることが挙げられる。前者はフッ素化合物の粉末形成の際に板状あるいは扁平状になるような手法を採用することが有効である。従来例である特開2003−282312にはNdFの場合平均粒径0.2μmのNdF粉末とNdFeB合金粉末を自動乳鉢を使用して混合しており、フッ化物の形状についての記載はなく、焼結後のフッ化物の形状は塊状になっている。 As a method of forming an insulating film, a plate-like fluorine compound is formed at the grain boundary to increase the interface between the fluorine compound and the main phase, to reduce the thickness of the fluorine compound, or to change the fluorine compound to a ferromagnetic phase. Can be mentioned. In the former, it is effective to adopt a method of forming a plate shape or a flat shape when forming a powder of the fluorine compound. In the case of NdF 3 , NdF 3 powder having an average particle size of 0.2 μm and NdFeB alloy powder are mixed using an automatic mortar in the case of NdF 3 , and there is no description about the shape of fluoride. The shape of the fluoride after sintering is a lump.

これに対し本手法の一例は、フッ化物の粉末の形状を磁石形成後に層状にしている。磁石形成後にフッ素化合物粉の形状を層状にするために、使用するフッ素化合物の粉末形状を板状にしている。板状にするためにフッ化物を溶解急冷することがその手法の一例である。溶解温度は約2000℃で真空溶解後、急冷速度は10℃/秒で急冷する。急冷することで厚さ10μm以下でアスペクト比2以上の板状を得ることが可能となる。 In contrast, an example of this method is that the fluoride powder is layered after magnet formation. In order to make the shape of the fluorine compound powder into a layer after the magnet is formed, the powder shape of the fluorine compound used is made into a plate shape. An example of such a technique is dissolving and quenching fluoride to form a plate. After melting at a melting temperature of about 2000 ° C. under vacuum, a rapid cooling rate is 10 5 ° C./sec. By rapidly cooling, a plate shape having a thickness of 10 μm or less and an aspect ratio of 2 or more can be obtained.

このような板状粉を使用すること以外に、主相とフッ素化合物を加熱加圧してフッ素化合物が粒界に沿って層状になるように成形する手法もある。フッ素化合物が成形後に層状になっていれば、塊状あるいは粒状になっているよりもフッ素化合物と主相との界面積は増加し、成形後の粒界に沿って形成される。フッ化物が層状になることにより、塊状よりもフッ化物の混合量が少なくともフッ化物による磁気特性向上が達成される。   In addition to using such plate-like powder, there is also a method in which the main phase and the fluorine compound are heated and pressurized so that the fluorine compound is layered along the grain boundary. If the fluorine compound is formed into a layer after molding, the interfacial area between the fluorine compound and the main phase is increased rather than being agglomerated or granulated, and is formed along the grain boundary after molding. When the fluoride is layered, the magnetic property is improved by at least the fluoride mixed amount rather than the bulk.

また、フッ素化合物の強磁性化については、フッ素化合物にFeあるいはCoを添加し急冷プロセスを経て粉体あるいは薄帯を形成する。フッ素化合物は、常磁性であり室温での磁化が小さい。そのため、フッ化物を主相に混合すれば残留磁束密度が混合量にほぼ比例して残留磁束密度が減少する。残留磁束密度の減少は、エネルギー積の著しい低下につながる。したがって磁石の磁束密度を高く設計している磁気回路においては、従来のフッ素化合物を含む磁石の形成は困難であったがフッ素化合物を強磁性化できれば、フッ素化合物の添加量が同じ場合でも飽和磁束密度及び残留磁束密度の値が強磁性フッ化物の添加により増加させることが可能である。またフッ素化合物が強磁性を示していても、フッ素化合物自身の保磁力が高くならないと、主相の保磁力あるいは角形性に悪影響を及ぼす。   In addition, regarding the ferromagnetization of the fluorine compound, Fe or Co is added to the fluorine compound and a powder or ribbon is formed through a rapid cooling process. Fluorine compounds are paramagnetic and have a low magnetization at room temperature. Therefore, if fluoride is mixed with the main phase, the residual magnetic flux density decreases in proportion to the mixing amount. The decrease in residual magnetic flux density leads to a significant decrease in energy product. Therefore, in a magnetic circuit designed with a high magnetic flux density, it was difficult to form a conventional magnet containing a fluorine compound. However, if the fluorine compound can be made ferromagnetized, even if the addition amount of the fluorine compound is the same, the saturation magnetic flux The values of density and residual magnetic flux density can be increased by adding ferromagnetic fluoride. Even if the fluorine compound exhibits ferromagnetism, the coercivity or squareness of the main phase is adversely affected unless the coercivity of the fluorine compound itself is increased.

主相保磁力を保持しながら角形性も確保して残留磁束密度を高めるには、フッ素化合物の保磁力を高くする必要がある。フッ素化合物自身の保磁力を1kOe以上にすることにより、主相保磁力や角形性を確保して残留磁束密度の減少を低減することが可能である。このような保磁力をもったフッ素化合物の形成には、フッ素化合物と強磁性体を溶解急冷する手法を適用する。急冷には単ロール法、双ロール法がある。   In order to increase the residual magnetic flux density by securing the squareness while maintaining the main phase coercive force, it is necessary to increase the coercive force of the fluorine compound. By setting the coercive force of the fluorine compound itself to 1 kOe or more, it is possible to secure the main phase coercive force and the squareness and reduce the decrease in the residual magnetic flux density. In order to form such a fluorine compound having a coercive force, a technique of dissolving and quenching the fluorine compound and the ferromagnetic material is applied. There are single roll method and twin roll method for rapid cooling.

具体的な製作例を以下に示す。NdFeB合金は水素化脱水素処理を施した粒径約100μmの粉であり、この粉末の保磁力は16kOeである。このNdFeB粉末に混合するフッ素化合物はNdFである。NdF原料粉を急冷装置を用いて急冷し、板状あるいはリボン状粉末を形成する。原料粉102をタングステン電極103によるアーク溶解で不活性ガス雰囲気101中にて溶解し、ノズル104からシャッタ107を開けてロール105上に溶解したNdFを吹き付ける。不活性ガスにはArガスを、単ロール105にはCuあるいはFe系材料を使用し、500から5000rpmで回転した単ロールの上にArガスで加圧し差圧を利用して吹きつける。 Specific production examples are shown below. The NdFeB alloy is a powder having a particle size of about 100 μm that has been subjected to hydrodehydrogenation, and the coercive force of this powder is 16 kOe. The fluorine compound mixed with the NdFeB powder is NdF 3 . The NdF 3 raw material powder is quenched using a quenching device to form a plate-like or ribbon-like powder. The raw material powder 102 is melted in an inert gas atmosphere 101 by arc melting with a tungsten electrode 103, and the shutter 107 is opened from the nozzle 104 to spray NdF 3 dissolved on the roll 105. Ar gas is used as the inert gas, Cu or Fe-based material is used as the single roll 105, and the single roll rotated at 500 to 5000 rpm is pressurized with Ar gas and sprayed using a differential pressure.

得られるNdF3粉末は板状となり、このNdF粉末とNdFeB粉末をNdFが約10wt%となるように混合した。この混合粉末を10kOeの磁界で配向、圧縮し、Arガス中で加熱圧縮成形した。成形条件は、加熱温度700℃、圧縮圧力3〜5t/cmであり7mm×7mm×5mmの異方性磁石を作製した。作製した成形体の密度はいずれも7.4g/cm以上であった。成形した異方性磁石の異方性方向に30kOe以上のパルス磁界を印加し、減磁曲線を20℃で測定した。NdF厚さは主相のNdFe14B粒子の粒界にあるNdF層の平均の厚さである。NdF厚さは、NdF粉末形成条件や加熱圧縮成形条件及びNdFeB粉末形状などにより異なる。NdF厚さを変えるために、NdF粉末作製時のロール回転数を500から5000rpmに変えて作製し、粉砕した粉をさらにメッシュなどにより分級している。 NdF3 powder obtained becomes plate-like, and mixed so that the NdF 3 powder and NdFeB powder NdF 3 of about 10 wt%. This mixed powder was oriented and compressed with a magnetic field of 10 kOe, and heat compression molded in Ar gas. The molding conditions were a heating temperature of 700 ° C., a compression pressure of 3 to 5 t / cm 2 , and a 7 mm × 7 mm × 5 mm anisotropic magnet was produced. The density of the produced compacts was 7.4 g / cm 3 or more. A pulse magnetic field of 30 kOe or more was applied in the anisotropic direction of the molded anisotropic magnet, and the demagnetization curve was measured at 20 ° C. The NdF 3 thickness is an average thickness of the NdF 3 layer at the grain boundary of the main phase Nd 2 Fe 14 B particles. The NdF 3 thickness varies depending on the NdF 3 powder forming conditions, the heat compression molding conditions, the NdFeB powder shape, and the like. In order to change the NdF 3 thickness, the roll rotation speed at the time of NdF 3 powder production is changed from 500 to 5000 rpm, and the pulverized powder is further classified by a mesh or the like.

回転数が高く圧縮成形圧力が大きい方がNdF厚さを薄くすることができる。NdFが0.01μmから厚くなるとBr(残留磁束密度)、iHc(保磁力)及びBhmax(エネルギー積)の値が増加する傾向にある。NdF3厚さが0.1から10μmの範囲でiHcが顕著に増加し、Brも増加している。NdFが界面に存在することにより保磁力が増加するが、厚くなると減少するのはNdFが常磁性体のため、粒子間の強磁性結合が弱くなるためと推定される。Brが増加するのは、低磁界での磁束密度が増加しているためである。 The NdF 3 thickness can be reduced as the rotational speed is higher and the compression molding pressure is higher. When NdF 3 is increased from 0.01 μm, the values of Br (residual magnetic flux density), iHc (coercive force) and Bhmax (energy product) tend to increase. When the NdF3 thickness is in the range of 0.1 to 10 μm, iHc increases remarkably and Br also increases. The coercive force increases due to the presence of NdF 3 at the interface, but the decrease in thickness is presumed to be due to the weak magnetic coupling between particles because NdF 3 is a paramagnetic substance. Br is increased because the magnetic flux density in a low magnetic field is increased.

NdF厚さが1.0μmとなった磁石の保磁力の温度依存性を大気中加熱で測定した結果、保磁力の温度係数はNdF無添加磁石の場合5.0%/℃である。NdF厚さを厚くすることにより保磁力の温度係数が小さくなる。その効果はNdF厚さが0.1μmから10μmであり、保磁力の温度係数は最小で3.4%/℃になる。これは、NdFが主相の酸化を防止していること、高保磁力化による磁区安定化に関係していると推定される。フッ化物の主相に対する平均被覆率が約50%の結果は、NdF厚さが0.1−10μmの時、被覆率が変化した場合は被覆率依存性を示す。被覆率は、フッ化物粉末の混合状態、フッ化物粉末の粒度、NdFeB粉末の粒度、NdFeB粉末の形状、配向磁界、配向時の圧力、加熱条件などのパラメータ及び条件が関係する。被覆率が増加すると、保磁力は増加する傾向にある。 As a result of measuring the temperature dependency of the coercive force of the magnet having the NdF 3 thickness of 1.0 μm by heating in the atmosphere, the temperature coefficient of the coercive force is 5.0% / ° C. in the case of the NdF 3 additive-free magnet. Increasing the thickness of NdF 3 reduces the temperature coefficient of coercivity. The effect is that the NdF 3 thickness is 0.1 μm to 10 μm, and the temperature coefficient of the coercive force is 3.4% / ° C. at the minimum. It is presumed that this is related to the fact that NdF 3 prevents oxidation of the main phase and the stabilization of the magnetic domain by increasing the coercive force. The result that the average coverage with respect to the main phase of the fluoride is about 50% indicates that when the NdF 3 thickness is 0.1-10 μm, the coverage is changed when the coverage is changed. The coverage is related to parameters and conditions such as the mixed state of fluoride powder, the particle size of fluoride powder, the particle size of NdFeB powder, the shape of NdFeB powder, the orientation magnetic field, the pressure during orientation, and the heating conditions. As the coverage increases, the coercivity tends to increase.

上記の方法で作成した磁性粉を用いて中空軸モータ用回転子を作成することにより、回転子は熱減磁しにくく、保磁力の温度係数が小さい硬質磁性材料の適用により、逆磁界に強く、誘起電圧の温度依存性が小さく、高温まで安定した出力を得ることが可能である。
〔実施例9〕
次に本発明の中空軸モータを利用したシステムについて説明する。図12には、本発明の中空軸モータを利用することで効果の期待できるシステムの例を示す。図9(a)は自動車用のステアリング装置をモデル化して示した図を示す。自動車用のパワーステアリング装置は、従来は油圧駆動であったが、モータの高性能化が進み、電動で駆動するシステムも出始めてきている。このステアリング装置を駆動するモータは、人がハンドル操作をするとそれをアシストするように回転し、駆動力を発生してタイヤの向きを変える役割を果たす。しかし、モータのハンドル操作によって、モータが回されるときの重みを除去する為に、モータ自体のロストルクを小さくしておく必要がある。
By creating a rotor for a hollow shaft motor using the magnetic powder created by the above method, the rotor is less susceptible to thermal demagnetization, and by applying a hard magnetic material with a low coercivity temperature coefficient, it is strong against reverse magnetic fields. The temperature dependence of the induced voltage is small, and a stable output up to a high temperature can be obtained.
Example 9
Next, a system using the hollow shaft motor of the present invention will be described. FIG. 12 shows an example of a system that can be expected to be effective by using the hollow shaft motor of the present invention. FIG. 9A is a diagram showing a model of a steering apparatus for an automobile. Conventionally, power steering devices for automobiles have been hydraulically driven. However, motors have been improved in performance, and systems that are electrically driven have begun to appear. The motor that drives the steering device rotates so as to assist when a person operates the steering wheel, and generates a driving force to change the direction of the tire. However, it is necessary to reduce the loss torque of the motor itself in order to remove the weight when the motor is turned by operating the motor handle.

このため、コアを有しないモータはコアのヒステリシス損を無くすることができるため、その目的を達成することができる。また、一定出力領域での効率が珪素鋼板を用いる場合よりも高くできる為、自動車のようなバッテリーから電力を供給され、燃費を考慮しなければならない用途に最適なシステムといえる。また、コアを必要としないため、巻線の占積率も向上でき、モータの体格(体積)も小さく出来る。また、(b)図に示すように、中空部分を利用して遊星ギア143や、(c)図に示すようなボールネジ機構144などの機構部品を内部に配置可能なため、自動車の限られた車載スペースへの実装も容易になる。
[比較例4]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を2.5ml、水1.92ml、脱水メチルアルコール47.5ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
For this reason, since the motor which does not have a core can eliminate the hysteresis loss of a core, the objective can be achieved. In addition, since the efficiency in a certain output region can be higher than that in the case of using a silicon steel plate, it can be said to be an optimal system for applications in which electric power is supplied from a battery such as an automobile and fuel consumption must be taken into consideration. Further, since no core is required, the space factor of the winding can be improved, and the physique (volume) of the motor can be reduced. Also, as shown in (b), the mechanical parts such as the planetary gear 143 and the ball screw mechanism 144 shown in (c) shown in FIG. Mounting in an in-vehicle space becomes easy.
[Comparative Example 4]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 2.5 ml, water 1.92 ml, dehydrated methanol 47.5 ml and 0.025 ml of dibutyltin dilaurate were mixed and a solution was used that was allowed to stand at a temperature of 25 ° C. overnight.

(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは80nmであるが、鉄粉に凝集が認められた。   (1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulating film thickness was 80 nm, but aggregation was observed in the iron powder.

(2)(1)で作製した処理鉄粉を成形型に充填し、20t/cmの圧力で圧粉磁心の成形を試みたが密度比が89%の試験片しか得られなかった。また、その試験片は機械強度に乏しく各種磁気特性の評価は困難であった。 (2) The treated iron powder prepared in (1) was filled in a mold and an attempt was made to form a dust core with a pressure of 20 t / cm 2 , but only a test piece with a density ratio of 89% was obtained. Further, the test piece was poor in mechanical strength, and it was difficult to evaluate various magnetic properties.

従って、本比較例のようにアルコキシシロキサンの総量に対して、水の添加量が加水分解反応当量の11/10以上になると磁性鉄粉同士の凝集の程度が大きく、圧粉磁心の密度比が95%以上の試験片の作製が困難であることが分かった。
[比較例5]
軟磁性粉として平均粒径が58μmの鉄粉を用いた。絶縁層形成処理液にはCHO−(Si(CHO)−O)−CH(mは3〜5、平均は4)を2.5ml、水0.0096ml、脱水メチルアルコール47.5ml、ジラウリン酸ジブチル錫0.025mlを混合し、1昼夜25℃の温度で放置した溶液を用いた。
Therefore, when the amount of water added is 11/10 or more of the hydrolysis reaction equivalent with respect to the total amount of alkoxysiloxane as in this comparative example, the degree of aggregation of the magnetic iron powder is large, and the density ratio of the dust core is It was found that it was difficult to produce a test piece of 95% or more.
[Comparative Example 5]
Iron powder having an average particle size of 58 μm was used as the soft magnetic powder. The insulating layer forming solution CH 3 O- (Si (CH 3 O) 2 -O) m -CH 3 (m is 3-5, average 4) 2.5 ml, water 0.0096Ml, dehydrated methanol 47.5 ml and 0.025 ml of dibutyltin dilaurate were mixed and a solution was used that was allowed to stand at a temperature of 25 ° C. overnight.

(1)鉄粉1kgに対し、50mlの絶縁層形成処理液を添加し、攪拌した。その処理磁粉に対し、真空中で攪拌しながら150℃、1時間の熱処理を行った。尚、平均絶縁被膜厚さは15nmであり、絶縁膜には多数のクラックが認められた。   (1) 50 ml of an insulating layer forming treatment liquid was added to 1 kg of iron powder and stirred. The treated magnetic powder was heat treated at 150 ° C. for 1 hour with stirring in vacuum. The average insulating film thickness was 15 nm, and many cracks were observed in the insulating film.

(2)(1)で作製した処理鉄粉を成形型に充填し、圧粉磁心の密度比が95%になるように、7〜20t/cmの圧力で縦20mm、横30mm、厚さ5mmの試験片を得た。 (2) The treated iron powder produced in (1) is filled into a mold, and the density ratio of the powder magnetic core is 95%. The pressure is 7 to 20 t / cm 2 and the length is 20 mm, the width is 30 mm, and the thickness is A 5 mm test piece was obtained.

(3)(2)で作製した試験片について400から1000℃の熱処理を不活性雰囲気中で2時間実施した。   (3) The test piece prepared in (2) was subjected to heat treatment at 400 to 1000 ° C. for 2 hours in an inert atmosphere.

得られた試験片の外周面について、1T、400Hzの条件下で各種磁気特性を測定した。尚、試験片の外周面は、成形時において成形型と接触し、加圧による歪を受けて最も残留応力が高い部分を含んでいる。各試験片の熱処理温度、残留応力および磁気特性の測定結果を表2に示した。   Various magnetic properties were measured on the outer peripheral surface of the obtained test piece under the conditions of 1T and 400 Hz. Note that the outer peripheral surface of the test piece includes a portion that is in contact with the mold during molding and receives the strain due to pressurization and has the highest residual stress. Table 2 shows the measurement results of the heat treatment temperature, residual stress and magnetic properties of each specimen.

この結果、500℃以下の熱処理では鉄粉の残留応力の開放は不完全であるが、600℃以上の熱処理では鉄粉の残留応力は小さくなり、その結果ヒステリシス損を低減することがでた。一方、試験片の比抵抗は熱処理温度の増加と伴に減少する傾向にあり、600℃以上の熱処理で試験片の渦電流損は上昇するため、ヒステリシス損および渦電流損の低減可能な熱処理温度が見出せない。従って、本比較例のようにアルコキシシロキサンの総量に対して、水の添加量が加水分解反応当量の1/10未満になると鉄粉表面の絶縁被膜の膜質が低下し渦電流損の上昇を抑えることが難しく、鉄損を低減化した試験片の作製が困難であることが分かった。   As a result, although the release of the residual stress of the iron powder was incomplete in the heat treatment at 500 ° C. or lower, the residual stress of the iron powder was reduced in the heat treatment at 600 ° C. or higher, and as a result, the hysteresis loss could be reduced. On the other hand, the specific resistance of the test piece tends to decrease as the heat treatment temperature increases, and the eddy current loss of the test piece increases with heat treatment at 600 ° C. or higher, so that the heat treatment temperature at which hysteresis loss and eddy current loss can be reduced. Cannot be found. Therefore, as in this comparative example, when the amount of water added is less than 1/10 of the hydrolysis reaction equivalent with respect to the total amount of alkoxysiloxane, the quality of the insulating coating on the iron powder surface is degraded and the increase in eddy current loss is suppressed. It was difficult to produce a test piece with reduced iron loss.

本発明は、成形時の磁気特性の劣化について渦電流損を抑えながら加熱処理することができ、ヒステリシス損あるいは渦電流損の小さなコア部品さらには高い磁束密度が必要なモータ用鉄心やディーゼルエンジンおよびガソリンエンジンの電子制御式燃料噴射装置に組み込まれる電磁弁用のソレノイドコア(固定鉄心)及びプランジャ、その他各種アクチュエータ用のコア部品として利用される。   The present invention is capable of heat treatment while suppressing eddy current loss with respect to deterioration of magnetic characteristics during molding, core parts having small hysteresis loss or eddy current loss, motor cores and diesel engines that require high magnetic flux density, and It is used as a solenoid core (fixed iron core) for a solenoid valve and a plunger incorporated in an electronically controlled fuel injection device of a gasoline engine, and a core component for various other actuators.

本発明の磁成粉の断面模式図。The cross-sectional schematic diagram of the magnetic powder of this invention. 本発明の焼鈍後の磁性粉の断面模式図。The cross-sectional schematic diagram of the magnetic powder after annealing of this invention. 公知の磁性粉の断面模式図。The cross-sectional schematic diagram of a well-known magnetic powder. 本発明による圧粉磁心の断面模式図。The cross-sectional schematic diagram of the powder magnetic core by this invention. 本発明の中空軸となる永久磁石モータの断面図である。It is sectional drawing of the permanent magnet motor used as the hollow shaft of this invention. 本発明の回転子磁石の仮成形方法を示す図面である。It is drawing which shows the temporary forming method of the rotor magnet of this invention. 本発明の2色成形のイメージを説明する図面である。It is drawing explaining the image of 2 color molding of this invention. 本発明の2色成形の圧縮成形金型構造を示す図面である。It is drawing which shows the compression molding die structure of the 2 color molding of this invention. 本発明の2色成形の圧縮成形時の金型位置関係を示す図面である。It is drawing which shows the metal mold | position positional relationship at the time of the compression molding of the two-color molding of this invention. 本発明のモータと従来構造のモータの構造比較を示す図面である。2 is a structural comparison between the motor of the present invention and a conventional motor. 本発明の2色成形回転子構造を採用した中空軸モータの構造例を示す。The structural example of the hollow shaft motor which employ | adopted the 2 color shaping | molding rotor structure of this invention is shown. 自動車用パワーステアリングシステムに本発明のモータを使用したシステムを示した説明図である。It is explanatory drawing which showed the system which uses the motor of this invention for the power steering system for motor vehicles.

符号の説明Explanation of symbols

1、3…軟磁性粉、2、2’…酸化膜、4…酸化物粒子、5…軟治性粉、6…SiO処理膜、101…回転子バックヨークコア(圧粉磁心成形体)、101a…圧粉磁心材料、102…回転子磁石、102a…磁石仮成形体、103…シャフト、104…固定子バックヨークコア、105…固定子コイル、106…固定子コア、108…磁石粉末、109…バインダー(樹脂)、111…仮成形金型(ダイ)、112…磁界発生用コイル、113…仮成形金型(パンチ)、121…本成形金型(下型)、122…本成形金型(中子)、123…本成形金型(上プレート)、124…本成形金型(シャフト押えプレート)、125…本成形金型(第1パンチ)、126…本成形金型(第2パンチ)、131…接着層、132…バインド層(炭素繊維,ガラス繊維)、133…モールド材、134…ベアリング(軸受)、135,136…エンドブラケット、137…ハウジング、141…ハンドル、142…パワーステアリング用モータ、143…遊星ギア、144…ボールネジ。
1,3 ... soft magnetic powder, 2,2 '... oxide film, 4 ... oxide particles, 5 ...軟治of powder, 6 ... SiO 2 treatment film, 101 ... rotor back yoke core (powder core formed body) , 101a ... dust core material, 102 ... rotor magnet, 102a ... magnet temporary molding, 103 ... shaft, 104 ... stator back yoke core, 105 ... stator coil, 106 ... stator core, 108 ... magnet powder, 109 ... Binder (resin), 111 ... Temporary mold (die), 112 ... Coil for generating magnetic field, 113 ... Temporary mold (punch), 121 ... Main mold (lower mold), 122 ... Main mold Mold (core), 123 ... Main mold (upper plate), 124 ... Main mold (shaft retainer plate), 125 ... Main mold (first punch), 126 ... Main mold (second) Punch), 131 ... adhesive layer, 132 ... bind layer (charcoal) Fibers, glass fibers), 133 ... molding material, 134 ... bearings, 135, 136 ... end bracket, 137 ... housing, 141 ... handle, 142 ... power steering motor, 143 ... planet gear, 144 ... ball screw.

Claims (23)

鉄粉末または鉄を主成分とする合金粉末の表面に、アルコキシシランおよびその誘導体から選ばれる1種以上と、アルコールおよび水を含有する処理液を用いて形成された絶縁膜を有する磁性粉の圧粉成形体であって、密度が7.5g/cm以上で、上記磁性粉の平均粒径が30〜200μmであって、上記絶縁膜の平均厚さが1〜700nmであって、比抵抗が1000μΩ・cm以上であることを特徴とする圧粉磁心。 Pressure of magnetic powder having an insulating film formed on a surface of iron powder or an alloy powder containing iron as a main component using a treatment liquid containing at least one selected from alkoxysilane and derivatives thereof and alcohol and water A powder molded body having a density of 7.5 g / cm 3 or more, an average particle size of the magnetic powder of 30 to 200 μm, an average thickness of the insulating film of 1 to 700 nm, and a specific resistance Is a powder magnetic core characterized by having a value of 1000 μΩ · cm or more. 上記絶縁膜の平均厚さが30〜200nmであることを特徴とする請求項1記載の圧粉磁心。   2. The dust core according to claim 1, wherein the insulating film has an average thickness of 30 to 200 nm. 上記絶縁膜の平均厚さが40〜100nmであることを特徴とする請求項1記載の圧粉磁心。   2. The dust core according to claim 1, wherein the insulating film has an average thickness of 40 to 100 nm. 鉄粉末または鉄を主成分とする合金粉末の表面に、アルコキシシランおよびその誘導体から選ばれる1種以上と、アルコールおよび水を含有する処理液を用いて形成された絶縁膜を有する磁性粉であって、上記磁性粉の平均粒径が30〜200μmであって、上記絶縁膜の平均厚さが1〜700nmであって、密度が7.5g/cmの圧粉成形体を製造したときに、比抵抗が1000μΩ・cm以上である特性を与えることができることを特徴とする磁性粉。 A magnetic powder having an insulating film formed on a surface of an iron powder or an alloy powder containing iron as a main component by using a treatment liquid containing at least one selected from alkoxysilane and derivatives thereof and alcohol and water. When the green powder having a mean particle size of 30 to 200 μm, a mean thickness of the insulating film of 1 to 700 nm and a density of 7.5 g / cm 3 is produced. A magnetic powder characterized by being capable of giving a characteristic that the specific resistance is 1000 μΩ · cm or more. 上記磁性粉の平均粒径が40〜100μmであることを特徴とする請求項4記載の磁性粉。   The magnetic powder according to claim 4, wherein the magnetic powder has an average particle size of 40 to 100 μm. アルコキシシランおよびその誘導体から選ばれる1種以上と、アルコールおよび水を含有してなることを特徴とする圧粉磁心用軟磁性粉の絶縁層形成処理液。   An insulating layer forming treatment liquid for soft magnetic powder for dust cores, comprising at least one selected from alkoxysilanes and derivatives thereof, alcohol and water. 更に加水分解用触媒を含有してなることを特徴とする請求項6記載の圧粉磁心用軟磁性粉の絶縁層形成処理液。   Furthermore, the catalyst for hydrolysis is contained, The insulating-layer formation processing liquid of the soft-magnetic powder for dust cores of Claim 6 characterized by the above-mentioned. 上記加水分解用触媒が中性触媒であることを特徴とする請求項7記載の圧粉磁心用軟磁性粉の絶縁層形成処理液。   The insulating layer forming treatment liquid for soft magnetic powder for dust core according to claim 7, wherein the hydrolysis catalyst is a neutral catalyst. 上記中性触媒が錫触媒であることを特徴とする請求項8記載の圧粉磁心用軟磁性粉の絶縁層形成処理液。   The said neutral catalyst is a tin catalyst, The insulating-layer formation processing liquid of the soft-magnetic powder for dust cores of Claim 8 characterized by the above-mentioned. アルコキシシランの誘導体は、その加水分解生成物、その脱水縮合物およびアルコキシシロキサンのいずれかである請求項6記載の圧粉磁心用軟磁性粉の絶縁層形成処理液。   The insulating layer forming treatment liquid for soft magnetic powder for dust core according to claim 6, wherein the derivative of alkoxysilane is any one of its hydrolysis product, its dehydration condensate and alkoxysiloxane. 上記アルコキシシランおよびその誘導体の体積分率が、処理液の0.2〜60vol%であることを特徴とする請求項6記載の圧粉磁心用軟磁性粉の絶縁層形成処理液。   The volume fraction of said alkoxysilane and its derivative is 0.2-60 vol% of a processing liquid, The insulating layer formation processing liquid of the soft magnetic powder for dust cores of Claim 6 characterized by the above-mentioned. 絶縁層形成処理液中の水の含有量が、加水分解反応当量の1/10〜11/10であることを特徴とする圧粉磁心用軟磁性粉の絶縁層形成処理液。   An insulating layer forming treatment liquid for soft magnetic powder for dust cores, wherein the content of water in the insulating layer forming treatment liquid is 1/10 to 11/10 of the hydrolysis reaction equivalent. 軟磁性粉の表面に絶縁層を形成する圧粉磁心用軟磁性粉の絶縁層形成方法において、絶縁層形成処理液がアルコキシシランおよびその誘導体の少なくとも一種を含み、アルコールと水、更には必要な場合加水分解用触媒を含み、前記軟磁性粉に絶縁層形成処理液を混合し、所定温度で熱処理することにより平均厚さが1〜700nmの絶縁層を形成することを特徴とする圧粉磁心用軟磁性粉の絶縁層形成方法。   In the method for forming an insulating layer of a soft magnetic powder for a powder magnetic core, wherein an insulating layer is formed on the surface of the soft magnetic powder, the insulating layer forming treatment liquid contains at least one of alkoxysilane and its derivatives, alcohol and water, and further necessary A dust core comprising a catalyst for hydrolysis, and an insulating layer forming treatment liquid is mixed with the soft magnetic powder, and an insulating layer having an average thickness of 1 to 700 nm is formed by heat treatment at a predetermined temperature. For forming an insulating layer of soft magnetic powder for use. 上記加水分解用触媒として中性触媒を含有してなることを特徴とする圧粉磁心用軟磁性粉の請求項13に記載の絶縁層形成方法。   The method for forming an insulating layer according to claim 13, wherein the hydrolytic catalyst comprises a neutral catalyst as a soft magnetic powder for a dust core. 中性触媒が錫触媒であることを特徴とする請求項13記載の圧粉磁心用軟磁性粉の絶縁層形成方法。   The method for forming an insulating layer of a soft magnetic powder for a dust core according to claim 13, wherein the neutral catalyst is a tin catalyst. 絶縁層形成処理液中のアルコキシシランおよびその誘導体総和の体積分率が0.2〜60vol%であることを特徴とする請求項13に記載の圧粉磁心用軟磁性粉の絶縁層形成方法。   14. The method for forming an insulating layer of a soft magnetic powder for a dust core according to claim 13, wherein the volume fraction of the alkoxysilane and its derivative sum in the insulating layer forming treatment liquid is 0.2 to 60 vol%. 固定子と回転子を備え、回転子に請求項1に記載の圧粉磁心を用いたことを特徴としたモータ。   A motor comprising a stator and a rotor, wherein the dust core according to claim 1 is used for the rotor. 固定子として円周上に配置された空芯コイルを有する中空軸のモータにおいて、回転子は請求項1に記載の圧粉磁心と磁石で構成され、その圧粉磁心と磁石を同時に圧縮成形することにより得られる成形体を採用することを特徴としたモータ。   In a hollow shaft motor having air core coils arranged on the circumference as a stator, the rotor is composed of the dust core and the magnet according to claim 1, and the dust core and the magnet are compression-molded simultaneously. A motor characterized by adopting a molded product obtained by this. 請求項18のモータにおいて、前記磁石、圧粉磁心、シャフトを同一の金型内において、少なくとも圧粉磁心、または磁石部分に軸方向に同時に圧縮方向圧力を加えて一体成形して製作される回転子を備えたことを特徴としたモータ。   19. The motor according to claim 18, wherein the magnet, the dust core, and the shaft are integrally molded by simultaneously applying pressure in the compression direction in the axial direction to at least the dust core or the magnet portion in the same mold. A motor characterized by having a child. 請求項18のモータにおいて、前記磁石は、磁石磁化方向の形成と所定の初期形状を得るためにあらかじめ仮成形される磁石仮成形体を磁石部分に用いて圧粉磁心または、圧粉磁心、シャフトと一体成形して製作される回転子を備えたことを特徴としたモータ。   19. The motor according to claim 18, wherein the magnet is a powder magnetic core, a powder magnetic core, or a shaft using a magnet temporary molded body preliminarily molded in order to form a magnet magnetization direction and obtain a predetermined initial shape. A motor characterized by comprising a rotor that is integrally molded with the rotor. 請求項18のモータにおいて、前記磁石は、1極あたりが複数の仮成形体に分割され、その磁化配向方向が、一点集中型の磁場配向となるように磁石磁化方向を仮成形時に仮成形される磁石仮成形体を磁石部分に用いて圧粉磁心または、圧粉磁心、シャフトと一体成形して製作される回転子を備えたことを特徴としたモータ。   19. The motor according to claim 18, wherein the magnet is provisionally formed at the time of provisional molding so that one magnet is divided into a plurality of provisional compacts, and the magnetization orientation direction thereof is a one-point concentration type magnetic field orientation. A motor comprising a rotor formed by integrally molding a dust core, a dust core, and a shaft using a magnet temporary molded body. 請求項18のモータにおいて、回転子の表面に機械的強度部材のガラスあるいは炭素繊維バインド材の補強がなされない回転子を用いたモータ。   The motor according to claim 18, wherein the rotor is not reinforced with glass or carbon fiber binding material as a mechanical strength member on the surface of the rotor. 請求項18のモータにおいて、回転子の磁石と圧粉磁心、またはシャフトと圧粉磁心などの界面において、圧縮応力による粉の元の形状からの塑性変形による結合により結合された部分を有する回転子を備えたことを特徴としたモータ。   19. The motor according to claim 18, wherein the rotor has a portion coupled by a plastic deformation from the original shape of the powder due to compressive stress at the interface between the rotor magnet and the dust core or the shaft and the dust core. A motor characterized by comprising
JP2005322489A 2005-11-07 2005-11-07 Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact Pending JP2007129154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322489A JP2007129154A (en) 2005-11-07 2005-11-07 Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322489A JP2007129154A (en) 2005-11-07 2005-11-07 Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact

Publications (1)

Publication Number Publication Date
JP2007129154A true JP2007129154A (en) 2007-05-24

Family

ID=38151536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322489A Pending JP2007129154A (en) 2005-11-07 2005-11-07 Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact

Country Status (1)

Country Link
JP (1) JP2007129154A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089734A3 (en) * 2009-02-05 2011-01-06 Eliyahu Rozinsky Electrical machine
WO2011032931A1 (en) 2009-09-18 2011-03-24 Höganäs Ab Ferromagnetic powder composition and method for its production
WO2011101276A1 (en) 2010-02-18 2011-08-25 Höganäs Ab Ferromagnetic powder composition and method for its production
US8236420B2 (en) 2008-03-20 2012-08-07 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
WO2013073640A1 (en) * 2011-11-18 2013-05-23 住友電気工業株式会社 Magnetic member and process for producing magnetic member
CN103177838A (en) * 2012-12-30 2013-06-26 中南大学 Soft magnetism composite powder and preparation method thereof
US10056813B2 (en) 2013-09-18 2018-08-21 E.V.R. Motors Ltd. Multipole electrical machine
JP2019521630A (en) * 2016-04-11 2019-07-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Material with directional microstructure
CN111261358A (en) * 2018-11-30 2020-06-09 新东工业株式会社 Insulating coated soft magnetic alloy powder
CN112289536A (en) * 2019-07-25 2021-01-29 Tdk株式会社 Composite magnetic powder, dust core using same, and method for producing composite magnetic powder

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236420B2 (en) 2008-03-20 2012-08-07 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
US8647743B2 (en) 2008-03-20 2014-02-11 Hoganas Ab (Publ) Ferromagnetic powder composition and method for its production
US9502951B2 (en) 2009-02-05 2016-11-22 Evr Motors Ltd. Electrical machine
WO2010089734A3 (en) * 2009-02-05 2011-01-06 Eliyahu Rozinsky Electrical machine
WO2011032931A1 (en) 2009-09-18 2011-03-24 Höganäs Ab Ferromagnetic powder composition and method for its production
US9640306B2 (en) 2009-09-18 2017-05-02 Hoganas Ab (Publ) Ferromagnetic powder composition and method for its production
WO2011101276A1 (en) 2010-02-18 2011-08-25 Höganäs Ab Ferromagnetic powder composition and method for its production
US10741316B2 (en) 2010-02-18 2020-08-11 Höganäs Ab (Publ) Ferromagnetic powder composition and method for its production
WO2013073640A1 (en) * 2011-11-18 2013-05-23 住友電気工業株式会社 Magnetic member and process for producing magnetic member
JP2013110225A (en) * 2011-11-18 2013-06-06 Sumitomo Electric Ind Ltd Magnetic member and manufacturing method therefor
CN103177838A (en) * 2012-12-30 2013-06-26 中南大学 Soft magnetism composite powder and preparation method thereof
US10056813B2 (en) 2013-09-18 2018-08-21 E.V.R. Motors Ltd. Multipole electrical machine
JP2019521630A (en) * 2016-04-11 2019-07-25 パーシモン テクノロジーズ コーポレイションPersimmon Technologies, Corp. Material with directional microstructure
US20200244112A1 (en) * 2016-04-11 2020-07-30 Persimmon Technologies Corporation Material With Directional Microstructure
JP7004573B2 (en) 2016-04-11 2022-02-04 パーシモン テクノロジーズ コーポレイション Material with directional ultrastructure
CN111261358A (en) * 2018-11-30 2020-06-09 新东工业株式会社 Insulating coated soft magnetic alloy powder
CN112289536A (en) * 2019-07-25 2021-01-29 Tdk株式会社 Composite magnetic powder, dust core using same, and method for producing composite magnetic powder
CN112289536B (en) * 2019-07-25 2024-04-02 Tdk株式会社 Composite magnetic powder, powder magnetic core using the same, and method for producing composite magnetic powder

Similar Documents

Publication Publication Date Title
JP4796788B2 (en) Coreless motor
JP2007129154A (en) Treatment liquid and treatment method of soft magnetism green compact, magnetic powder and soft magnetic material, and motor using the green compact
JP5447736B2 (en) Rare earth sintered magnet, method for producing rare earth sintered magnet and rotating machine
JP4415980B2 (en) High resistance magnet and motor using the same
US7608153B2 (en) Rare earth magnet and method therefor
US7847460B2 (en) Yoke-integrated bonded magnet and magnet rotator for motor using the same
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
US7967919B2 (en) Process for producing self-assembled rare earth-iron bonded magnet and motor utilizing the same
EP1830451A1 (en) Rotor for motor and method for producing the same
JP4970899B2 (en) Manufacturing method of high resistance powder magnetic core
JP4238114B2 (en) Powder for high resistance rare earth magnet and method for producing the same, rare earth magnet and method for producing the same, rotor for motor and motor
JP2009044795A (en) Permanent magnet embedded motor and method of manufacturing rotor for permanent magnet embedded motor
JP4900804B2 (en) Dust core
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP4529598B2 (en) Fiber-reinforced layer integrated flexible rare earth bonded magnet
JP2002075715A (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP2006013055A (en) Method for manufacturing anisotropic bond magnet
Yamashita et al. Anisotropic Nd-Fe-B based flexible bonded magnet for small permanent magnet motors
JPH10321452A (en) Heat resistant bonded magnet and manufacturing method thereof
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP3131022B2 (en) Fe-BR bonded magnet
JP4622767B2 (en) Manufacturing method of radial magnetic anisotropic multipole magnet
JP3032385B2 (en) Fe-BR bonded magnet
JP4635583B2 (en) Manufacturing method of radial anisotropic magnet motor