JP2016029195A5 - - Google Patents

Download PDF

Info

Publication number
JP2016029195A5
JP2016029195A5 JP2014151341A JP2014151341A JP2016029195A5 JP 2016029195 A5 JP2016029195 A5 JP 2016029195A5 JP 2014151341 A JP2014151341 A JP 2014151341A JP 2014151341 A JP2014151341 A JP 2014151341A JP 2016029195 A5 JP2016029195 A5 JP 2016029195A5
Authority
JP
Japan
Prior art keywords
less
alloy
alloy powder
molten metal
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014151341A
Other languages
Japanese (ja)
Other versions
JP6393885B2 (en
JP2016029195A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014151341A priority Critical patent/JP6393885B2/en
Priority claimed from JP2014151341A external-priority patent/JP6393885B2/en
Priority to PCT/JP2015/070467 priority patent/WO2016013494A1/en
Publication of JP2016029195A publication Critical patent/JP2016029195A/en
Publication of JP2016029195A5 publication Critical patent/JP2016029195A5/ja
Application granted granted Critical
Publication of JP6393885B2 publication Critical patent/JP6393885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (8)

原料金属塊を溶融し溶湯を生成する溶融工程と、
前記溶湯に酸素ガスを吹き込んでスラグを形成する過酸化工程と、
前記溶湯の液面に浮上した前記スラグと前記溶湯とを分離する分離工程と、
前記スラグと分離された前記溶湯にアルゴンガスを吹き込んで前記溶湯中のガス成分を脱気する脱気工程と、
脱気された前記溶湯を鋳造して鋳込み合金を形成する鋳込み工程と、
前記鋳込み合金を真空中で溶融して溶融合金とする工程と、
前記溶融合金を流下させ、流下する前記溶融合金に不活性ガスを吹き付けて合金粉末を形成する粉末化工程と、を備えた合金粉末の製造方法において、
前記合金粉末は、元素周期表の第3族から第16族までに含まれる原子番号13から原子番号79の元素群から選択され、Fe原子に対する原子半径の比率が0.83以上1.17以下である少なくとも4種の元素と、Feとの5種の元素を含有し、
不可避的不純物として、Pを0.005wt%以下、Siを0.040wt%以下、Sを0.002wt%以下、Snを0.005wt%以下、Sbを0.002wt%以下、Asを0.005wt%以下、Mnを0.050wt%以下、Oを0.001wt%以下、Nを0.002wt%以下の原子濃度の範囲で含有することを特徴とする合金粉末の製造方法。
A melting step of melting a raw metal mass to produce a molten metal;
A peroxidation step of forming slag by blowing oxygen gas into the molten metal;
A separation step of separating the slag from the molten metal and the molten metal;
A degassing step of degassing a gas component in the molten metal by blowing argon gas into the molten metal separated from the slag;
A casting step of casting the degassed molten metal to form a cast alloy;
Melting the cast alloy in vacuum to form a molten alloy;
The Te manufacturing method smell of the molten alloy is a stream of alloy powder and a powdered forming an alloy powder by blowing an inert gas into the molten alloy flowing down,
The alloy powder is selected from an element group of atomic number 13 to atomic number 79 included in groups 3 to 16 of the periodic table, and a ratio of atomic radii to Fe atoms is 0.83 to 1.17. Containing at least 4 elements and 5 elements of Fe,
As inevitable impurities, P is 0.005 wt% or less, Si is 0.040 wt% or less, S is 0.002 wt% or less, Sn is 0.005 wt% or less, Sb is 0.002 wt% or less, and As is 0.005 wt%. %, Mn is 0.050 wt% or less, O is 0.001 wt% or less, and N is contained in an atomic concentration range of 0.002 wt% or less.
前記不可避的不純物として、Pを0.002wt%以上0.005wt%以下、Siを0.010wt%以上0.040wt%以下、Sを0.001wt%以上0.002wt%以下、Snを0.002wt%以上0.005wt%以下、Sbを0.001wt%以上0.002wt%以下、Asを0.001wt%以上0.005wt%以下、Mnを0.020wt%以上0.050wt%以下、Oを0.0003wt%以上0.001wt%以下、Nを0.001wt%以上0.002wt%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の合金粉末の製造方法。   As the inevitable impurities, P is 0.002 wt% or more and 0.005 wt% or less, Si is 0.010 wt% or more and 0.040 wt% or less, S is 0.001 wt% or more and 0.002 wt% or less, and Sn is 0.002 wt%. % To 0.005 wt%, Sb from 0.001 wt% to 0.002 wt%, As from 0.001 wt% to 0.005 wt%, Mn from 0.020 wt% to 0.050 wt%, and O to 0 2. The method for producing an alloy powder according to claim 1, comprising: .0003 wt% or more and 0.001 wt% or less and N in an atomic concentration range of 0.001 wt% or more and 0.002 wt% or less. 前記不可避的不純物として、Pを0.002wt%以下、Siを0.005wt%以下、Sを0.001wt%以下、Snを0.002wt%以下、Sbを0.001wt%以下、Asを0.001wt%以下、Mnを0.005wt%以下、Oを0.0003wt%以下、Nを0.001wt%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の合金粉末の製造方法。   As the inevitable impurities, P is 0.002 wt% or less, Si is 0.005 wt% or less, S is 0.001 wt% or less, Sn is 0.002 wt% or less, Sb is 0.001 wt% or less, and As is 0.00. The alloy powder production according to claim 1, comprising 001 wt% or less, Mn 0.005 wt% or less, O 0.0003 wt% or less, and N in an atomic concentration range of 0.001 wt% or less. Method. 前記少なくとも4種の元素が、Al、Si、P、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Sn、Sb、Te、Ta、W、Re、Os、Ir、Pt、Auからなる群より選択されることを特徴とする請求項1に記載の合金粉末の製造方法。The at least four elements are Al, Si, P, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Nb, Mo, Tc, Ru, Rh, Pd, The method for producing an alloy powder according to claim 1, wherein the alloy powder is selected from the group consisting of Ag, Sn, Sb, Te, Ta, W, Re, Os, Ir, Pt, and Au. 前記粉末化工程は、前記合金を真空炉内で溶融し、前記真空炉を構成する材料は、SiO2、グラファイト、Al23、MgO、ZrO2、TiC、ZrC、HfC、NbC、TaCの少なくとも一種を含むことを特徴とする請求項1に記載の合金粉末の製造方法。 In the powdering step, the alloy is melted in a vacuum furnace, and the materials constituting the vacuum furnace are SiO 2 , graphite, Al 2 O 3 , MgO, ZrO 2 , TiC, ZrC, HfC, NbC, TaC. The method for producing an alloy powder according to claim 1, comprising at least one kind. 前記合金は、前記5種の元素をそれぞれ5at%以上30at%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の合金粉末の製造方法。2. The method for producing an alloy powder according to claim 1, wherein the alloy contains the five elements in an atomic concentration range of 5 at% or more and 30 at% or less. 前記合金は、前記5種の元素のうち少なくとも4種の元素の原子濃度の差が3at%未満の範囲にあることを特徴とする請求項6に記載の合金粉末の製造方法。The method for producing an alloy powder according to claim 6, wherein the alloy has a difference in atomic concentration of at least four of the five elements within a range of less than 3 at%. 前記合金は、Al、Co、Cr、Fe及びNiのうちの少なくとも4種の元素を、15at%以上23.75at%以下の原子濃度の範囲で含有し、他の1種の元素を、5at%以上30at%以下の原子濃度の範囲で含有することを特徴とする請求項1に記載の合金粉末の製造方法。The alloy contains at least four elements of Al, Co, Cr, Fe, and Ni in an atomic concentration range of 15 at% to 23.75 at%, and contains the other one element at 5 at%. The method for producing an alloy powder according to claim 1, wherein the alloy powder is contained in an atomic concentration range of 30 at% or less.
JP2014151341A 2014-07-23 2014-07-25 Method for producing alloy powder Active JP6393885B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014151341A JP6393885B2 (en) 2014-07-25 2014-07-25 Method for producing alloy powder
PCT/JP2015/070467 WO2016013494A1 (en) 2014-07-23 2015-07-17 Alloy powder used in fused deposition modeling, and production method of said alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014151341A JP6393885B2 (en) 2014-07-25 2014-07-25 Method for producing alloy powder

Publications (3)

Publication Number Publication Date
JP2016029195A JP2016029195A (en) 2016-03-03
JP2016029195A5 true JP2016029195A5 (en) 2017-07-20
JP6393885B2 JP6393885B2 (en) 2018-09-26

Family

ID=55435201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014151341A Active JP6393885B2 (en) 2014-07-23 2014-07-25 Method for producing alloy powder

Country Status (1)

Country Link
JP (1) JP6393885B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019527346A (en) * 2016-07-22 2019-09-26 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Spraying method for applying corrosion-resistant barrier coatings to nuclear fuel rods
CN106112000A (en) * 2016-08-29 2016-11-16 四川有色金源粉冶材料有限公司 A kind of 3D prints the preparation method of metal dust
AT520468B1 (en) * 2017-10-09 2021-02-15 Weirather Maschb Und Zerspanungstechnik Gmbh Device for the generative production of a component from a powdery starting material
CN111051551B (en) * 2017-10-31 2022-10-11 日立金属株式会社 Alloy material, product using the alloy material, and fluid machine having the product
WO2019111827A1 (en) * 2017-12-06 2019-06-13 日立金属株式会社 Method for manufacturing additive manufactured metal object, and additive manufactured metal object
CA3110177A1 (en) * 2018-08-23 2020-02-27 Beemetal Corp. Systems and methods for continuous production of gas atomized metal powers
JP7102325B2 (en) * 2018-11-29 2022-07-19 三菱重工業株式会社 Metal powder manufacturing equipment
KR102008721B1 (en) * 2019-03-11 2019-08-09 주식회사 한스코 Manufacturing method of Cr-Al binary alloy powder having excellent oxidation and corrosion resistance, the Cr-Al binary alloy powder, manufacturing method of Cr-Al binary alloy PVD target having excellent oxidation and corrosion resistance and the Cr-Al binary alloy PVD target
KR102164211B1 (en) * 2019-04-22 2020-10-12 한양대학교 에리카산학협력단 Manufacturing method of high enthropy alloy and high enthropy alloy manufactured therefrom
TWI694156B (en) * 2019-11-26 2020-05-21 財團法人工業技術研究院 Aluminum-cobalt-chromium-iron-nickel-silicon alloy, powder and coating thereof
CN112743080B (en) * 2020-12-04 2022-12-27 台州学院 Method for preparing Ti (C, N) -based metal ceramic cutter material with high heat resistance through in-situ integration
CN113385681A (en) * 2021-05-07 2021-09-14 上海工程技术大学 CoCrNi intermediate entropy alloy and atomization powder preparation method manufacturing process thereof
CN113371714B (en) * 2021-05-10 2023-09-19 如皋市化合物半导体产业研究所 Preparation method of silicon-phosphorus alloy
CN113500198B (en) * 2021-07-08 2023-07-25 河南黄河旋风股份有限公司 Preparation method of high zinc alloy powder
CN113732295B (en) * 2021-08-03 2023-12-26 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 Alloy powder material and cladding layer for outdoor high-voltage isolating switch contact and preparation method thereof
CN114042926B (en) * 2021-11-03 2024-02-20 陕西斯瑞新材料股份有限公司 Method for improving copper alloy plasma rotary gas atomization powder preparation efficiency
CN114737184B (en) * 2022-04-18 2023-09-22 贵州大学 High-hardness nano TiC particle reinforced phosphoric acid reaction tank stirring paddle blade high-entropy alloy composite coating and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204549A (en) * 1997-01-23 1998-08-04 Akechi Ceramics Kk Apparatus for degassing/cleaning non-ferrous metal
JP2001192709A (en) * 2000-01-05 2001-07-17 Sony Corp Recycle alloy powder and its manufacturing method
JP4190720B2 (en) * 2000-11-29 2008-12-03 國立清華大學 Multi-component alloy
JP2003293024A (en) * 2002-04-02 2003-10-15 Jfe Steel Kk Method for operating electric furnace
TWI347978B (en) * 2007-09-19 2011-09-01 Ind Tech Res Inst Ultra-hard composite material and method for manufacturing the same
WO2009069684A1 (en) * 2007-11-29 2009-06-04 Sumitomo Electric Industries, Ltd. Heat dissipation structure, process for producing the heat dissipation structure, heat dissipation device using the heat dissipation structure, diamond heat sink, process for producing the diamond heat sink, heat dissipation device using the diamond heat sink, and heat dissipation method
US9169538B2 (en) * 2012-05-31 2015-10-27 National Tsing Hua University Alloy material with constant electrical resistivity, applications and method for producing the same
JP2014019886A (en) * 2012-07-13 2014-02-03 Kobe Steel Ltd Ladle degassing method
JP6132523B2 (en) * 2012-11-29 2017-05-24 キヤノン株式会社 Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product
CN103056352B (en) * 2012-12-04 2015-09-09 中国人民解放军装甲兵工程学院 For the high-entropy alloy powder material and preparation method thereof of supersonic spray coating

Similar Documents

Publication Publication Date Title
JP2016029195A5 (en)
US9896753B2 (en) Bulk amorphous alloy Zr—Cu—Ni—Al—Ag—Y and methods of preparing and using the same
RU2012155102A (en) METHOD FOR FORMING AT LEAST PART OF A DRILLING TOOL AND PRODUCTS FORMED IN SUCH METHOD
EP1947205A3 (en) Low oxygen content, crack-free heusler and heusler-like alloys & deposition sources & methods of making same
JP2012087416A5 (en)
IN2014CN00928A (en)
CN102212733B (en) High-performance multi-principal-element alloy of nano cellular crystal texture structure
JP6997860B2 (en) Copper-based alloys for the production of bulk metallic glasses
CN105154796A (en) Zircon-based amorphous alloy and preparation method thereof
JP2024028788A (en) Sulfur-containing alloy forming metallic glasses
CN109158587B (en) Spherical imitation gold alloy powder suitable for 3D printing and preparation method thereof
JP2007204812A (en) Method for producing metallic glass alloy and method for producing metallic glass alloy product
JP2016028821A5 (en) Method for producing alloy powder
JP5785836B2 (en) Copper alloys and castings
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
JP2015134375A5 (en)
JP5699774B2 (en) Aluminum alloy material and manufacturing method thereof
CN100354448C (en) Cu base Cu-Zr-Ti group block non-crystal alloy
RU2439181C1 (en) Jewellery alloy based on platinum of rate 950
RU2596696C1 (en) Material based on 3d metal glass based on zirconium and its production method in conditions of low vacuum
JP6704674B2 (en) Zr type amorphous alloy
JP5373422B2 (en) Copper alloy casting method
JP2012087415A5 (en)
JP5742621B2 (en) Copper alloys and castings
JP5688615B2 (en) Amorphous alloy, optical component, and method of manufacturing optical component