JP2016029847A - 通信システムと方法と装置 - Google Patents

通信システムと方法と装置 Download PDF

Info

Publication number
JP2016029847A
JP2016029847A JP2015213913A JP2015213913A JP2016029847A JP 2016029847 A JP2016029847 A JP 2016029847A JP 2015213913 A JP2015213913 A JP 2015213913A JP 2015213913 A JP2015213913 A JP 2015213913A JP 2016029847 A JP2016029847 A JP 2016029847A
Authority
JP
Japan
Prior art keywords
mme
sgsn
source
terminal
lapi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015213913A
Other languages
English (en)
Other versions
JP5862830B1 (ja
Inventor
創 前佛
So Maebotoke
創 前佛
田村 利之
Toshiyuki Tamura
利之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015213913A priority Critical patent/JP5862830B1/ja
Application granted granted Critical
Publication of JP5862830B1 publication Critical patent/JP5862830B1/ja
Publication of JP2016029847A publication Critical patent/JP2016029847A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/165Performing reselection for specific purposes for reducing network power consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0007Control or signalling for completing the hand-off for multicast or broadcast services, e.g. MBMS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

【課題】コアネットワーク全体の設備コストの低減を図り、効率的なハンドオーバ機能を提供する。【解決手段】ローアクセスプライオリティ(Low Access Priority)の端末が該端末からのRRCコネクション要求がローアクセスプライオリティであることを示す情報であるLAPIをソース基地局に提供し、さらに前記ソース基地局を介してソースMMEにLAPIを通知して保持させ、ソースMMEは端末がハンドオーバする場合にソース基地局からHandover Requiredを受信し保持されたLAPIに基づき前記端末に専用のターゲットMMEを選択しForward Relocation Requestを送信する。【選択図】図17

Description

[関連出願についての記載]
本発明は、日本国特許出願:特願2013−141127号(2013年7月4日出願)及び特願2013−187106号(2013年9月10日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、通信システムと方法と装置に関する。
移動体通信システムのコアネットワークにおいては、様々な端末(移動機)に対して様々なサービスを提供するために、サービス毎に必要な機能を、コアネットワーク内のノードの全てが具備する必要がある。大規模移動体通信網等においては、コアネットワーク内に多くのノードが配備されている。端末は、位置登録毎に、コアネットワーク内のノードに分散して接続される。
このため、コアネットワーク内の全てのノードがサービス毎に必要な機能(サービス提供機能)を具備する必要がある。コアネットワーク内のノードにおいて一部のノードでも、当該サービス提供機能を具備していない場合には、端末に対してサービス継続性を保証することができなくなる。
なお、移動局が利用するサービスの種類に応じてパケット転送経路を最適化する構成として、例えば特許文献1には、移動局が外部網からのサービスを利用する場合、外部網に応じた特定のパケット転送装置を経由するようにパケット転送経路に制約を加え、移動局が移動通信ネットワークで提供されるサービスを利用する場合には、パケット転送経路に制約を与えない構成が開示されている。
特開2003−338832号公報
以下に関連技術の分析を与える。
上記したように、コアネットワーク内の各ノードは、全てのサービス提供機能を具備することから、高機能・高性能を要求されることになる。結果として、各コアネットワークノードが高価なものとなっている。
例えば、3GPP(3rd Generation Partnership Project)で標準化されており、同報型配信を実現するベアラサービスであるMBMS(Multimedia Broadcast Multicast Service)サービス(同時配信サービス)は、これに対応している移動機が比較的少ないため、サービス提供の機会は少ない。しかしながら、少数のMBMSユーザに対してサービスを提供しようとした場合、通信事業者としては、コアネットワーク内の全てのノードでMBMS機能を具備しなければ、当該数のMBMSユーザに対してサービスを提供することは出来ない。
移動機のMBMSサービスの利用の要否に応じて、コアネットワークのノードを選択することができれば、通信事業者は、比較的に少数の高価なMBMS対応コアネットワークノードと、多数の安価なMBMS非対応コアネットワークノードを組み合わせて配備することで、全体の設備コストを効率化することが出来る(本発明者らの第1の知見)。
また、近年普及が進んでいる、3GPPにおけるマシン通信(MTC:Machine Type Communication)デバイス(M2Mデバイス)は、通話等に用いる携帯電話端末やスマートフォン等の通常の端末(ハンドセット端末)とは、移動特性や要求される通信品質などが大きく異なる。ここで、マシン通信サービスとして、例えば自動販売機の在庫や課金の遠隔管理や、センサシスム等の遠隔監視制御、車両監視、スマートグリッド等のほか、多岐に渡ることが知られている。
しかしながら、通信事業者としては、全コアネットワークノードにおいて、MTCデバイスと、ハンドセット端末の双方を、問題なく接続できる能力・機能を具備しない場合には、MTCデバイスと、ハンドセット端末の双方に対してサービスを提供することが出来ない。
MTCデバイスとハンドセット端末を適切なコアネットワークノードに接続することができれば、通信事業者は、相対的に安価なハンドセット端末用コアネットワークノードと、相対的に安価なMTCデバイス用コアネットワークノードとを組み合わせて配備することが出来る。MTCデバイスは、低アクセス優先情報、又は通信遅延に対する耐性情報をコアネットワークノードに通知する端末でもよい(本発明者らの第2の知見)。
これは、1つのノードでハンドセット端末と、MTCデバイスの両方に対応可能とした、相対的に高価なコアネットワークノードを配備するよりも、全体の設備コストを効率化することが出来る(本発明者らの第3の知見)。
したがって、本発明は、上記問題点を解決すべく創案されたものであり、その目的は、コアネットワーク全体の設備コストの低減を図り、効率的なハンドオーバ機能を提供する、システム、方法、装置を提供することにある。
前記課題を解決する本発明は、概略以下の構成とされる(ただし、以下に限定されない)。
本発明の1つの側面によれば、移動通信システムであって、端末(UE)と、ソースeNodeBまたはソースRNC(Radio Network Controller)と、ターゲットeNodeBと、特定の端末を専門に扱うコアネットワーク内のソースMME(Mobility Management Entity)またはソースSGSN(Serving GPRS(General Packet Radio Service) Support Node)と、前記特定の端末を専門に扱うコアネットワーク内のターゲットMME(Mobility Management Entity)と、DNS(Domain Name System)サーバと、を有し、前記ソースeNodeBまたは前記ソースRNCが前記ターゲットeNodeBにハンドオーバを開始し、前記ソースeNodeBは前記ソースMMEにHandover Requiredメッセージを送信し、あるいは、前記ソースRNCが前記ソースSGSNにRelocation Requiredメッセージを送信し、前記ソースMMEまたは前記ソースSGSNは、前記DNSサーバを用いて前記ターゲットMMEを選択する、移動通信システムが提供される。前記移動通信システムは、前記ターゲットMMEの選択において前記特定の端末が保有するLAPI(low access priority indication)を用いてもよい。
あるいは、移動通信システムであって、端末(UE)と、ソースRNC(Radio Network Controller)またはソースeNodeBと、ターゲットRNCと、特定の端末を専門に扱うコアネットワーク内のソースSGSN(Serving GPRS(General Packet Radio Service) Support Node)またはソースMME(Mobility Management Entity)と、前記特定の端末を専門に扱うコアネットワーク内のターゲットSGSNと、DNS(Domain Name System)サーバと、を有し、前記ソースRNCまたは前記ソースeNodeBが前記ターゲットRNCにRelocationを開始し、前記ソースRNCが前記ソースSGSNにRelocation Requiredメッセージを送信し、あるいは、前記ソースeNodeBが前記ソースMMEにHandover Requiredメッセージを送信し、前記ソースSGSNまたは前記ソースMMEは、前記DNSサーバを用いて前記ターゲットSGSNを選択する、移動通信システムが提供される。前記移動通信システムは、前記ターゲットSGSNの選択において前記特定の端末が保有するLAPI(low access priority indication)を用いてもよい。
本発明の別の側面によれば、端末(UE)と、ソースeNodeBまたはソースRNC(Radio Network Controller)と、ターゲットeNodeBと、特定の端末を専用に扱うコアネットワーク内のソースMME(Mobility Management Entity)またはSGSN(Serving GPRS(General Packet Radio Service) Support Node)と、前記特定の端末を専門に扱うコアネットワーク内のターゲットMME(Mobility Management Entity)と、DNS(Domain Name System)サーバと、を含む移動通信システムの通信方法であって、
前記ソースeNodeBまたは前記ソースRNCが前記ターゲットeNodeBにハンドオーバを開始し、
前記ソースeNodeBが前記ソースMMEにHandover Requiredメッセージを送信し、あるいは、前記ソースRNCが前記SGSNにRelocation Requiredメッセージを送信し、
前記ソースMMEまたは前記ソースSGSNは、前記DNSサーバを用いて前記ターゲットMMEを選択する、移動通信システムの通信方法が提供される。
あるいは、端末(UE)と、Relocation元のソースRNC(Radio Network Controller)またはソースeNodeBと、Relocation先のターゲットRNCと、特定の端末を専用に扱うコアネットワーク内のソースSGSN(Serving GPRS(General Packet Radio Service) Support Node)またはソースMME(Mobility Management Entity)と、前記特定の端末を専用に扱うコアネットワーク内のターゲットSGSNと、DNS(Domain Name System)サーバと、を含む移動通信システムの通信方法であって、
前記ソースRNCまたは前記ソースeNodeBが前記ターゲットRNCにRelocationを開始し、
前記ソースRNCが前記ソースSGSNにRelocation Requiredメッセージを送信し、あるいは、前記ソースeNodeBが前記ソースMMEにHandover Requiredメッセージを送信し、
前記ソースSGSNまたは前記ソースMMEが前記DNSサーバを用いて前記ターゲットSGSNを選択する、移動通信システムの通信方法が提供される。
本発明の別の側面によれば、移動通信システムに用いられ、ハンドオーバ機能を有する端末であって、LAPI(low access priority indication)に関する情報を保有する手段と、前記端末に接続するソースeNodeBまたはソースRNC(Radio Network Controller)からターゲットeNodeBにハンドオーバする場合に、前記端末を専門に扱うコアネットワーク内のソースMME(Mobility Management Entity)またはソースSGSN(Serving GPRS(General Packet Radio Service) Support Node)に前記LAPIを通知することにより前記端末を専門に扱うコアネットワーク内のターゲットMMEの選択を指示する手段と、を有する、端末が提供される。
あるいは、移動通信システムに用いられ、ハンドオーバ機能を有する端末であって、LAPI(low access priority indication)に関する情報を保有する手段と、前記端末に接続するソースeNodeBまたはソースRNC(Radio Network Controller)からターゲットRNCにハンドオーバする場合に、前記端末を専門に扱うコアネットワーク内のソースMME(Mobility Management Entity)またはソースSGSN(Serving GPRS(General Packet Radio Service) Support Node)に前記LAPIを通知することにより前記端末を専門に扱うコアネットワーク内のターゲットSGSNの選択を指示する手段と、を有する、端末が提供される。
本発明によれば、コアネットワーク全体の設備コストの低減を図り、効率的なハンドオーバ機能を提供することができる。
本発明の第1の実施形態のシステム構成を例示する図である。 本発明の第2の実施形態のシステム構成を例示する図である。 本発明の第1の実施例のシーケンス例を例示する図である。 本発明の第2の実施例のシーケンス例を例示する図である。 本発明の第3の実施例のシーケンス例を例示する図である。 本発明の第3の実施例のシーケンス例を例示する図である。 本発明の第4の実施例のシーケンス例を例示する図である。 本発明の第5の実施例のシーケンス例を例示する図である。 本発明の第5の実施例のシーケンス例を例示する図である。 本発明の第6の実施例のシーケンス例を例示する図である。 本発明の第7の実施例のシーケンス例を例示する図である。 本発明の第8の実施例のシーケンス例を例示する図である。 本発明の第8の実施例のシーケンス例を例示する図である。 本発明の第9の実施例のシーケンス例を例示する図である。 本発明の第10の実施例のシーケンス例を例示する図である。 本発明の第10の実施例のシーケンス例を例示する図である。 本発明の第11の実施例のシステム構成を例示する図である。 本発明の第11の実施例のシーケンス例を例示する図である。 本発明の第12の実施例のシステム構成を例示する図である。 本発明の第12の実施例のシステム構成を例示する図である。 本発明の第12の実施例のシーケンス例を示す図である。 本発明の第13、第14の実施例のシーケンス例を示す図である。 本発明の第13、第14の実施例のシーケンス例を示す図である。 本発明の第15の実施例のシーケンス例を示す図である。 本発明の第16の実施例のシーケンス例を示す図である。
本発明のいくつかの形態の1つによれば、移動体通信システムのコアネットワークが、端末のモビリティ管理ノードとして、前記端末が利用するサービス特性又は端末種別に応じて選択される特定モビリティ管理ノード(特定MME/特定SGSN)を備え、前記モビリティ管理ノードを跨ぐハンドオーバが起動されると、前記特定モビリティ管理ノードは、保持している、特定モビリティ管理ノード接続要求情報に応じて、ハンドオーバ先のモビリティ管理ノードを選択する。
コアネットワークが、端末に対して提供するサービス機能が異なる複数のノード(21/22、又は、121/122)を備え、加入者情報と端末情報に基づき、前記端末に接続するノードを、前記端末が利用するサービス特性又は端末種別に応じて、前記複数のノードから選択し、前記端末(1)と前記選択されたノードとが接続する。すなわち、コアネットワークでは、予め定められた特定のサービス提供機能を具備したノード(22、又は122)と、当該特定のサービス提供機能を具備しないノード(21、又は121)を、組み合わせて配備する。
このため、特定サービス提供機能に最適化したノードと、特定サービス提供機能自体を具備しないノードとに分離することが可能とされ、ノードのコストの低減を可能としている。
本発明によれば、移動体通信ネットワークにおいて、サービス特性や端末種別などの条件に応じて、端末が特定のコアネットワークノードに接続できるようにし、さらにハンドオーバを可能としたものである。
<態様1>
UE(User Equipment:ユーザ装置、端末、移動機ともいう)から、アタッチリクエスト(Attach Request)を受信した、一般MME(Mobility Management Entity:モビリティ管理エンティティ)は、前記UEを、特定MME(Customized MME、Specific MME)に接続するために、eNodeB(evolved NodeB:基地局装置)に対して、MME再選択要求信号(モビリティ管理エンティティ再選択要求信号)を送信する。なお、MME再選択要求信号は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。LAPIは、M2M通信を一般の音声データ通信よりも低い優先度に設定するものである。例えばMTCデバイスがネットワークに位置登録や発信するたびにLAPIがネットワークに通知され(例えばNAS(Non−Access Stratum)プロトコルのアタッチ要求信号がLAPIを含む)、eNodeB、MME、SGW(Serving Gateway)、PGW(PDN(Packet Data Networks) Gateway)等で保持される。またdelay tolerant accessは、例えばRRC(Radio Resource Control) connection requestメッセージに設定され、ネットワークが過負荷(overload)となった場合の制御を行うために導入されている(例えば3GPP Technical Specification 23.368)。LAPI、又はdelay tolerant accessは、例えばMTCデバイス(MTC端末)がネットワークに通知する情報要素であり、これらの情報要素を基(目印)に、基地局(eNodeB)でMMEを特定するようにしてもよい。
基地局(eNodeB)は、ローアクセスプライオリティ(low access priority)の端末(UE)に対して前記特定MMEを選択するようにしてもよい。前記ローアクセスプライオリティ(low access priority)の端末(UE)はMTC機能を有する端末である。前記ローアクセスプライオリティ(low access priority)構成の端末(UE)は、前記基地局にRRCコネクション要求が前記ローアクセスプライオリティ(low access priority)であることを指示する情報(LAPI)を提供し、前記基地局(eNodeB)は、前記端末からの情報(LAPI)を用いて、ローアクセスプライオリティ(low access priority)構成の端末(UE)を、前記特定MMEに向けるようにしてもよい。
前記eNodeBは、前記特定MMEに、Attach Requestを再送することで、UEを特定MMEへ接続している。
<態様2>
UEからAttach Requestを受信した一般MMEは、前記UEを、特定MME(Customized MME)に接続するために、前記特定MMEに対して、MME変更要求信号(モビリティ管理エンティティ変更要求信号)を送信する。前記特定MMEは、アタッチ処理(Attach Procedure)を継続することで、前記UEを特定MMEへ接続している。
<態様3>
UEからAttach Requestを受信した一般MMEは、前記UEを特定MME(Customized MME)に接続するために、前記特定MMEの識別子を付与したアタッチリジェクト(Attach Reject)を、前記UEに送信する。前記UEは、Attach Requestに、特定MMEの識別子を付与して、再送信することで、前記UEを、前記特定MMEへ接続している。
<態様4>
UEは、特定MME(Customized MME)接続要求情報を付与したRRCコネクションリクエスト(RRC(Radio Resource Control) Connection Request)(無線リソース接続要求)を、eNodeBに送信し、RRCコネクションリクエストを受信したeNodeBは、RRCコネクション(RRC Connection)を確立した前記UEからのAttach Requestを、MMEに送信する際に、前記特定MMEを選択することで、前記UEを前記特定MMEへ接続している。なお、特定MME接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。LAPI、又はdelay tolerant accessは、例えばMTC端末がネットワークに通知する情報要素であり、これらの情報要素を基に基地局(eNodeB)でMMEを特定するようにしてもよい。
<態様4−1>
前記UEから、特定MME(Customized MME)に接続するための特定MME接続要求情報を付与したRRC(Radio Resource Control)信号を受信した前記eNodeBは、前記特定MME接続要求情報をS1−AP信号にて特定MMEに通知する。
<態様4−2>
前記eNodeBから前記特定MME接続要求情報をS1−AP信号にて受信した特定MMEは、前記特定MME接続要求情報を保持する。
<態様5>
UEとセッションを確立している一般MMEは、eNodeBと前記一般MMEとの間で確立されているS1コネクションの開放(S1 Release)時に、次回にMMEを選択する際に、特定MME(Customized MME)を選択するように、前記eNodeBに指示をし、その後、前記UEが、位置管理エリア更新リクエスト(TA(Tracking Area) Update Request)を送信した際に、前記eNodeBが前記特定MMEを選択することで、前記UEを特定MMEへ接続している。
<態様6>
UEからAttach Requestを受信した一般SGSN(Serving GPRS(General Packet Radio Service) Support Node:特許請求の範囲では「サービングGPRSサポートノード」と表記)は、前記UEを特定SGSN(Customized SGSN)に接続するために、RNC(Radio Network Controller:無線ネットワークコントローラ)に、SGSN再選択要求信号を送信し、前記RNCは、前記特定SGSNに、Attach Requestを再送することで、前記UEを前記特定SGSNへ接続している。なお、SGSN再選択要求信号は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。すなわち、例えばMTC端末からネットワークに通知する、LAPI、delay tolerant access等の情報要素を基に、RNCでSGSNを特定するようにしてもよい。
<態様7>
UEからAttach Requestを受信した一般SGSNは、前記UEを特定SGSN(Customized SGSN)に接続するために、前記特定SGSNにSGSN変更要求信号を送信し、前記特定SGSNはアタッチ処理(Attach Procedure)を継続することで、前記UEを前記特定SGSNへ接続している。
<態様8>
UEからAttach Requestを受信した一般SGSNは、前記UEを特定SGSN(Customized SGSN)に接続するために、前記特定SGSNの識別子を付与したアタッチリジェクト(Attach Rejectを前記UEに送信し、前記UEは、Attach Requestに、特定SGSN識別子を付与して再送信することで、前記UEを前記特定SGSNへ接続している。
<態様9>
UEは、特定SGSN(Customized SGSN)接続要求情報を付与したコネクションリクエスト(RRC Connection Request)をRNCに送信し、該リクエストを受信したRNCは、RRCコネクション(RRC Connection)を確立した前記UEからのAttach RequestをSGSNに送信する際に、前記特定SGSNを選択することで、前記UEを特定SGSNへ接続している。なお、特定SGSN接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。すなわち、例えばMTC端末からネットワークに通知する、LAPI、delay tolerant access等の情報要素を基にRNCでSGSNを特定するようにしてもよい。
<態様9−1>
前記UEから、特定SGSN(Customized SGSN)に接続するための前記特定SGSN接続要求情報を付与したRRC信号を受信した前記RNCは、前記特定SGSN接続要求情報をIu信号にて特定SGSNに通知する。
<態様9−2>
前記RNCから前記特定SGSN接続要求情報をIu信号にて受信した特定SGSNは、前記特定SGSN接続要求情報を保持する。
<態様10>
UEとセッションを確立している一般SGSNは、Iu開放(Iu Release)時に、次回SGSN選択で特定SGSN(Customized SGSN)を選択するようにRNCに指示をし、その後、前記UEが、位置管理エリア更新リクエスト(RA(Routing Area) Update Request)を送信した際に、RNCが特定SGSNを選択することで、UEを特定SGSNへ接続している。
<態様11>
MMEを跨ぐハンドオーバが起動されると前記特定MMEは、保持している前記特定MME接続要求情報に応じてハンドオーバ先のMMEを選択する。なお、特定MME接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基にMMEを特定するようにしてもよい。
<態様11−1>
前記特定MMEは、ハンドオーバ先のMMEの選択を行う際、保持している前記特定MME接続要求情報を元にローカルコンフィグレーションで決定してもよい。あるいは、前記特定MMEは、保持しているローカルコンフィグレーションを用いてハンドオーバ先のMMEを決定してもよい。
<態様11−2>
前記特定MMEは、ハンドオーバ先のMMEの選択を行う際、保持している前記特定MME接続要求情報を元にDNS(Domain Name System)サーバに問い合わせを行い、その結果としてDNSサーバから受信したハンドオーバ先のMMEの候補群の中から選択してもよい。
<態様11−3>
加入者の位置情報、及び前記特定MME接続要求情報などを入力情報として、1つ又は複数のMMEを提供可能なDNSサーバ。
<態様11−4>
MMEを跨ぐハンドオーバが起動された際、ハンドオーバ元前記特定MMEは保持している前記特定MME接続要求情報をハンドオーバ先の特定MMEに通知する。
<態様12>
SGSNを跨ぐハンドオーバが起動されると、前記特定SGSNは、保持している前記特定SGSN接続要求情報に応じてハンドオーバ先のSGSNを選択する。なお、特定SGSN接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基にSGSNを特定するようにしてもよい。
<態様12−1>
前記特定SGSNは、ハンドオーバ先のSGSNの選択を行う際、保持している前記特定SGSN接続要求情報を元にローカルコンフィグレーションで決定してもよい。あるいは、前記特定SGSNは、保持しているローカルコンフィグレーションを用いてハンドオーバ先のSGSNを決定してもよい。
<態様12−2>
前記特定SGSNは、ハンドオーバ先のSGSNの選択を行う際、保持している前記特定SGSN接続要求情報を元にDNSサーバに問い合わせを行い、その結果としてDNSサーバから受信したハンドオーバ先のSGSNの候補群の中から選択してもよい。
<態様12−3>
加入者の位置情報、及び前記特定SGSN接続要求情報などを入力情報として、1つ或いは複数のSGSNを提供可能なDNSサーバ。
<態様12−4>
SGSNを跨ぐハンドオーバが起動された際、ハンドオーバ元前記特定SGSNは保持している前記特定SGSN接続要求情報をハンドオーバ先特定SGSNに通知する。
<態様13>
MMEからSGSNに移動するハンドオーバが起動されると前記特定MMEは、保持している前記特定MME接続要求情報に応じてハンドオーバ先のMMEを選択する。なお、特定MME接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基にMMEを特定するようにしてもよい。
<態様13−1>
前記特定MMEは、ハンドオーバ先のSGSNの選択を行う際、保持している前記特定MME接続要求情報を元にローカルコンフィグレーションで決定してもよい。あるいは、前記特定MMEは、保持しているローカルコンフィグレーションを用いてハンドオーバ先のSGSNを決定してもよい。
<態様13−2>
前記特定MMEは、ハンドオーバ先のSGSNの選択を行う際、保持している前記特定MME接続要求情報を元にDNSサーバに問い合わせを行い、その結果としてDNSサーバから受信したハンドオーバ先のMMEの候補群の中から選択してもよい。
<態様13−3>
MMEからSGSNに移動するハンドオーバが起動された際、ハンドオーバ元前記特定MMEは保持している前記特定MME接続要求情報をハンドオーバ先特定SGSNに通知する。
<態様13−4>
前記特定MME接続要求情報と、前記特定SGSN接続要求情報が区別無く、同一の情報として扱われるシステム。
<態様13−5>
前記特定MME接続要求情報と、前記特定SGSN接続要求情報とが、それぞれ別の情報として扱われるシステム。
<態様14>
SGSNからMMEに移動するハンドオーバが起動されると、前記特定SGSNは、保持している前記特定SGSN接続要求情報に応じて、ハンドオーバ先のMMEを選択する。なお、特定SGSN接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基に、MMEを特定するようにしてもよい。
<態様14−1>
前記特定SGSNは、ハンドオーバ先のMMEの選択を行う際、保持している前記特定SGSN接続要求情報を元にローカルコンフィグレーションで決定してもよい。あるいは、前記特定SGSNは、保持しているローカルコンフィグレーションを用いてハンドオーバ先のMMEを決定してもよい。
<態様14−2>
前記特定SGSNは、ハンドオーバ先のMMEの選択を行う際、保持している前記特定SGSN接続要求情報を元にDNSサーバに問い合わせを行い、その結果としてDNSサーバから受信したハンドオーバ先のMMEの候補群の中から選択してもよい。
<態様14−3>
SGSNからMMEに移動するハンドオーバが起動された際、ハンドオーバ元前記特定SGSNは保持している前記特定SGSN接続要求情報をハンドオーバ先特定MMEに通知する。
<態様14−4>
前記特定MME接続要求情報と前記特定SGSN接続要求情報が区別無く同一の情報として扱われるシステム。
<態様14−5>
前記特定MME接続要求情報と前記特定SGSN接続要求情報がそれぞれ別の情報として扱われるシステム。
<態様15>
UEは、特定MME(Customized MME)接続要求情報を付与したRRCコネクションリクエスト(RRC(Radio Resource Control)Connection Request)(無線リソース接続要求)を、eNodeBに送信し、RRCコネクションリクエストを受信したeNodeBは、RRCコネクション(RRC Connection)を確立した前記UEからのTracking Area Update Requestを、new MMEに送信する際に、前記特定MMEを選択することで、前記UEを前記特定MMEへ接続している。なお、特定MME接続要求情報は、low access priority indication(LAPI)、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基にeNodeBでMMEを特定するようにしてもよい。
<態様15−1>
前記UEから、特定MME(Customized MME)に接続するための前記特定MME接続要求情報を付与したRRC信号を受信した前記eNodeBは、前記特定MME接続要求情報をS1−AP信号にて特定MMEに通知する。
<態様15−2>
前記eNodeBから前記特定MME接続要求情報をS1−AP信号にて受信した特定MMEは、前記特定MME接続要求情報を保持する。
<態様15−3>
前記特定MME接続要求情報と前記特定SGSN接続要求情報が区別無く同一の情報として扱われるシステム。
<態様15−4>
前記特定MME接続要求情報と前記特定SGSN接続要求情報がそれぞれ別の情報として扱われるシステム。
<態様16>
UEは、特定SGSN(Customized SGSN)接続要求情報を付与したコネクションリクエスト(RRC Connection Request)をRNCに送信し、該リクエストを受信したRNCは、RRCコネクション(RRC Connection)を確立した前記UEからのRouting Area Update Requestをnew SGSNに送信する際に、前記特定SGSNを選択することで、前記UEを特定SGSNへ接続している。なお、特定SGSN接続要求情報は、low access priority indication、又はdelay tolerant accessでもよい。この場合、例えばMTC端末からネットワークに通知するLAPI、delay tolerant access等の情報要素を基にRNCでSGSNを特定するようにしてもよい。
<態様16−1>
前記UEから、特定SGSN(Customized SGSN)に接続するための前記特定SGSN接続要求情報を付与したRRC信号を受信した前記RNCは、前記特定SGSN接続要求情報をIu信号にて特定SGSNに通知する。
<態様16−2>
前記RNCから前記特定SGSN接続要求情報をIu信号にて受信した特定SGSNは、前記特定SGSN接続要求情報を保持する。
<態様16−3>
前記特定MME接続要求情報と前記特定SGSN接続要求情報が区別無く同一の情報として扱われるシステム。
<態様16−4>
前記特定MME接続要求情報と前記特定SGSN接続要求情報がそれぞれ別の情報として扱われるシステム。
上記態様1乃至16に記載したように、本発明によれば、端末毎に接続するコアネットワークノードを、端末の利用するサービス特性に応じて選択して接続する構成としている。こうすることで、コアネットワークでは、特定のサービス提供機能を具備したノードと具備しないノードを、組み合わせて配備し、各ノードのうち、あるノードを特定サービス提供機能に最適化し、他のノードは当該特定サービス提供機能を具備しないという具合に差異を設けることで、ノードのコストの低減を図るようにしている。以下、図面を参照して、いくつかの実施形態と具体的な実施例に即して説明する。
<実施形態1>
図1は、本発明の実施形態1を説明する図である。実施形態1として、EPC(Evolved Packet Core)において、Attach時に、UEと特定MMEを接続させる構成について説明する。
図1において、UE1(ユーザ装置)は、例えば携帯電話端末(移動機)を示す。あるいは、例えば上記したMTCデバイス、MBMS対応端末等であってもよい。
eNodeB11は、LTE(Long Term Evolution)の基地局装置である。
MME21、22は、EPCで導入されたモビリティを管理する装置である。Customized MME22は、UE1を接続させたい特定MMEであり、一般MME(21)は、それ以外のMMEである。特に制限されないが、Customized MME22は、例えばマシン通信(MTC)サービスと、対応端末(M2Mデバイス)向けにカスタマイズした構成(例えばネットワーク制御を扱うC−Planeを補強)のMMEとして構成される。あるいは、MBMS対応のMMEとして構成してもよい。
HSS(Home Subscriber Server)31は、加入者情報を保持するデータベースである。
S−GW(Serving GateWay)41、及びP−GW(Packet data network GateWay:PDN−GWともいう)51は、ユーザプレーンを扱う装置である。
サービスネットワーク61は、外部ネットワークを示す。
図1において、eNodeBが無線アクセスネットワーク(RAN:Radio Access Network)、MME、S−GW、P−GW等がコアネットワーク(CN:Core Network)に対応する。
以下、上記した実施形態1について、制御方式が互いに相違した、いくつかの実施例を説明する。実施例1−5は上記態様1−5にそれぞれ対応する。
<実施例1>
図3は、実施例1の動作例を説明するためのシーケンス図である。図3において、
UEは図1のUE1、
eNodeBは図1のeNodeB11、
一般MMEは図1の一般MME21、
Customized MMEは、図1のCustomized MME(特定MME)22、
Serving GWは、図1のS−GW41、
PDN GWは、図1のP−GW51、
HSSは、図1のHSS31にそれぞれ対応する。
PCRFは、ポリシと課金ルール機能(Policy and Charging Rules Function)である。また、EIR(Equipment Identity Register)は、IMEI(International Mobile Equipment Identity)等を保持し、MMEとS13インタフェースで接続される。
なお、図3において、例えば「1.Attach Request」は、UEからeNodeBへのAttach Requestの送信がシーケンス1であることを表わしている。図のUEの参照符号1(構成要素の参照符号)とは異なることを区別するため、以下の説明では、このシーケンス番号1を、「Attach Request(1)」のように、括弧書きで表記する。他のシーケンス番号についても同様とする。また、図4以降のシーケンス図についても同様の表記とする。なお、図3は、3GPP TS23.401のFigure 5.3.2.1−1: Attach procedureに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.3.2の記載が参照される。以下、図1及び図3を参照して、動作シーケンスを説明する。
図3を参照すると、UE1が、Attach Request(1)を送信すると、まず、eNodeB11が受信し、eNodeB11は、MMEに、Attach Request(2)を中継する。
この時、eNodeB11は、Attach Request(2)を一般MME21に転送するべきか、Customized MME22に転送するべきか、一意に決定することが出来ない。そのため、Attach Request(2)は、eNodeB11から一般MME21に転送される場合がある。
一般MME21では、Attach Request(2)を受信した後、Identity Request/Response(4、5b)にて、UE1から、端末情報(ME Identity)を取得する。
なお、一般MME21は、ME Identity Check Request(5b)をEIRに送り、EIRはMD Identity Check Ack を一般MMEに返す。更に、HSS31と連携して、認証及び加入者プロファイルの取得を行う。すなわち、認証、加入者プロファイル取得まで、一般MME21で行う。
端末情報及び加入者プロファイルを取得した一般MME21は、UE1を一般MME21に接続するべきか、Customized MME22に接続するべきか判断する。
一般MME21に接続する場合、通常のAttach Procedureを継続する。
UE1を、Customized MME22に接続する場合、一般MME21は、eNodeB11に対して、MME再選択を指示するために、MME選択信号:MME re−selection Command(本実施形態で新規に導入した、S1AP(S1 アプリケーション)信号)を送信する。
この時、一般MME21は、MME re−selection Command信号に、Customized MME22の識別子(例えばGUMMEI(Globally Unique MME Identity))を設定する。すなわち、コアネットワーク内でベアラ生成前にeNodeBに再選択要求を送信し、新たなMME選択に必要な情報(GUMMEI)を載せる。MMEは、UEが、re−selection対象であるか否かを判断する機能を具備する。
eNodeB11は、MME re−selection Command信号を受信すると、この信号に設定された識別子に従って、Customized MME22を選択し、Attach Request(2)をCustomized MME22に転送する。特定MME22では、Attach RequestのNAS(Non−Access Stratum)パラメータ(UEとMME間の認証に用いられる)が必要であるため、eNodeB11で再送する。eNodeB11では、NASメッセージを保持する機能が必要である。
新MME(=Customized MME22)では、旧MME(=一般MME)を特定できないため、コンテキスト(Context)を、旧MME(=一般MME)から引き継ぐことはできない。そのため、新MME(=Customized MMEMME22)では、再度、認証/加入者プロファイルの取得を行う必要がある。
Customized MME22は、Attach Request信号を受信した後、Identity Request/Responseにて端末情報を取得し、更にHSS31と連携して、認証及び加入者プロファイルの取得を行う。すなわち、一般MME21と同様の処理を行う。
端末情報及び加入者プロファイルを取得したCustomized MME22は、UE1を、一般MME21に接続するべきか、Customized MME22に接続するべきか判断する。
ここでは、Customized MME22は、eNodeB11で再選択された後である為、MME re−selection Command信号を送信せずに、通常のAttach Procedureを継続する。すなわち、
・Customized MME22からHSS31へのUpdate Location Request(8)の送信、
・HSS31からCustomized MME22へのUpdate Location Ack(11)の送信、
・Customized MME22からS−GW41へのCreate Session Request(12)の送信、
・S−GW41からP−GW51へのCreate Session Request(12)の送信、
・P−GW51とPCRFでのPCEF(Policy and Charging Rules Function) Initiated IP−CAN(IP Connectivity Access Network) Session Establishment/Modification手順(14)、
・P−GW51からS−GW41へのCreate Session Responce(15)の送信、
・P−GW51からS−GW41へのFirst Down Link Dataの送信 (ハンドオーバ(HO)でない場合)、
・S−GW41からCustomized MME22へのCreate Session Responce(16)の送信、
・Customized MME22からeNodeB11へのInitial Context Setup Request/Attach Accept(17)の送信、
・eNodeB11からUE1へのRRC Connection Reconfiguration(18)の送信、
・UE1からeNodeB11へのRRC Connection Reconfiguration Complete(19)の送信、
・eNodeB11からCustomized MME22へのInitianl Context Setup Responce(20)の送信、
・UE1からeNodeB11へのDirect Transfer(21)の送信、
・eNodeB11からCustomized MME22へのAttach Complete(22)の送信、
・UE1からS−GW41、P−GW51へのFirst Uplink dataの送信、
・Customized MME22からS−GW41へのModify Beaer Request(23)の送信、
・S−GW41からP−GW51ヘのModify Beaer Request(23a)の送信、
・P−GW51からS−GW41へのModify Beaer Responce(23b)の送信、
・S−GW41からCustomized MME22へのModify Beaer Responce(24)の送信、
・P−GW51、S−GW41からUE1への最初のダウンリンクデータ(First Downlink data)の送信、
が行われる。
また、一般MME21及びCustomized MME22は、UE1を、どのMMEに接続させるべきか判断する機能を具備するが、この判断は、
UE1からの情報、例えば、
・IMSI(International Mobile Subscriber Identity:国際移動体加入者識別番号)、
・IMEI(International Mobile Equipment Identity: 国際移動体装置識別番号(端末識別番号))、
・UE network capability、
・MS network capability、
・Mobile station classmark 2、
・Mobile station classmark 3、
・Device properties、又は、
・APN(Access Point Name)、又は、
・MTCグループを識別するID、又は、
・low access priority indication、又は、
・delay tolerant access、又は、
・今後追加されるAttach Request、また、TA Update Requestなどのその他のNAS信号の新規パラメータ、又は、
・これらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN(Public land Mobile Network)−idなど)、
HSS31からの情報、例えば、
・Feature−List、
・APN(Access Point Name)、又は、
・今後追加されるUpdate Location Answer/Insert Subscriber Data Request信号の新規パラメータ、又は、
・これらのパラメータを構成する一部分の識別子、
のいずれか、もしくは複数、
を組み合わせた上で行う。
また、図3では、図示されていないが、Customized MME22に対して、一般MME21に接続すべきUE1からのAttach Request信号が転送された場合も、同様の手段で、eNodeB11に対して、MME再選択を促すことが可能である。
以上説明したように、本実施形態においては、MMEがeNodeBに対してMME再選択を指示し、eNodeBはそれを受けてMMEを再選択した上で、アタッチ処理(Attach Procedure)を継続することにより、UEを適切なMMEにAttachさせることができる。
<実施例2>
実施例2として、EPC(Evolved Packet Core)において、Attach時にUEとCustomized MMEを接続させる別の例を説明する。実施例2のシステム構成は、実施例1と同様である。
図4は、実施例2の動作例を示すシーケンス図である。なお、図4は、3GPP TS23.401のFigure 5.3.2.1−1: Attach procedureに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.3.2の記載が参照される。以下、図1及び図4を参照して動作を説明する。
UE1がAttach Request(1)を送信すると、eNodeB11が受信し、MMEにAttach Request(2)を中継する。この時、eNodeB11は、Attach Request(2)を一般MME21に転送するべきか、Customized MME22に転送するべきか、一意に決定することが出来ない。そのため、一般MME21に転送される場合がある。
一般MME21では、Attach Request(2)を受信した後、Identity Request/Response(5b)にて、端末情報(ME Identity)を取得し、更に、HSS31と連携して認証及び加入者プロファイルの取得を行う。すなわち、認証、加入者プロファイルまでは一般MME21で行う。
端末情報、及び加入者プロファイルを取得した一般MME21は、UE1を一般MME21に接続するべきか、Customized MME22に接続するべきか判断する。一般MME21に接続する場合、通常のAttach Procedureを継続する。
UE1をCustomized MME22に接続する場合、一般MME21は、Customized MME22に対して、MME変更を指示するために、MME変更要求信号(MME Change Request)(本実施例で新規に導入した、GTP(GPRS Tunnelling Protocol)信号)を送信する。
この時、一般MME21は、MME Change Request信号に、端末認証や加入者プロファイルの取得によって生成したコンテキスト(context)情報を設定する。
Customized MME22は、MME変更要求信号(MME Change Requet)を受信すると、該MME変更要求信号に設定されたcontext情報を保持し、一般MME21に対して、MME Change Response信号(本実施例で新規に導入した、GTP信号)を送信する。
その後、Customized MME22は、HSS31に対して、Update Location Request信号(8)を送信し、MMEが変更されたことをHSS31に通知する。
HSS31に対して、MMEの変更MMEを通知するため、Update Location RequestをCustomized MME22で再実施する。以降のAttach ProcedureはCustomized MME22で実施する。
また、Customized MME22は、一般MME21から受け取ったセキュリティ・コンテキスト(security context)情報が有効であれば、再認証を省略することが出来る。
その後、Customized MME22は、アタッチ処理(Attach Procedure)を継続し、eNodeB11は、Customized MME22から、Initial Context Setup Request/Attach Accept(17)を受信する。
Initial Context Setup Request/Attach Accept(17)は、一般MME21で受けたAttach Request(2)に対する応答である。なお、一般MME21とは、別のMMEからの応答(Responce)を受信できる機能がeNodeB11に実装されている必要がある。
その後は、通常のアタッチ処理(Attach Procedure)を継続する。
また、一般MME21、及びCustomized MME22は、UE1を、どのMMEに接続させるべきか判断する機能を具備するが、この機能は、実施例1と同様である。
また、図4には、図示されていないが、Customized MME22に対して、一般MME21に接続するべきUE1からのAttach Request信号が転送された場合も、同様の手段で一般MME21にMME変更を促すことが可能である。
以上説明したように、本実施例においては、一般MMEがCustomized MMEに対してMME変更を指示し、Customized MMEはそれを受けてMMEを変更した上で、Attach Procedureを継続することにより、UEを適切なMMEにAttachさせることができる。
<実施例3>
実施例3として、EPCにおいてAttach時に、UEとCustomized MMEを接続させる例を説明する。実施例3のシステム構成は、実施例1と同様である。
図5、図6は、実施例3の動作例を説明するシーケンス図である。なお、図5、6は、3GPP TS23.401のFigure 5.3.2.1−1: Attach procedureに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.3.2の記載が参照される。以下、図1及び図5、図6を参照して動作を説明する。
UE1がAttach Request(1)を送信すると、まずeNodeB11が受信し、eNodeB11からAttach Request(2)がMMEに転送される。この時、eNodeB11は、Attach Request(2)を、一般MME21に転送するべきか、Customized MME22に転送するべきか、一意に決定することが出来ない。そのため、一般MME21に転送される場合がある。
一般MME21では、Attach Request(2)を受信した後、Identity Request/Response(5b)にて端末情報(ME Identity)を取得する。更に、一般MME21は、HSS31と連携して認証及び加入者プロファイルの取得を行う。
端末情報及び加入者プロファイルを取得した一般MME21は、UE1を一般MME21に接続するべきか、Customized MME22に接続するべきか判断する。一般MME21に接続する場合、通常のAttach Procedureを継続する。
UE1を、Customized MME22に接続する場合、一般MME21は、Attach Procedureを継続せずに、UE1に対してアタッチリジェクト(Attach Reject)メッセージを送信する。すなわち、一般MME21はInitial Context Setup Request/Attach Reject(17)をeNodeB11に送信する。
この時、一般MME21は、Attach Reject信号に、再アタッチ(re−attach)を指示するパラメータ(本実施例で導入した、新規パラメータ)、及び、re−attach時に、Customized MME22を、eNodeB11が選択できるように、GUMMEI(Globally Unique MME identifier)を含むGUTI(Globally Unique Temporary Identify)パラメータ(本実施例で導入した、新規パラメータ)を設定する。GUTIパラメータは、GUMMEIとM−TMSI(Temporay Mobile Station Identity)から構成される。MMEIは、MCC(Mobile Country Code)とMNC(Mobile Network Code)とMME Identifierから構成される。これらは本実施例で導入した新規なパラメータであるが、eNodeB11は、透過(transparent)であるため、eNodeB11には影響はない。
UE1は、eNodeB11からAttach Reject信号を受信すると、図6に示すように、Attach−Reject信号に設定されたre−attachを指示するパラメータ、及び、GUTIパラメータに従って、GUTIを設定したAttach Request(1)(GUTIによるAttach)を、eNodeB11に送信する。この時、eNodeB11は、GUTIに含まれるGUMMEIから適切なMMEを判断し、Attach Request(2)を、Customized MME22に転送する。
なお、UE1には、Attach Reject信号にてGUTIを受け付け、re−attach(図6のAttach Request(1))送信時に、Attach rejectで指示されたGUTIを使用する機能が実装されている。MMEは、このUEがRe−Selection対象か判断する機能が実装されている。
その後、Customized MME22は通常のAttach Procedureを継続する。ただし、GUTIが設定されたAttach Requestだが、Customized MME22自身は、context情報を保持していない。
このため、Customized MME22は、Attach Request信号を受信した後、Identity Request/Response(4)にて、端末情報を取得し、更にHSS31と連携して認証及び加入者プロファイルの取得を行う。
また、一般MME21及びCustomized MME22はUE1をどのMMEに接続させるべきか判断する機能を具備するが、この機能は、前記実施例1と同様である。
また、図5及び図6では、図示されていないが、Customized MME22に対して、一般MME21に接続するべきUE1からのAttach Request信号が転送された場合も、同様にして、UE1にMME再選択を促すことが可能である。
以上説明したように、本実施例においては、一般MMEがUEに対してMME再選択を指示し、UEはそれを受けてCustomized MMEを指定した上で、Attach Procedureを継続することにより、UEを適切なMMEにAttachさせることができる。
<実施例4>
実施例4として、EPCにおいてAttach時にUEとCustomized MMEを接続させる例を説明する。実施例4の構成は実施例1と同様である。図7は、実施例4の動作例を説明するためのシーケンス図である。なお、図7は、3GPP TS23.401のFigure 5.3.2.1−1: Attach procedureに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.3.2の記載が参照される。以下、図1及び図7を参照して動作を説明する。
UE1がAttach Request(1)をMMEに送信する為に、まずeNodeB11とのRRC Connectionの確立を行う。RRC Connection確立のために、UE1は、まずeNodeB11にRRC Connection Request信号を送信する。
この時、UE1は、本信号にCustomized MME22への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で新規に導入した値又はパラメータ)、又は、これらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id(Public Land Mobile Network Identity)等))を設定する。
UE1は、RRC Connection RequestにてeNodeBに、Customized MMEに接続可能であることを通知する RRC Connection Requestの新規パラメータ(establishment Cause(RRC Connection Requestを発信した原因を示す情報要素(通信確立要因))の新規Value若しくは新規パラメータ)が実装される。
eNodeB11は、RRC Connection Request信号を受信したとき、UE1がCustomized MME22に接続すべきことを記憶し、その後のRRC Connection Procedureを継続する。
RRC Connection確立後、UE1がAttach Request(1)を送信すると、eNodeB11が受信する。この時、eNodeB11は、RRC Connection Request(1)の受信した時に記憶した情報(UE1がCustomized MME22に接続すべきこと)から、Attach Request(2)を、Customized MME22に転送する。
Attach Request(2)には、RRC Connection Requestにて受信したCustomized MMEに接続可能であることを通知するRRC Connection Requestの新規パラメータ(Establishment Causeの新規Value若しくは新規パラメータ)がeNodeB11によって設定されCustomized MME22に通知される。
Customized MME22では、Attach Request(2)を受信した後、通常のAttach Procedureを継続する。Customized MME22は、Attach Request(2)で受信した、RRC Connection Requestにて受信したCustomized MMEに接続可能であることを通知するRRC Connection Requestの新規パラメータ(establishment Causeの新規Value若しくは新規パラメータ)を保持する。
また、UE1は、一般MME21及びCustomized MME22のどちらのMMEに接続するべきかを、eNodeB11に指示する機能を具備する。この時、UE1はコアネットワーク上の全てMMEの情報を保持することは出来ないので、eNodeB11への指示は、MMEを一意に選択できる識別子ではなく、MME種別、若しくはサービス種別等の情報が用いられる。
また、eNodeB11は、UE1をどのMMEに接続させるべきか判断する機能を具備している。
eNodeB11において、MMEの選択は、前述のとおり、RRC Connection Request内のユーザID(User Identity)、通信確立要因(Establishment Cause)の新規Value、又は新規パラメータ、又はこれらのパラメータを構成する一部分の識別子のいずれか、若しくは複数を組み合わせて行う。新規パラメータにはMTCグループを識別するID、APNなども含む。
以上説明したように、本実施例においては、UEがeNodeBに対してMME選択を指示し、eNodeBはそれを受けてCustomized MMEを指定した上で、Attach Procedureを継続することにより、UEを適切なMMEにAttachさせることができる。
<実施例5>
実施例5として、EPCにおいて、トラッキングエリア更新(TA Update)時に、UEとCustomized MMEを接続させる例を説明する。実施例5の構成は、実施例1と同様である。
図8、図9は、実施例5の動作例を説明するためのシーケンス図である。なお、図8は、3GPP TS23.401のFigure 5.3.5−1: S1 Release Procedureに基づく。TS23.401 5.3.5が参照される。図9は、Figure 5.3.3.1−1: Tracking Area Update procedure with Serving GW changeに基づく。3GPP TS23.401 5.3.3が参照される。図1、図8、図9(及び図3の一部)を参照して、動作を説明する。
UE1がAttach Requestを送信すると(図3の1)、まずeNodeB11が受信し、eNodeB11からAttach RequestがMMEに中継される(図3の2参照)。
この時、eNodeB11は、Attach Requestを一般MME21に転送するべきか、Customized MME22に転送するべきか、一意に決定することが出来ない。そのため、Attach Requestが一般MME21に転送される場合がある。
一般MME21ではAttach Requestを受信した後、Identity Request/Response(図3の4参照)にて端末情報を取得し、更に、HSS31と連携して認証及び加入者プロファイルの取得を行う。
端末情報及び加入者プロファイルを取得した一般MME21は、UE1を一般MME21に接続するべきか、Customized MME22に接続するべきか判断する。その後、通常のAttach Procedureを継続する。一般MME21に接続する場合は、ここで処理が完了する。
UE1を、Customized MME22に接続する場合、一般MME21はUE1に対して、トラッキングエリア更新(TA Update)を行わせるために、図8に示すように、S1 Releaseを行う。この時、一般MME21はeNodeB11に、S1 UE Context Release Command(4)を送信する。
一般MME21は、S1 UE Context Release Command(4)で、次にeNodeBがMMEとS1 Connectionを確立するときに選択するべきMMEを、MME識別子(例えばGUMMEI)で指示する。Load Balancing TAU起動のためのS1 Release時に、eNodeBに対して、次のMMEを指定するGUMMEIを指示するためのパラメータは新規パラメータである。この時、eNodeB11は、S1 Release完了後もUE1に対するセッション情報を保持している間、次回MME選択の為の情報として、MME識別子を保持し続ける。
S1 Releaseが行われると、次にUE1は、図9に示すように、TAU Request(2)を送信する。TAU Request(2)を、まずeNodeB11が受信し、eNodeB11からTAU Request(3)がMMEに転送される。この時、eNodeB11は、S1 Release済みの状態であることから、MME選択を行い、S1 Connectionを確立する。eNodeBは、S1 Release時にold MME(=一般MME)から指示されたGUMMEIに従ってCustomized MMEを選択する(※eNodeBはUE毎に次のGUMMEIを保持する機能を有する)。
MMEの選択において、eNodeB11は、一般MME21から受信したS1 UE Context Release Command信号で指示されたGUMMEIのMME識別子(MME Identifier)に従い、Customized MME22を選択する。NAS上のGUTI(GUMMEI)は、old MME(=一般MME)を示しているのでcontext取得が可能である。
Customized MME22は、TAU Request(3)を受信した後、通常のTA Update Procedureを継続する。Customized MME22は、一般MME21にContext Request(4)を送信し、その応答Context Responce(5)を受け取る。
Customized MME22は、S−GWがリロケート(relocate)した場合、一般MMEにS−GWの変更指示を含むContext Acknowledge(7)を送信し、Customized MME22が新たなS−GW41(new Serving GW)を選択すると、Customized MME22は、新たなS−GW41に、Create Sesshon Request(8)を送信する。
これを受けて新たなS−GW41(new Serving GW)は、Modify Bearer Request(9)をP−GW51に送信し、その応答をP−GW51から受けると、新たなS−GWはCreate Session Responce (11)をCustomized MME22に返す。
Customized MME22はUpdate Location(12)をHSS31に送信する。
HSS31からCancel Location(13)を受け取った一般MME21は、MMコンテキストを削除し、肯定応答(Cancel Location Ack)(14)をHSS31に送信する。HSS31からのCustomized MME22にUpdata Location(12)に対する肯定応答(Updata Location Ack)(17)が送信される。
一般MME21は、旧S−GW41(old Serving GW)にDelete Session Request(18)を送信し、その応答(19)が、旧S−GW41(old Serving GW)から一般MME21に送信される。
Customized MME22からUE1にTAU Accespt(20)が送信される。
TAU Accept(20)にGUTIが含まれる場合、UE1は、Customized MME22に対して、TAU Complete(21)を返すことで、受信した信号TAU Accespt(20)の肯定応答とする。
一般MME21及びCustomized MME22は、UE1をどのMMEに接続させるべきか判断する機能を具備するが、この機能は実施例1と同様である。
また、図8及び図9では、図示していないが、Customized MME22に対して一般MME21に接続するべきUE1からのAttach Request信号が転送された場合も、同様の手段でUE1にMME再選択を促すことが可能である。
また、本実施例では、図9の手順にて、TA Update Procedureを用いたが、本実施例での特徴は、eNodeB11でMMEの選択を行うことである。このため、例えば、Service Request等、S1 Connectionを再確立するための、その他の手続き(Procedure)を用いても実現可能である。
以上説明したように、本実施例においては、一般MMEがeNodeBに対してMME再選択を指示し、eNodeBはそれを受けて次回MME選択時にCustomized MMEを指定した上で、手続き(Procedure)を継続することにより、UEを適切なMMEに接続させることができる。
<実施形態2>
実施形態2として、UMTS(Universal Mobile Telecommunications System)においてAttach時にUEと特定SGSN(Customized SGSN)を接続させる例を説明する。図2は、実施形態2のシステム構成を例示する図である。
UE101は、例えば携帯電話端末(移動機)である。あるいは、例えば上記したMTCデバイス、MBMS対応端末等であってもよい。
NodeB111及びRNC(Radio Network Controller)171は、UMTSシステムで採用された無線アクセス(Radio access)用の装置を表している。
一般SGSN121、Customized SGSN122は、UMTS用に用いる在圏装置であり、接続形態により、ユーザープレーンを扱う場合と扱わない場合がある。SGSNがユーザープレーンを扱わない場合のユーザープレーンは、S−GWとRNC間に設定される。
HLR(Home Location Register)131は、加入者情報を保持するデータベースである。
GGSN(Gateway GPRS(General Packet Radio Service) Support Node:特許請求の範囲では「ゲートウェイGPRSサポートノード」と表記)141は、外部網と接続するゲートウェイ装置である。サービスネットワーク161は、外部網(データパケットネットワーク)を示す。
図2において、NodeB111とRNC171は無線アクセスネットワークRAN、SGSN、GGSN等はコアネットワークに対応する。
以下、実施形態2について、制御方式の相違したいくつかの実施例を説明する。以下の実施例6−10は上記態様6−10にそれぞれ対応する。
<実施例6>
図10は、実施例6の動作例を説明するためのシーケンス図であり、3GPP TS 23.060 6.5 Fig 22に基づく。
図10において、
MS(Mobile Station)は、図2のUE101、
RAN(Radio Access Network)は、図2のNodeB111とRNC171、
一般SGSNは、図2の一般SGSN121、
Customized SGSN(特定SGSN)は、図2のCustomized SGSN(特定SGSN)122、
GGSNは、図2のGGSN141、
HLRは、図2のHLR131に対応している。
MSC(Mobile Switching Center)/VLR(Visitor Location Register)のVLRはHLR以外のCSサービス用のローケーションレジスタである。EIR(Equipment Identifier Register)は有効な移動装置の識別子を保持する。
図2、図10を参照して動作を説明する。なお、以下では、図10のMSを、図2のUE101に読み替えて説明する。
UE101(MS)がAttach Request(1)を送信すると、まずNodeB111が受信し、Attach Request(1)をRNC171に転送する。RNC171は、Attach Request(1)をSGSNに転送する。この時、RNC171は、Attach Requestを一般SGSN121に転送するべきか、Customized SGSN122に転送するべきか、一意に決定することが出来ない。そのため、一般SGSN121に転送される場合がある。
一般SGSN121では、Attach Requestを受信した後、Identity Request/Response(3)にて端末情報を取得し、更にHLR131と連携して、認証及び加入者プロファイルの取得を行う。認証、加入者プロファイル取得まで、一般SGSN121で実施する。
端末情報及び加入者プロファイルを取得した一般SGSN121は、UE101を一般SGSN121に接続するべきか、Customized SGSN122に接続するべきか判断する。一般SGSN121に接続する場合、通常のAttach Procedureを継続する。
UE101を、Customized SGSN122に接続する場合、一般SGSN121は、RNC171に対して、SGSN再選択を指示するために、SGSN re−selection Command(本実施例で新規に導入した、RANAP信号)を送信する。この時、一般SGSN121はSGSN re−selection Command信号にCustomized SGSN122を特定する識別子(例えばRAI(Routing Area Identifier)、NRI(Netwrok Resource Identifier)など)を設定する。すなわち、一般SGSN121は、RNCに171対して、SGSN再選択要求し、その際、特定SGSN122の選択に必要な情報(RAI)を載せる。なお、同一プール内での再選択の場合は、NRIでよい。SGSNは、UE101が、re−selection対象か判断する機能を有する。
RNC171は、SGSN re−selection Command信号を受信すると、本信号に設定された識別子に従ってCustomized SGSN122を選択し、Attach Request(1)を転送する。特定SGSN122でAttach RequestのNAS(Non Access Stratum)パラメータが必要なので、RNC171でAttach Requestを再送する。RNC171ではNASメッセージを保持する機能が実装されている。
新たなSGSN(=Customized SGSN)では旧SGSN(=一般SGSN)を特定できないため、コンテキスト(context)を引き継ぐことができない。そのため、新たなSGSNでも認証/加入者プロファイル取得を行う必要がある。Customized SGSN122は、Attach Request(2)を受信した後、Identity Request/Responseにて端末情報を取得し、更にHLR131と連携して認証及び加入者プロファイルの取得を行う。つまり、一般SGSN121と同様の処理を行う。
端末情報及び加入者プロファイルを取得したCustomized SGSN122は、UE101を、一般SGSN121に接続するべきか、Customized SGSN122に接続するべきか判断する。ここでは、RNC171で再選択された後の為、SGSN re−selection Command信号を送信せずに、通常のAttach Procedureを継続する。
また、一般SGSN121及びCustomized SGSN122はUE101をどのSGSNに接続させるべきか判断する機能を具備するが、この判断はUE101からの情報(例えば、
・IMSI(International Mobile Subscriber Identity)、
・IMEI、
・UE network capability、
・MS network capability、
・Mobile station classmark 2、
・Mobile station classmark 3、
・Device properties、
・APN(Access Point Name)、又は、
・MTCグループを識別するID、又は、
・low access priority indication、又は、
・delay tolerant access、又は、
・今後追加されるAttach Request、又は、TA Update Requestなどのその他のNAS信号の新規パラメータ、又は、これらのパラメータを構成する一部分の識別子※IMSIに含まれるPLMN−id等)、
HLR131からの情報(例えば
・Feature−List、
・APN、
・MTCグループを識別するID、又は、
・又は今後追加されるUpdate Location Answer/Insert Subscriber Data Request信号の新規パラメータ、又は、
・これらのパラメータを構成する一部分の識別子)
のいずれか、若しくは複数を組み合わせて行う。
また、図10では明示していないが、Customized SGSN122に対して一般SGSN121に接続するべきUE101からのAttach Request信号が転送された場合も、同様の手段でRNC171にMME再選択を促すことが可能である。
以上説明したように、本実施例においては、SGSNがRNCに対してSGSN再選択を指示し、RNCはそれを受けてSGSNを再選択した上で、Attach Procedureを継続することにより、UEを適切なSGSNにAttachさせることができる。
<実施例7>
実施例7として、UMTSにおいてAttach時にUEと特定SGSNを接続させる例を説明する。実施例7の構成は実施例6と同様である。図11は、実施例7の動作例を説明するためのシーケンス図である。図2、図11を参照して動作を説明する。
UE101が、Attach Request(1)を送信すると、まず、NodeB111が受信し、これをRNC171に転送する。RNC171はこれをSGSNに転送する。この時、RNC171は、Attach Requestを一般SGSN121に転送するべきか、Customized SGSN122に転送するべきか、一意に決定することが出来ない。そのため、一般SGSN121に転送される場合がある。
一般SGSN121では、Attach Requestを受信した後、Identity Request/Responseにて端末情報を取得し、更に、HLR131と連携して認証及び加入者プロファイルの取得を行う。認証、加入者プロファイル取得まで、一般SGSN121で実施する。
端末情報及び加入者プロファイルを取得した一般SGSN121は、UE101を一般SGSN121に接続するべきか、Customized SGSN122に接続するべきか判断する。一般SGSN121に接続する場合、通常のAttach Procedureを継続する。
UE101をCustomized SGSN122に接続する場合、一般SGSN121は、Customized SGSN122に対してSGSN変更を指示するために、SGSN Change Request(本実施形態で新規に導入した、GTP信号)を送信する。
この時、一般SGSN121は、SGSN Change Request信号に、移動機認証や加入者プロファイルの取得によって生成したcontext情報を設定する。すなわち、一般SGSN121からCustomized SGSN122に、SGSN changeを要求する際に、contextを新たなSGSN(Customized SGSN122)に通知する。SGSNはUE101がre−selection対象か判断する機能が実装されている。
Customized SGSN122は、SGSN Change Request信号を受信すると、SGSN Change Request信号に設定されたコンテキスト(context)情報を保持し、一般SGSN121に対して、SGSN Change Response信号(本実施形態で新規に導入した、GTP信号)を送信する。
その後、Customized SGSN122は、HLR131に対して、Update Location信号(8)を送信し、SGSNが変更されたことをHLR131に通知する。
また、Customized SGSN122は、一般SGSN121から受け取ったセキュリティ・コンテキスト(security context)情報が有効であれば、再認証を省略することが出来る。
その後、Customized SGSN122は、Attach Procedureを継続し、RNC171は、Customized SGSN122からAttach Accept信号(9)を受信する。その後は、通常のAttach Procedureを継続する。
また、一般SGSN121及びCustomized SGSN122は、UE101をどのSGSNに接続させるべきか判断する機能を具備するが、この機能は実施例6と同様である。
また、図11では、図示されていないが、Customized SGSN122に対して一般SGSN121に接続するべきUE101からのAttach Request信号が転送された場合も、同様の手段で一般SGSN121にSGSN変更を促すことが可能である。
以上説明したように、本実施例においては、一般SGSNが特定SGSNに対してSGSN変更を指示し、特定SGSNはそれを受けてSGSNを変更した上で、アタッチ処理(Attach Procedure)を継続することにより、UEを適切なSGSNに、Attachさせることができる。
<実施例8>
実施例8として、UMTSにおいてAttach時にUEと特定SGSNを接続させる例を説明する。実施例8の構成は実施例6と同様である。図12、図13は、実施例8の動作例を説明するためのシーケンス図である。図2、図12、図13を参照して動作を説明する。
UE101(MS)が、Attach Request(1)を送信すると、まずNodeB111が受信し、これをRNC171に転送する。RNC171は、これをSGSNに転送する。この時、RNC171はAttach Requestを一般SGSN121に転送するべきか、Customized SGSN122に転送するべきか、一意に決定することが出来ない。そのため、一般SGSN121に転送される場合がある。
一般SGSN121では、Attach Request(1)を受信した後、Identity Request/Response(3)にて端末情報を取得し、更に、HLR131と連携して認証及び加入者プロファイルの取得を行う。
端末情報及び加入者プロファイルを取得した一般SGSN121は、UE101を一般SGSN121に接続するべきか、Customized SGSN122に接続するべきか判断する。一般SGSN121に接続する場合、通常のAttach Procedureを継続する。
UE101をCustomized SGSN122に接続する場合、一般SGSN121は、Attach Procedureを継続せずに、UE101に対してAttach Reject信号(9)を送信する。
この時、一般SGSN121はAttach Reject信号に、再アタッチ(re−attach)を指示するパラメータと、re−attach時に、Customized SGSN122を、RNC171が選択できるようRAI(Routing Area Identity)パラメータ(本実施形態で新規に導入した、パラメータ)を設定する。これらは本実施例で導入した新規なパラメータであるが、RNC171では、透過であるため影響はない。
UE101は、Attach RejectでRAIを受け付け、Re−attach時に、rejectで指示されたRAIを使用する機能が必要である。SGSNはUE101がre−selection対象か判断する機能を有する。
UE101は、Attach Reject信号(9)を受信すると、該Attach Reject信号(9)に設定されたre−attachを指示するパラメータ及びRAIパラメータに従って、図13に示すように、RAIを設定したAttach Request信号(1)を、RNC171に送信する(P−TMSI(Packet Temporary Mobile Subscriber Indentifier)によるRe−Attach)。この時、RNC171は、RAIから適切なSGSNを判断し、Attach Requestを、Customized SGSN122に転送する。
その後、Customized SGSN122は、通常のAttach Procedureを継続する。
ただし、RAIが設定されたAttach Requestであるが、Customized SGSN122自身は、context情報を保持していない。このため、Attach Request信号(1)を受信した後、Identity Request/Response(3)にて、端末情報を取得し、更にHLR131と連携して認証及び加入者プロファイルの取得を行う。
また、一般SGSN121及びCustomized SGSN122はUE101をどのSGSNに接続させるべきか判断する機能を具備するが、この機能は実施例6と同様である。
また、図12及び図13では、図示されていないが、Customized SGSN122に対して一般MME121に接続するべきUE101からのAttach Request信号が転送された場合も、同様の手段で、UE101に、MMEの再選択を促すことが可能である。
以上説明したように、本実施例においては、一般SGSNがUEに対してSGSN再選択を指示し、UEはそれを受けて特定SGSNを指定した上で、Attach Procedureを継続することにより、UEを適切なSGSNにAttachさせることができる。
<実施例9>
実施例9として、UMTSにおいてAttach時にUEと特定SGSNを接続させる例を説明する。実施例9の構成は実施例6と同様である。図14は、実施例9の動作例を説明するシーケンス図である。図2及び図14を参照して動作を説明する。
UE101がAttach RequestをSGSNに送信する為に、まずRNC171とのRRC Connectionの確立を行う。RRC Connection確立の為、UE101は、まずRNC171にRRC Connection Request信号を送信する。
この時、UE101は、RRC Connection Request信号に、Customized SGSN122への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))を設定する。
RNC171は、RRC Connection Request信号を受信したとき、UE101がCustomized SGSN122に接続するべきことを記憶し、その後のRRC Connection Procedureを継続する。
RRC Connection確立後、UE101がAttach Request(1)を送信すると、まず、NodeB111が受信し、これをRNC171に転送する。
RNC171は、これをSGSNに転送する。この時、RNC171はRRC Connection Request信号の受信時に記憶した情報から、Attach Request信号を、Customized SGSN122に転送する。Attach Requestには、RRC Connection Requestにて受信したCustomized SGSN122への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))がRNC171によって設定されCustomized SGSN122に通知される。
Customized SGSN122では、Attach Requestを受信した後、通常のAttach Procedureを継続する。Customized SGSN122は、Attach Requestで受信した、Customized SGSN122への接続を必要とすることを示すパラメータ(RNC171がRRC Connection Requestにて受信し、Attach Requestに設定したパラメータであって、User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))を保持する。
また、UE101は、一般SGSN121、及びCustomized SGSN122のどちらのSGSNに接続するべきかをRNC171に指示する機能を具備するが、この時、UE101は、コアネットワーク上の全てSGSNの情報を保持することは出来ないので、RNC171への指示は、SGSNを一意に選択できる識別子ではなく、SGSN種別若しくはサービス種別等の情報である。
また、RNC171は、UE101を、どのSGSNに接続させるべきか判断する機能を具備するが、この判断は、前述のとおり、User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子のいずれか、若しくは複数を組み合わせて行う。新規パラメータにはMTCグループを識別するID、APNなども含む。
以上説明したように、本実施例においては、UE101がRNC171に対してSGSNの選択を指示し、RNC171は、この指示を受けて、特定SGSNを指定した上で、Attach Procedureを継続する。かかる構成により、UE101を適切なSGSNにAttachさせることができる。
<実施例10>
実施例10として、UMTSにおいてRA Update時にUEと特定SGSNを接続させる例を説明する。実施例10の構成は、実施例6と同様である。図15、図16は、実施例10の動作例を説明するためのシーケンス図である。以下、図2、図15、図16、及び図10の一部を参照して、動作を説明する。
UE101がAttach Requestを送信すると(図10の1参照)、まずNodeB111が受信し、これをRNC171に転送する。RNC171はこれをSGSNに転送する。この時、RNC171はAttach Requestを一般SGSN121に転送するべきか、Customized SGSN122に転送するべきか、一意に決定することが出来ない。そのため、一般SGSN121に転送される場合がある。
一般SGSN121ではAttach Requestを受信した後、Identity Request/Responseにて端末情報を取得し(図10の3参照)、更にHLR131と連携して認証及び加入者プロファイルの取得を行う。
端末情報及び加入者プロファイルを取得した一般SGSN121は、UE101を一般SGSN121に接続するべきか、Customized SGSN122に接続するべきか判断する。一般SGSN121に接続する場合、通常のAttach Procedureを継続する。
UE101をCustomized SGSN122に接続する場合、一般SGSN121はUE101に対して、RA(Routing Area) Updateを行わせるために、図15に示すように、Iu Releaseを行う。
この時、一般SGSN121は、RNC171にIU Release Command信号を送信する(図15の4参照)。一般SGSN121は、IU Release Command信号にて、次にRNCがSGSNとIu Connectionを確立するときに選択するべき、SGSNをSGSN識別子(例えばRAI、NRI等)で指示する。なお、同一プール内の場合、NRIでもよい。
RNC171は、Iu Release完了後も、UE101に対するセッション情報を保持している間、次回SGSN選択の為の情報として、SGSN識別子を保持し続ける。
Iu Releaseが行われると(RNC171から一般SGSN121へのIU Release Complete(6)の送信後)、次に、図16に示すように、UE101はRAU(RA Update) Request(2)を送信する。
RAU Request(2)を、まず、NodeB111が受信し、NodeB111は、RAU Request(3)をRNC171に転送する。
RNC171はこれをSGSNに転送する。この時、RNC171はIu Release済みの状態なので、SGSN選択を行い、Iu Connectionを確立する。
SGSN選択において、RNC171は、一般SGSN121から受信したIU Release Command信号で指示されたSGSN識別子に従い、Customized SGSN122を選択する。RNCはIu Release時にold SGSN(=一般SGSN)から指示されたRAI(若しくはNRI)に従ってCustomized SGSNを選択。なお、RNCはUE毎に次のRAIを保持する機能を有する。
Customized SGSN122は、RAU Requestを受信した後、通常のRA Update Procedureを継続する。NAS上のP−TMSI(RAI)は旧SGSNである一般SGSNを示しているので、Contextを取得する。
また、一般SGSN121及びCustomized SGSN122はUE101をどのSGSNに接続させるべきか判断する機能を具備するが、この機能は実施例6と同様である。
また、図15及び図16では図示されていないが、Customized SGSN122に対して一般SGSN121に接続するべきUE101からのAttach Request信号が転送された場合も、同様の手段でUE101にMME再選択を促すことが可能である。
また、本実施例では、図16の手順にて、RA Update Procedureを用いたが、RNC171でSGSN選択を行うためのものであることから、例えばPDP Context Activation等Iu Connectionを再確立する、その他のProcedureを用いても実現可能である。
以上説明したように、本実施例においては、一般SGSNがRNCに対してSGSN再選択を指示し、RNCはそれを受けて次回SGSN選択時に特定SGSNを指定した上で、Procedureを継続することにより、UEを適切なSGSNに接続させることができる。
<実施例11>
実施例11として、EPCにおいて、特定MME(Customized MME)を跨いだハンドオーバの例を説明する。図17は、実施例11の構成(システム構成)を例示する図である。図17を参照すると、UE201を備え、UE201と無線接続するRAN(Radio Access Network)として、ハンドオーバ元のソースeNodeB(Source eNodeB)202とハンドオーバ先のターゲットeNodeB(Target eNodeB)203を備えている。CN(Core Network)は、ソースMME(Source MME)204、ターゲットMME(Target MME)205、ソースSGW(Source SGW)206、ターゲットSGW(Target SGW)207、DNSサーバ209、HSS211、PGW208を備え、PGW208からサービスネットワーク210に接続される。この例では、ハンドオーバのソースMME204とターゲットMME205は、ともに特定MME(Customized MME)である。図18は、実施例11の動作例(シーケンス動作)を説明するためのシーケンス図である。なお、図18は、3GPP TS23.401のFigure 5.5.1.2.2−1: S1−based handoverに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.5.1.2.2の記載が参照される。以下、図17及び図18を参照して動作を説明する。
ハンドオーバ元のソースeNodeB(Source eNodeB)202が、UE201との接続において信号劣化を検出すると、Handover Required(2)を、ソースMME(Source MME)204に送信する。Handover Required(2)には、Target TAI(Tracking Area Identity)などの情報が含まれている。Source MME204は、前記情報から、ターゲットMME(Target MME)205への、MME間ハンドオーバ(Inter MME handover)の実行を判断する。
この実施例では、Source MME204がTarget MME205を決定する際に、Source MME204が保持している特定MME接続要求情報を用いてTarget MME205を決定する。なお、Source MME204が保持する特定MME接続要求情報は、UE201から特定MME(Customized MME)に接続するための特定MME接続要求情報を付与したRRC信号を受信したeNodeB202が該特定MME接続要求情報を例えばS1−AP信号にて特定MMEであるSource MME204に通知し、Source MME204で保持しているものである。
Target MME205(ハンドオーバ先のMME)の決定において、Source MME204で保持している特定MME接続要求情報を元に、Source MME204で保持するローカルコンフィグレーションを用いて決定しても良い。なお、ローカルコンフィグレーションは、例えばオペレータによって設定され、装置(MME)で内部的に管理保持する情報(コンフィグレーション情報)である(例えばMTC加入者(MTC端末)がハンドオーバする際に、MTCグループとハンドオーバ先の移動エリアに応じた情報等を含む)。例えば特定MME接続要求情報がAPN(Access Point Name)とした場合、APNを元に、例えばLAPI(Low Access Priority Indication)の数値に対応するローカルな情報(ローカルコンフィグレーション)で、ハンドオーバ先のMMEの選択を行う。あるいは、Source MME204で保持するローカルコンフィグレーションを用いてTarget MME205を決定するようにしても良い。
また、Source MME204は、Target TAI(Tracking Area Identity)等の位置情報と共に、特定MME接続要求情報を設定し、DNSサーバ(DNS server)209に、「DNS Query」を行う事で、Target MME205を決定しても良い。
Source MME204がTarget MME205へのInter MME handoverの実行を決定すると、Source MME204はTarget MME205に対して、フォアワードリロケーション要求(Forward Relocation Request)(3)を送信する。その際、Source MME204は、フォアワードリロケーション要求(3)に、Source MME204が保持している特定MME接続要求情報を設定しても良い。
Target MME205は、更なるInter MME handoverを実行する際、Target MME205で保持する特定MME接続要求情報を利用して特定MME(Customized MME)の選択が可能になる。
これ以降のシーケンスについては、関連技術にしたがってInter MME handover処理が実施される。
<実施例12>
実施例12として、UMTSにおいて特定SGSN(Customized SGSN)を跨いだSRNS(Serving Radio Network Subsystem) relocation(ハンドオーバー)の例を説明する。図19、図20は、実施例12を説明するための図である。図21は、実施例12の動作例を説明するためのシーケンス図である。
図19を参照すると、UE301を備え、UE301と無線接続するRAN(Radio Access Network)として、ハンドオーバ元のソースRNC(Source RNC)302、ハンドオーバ先のターゲットRNC(Targete RNC)303を備えている。CN(Core Network)は、ソースSGSN(Source SGSN)304、ターゲットSGSN(Target SGSN)305、ソースSGW(Source SGW)306、ターゲットSGW(Target SGW)307、DNSサーバ309、HSS311、PGW308を備え、PGW308を介してサービスネットワーク310に接続される。この例では、ハンドオーバのソースSGSN304とターゲットSGSN305は、ともに特定SGSN(Customized SGSN)である。なお、図21は、3GPP TS23.060のFigure 39:SRNS Relocation Procedureに基づいており、シーケンス番号は同図に従う。各シーケンスの詳細は、3GPP TS23.060 6.9.2.2.1の記載が参照される(ただし、3GPP TS23.060のFigure 39では、端末はMS(Mobile Station)とされているが、図21ではUEである)。
以下、図20及び図21を参照して動作を説明する。図19は、CNがEPCで構成される場合であるが、この実施例12の動作に関して特に差異が無い事より、本実施例の動作は、図19、及び図20で示される構成で有効である。図20では、CNにおいて、図19のCNにおいて、ソースSGW(Source SGW)306、ターゲットSGW(Target SGW)307がない点、図19のPGW308の代わりに、GGSN408が配設されている点が相違している。
Source RNC402が、UE401との接続において例えば信号劣化を検出すると、Relocation Required(2)をSource SGSN404に送信する。Relocation Required(2)には、Target IDなどの情報が含まれている。Source SGSN404は、その情報からTarget SGSN405へのinter SGSN SRNS(Serving Radio Network Subsystem) relocationの実行を判断する。
この実施例では、Source SGSN404がTarget SGSN405を決定する際に、Source SGSN404が保持している特定SGSN接続要求情報を用いてTarget SGSN405を決定する。Source SGSN404が保持している特定SGSN接続要求情報は、UE401から、特定SGSN(Customized SGSN)に接続するための特定SGSN接続要求情報を付与したRRC(Radio Resource Control)信号を受信したRNC403が、前記特定SGSN接続要求情報をIu信号にて特定SGSNであるSource SGSN404に通知し、Source SGSN404で保持しているものである。Target SGSN405の決定は、Source SGSN404で保持している前記特定SGSN接続要求情報を元にローカルコンフィグレーションで決定するようにしてもよい。あるいは、Source SGSN404が保持するローカルコンフィグレーションを用いて決定しても良い。あるいは、Source SGSN404は、Target IDなどの位置情報と共に特定SGSN接続要求情報を設定し、DNS server409にDNS Queryする事で、Target SGSN405を決定しても良い。
Source SGSN404がTarget SGSN405へのinter SGSN SRNS relocationの実行を決定すると、Source SGSN404はTarget SGSN405に対して、Forward Relocation Request(3)を送信する。Source SGSN404は、この信号(Forward Relocation Request)に、Source SGSN404が保持している特定SGSN接続要求情報を設定しても良い。
Target SGSN405は、更なるinter SGSN SRNS relocationを実行する際、特定SGSN接続要求情報を利用して特定SGSN(Customized SGSN)の選択が可能になる。
これ以降のシーケンスについては、関連技術にしたがって、inter SGSN SRNS relocation処理が実施される。
<実施例13>
実施例13として、EPCにおいて特定MME(Customized MME)から特定SGSN(Customized SGSN)にハンドオーバする例を説明する。図22は、実施例13の構成を例示する図である。図22を参照すると、UE501と、UE501に無線接続するRAN(Radio Access Network)としてソースeNodeB(Source eNodeB)502、ターゲットRNC(Targete RNC)503を備えている。CN(Core Network)は、ソースMME(Source MME)504、ターゲットSGSN(Target SGSN)505、SGW506、DNSサーバ508、HSS510、PGW507を備え、PGW507を介してサービスネットワーク509に接続される。図23は、実施例13の動作例を説明するためのシーケンス図である。なお、図23は、3GPP TS23.401のFigure 5.5.2.1.2−2: E−UTRAN to UTRAN Iu mode Inter RAT HO,preparation phaseに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.5.2.1.2の記載が参照される。
以下、図22及び図23を参照して動作を説明する。Source eNodeB502が、UE501との接続において信号劣化を検出すると、Handover Required(2)をSource MME504に送信する。Handover Required(2)には、Target TAI(Tracking area ID)などの情報が含まれており、Source MME504は、その情報からTarget SGSN505へのInter RAT(Radio Access Technology) handoverの実行を判断する。
この実施例では、Source MME504がTarget SGSN 505を決定する際に、Source MME504が保持している特定MME接続要求情報を用いてTarget SGSN505を決定する。Target SGSN505の決定は、特定MME接続要求情報を元にローカルコンフィグレーションで決定しても良い。あるいは、Source MME504が保持するローカルコンフィグレーションを用いて決定しても良い。また、Source MME504は、Target IDなどの位置情報と共に特定MME接続要求情報を設定し、DNS server508にDNS Queryする事で、Target SGSN505を決定しても良い。
Source MME504がTarget SGSN505へのInter RAT handoverの実行を決定すると、Source MME504は、Target SGSN505に対して、Forward Relocation Request(3)を送信する。Source MME504は、この信号に、Source MME504が保持している特定MME接続要求情報を設定しても良い。Target SGSN505は、更なるInter RAT handoverを実行する際、特定MME接続要求情報を利用して、特定MME(Customized MME)の選択が可能になる。
これ以降のシーケンスについては、関連技術にしたがったInter RAT handover処理が実施される。
<実施例14>
実施例14として、EPCにおいて特定SGSN(Customized SGSN)から特定MME(Customized MME)にハンドオーバする例を説明する。実施例14の構成は、図22に示されるが、ハンドオーバの方向が逆になる。また、実施例14の動作例を説明するためのシーケンスも、基本的に、図23において、
SGSNとMME、及び、
RNCとeNodeB
の記述(動作シーケンス)が逆転する(逆方向のシーケンス動作となる)だけである。
<実施例15>
実施例15として、EPCにおいてTracking Area Update(TAU)時に、UEと特定MME(Customized MME)を接続させる例を説明する。実施例15の構成は実施例1と同様である。図24は、実施例15の動作例を説明するためのシーケンス図である。なお、図24は、3GPP TS23.401のFigure 5.3.3.1−1: Tracking Area Update procedure with Serving GW changeに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.401 5.3.3の記載が参照される。以下、図1及び図24を参照して動作を説明する。
UE1がTAU Request(3)をMMEに送信する為に、まず、eNodeB11とのRRC(Radio Resource Control) Connectionの確立を行う。RRC Connection確立のために、UE1は、まずeNodeB11にRRC Connection Request信号を送信する。
この時、UE1は、RRC Connection Request信号にCustomized MME22への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で新規に導入した値又はパラメータ)、又は、これらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))を設定する。
UE1は、RRC Connection RequestにてeNodeBに、Customized MMEに接続可能であることを通知する RRC Connection Requestの新規パラメータ(Establishment Causeの新規Value若しくは新規パラメータ)が実装される。
eNodeB11は、RRC Connection Request信号を受信したとき、UE1がCustomized MME22に接続するべきことを記憶し、その後のRRC Connection Procedureを継続する。
RRC Connection確立後、UE1がTAU Request(2)を送信すると、eNodeB11が受信する。この時、eNodeB11は、RRC Connection Requestの受信時に記憶した情報から、TAU Request(3)を、Customized MME22に転送する。TAU Request(3)には、RRC Connection Requestにて受信した特定MME(Customized MME)に接続可能であることを通知するRRC Connection Requestの新規パラメータ(Establishment Causeの新規Value若しくは新規パラメータ)が、eNodeB11によって設定され、Customized MME22に通知される。
Customized MME22では、TAU Request(3)を受信した後、通常のTAU Procedureを継続する。Customized MME22は、受信したTAU Request(3)に設定された、RRC Connection Requestにて受信した特定MME(Customized MME)に接続可能であることを通知する RRC Connection Requestの新規パラメータ(Establishment Causeの新規Value若しくは新規パラメータ)を保持する。
また、UE1は、一般MME21、及び特定MME(Customized MME)22のどちらのMMEに接続するべきかを、eNodeB11に指示する機能を具備する。この時、UE1はコアネットワーク上の全てMMEの情報を保持することは出来ないので、eNodeB11への指示は、MMEを一意に選択できる識別子ではなく、MME種別、若しくはサービス種別等の情報が用いられる。
また、eNodeB11は、UE1をどのMMEに接続させるべきか判断する機能を具備している。
eNodeB11において、MMEの選択は、前述のとおり、RRC Connection Request内のユーザID(User Identity)、通信確立要因(Establishment Cause)の新規Value、又は新規パラメータ、又はこれらのパラメータを構成する一部分の識別子のいずれか、若しくは複数を組み合わせて行う。新規パラメータにはMTCグループを識別するID、APNなども含む。
以上説明したように、本実施例においては、UEがeNodeBに対してMME選択を指示し、eNodeBはそれを受けてCustomized MMEを指定した上で、TAU Procedureを継続することにより、UEを適切なMMEに位置登録させることができる。
<実施例16>
実施例16として、UMTSにおいてRouting Area Update時にUEと特定SGSNを接続させる例を説明する。実施例16の構成は実施例6と同様である。図25は、実施例16の動作例を説明するシーケンス図である。なお、図25は、3GPP TS23.060のFigure 36: Iu mode RA Update procedureに基づいており、シーケンス番号は、同図に従う。各シーケンスの詳細は、TS23.060 6.9.2の記載が参照される(3GPP TS23.060のFigure 36では、端末はMSとされているが、図25では、UEである)。以下、図2及び図25を参照して動作を説明する。
UE101がRouting Area Update RequestをSGSNに送信する為に、まずRNC171とのRRC Connectionの確立を行う。RRC Connection確立の為、UE101は、まずRNC171にRRC Connection Request信号を送信する。
この時、UE101は、RRC Connection Request信号に、Customized SGSN122への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))を設定する。
RNC171は、RRC Connection Request信号を受信したとき、UE101がCustomized SGSN122に接続するべきことを記憶し、その後のRRC Connection Procedureを継続する。
RRC Connection確立後、UE101がRouting Area Update Request(1)を送信すると、まず、NodeB111が受信し、これをRNC171に転送する。
RNC171は、これをSGSNに転送する。この時、RNC171はRRC Connection Request信号の受信時に記憶した情報から、Routing Area Update Request信号を、Customized SGSN122に転送する。Routing Area Update Requestには、RRC Connection Requestにて受信した、Customized SGSN122への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は、新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又は、これらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))がRNC171によって設定されCustomized SGSN122に通知される。
Customized SGSN122では、Routing Area Update Requestを受信した後、通常のRouting Area Update Procedureを継続する。Customized SGSN122は、受信したRouting Area Update Requestに設定された、Customized SGSN122への接続を必要とすることを示すパラメータ(User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子(IMSIに含まれるPLMN−id等))を保持する。
また、UE101は、一般SGSN121、及びCustomized SGSN122のどちらのSGSNに接続するべきかをRNC171に指示する機能を具備するが、この時、UE101は、コアネットワーク上の全てSGSNの情報を保持することは出来ないので、RNC171への指示は、SGSNを一意に選択できる識別子ではなく、SGSN種別若しくはサービス種別等の情報である。
また、RNC171は、UE101をどのSGSNに接続させるべきか判断する機能を具備するが、この判断は、前述のとおり、User Identity、Establishment Causeの新規Value、又は新規パラメータ(本実施例で導入した新規の値又はパラメータ)、又はこれらのパラメータを構成する一部分の識別子のいずれか、若しくは複数を組み合わせて行う。新規パラメータにはMTCグループを識別するID、APNなども含む。
以上説明したように、本実施例においては、UE101がRNC171に対してSGSNの選択を指示し、RNC171は、この指示を受けて、特定SGSNを指定した上で、Routing Area Update Procedureを継続する。かかる構成により、UE101を適切なSGSNに位置登録させることができる。
以下、上記した実施形態、実施例において、コアネットワーク(CN)ノードを選択するいくつかの事例について説明する。
MTC(Machine Type Communication)デバイス(M2Mデバイス)を特定CNノード(MTCデバイス向けに効率化したノード)に接続させる。
MBMS利用ユーザを特定CNノード(MBMS対応CNノード)に接続させる。
その他、新規サービスを小規模スタートさせるために、特定CNノードのみでサービス提供する。
特定のUEを、MMEとSGWをコロケート(collocate)したノードに接続させる。特に制限されないが、例えば少量のデータトラヒックを、SMS(Short Message Service)に載せ換えてUEに送信する場合、MMEとSGWをコロケート(collocate)していると、SMS変換処理の実装が容易化する。
また、端末種別(CSFB(CS Fallback)端末とVoLTE端末等)でMMEを振り分ける。CSFB(CS Fallback)は、LTE接続中に、CS(Circuit Switched)サービス発着信があると、3G(又は2G)に無線を切り替える機能である。VoLTE(Voice over LTE)は、LTE上で音声(等CSで提供していた)サービスを提供する機能である。なお、CSFB端末は、MSCとのインターワークが必要である。VoLTE端末はIMSとのインターワークが必要である。CSFBで、先にアタッチしているMSCに、コロケート(collocate)したMMEを選択させる。
なお、上記の特許文献の開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
1 UE
11 eNodeB
21 一般MME
22 Customized MME
31 HSS
41 S−GW(Serving GW)
50 HSS
51 P−GW(PDN GW)
61 サービスネットワーク
101 UE(MS)
111 NodeB
121 一般SGSN
122 Customized SGSN
131 HLR
141 GGSN
161 サービスネットワーク
171 RNC
201 UE
202 Source eNodeB
203 Target eNodeB
204 Source MME
205 Target MME
206 Source SGW
207 Target SGW
208 PGW(PDN GW)
209 DNS server
210 サービスネットワーク
211 HSS
301 UE
302 Source RNC
303 Target RNC
304 Source SGSN
305 Target SGSN
306 Source SGW
307 Target SGW
308 PGW(PDN GW)
309 DNS server
310 サービスネットワーク
311 HSS
401 UE
402 Source RNC
403 Target RNC
404 Source SGSN
405 Target SGSN
408 GGSN
409 DNS server
410 サービスネットワーク
411 HSS
501 UE
502 Source eNodeB
503 Target RNC
504 Source MME
505 Target SGSN
506 SGW
507 PGW(PDN GW)
508 DNS server
509 サービスネットワーク

Claims (12)

  1. 移動通信システムであって、
    ローアクセスプライオリティ(Low Access Priority )の端末が、前記端末からのRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)をソース基地局(eNodeB)に提供し、さらに前記ソース基地局を介してソースMME(Mobility Management Entity)に前記LAPIを通知して保持させる手段と、
    前記ソースMMEは、前記端末がハンドオーバする場合に、前記ソース基地局からHandover Requiredを受信し、前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する手段と、
    を有する移動通信システム。
  2. 移動通信システムであって、
    ローアクセスプライオリティ(Low Access Priority )の端末が、前記端末からのRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)をソースRNC(Radio Network Controller)に提供し、さらに前記ソースRNCを介してソースSGSN(Serving GPRS Support Node)に前記LAPIを通知して保持させる手段と、
    前記ソースSGSNは、前記端末がハンドオーバする場合に、前記ソースRNCからRelocation Requiredを受信し、前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する手段と、
    を有する移動通信システム。
  3. 移動通信システムに用いられるMME(Mobility Management Entity)であって、
    ソースMMEが、ローアクセスプライオリティ(Low Access Priority )の端末からソース基地局(eNodeB)に提供されたRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)を前記ソース基地局を介して受信し、保持する手段と、
    前記ソースMMEが、前記端末がハンドオーバする場合に、前記ソース基地局よりHandover Requiredを受信して、前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する手段と、
    を有するMME。
  4. 移動通信システムに用いられるSGSN(Serving GPRS Support Node)であって、
    ソースSGSNが、ローアクセスプライオリティ(Low Access Priority )の端末からソースRNC(Radio Network Controller)に提供されたRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)を前記ソースRNCを介して受信し、保持する手段と、
    前記ソースSGSNが、前記端末がハンドオーバする場合に、前記ソースRNCよりRelocation Requiredを受信して、前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する手段と、
    を有するSGSN。
  5. 移動通信システムに用いられるローアクセスプライオリティ(Low Access Priority )の端末であって、
    RRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication )を保有する手段と、
    前記LAPIをソース基地局(eNodeB)に提供し、さらに前記ソース基地局を介してソースMME(Mobility Management Entity)に前記LAPIを通知し、前記ソースMMEに前記LAPIを保持させる手段と、
    を有し、
    前記端末がハンドオーバする場合に、前記ソース基地局が前記ソースMMEにHandover Requiredを送信し、前記ソースMMEが前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する端末。
  6. 移動通信システムに用いられるローアクセスプライオリティ(Low Access Priority )の端末であって、
    RRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication )を保有する手段と、
    前記LAPIをソースRNC(Radio Network Controller)に提供し、さらにソースSGSN(Serving GPRS Support Node)に前記LAPIを通知して前記ソースSGSNに前記LAPIを保持させる手段と、 を有し、
    前記端末がハンドオーバする場合に、前記ソースRNCが前記ソースSGSNにRelocation Requiredを送信し、前記ソースSGSNが前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する端末。
  7. 移動通信システムの通信方法であって、
    ローアクセスプライオリティ(Low Access Priority )の端末が、前記端末からのRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)をソース基地局(eNodeB)に提供し、さらに前記ソース基地局を介してソースMME(Mobility Management Entity)に前記LAPIを通知して保持させ、
    前記ソースMMEは、前記端末がハンドオーバする場合に、前記ソース基地局からHandover Requiredを受信し、前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する、移動通信システムの通信方法。
  8. 移動通信システムの通信方法であって、
    ローアクセスプライオリティ(Low Access Priority )の端末が、前記端末からのRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)をソースRNC(Radio Network Controller)に提供し、さらに前記ソースRNCを介してソースSGSN(Serving GPRS Support Node)に前記LAPIを通知して保持させ、
    前記ソースSGSNは、前記端末がハンドオーバする場合に、前記ソースRNCからRelocation Requiredを受信し、前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する、移動通信システムの通信方法。
  9. 移動通信システムに用いられるMME(Mobility Management Entity)の通信方法であって、
    ソースMMEが、ローアクセスプライオリティ(Low Access Priority )の端末からソース基地局(eNodeB)に提供されたRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)を前記ソース基地局を介して受信して保持し、
    前記ソースMMEが、前記端末がハンドオーバする場合に、前記ソース基地局よりHandover Requiredを受信して、前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する、MMEの通信方法。
  10. 移動通信システムに用いられるSGSN(Serving GPRS Support Node)の通信方法であって、
    ソースSGSNが、ローアクセスプライオリティ(Low Access Priority )の端末からソースRNC(Radio Network Controller)に提供されたRRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication)を前記ソースRNCを介して受信して保持し、
    前記ソースSGSNが、前記端末がハンドオーバする場合に、前記ソースRNCよりRelocation Requiredを受信して、前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する、SGSNの通信方法。
  11. 移動通信システムに用いられるローアクセスプライオリティ(Low Access Priority )の端末の通信方法であって、
    RRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication )を保有し、
    前記LAPIをソース基地局(eNodeB)に提供し、さらにソースMME(Mobility Management Entity)に前記LAPIを通知して前記ソースMMEに前記LAPIを保持させ、
    前記端末がハンドオーバする場合に、前記ソース基地局が前記ソースMMEにHandover Requiredを送信し、前記ソースMMEが前記ソースMMEに保持された前記LAPIに基づき前記端末に専用のターゲットMMEを選択し、前記ターゲットMMEにフォワードリロケーション要求(Forward Relocation Request)を送信する、端末の通信方法。
  12. 移動通信システムに用いられるローアクセスプライオリティ(Low Access Priority )の端末の通信方法であって、
    RRC(Radio Resource Control)コネクション要求が前記ローアクセスプライオリティであることを示す情報であるLAPI(Low Access Priority Indication )を保有し、
    前記LAPIをソースRNC(Radio Network Controller)に提供し、さらにソースSGSN(Serving GPRS Support Node)に前記LAPIを通知して前記ソースSGSNに前記LAPIを保持させ、
    前記端末がハンドオーバする場合に、前記ソースRNCが前記ソースSGSNにRelocation Requiredを送信し、前記ソースSGSNが前記ソースSGSNに保持された前記LAPIに基づき前記端末に専用のターゲットSGSNを選択し、前記ターゲットSGSNにフォワードリロケーション要求(Forward Relocation Request)を送信する、端末の通信方法。
JP2015213913A 2013-07-04 2015-10-30 通信システムと方法と装置 Active JP5862830B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015213913A JP5862830B1 (ja) 2013-07-04 2015-10-30 通信システムと方法と装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013141127 2013-07-04
JP2013141127 2013-07-04
JP2013187106 2013-09-10
JP2013187106 2013-09-10
JP2015213913A JP5862830B1 (ja) 2013-07-04 2015-10-30 通信システムと方法と装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015525288A Division JP5862840B2 (ja) 2013-07-04 2014-07-04 通信システムと方法と装置

Publications (2)

Publication Number Publication Date
JP5862830B1 JP5862830B1 (ja) 2016-02-16
JP2016029847A true JP2016029847A (ja) 2016-03-03

Family

ID=52143859

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015525288A Active JP5862840B2 (ja) 2013-07-04 2014-07-04 通信システムと方法と装置
JP2015213913A Active JP5862830B1 (ja) 2013-07-04 2015-10-30 通信システムと方法と装置
JP2015241405A Pending JP2016034164A (ja) 2013-07-04 2015-12-10 通信システムと方法と装置
JP2016240483A Pending JP2017050895A (ja) 2013-07-04 2016-12-12 通信システムと方法と装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015525288A Active JP5862840B2 (ja) 2013-07-04 2014-07-04 通信システムと方法と装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015241405A Pending JP2016034164A (ja) 2013-07-04 2015-12-10 通信システムと方法と装置
JP2016240483A Pending JP2017050895A (ja) 2013-07-04 2016-12-12 通信システムと方法と装置

Country Status (13)

Country Link
US (3) US9883440B2 (ja)
EP (2) EP3029992A3 (ja)
JP (4) JP5862840B2 (ja)
KR (4) KR101651807B1 (ja)
CN (2) CN105359581A (ja)
BR (2) BR122016004704A2 (ja)
CL (2) CL2015003718A1 (ja)
MX (2) MX349184B (ja)
MY (2) MY157550A (ja)
PH (4) PH12016500012A1 (ja)
RU (4) RU2602088C1 (ja)
UA (2) UA116025C2 (ja)
WO (1) WO2015002290A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198926A4 (en) * 2014-09-26 2017-10-25 Telefonaktiebolaget LM Ericsson (publ) Managing overload in at least one core network
US9807669B1 (en) * 2014-10-24 2017-10-31 Sprint Communications Company L.P. Identifying communication paths based on packet data network gateway status reports
JP2016122887A (ja) * 2014-12-24 2016-07-07 富士通株式会社 無線基地局、無線デバイス、無線通信システム、及び、無線通信制御方法
US10631356B2 (en) 2015-01-13 2020-04-21 Nec Corporation Communication apparatus, core network node, system, computer program and methods for rerouting NAS-messages
JP6668591B2 (ja) * 2015-02-04 2020-03-18 日本電気株式会社 通信装置、通信システム、通信方法及びプログラム
WO2016125493A1 (ja) * 2015-02-04 2016-08-11 日本電気株式会社 通信システム
CN106332222A (zh) * 2015-07-02 2017-01-11 北京三星通信技术研究有限公司 一种网络选择的方法和基站
JP6177845B2 (ja) * 2015-08-13 2017-08-09 株式会社Nttドコモ 基地局、管理装置及び接続方法
WO2017029000A1 (en) * 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) A node and method for managing a packet data network connection
GB2541247A (en) * 2015-08-14 2017-02-15 Nec Corp Communication system
CN108464036B (zh) 2015-11-06 2023-03-17 交互数字专利控股公司 使用增强型专用核心网络(dnc)选择的方法、核心网络实体和无线发射/接收单元(wtru)
EP4021032A1 (en) 2015-11-19 2022-06-29 SK Telecom Co., Ltd. Method and apparatus for selecting core network in mobile communication system
US9749773B2 (en) * 2015-12-04 2017-08-29 At&T Intellectual Property I, L.P. Core network selection function in a radio access network for machine-to-machine (M2M) communications
KR102468945B1 (ko) * 2016-03-08 2022-11-21 삼성전자 주식회사 핸드오버를 지원하는 방법 및 장치
US10243860B2 (en) * 2016-04-05 2019-03-26 Nokia Technologies Oy Method and apparatus for end-to-end QoS/QoE management in 5G systems
US10567495B2 (en) 2016-11-16 2020-02-18 Cisco Technology, Inc. Application based intelligent edge computing in a low power wide area network environment
WO2018111029A1 (ko) * 2016-12-15 2018-06-21 엘지전자(주) 무선 통신 시스템에서 핸드오버 수행 방법 및 이를 위한 장치
EP3577952B1 (en) 2017-02-03 2022-11-30 Nokia Technologies Oy Method and system for selection of an access and mobility management function in an access network environment
US10299184B1 (en) * 2017-03-28 2019-05-21 Sprint Communications Company L.P. Reselection of optimal network elements
JP2020519076A (ja) * 2017-04-28 2020-06-25 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 輻輳処理のための方法及び機器
JP7286741B2 (ja) * 2017-04-28 2023-06-05 オッポ広東移動通信有限公司 輻輳処理のための方法及び機器
US9998896B1 (en) * 2017-08-18 2018-06-12 Verizon Patent And Licensing Inc. Dedicated APN access using default network access key for profile download
US10021557B1 (en) 2017-08-18 2018-07-10 Verizon Patent And Licensing Inc. Universal GUTI for simplified device onboarding
US10952052B2 (en) * 2017-10-11 2021-03-16 Blackberry Limited Method and system for dynamic APN selection
JP7030533B2 (ja) 2018-01-15 2022-03-07 キオクシア株式会社 インプリント装置、インプリント方法、及び半導体装置の製造方法
AU2019228421A1 (en) * 2018-03-02 2020-09-24 Nitto Denko Corporation System and method for securing data communication between computers
US20210168588A1 (en) * 2018-04-05 2021-06-03 Ntt Docomo, Inc. User equipment, network device, and radio communication method
US11076321B2 (en) * 2018-10-11 2021-07-27 Cisco Technology, Inc. Selecting 5G non-standalone architecture capable MME during registration and handover
US11290951B2 (en) 2019-02-12 2022-03-29 Cisco Technology, Inc. Providing optimal packet data network gateway selection for 5G network environments upon initial user equipment attachment via a WiFi evolved packet data gateway
CN111954269B (zh) * 2019-05-15 2022-11-01 华为技术有限公司 一种承载修改方法及接入网设备
JP6896793B2 (ja) * 2019-05-27 2021-06-30 本田技研工業株式会社 情報処理装置
JP7478823B2 (ja) 2020-05-26 2024-05-07 株式会社Nttドコモ 端末装置及び端末装置の制御方法
US20220286853A1 (en) * 2021-03-03 2022-09-08 At&T Intellectual Property I, L.P. Mobility management for aggressive devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110051A (ja) * 2006-08-23 2012-06-07 Nec Corp 移動通信システム及びコアネットワークノード選択方法並びにそれに用いる基地局及び無線端末
WO2013023171A1 (en) * 2011-08-11 2013-02-14 Interdigital Patent Holdings, Inc. Mobile relay handover
WO2013047822A1 (ja) * 2011-09-30 2013-04-04 日本電気株式会社 通信システムと方法と装置
JP2013516857A (ja) * 2010-01-08 2013-05-13 アルカテル−ルーセント マシンタイプ通信におけるグループベースのモビリティ最適化の方法およびデバイス

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091382A1 (en) 2000-05-22 2001-11-29 Nokia Corporation System and method for providing a connection in a communication network
NO20014064D0 (no) * 2001-08-21 2001-08-21 Ericsson Telefon Ab L M Fremgangsmate for handtering av en mobil abonnent i et telekommunikasjonssystem
JP4000906B2 (ja) 2002-05-22 2007-10-31 日本電気株式会社 パケット転送経路の最適化方法及びパケット転送装置並びにプログラム
EP1820301A4 (en) * 2004-12-09 2012-10-17 Samsung Electronics Co Ltd Method and system for moving the serving radio network controller in a network distribution system
TWM320260U (en) 2006-03-08 2007-10-01 Interdigital Tech Corp Wireless communication system for implementing a single tunnel combined hard hanover and serving radio network subsystem relocation
US20070254667A1 (en) * 2006-04-28 2007-11-01 Joanna Jokinen Inter-MME handover in evolved communication systems
US20090023448A1 (en) 2007-02-21 2009-01-22 Qualcomm Incorporated Method and apparatus for inter-system handover
CN101309500B (zh) 2007-05-15 2011-07-20 华为技术有限公司 不同无线接入技术间切换时安全协商的方法和装置
KR101547544B1 (ko) * 2008-09-24 2015-08-27 삼성전자주식회사 펨토 기지국으로의 핸드 오버를 위한 통신 시스템 및 이를 위한 방법
EP2353337B1 (en) * 2008-11-17 2018-10-03 Cisco Technology, Inc. Dynamic load balancing in a communication network
CN101420724B (zh) 2008-11-20 2011-02-02 华为技术有限公司 信息传输方法、移动管理设备和网络系统
JPWO2011001628A1 (ja) * 2009-07-03 2012-12-10 パナソニック株式会社 コネクション管理方法、コネクション管理システム、移動端末、パケットデータゲートウェイ並びに移動管理ゲートウェイ
KR20110020161A (ko) 2009-08-21 2011-03-02 엘지전자 주식회사 이동통신 네트워크 내에서 제어 평면(Control Plane)을 담당하는 서버 및 SIPTO 기반의 세션을 제어하는 방법
CN102056138B (zh) 2009-11-05 2016-08-03 中兴通讯股份有限公司 本地ip访问连接的管理方法及装置
KR101609580B1 (ko) * 2010-02-10 2016-04-07 삼성전자주식회사 무선 통신 시스템 및 그의 사용자 단말기와 이동성 관리 엔티티 간 연결 방법
WO2012062193A1 (zh) 2010-11-08 2012-05-18 中兴通讯股份有限公司 Mtc切换中的拥塞控制方法及装置、系统
WO2012147291A1 (ja) * 2011-04-28 2012-11-01 パナソニック株式会社 通信ノード及びネットワークノード
US8625534B2 (en) * 2011-05-20 2014-01-07 At&T Intellectual Property I, L.P. Throughput for inter-radio access technology handover
EP2723116B1 (en) 2011-06-14 2017-08-16 Nec Corporation Mobile communication system, control method for same and non-transitory computer-readable medium in which control program is stored
WO2013028559A1 (en) * 2011-08-19 2013-02-28 Interdigital Patent Holdings, Inc. Method and apparatus for using non-access stratum procedures in a mobile station to access resources of component carriers belonging to different radio access technologies
CN102984775B (zh) 2011-09-06 2015-12-16 普天信息技术研究院有限公司 无线接入网络信息管理信息的获取方法
JP5922902B2 (ja) 2011-09-30 2016-05-24 日本信号株式会社 無線通信ネットワークシステムの同期方法
EP2608567A1 (en) * 2011-12-13 2013-06-26 Panasonic Corporation Device triggering and congestion control
CN104185973B (zh) 2012-01-20 2017-09-22 三星电子株式会社 用于设定数据发送的优先级的方法和设备
JP5229403B1 (ja) * 2012-01-26 2013-07-03 日本電気株式会社 移動局、移動局の制御方法、移動通信システム、移動管理装置、及びプログラム
KR101565102B1 (ko) 2012-04-04 2015-11-02 주식회사 케이티 이중 우선순위 어플리케이션을 갖는 기계 형태 통신 장치에 대한 접속 제어 방법 및 장치
EP2693800A1 (en) * 2012-08-03 2014-02-05 Panasonic Corporation Radio Resource Managment for Dual Priority Access
US9055520B2 (en) * 2012-12-19 2015-06-09 Cisco Technology, Inc. Systems, methods and media for mobile management entity (MME) selection by Evolved Node B (eNodeB)
WO2014110410A1 (en) 2013-01-11 2014-07-17 Interdigital Patent Holdings, Inc. User-plane congestion management
WO2014135210A1 (en) * 2013-03-07 2014-09-12 Nokia Solutions And Networks Oy Handover of mobility management entity for load balancing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110051A (ja) * 2006-08-23 2012-06-07 Nec Corp 移動通信システム及びコアネットワークノード選択方法並びにそれに用いる基地局及び無線端末
JP2013516857A (ja) * 2010-01-08 2013-05-13 アルカテル−ルーセント マシンタイプ通信におけるグループベースのモビリティ最適化の方法およびデバイス
WO2013023171A1 (en) * 2011-08-11 2013-02-14 Interdigital Patent Holdings, Inc. Mobile relay handover
JP2014522211A (ja) * 2011-08-11 2014-08-28 インターデイジタル パテント ホールディングス インコーポレイテッド モバイルリレーハンドオーバ
WO2013047822A1 (ja) * 2011-09-30 2013-04-04 日本電気株式会社 通信システムと方法と装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 23.401 V12.1.0, JPN6014041434, June 2013 (2013-06-01), pages 45 - 49, ISSN: 0003202986 *
NTT DOCOMO: ""Use of LAPI for MME/SGSN selection during handover"[online]", 3GPP TSG-SA WG2#99 S2-133406, JPN6015047300, 27 September 2013 (2013-09-27), ISSN: 0003202987 *
SA2: ""LS on LAPI for NNSF"[online]", 3GPP TSG-SA WG2#97 S2-132325, JPN6015047298, 31 May 2013 (2013-05-31), ISSN: 0003202985 *

Also Published As

Publication number Publication date
US20160192263A1 (en) 2016-06-30
RU2642477C1 (ru) 2018-01-25
US20180146406A1 (en) 2018-05-24
KR20160043537A (ko) 2016-04-21
EP2996393A4 (en) 2017-01-18
US9883440B2 (en) 2018-01-30
PH12017500046A1 (en) 2018-01-29
CN105359581A (zh) 2016-02-24
US20160174120A1 (en) 2016-06-16
MX345250B (es) 2017-01-23
RU2669792C1 (ru) 2018-10-16
CN105611585B (zh) 2018-03-02
EP3029992A2 (en) 2016-06-08
BR112015032906A2 (pt) 2017-05-23
MX2016000202A (es) 2016-03-09
PH12016500439A1 (en) 2016-07-04
PH12016500012B1 (en) 2016-04-18
JP2016034164A (ja) 2016-03-10
RU2602088C1 (ru) 2016-11-10
KR101663451B1 (ko) 2016-10-06
UA116025C2 (uk) 2018-01-25
UA117761C2 (uk) 2018-09-25
MY162436A (en) 2017-06-15
JP2017050895A (ja) 2017-03-09
PH12016500439B1 (en) 2016-07-04
CL2016000582A1 (es) 2016-09-23
RU2600131C1 (ru) 2016-10-20
MY157550A (en) 2016-06-16
JPWO2015002290A1 (ja) 2017-02-23
CL2015003718A1 (es) 2016-07-08
MX349184B (es) 2017-07-17
EP3029992A3 (en) 2016-07-20
PH12018502264A1 (en) 2019-05-15
KR101651807B1 (ko) 2016-08-26
PH12016500012A1 (en) 2016-04-18
JP5862840B2 (ja) 2016-02-16
KR20160022387A (ko) 2016-02-29
EP2996393A1 (en) 2016-03-16
JP5862830B1 (ja) 2016-02-16
WO2015002290A1 (ja) 2015-01-08
KR20180053436A (ko) 2018-05-21
PH12017500046B1 (en) 2018-01-29
CN105611585A (zh) 2016-05-25
BR122016004704A2 (pt) 2018-05-02
KR20160117641A (ko) 2016-10-10

Similar Documents

Publication Publication Date Title
JP5862830B1 (ja) 通信システムと方法と装置
JP6308279B2 (ja) 通信システムと方法と装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20151118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150