JP2016028414A - 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 - Google Patents

化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 Download PDF

Info

Publication number
JP2016028414A
JP2016028414A JP2015122272A JP2015122272A JP2016028414A JP 2016028414 A JP2016028414 A JP 2016028414A JP 2015122272 A JP2015122272 A JP 2015122272A JP 2015122272 A JP2015122272 A JP 2015122272A JP 2016028414 A JP2016028414 A JP 2016028414A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
cell
photoelectric conversion
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015122272A
Other languages
English (en)
Other versions
JP6582591B2 (ja
Inventor
佐藤 俊一
Shunichi Sato
俊一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015122272A priority Critical patent/JP6582591B2/ja
Priority to US15/309,067 priority patent/US11527666B2/en
Priority to PCT/JP2015/003451 priority patent/WO2016006247A1/en
Priority to EP15819204.7A priority patent/EP3167491B1/en
Priority to CN201580032429.1A priority patent/CN106663714B/zh
Publication of JP2016028414A publication Critical patent/JP2016028414A/ja
Application granted granted Critical
Publication of JP6582591B2 publication Critical patent/JP6582591B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/10Organic photovoltaic [PV] modules; Arrays of single organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】高効率化を図った化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法を提供する。【解決手段】化合物半導体太陽電池は、GaAs又はGeに格子整合する第1化合物半導体材料で作製される第1光電変換セルと、第1光電変換セルよりも奥側に配設され、第1のp型(Alx1Ga1−x1)y1In1−y1As(0≦x1<1、0<y1≦1)層及び第1のn型(Alx2Ga1−x2)y2In1−y2P(0≦x2<1、0<y2<1)層を有する第1トンネル接合層と、第1トンネル接合層よりも奥側に配設され、GaAs系の第2化合物半導体材料で作製される第2光電変換セルとを含み、第1光電変換セルと第2光電変換セルとは、第1トンネル接合層によって接合されており、第1のn型(Alx2Ga1−x2)y2In1−y2P層の格子定数は、第1光電変換セルの格子定数より大きい。【選択図】図1

Description

本発明は、化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法に関する。
従来より、Geからなる基板と、前記基板上に配置されたボトムセルと、前記ボトムセルの上部に配置され、前記基板と格子整合する組成yを有する第1導電型のAly In1-y P層からなる第1の不純物閉込層とを備える太陽電池がある。前記太陽電池は、前記第1の不純物閉込層の上に配置され、前記基板と格子整合する組成xを有する第1の導電型のInx Ga1-x P層からなる第1の高不純物密度層と、前記組成xを有し、前記第1の高不純物密度層の上に、前記第1の高不純物密度層と共にトンネル接合を形成すべく配置された前記第1の導電型とは反対の導電型の第2導電型のInx Ga1-x P層からなる第2の高不純物密度層とをさらに備える。前記太陽電池は、前記第2の高不純物密度層の上に配置され、前記組成yを有する前記第2導電型のAly In1-y P層からなる第2の不純物閉込層と、前記第2の不純物閉込層の上に配置されたトップセルとをさらに備える(例えば、特許文献1参照)。
また、各セルのバンドギャップを1.9eV/1.42eV/1.0eVに設定した3接合太陽電池がある(例えば、非特許文献1参照)。
特許文献1には、従来の2接合型の太陽電池において、p+GaInP層とn+GaInP層とのトンネル接合が記載されている。このトンネル接合は、ホモ接合である。
ホモ接合におけるp型層の価電子帯とn型層の伝導帯のエネルギー差は、例えば、ヘテロ接合のタイプIIにおけるp型層の価電子帯とn型層の伝導帯のエネルギー差よりも大きいため、特許文献1は、トンネル接合における高効率化が不十分である。
また、非特許文献1のGaInPサブ太陽電池セルとGaInAsサブ太陽電池セルとの間には、p+AlGaAs層とn+GaInP層とのトンネル接合が形成されている。しかしながら、p+AlGaAs層とn+GaInP層の詳細は記載されておらず、トンネル接合を含めた高効率化は行われていない。
以上のように、従来の化合物半導体製の太陽電池は、高効率化が十分に行われていない。
そこで、本発明は、高効率化を図った化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法を提供することを目的とする。
本発明の実施の形態の一観点の化合物半導体太陽電池は、GaAs又はGeに格子整合する第1化合物半導体材料で作製される第1光電変換セルと、光の入射方向において前記第1光電変換セルよりも奥側に配設され、第1のp型(Alx1Ga1−x1y1In1−y1As(0≦x1<1、0<y1≦1)層及び第1のn型(Alx2Ga1−x2y2In1−y2P(0≦x2<1、0<y2<1)層を有する第1トンネル接合層と、前記光の入射方向において前記第1トンネル接合層よりも奥側に配設され、GaAs系の第2化合物半導体材料で作製される第2光電変換セルとを含み、前記第1光電変換セルと前記第2光電変換セルとは、前記第1トンネル接合層によって接合されており、前記第1のn型(Alx2Ga1−x2y2In1−y2P層の格子定数は、前記第1光電変換セルの格子定数より大きい。
高効率化を図った化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法を提供できる。
実施の形態1の化合物半導体太陽電池100を示す断面図である。 p型のAlGaAsと、圧縮歪みを有するn型の(Al)GaInPの材料自体の相対的なエネルギー準位の関係を示す図である。 実施の形態2の化合物半導体太陽電池200を示す断面図である。 実施の形態3の化合物半導体太陽電池300を示す断面図である。 実施の形態3の化合物半導体太陽電池300の製造方法を示す図である。 実施の形態3の化合物半導体太陽電池300の製造方法を示す図である。 実施の形態4の化合物半導体太陽電池400を示す断面図である。 実施の形態4の第1変形例による化合物半導体太陽電池400Aを示す図である。 トンネル接合層170Aの材料自体の相対的なエネルギー準位の関係を示す図である。 実施の形態4の第2変形例による化合物半導体太陽電池400Bを示す図である。 実施の形態4の第3変形例による化合物半導体太陽電池400Bを示す図である。 トンネル接合層170Bの材料自体の相対的なエネルギー準位の関係を示す図である。 実施の形態4の第4変形例による化合物半導体太陽電池400Cを示す図である。 トンネル接合層170Cの材料自体の相対的なエネルギー準位の関係を示す図である。 実施の形態5の化合物半導体太陽電池500を示す断面図である。
以下、本発明の化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法を適用した実施の形態について説明する。
化合物半導体は材料組成によりバンドギャップエネルギーや格子定数が異なるので、太陽光の波長範囲を分担してエネルギー変換効率を高くする多接合型太陽電池が作製されている。
現在、GaAsとほぼ同じ格子定数であるGe基板上に、格子整合材料を用いたGeセル/Ga(In)Asセル/GaInPセルを含む3接合太陽電池(各セルのバンドギャップ:1.88eV/1.40eV/0.67eV)がある。
化合物半導体太陽電池は、Si系太陽電池に比べて効率は2倍程度高いが、基板が高価、基板サイズが小さいなどの理由で、Si系太陽電池よりも桁違いに高価である。このため、化合物半導体太陽電池は、人工衛星等のような宇宙用等の特殊用途で用いられてきた。
最近では安いプラスチックレンズと小さな太陽電池セルを組み合わせる集光型とすることで通常の平板型に比べて高価な化合物半導体の量を減らせるので、低コスト化を実現でき、地上用(地上での一般用途用)として実用化されている。
高効率化への課題として、特に集光型セルでは、電流増加によるエネルギー損失を低減するために、電流値の低減のための多接合化と、直列抵抗の低減が重要である。抵抗低減については特にサブセルとサブセルを繋ぐトンネル接合の低抵抗化が重要である。
ここで、トンネル接合とは、高濃度に不純物を添加した半導体のp-n接合であり、高濃度ドーピングによりn型層の伝導体及びp型層の価電子帯が縮退し、各々のエネルギーがフェルミレベル準位を挟んで重なり合うことにより、キャリアがトンネルする確率が増大し、トンネル電流が流れる。通常では電流はp型層からn型層に向かう方向にのみ流れるが、トンネル接合では、その逆方向に電流を流すことが可能である。
2層以上の光電変換セルを有する太陽電池において、良好なトンネル接合を形成するためには、トンネル接合層における光の吸収損失を少なくするために、トンネル接合上部のGaInPサブセルと同等以上の広いバンドギャップを有する材料をトンネル接合層に用いることが好ましい。
また、これに加えて、トンネル接合層を構築するp型層の価電子帯とn型層の伝導帯のエネルギー差が小さいと、このエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、トンネルしやすく好ましい。
しかしながら、高濃度のドーピングを行うことは容易ではない。膜中に不純物を効率良く取り込ませること、添加された不純物の拡散を抑え、必要な濃度プロファイルを得ること等が重要である。
以下では、これらの課題を解決する実施の形態1乃至5について説明する。
<実施の形態1>
図1は、実施の形態1の化合物半導体太陽電池100を示す断面図である。
化合物半導体太陽電池100は、電極10、GaAs基板110、GaAsバッファ層111、GaAsセル160、トンネル接合層170、GaInPセル180、コンタクト層40A、及び電極50を含む。
実施の形態1の化合物半導体太陽電池100は、GaAsセル160(1.42eV)及びGaInPセル180(1.9eV)を直接接続した2接合型太陽電池である。
ここで、GaAsセル160(1.42eV)及びGaInPセル180(1.9eV)は、GaAs系の光電変換セルである。
GaAs系の光電変換セルとは、GaAs、又は、GaAsと格子定数の近いGeにほぼ格子整合し、GaAs基板またはGe基板上に結晶成長可能な材料系で形成される光電変換セルのことである。ここでは、GaAs、又は、GaAsと格子定数の近いGeにほぼ格子整合し、GaAs基板またはGe基板上に結晶成長可能な材料をGaAs格子整合系材料と称し、GaAs格子整合系材料で構成されるセルをGaAs格子整合系材料セルと称す。
化合物半導体太陽電池100は、基本的に、すべての層がGaAs、又は、GaAsと格子定数の近いGeにほぼ格子整合するか、格子定数が異なる場合でも格子緩和が生じる臨界膜厚以下の厚さになるように構成されている。
化合物半導体太陽電池100は、GaAs基板110の上に、GaAsバッファ層111、GaAsセル160、トンネル接合層170、GaInPセル180、コンタクト層40A、及び電極50を順次形成し、最後に、電極10を形成することによって作製される。
GaAs基板110は、化合物半導体基板の一例である。GaInPセル180は、GaAs又はGeに格子整合する第1化合物半導体材料で作製される第1光電変換セルの一例である。トンネル接合層170は、第1トンネル接合層の一例である。GaAsセル160は、GaAs系の第2化合物半導体材料で作製される第2光電変換セルの一例である。
図1において、光の入射方向は、図中上から下に向かう方向(GaInPセル180からGaAsセル160に向かう方向)である。
電極10は、光入射方向において奥側に位置する下部電極になる電極である。電極10は、例えば、Ti/Pt/Au等の金属層を積層した電極を用いることができる。
GaAs基板110は、例えば、p型の単結晶ガリウムヒ素のウエハを用いればよい。不純物としては、例えば、亜鉛(Zn)等を用いればよい。
GaAsバッファ層111は、例えば、GaAs基板110の上に、MOCVD法で形成すればよい。不純物としては、例えば、炭素(C)等を用いて導電型をp型にすればよい。
GaAsセル160は、GaAsバッファ層111の上に形成される。GaAsセル160は、p型のGaInP層161、p型のGaAs層162、n型のGaAs層163、及びn型の(Al)GaInP層164を含む。
GaInP層161、GaAs層162、GaAs層163、及び(Al)GaInP層164は、この順に、GaAsバッファ層111の表面に積層されている。
GaInP層161は、光の入射方向において奥側に配設されるBSF(Back Surface Field)層である。GaAsセル160のpn接合は、GaAs層162とGaAs層163によって構築される。(Al)GaInP層164は、光の入射方向において手前側(光入射側)に配設される窓層である。
ここで、GaInP層161のGaInPは、正確には、GaIn1−xP(0<x<1)であるが、ここでは簡略化してGaInPと記す。また、(Al)GaInP層164の(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
ここで、GaAsセル160は、pn接合を構築するGaAs層162とGaAs層163によって構成され、GaAsセル160の光入射側に(Al)GaInP層164が形成され、光の入射方向の奥側にGaInP層161が形成されているものとして捉えてもよい。
GaInP層161は、BSF層として用いられるため、p型のGaAs層162とn型のGaAs層163のバンドギャップ(1.42eV)以上のバンドギャップを有していればよい。GaInP層161の不純物としては、例えば、Znを用いることができる。
GaAs層162は、例えば、不純物としてZnを用いることによって導電型がp型にされる。
GaAs層163は、例えば、不純物としてSiを用いることによって導電型がn型にされる。
GaAs層162とGaAs層163のバンドギャップは1.42eVである。
(Al)GaInP層164は、窓層として用いられるため、p型のGaAs層162とn型のGaAs層163のバンドギャップ(1.42eV)よりも大きなバンドギャップを有する。
実施の形態1では、(Al)GaInP層164の不純物としては、例えば、Siを用いることができる。
トンネル接合層170は、GaAsセル160とGaInPセル180との間に設けられる。図1に示す化合物半導体太陽電池100は、図1に示す状態で下側から順次積層することによって作製されるため、トンネル接合層170は、GaAsセル160に積層される。
トンネル接合層170は、n+型の(Al)GaInP層171と、p+型の(Al)GaAs層172とを有する。導電型をn型にする不純物としては、例えば、Te(テルル)を用いることができ、導電型をp型にする不純物としては、例えば、C(炭素)を用いることができる。n+型の(Al)GaInP層171と、p+型の(Al)GaAs層172とは、高濃度にドーピングされた薄いpn接合を構成する。
トンネル接合層170の(Al)GaInP層171と(Al)GaAs層172は、ともにGaInPセル180よりも高濃度にドーピングされている。トンネル接合層170は、GaInPセル180のp型のGaInP層182と、GaAsセル160のn型のGaAs層163との間を(トンネル接合により)電流が流れるようにするために設けられる接合層である。
ここで、(Al)GaInP層171及び(Al)GaAs層172は、それぞれ、第1のn型(Al)GaInP層及び第1のp型(Al)Ga(In)As層の一例である。
(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
(Al)Ga(In)Asは、正式には(AlGa1−xIn1−yAs(0≦x<1、0<y≦1)であるが、簡略化した表現として(Al)Ga(In)Asを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記であり、(In)はInを含む場合と含まない場合を包含した表記である。
(Al)GaInP層171の格子定数は、GaAsの格子定数よりも大きく、圧縮歪みを有する。
(Al)GaAs層172は、GaInPセル180のバンドギャップと同等になるように、Al組成が調整される。
(Al)GaInP層171及び(Al)GaAs層172の合計の厚さは、例えば、25nm以上50nm以下である。
ここで、(Al)GaInP層171の(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
また、(Al)GaAs層172の(Al)GaAsは、正式にはAlGa1−xAs(0≦x<1)であるが、簡略化した表現として(Al)GaAsを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
また、トンネル接合層170の材料としては、光入射側に位置するGaInPセル180と同等以上のバンドギャップを有する材料であることが好ましいので、トンネル接合層170のn層としてGaInPセル180に格子整合するn+GaInPを用いることが考えられる。
しかし、実施の形態1では、Alを添加することによりGaInPと同じバンドギャップを有するとともに、In組成を大きくして格子定数をGaAsよりも大きくすることにより、(Al)GaInP層171に圧縮歪を持たせて用いる。
なお、(Al)GaInP層171の格子定数を上述のように設定する理由については後述する。
GaInPセル180は、トンネル接合層170とコンタクト層40Aとの間に形成される。
GaInPセル180は、p型のAl(Ga)InP層181、p型のGaInP層182、n型のGaInP層183、及びn型のAl(Ga)InP層184を含む。
Al(Ga)InP層181、GaInP層182、GaInP層183、及びAl(Ga)InP層184は、この順に、トンネル接合層170の表面に積層されている。GaInPセル180は、トンネル接合層170に積層される。
GaInPセル180は、GaAsと格子整合するGaInPの結晶層で構成される。実際の製造工程では、例えば、Al(Ga)InP層181、GaInP層182、GaInP層183、及びAl(Ga)InP層184の順に積層される。
Al(Ga)InP層181は、光の入射方向において奥側に配設されるBSF(Back Surface Field)層である。GaInPセル180のpn接合は、GaInP層182とGaInP層183によって構築される。Al(Ga)InP層184は、光の入射方向において手前側(光入射側)に配設される窓層である。
ここで、GaInPセル180は、pn接合を構築するGaInP層182とGaInP層183によって構成され、GaInPセル180の光入射側にAl(Ga)InP層184が形成され、光の入射方向の奥側にAl(Ga)InP層181が形成されているものとして捉えてもよい。
Al(Ga)InP層181は、BSF層として用いられるため、p型のGaInP層182とn型のGaInP層183のバンドギャップ(1.9eV)以上のバンドギャップを有していればよい。Al(Ga)InP層181の不純物としては、例えば、Znを用いることができる。
GaInP層182は、例えば、不純物としてZnを用いることによって導電型がp型にされる。
GaInP層183は、例えば、不純物としてSiを用いることによって導電型がn型にされる。
GaInP層182とGaInP層183のバンドギャップは1.9eVである。
Al(Ga)InP層184は、窓層として用いられるため、p型のGaInP層182とn型のGaInP層183のバンドギャップ(1.9eV)よりも大きなバンドギャップを有する。
ここで、Al(Ga)InP層181のAl(Ga)InPは、正式には(AlGa1-xIn1−yP(0≦x≦1、0<y≦1)であるが、簡略化した表現としてAl(Ga)InPを用いている。(Ga)は、Gaを含む組成と含まない組成の両方を含む表記である。これは、Al(Ga)InP層184についても同様である。ただし、Al(Ga)InP層181とAl(Ga)InP層184では、x、yの値が異なっていてもよい。
また、GaInP層182のGaInPは、正規式はGaIn1−xP(0<x<1)であるが、簡略化した表現としてGaInPを用いている。これは、GaInP層183についても同様である。ただし、GaInP層182とGaInP層183では、xの値が異なっていてもよい。
実施の形態1では、Al(Ga)InP層184は、p型のGaInP層182とn型のGaInP層183のバンドギャップ(1.9eV)以上のバンドギャップを有していればよい。Al(Ga)InP層184の不純物としては、例えば、Siを用いることができる。
コンタクト層40Aは、主に、電極50とオーミック接続するためにGaInPセル180に積層される層であり、例えば、ガリウムヒ素(GaAs)層を用いる。
電極50は、例えば、Ti/Pt/Au等の金属製の薄膜であり、コンタクト層40Aの上に形成されている。
なお、コンタクト層40Aは、Al(Ga)InP層184の上の全面に形成したガリウムヒ素(GaAs)層を電極50(上部電極)をマスクとして用いて除去することによって形成される。
また、化合物半導体太陽電池100には、太陽光は、ワイドバンドギャップのセル側(GaInPセル180側)から入射する構造となる。なお、太陽光が入射するAl(Ga)InP層184の表面には、反射防止膜を設けることが望ましい。
図2は、p型のAlGaAsと、圧縮歪みを有するn型の(Al)GaInPの材料自体の相対的なエネルギー準位の関係を示す図である。ここでは、図2を用いて、(Al)GaInP層171と(Al)GaAs層172の組み合わせを用いる理由を説明する。
図2(A)は、GaAsに格子整合するp型の(Al)GaInP層と、GaAsに格子整合するn型の(Al)GaInP層とを接合したトンネル接合層のバンド構造を示す。p型の(Al)GaInP層が左に位置し、n型の(Al)GaInP層が右側に位置する。なお、(Al)GaInPとはAlを含む組成と、Alを含まない組成との両方を包含するため、(Al)と表記したものである。
図2(A)では、p層とn層がともに(Al)GaInP層であるため、p層とn層のバンドギャップEgは等しく、かつ、両者の伝導帯と価電子帯の高さは等しく不連続な点は生じない。これは所謂ホモ接合である。
図2(B)は、GaAsに格子整合するp型のAlGaAs層と、GaAsに格子整合するn型の(Al)GaInP層とを接合したトンネル接合層のバンド構造を示す。
GaAsに格子整合するn型の(Al)GaInP層の伝導帯、価電子帯のエネルギーは、ともにGaAsに格子整合するp型のAlGaAs層の伝導帯、価電子帯のエネルギーよりも低い。すなわち、ヘテロ接合の所謂タイプII接合が得られる。
このような接合では、GaAsに格子整合するp型のAlGaAs層の価電子帯と、GaAsに格子整合するn型の(Al)GaInP層の伝導帯とのエネルギー差E1は、それぞれのバンドギャップよりも小さくなるので、図2(A)のトンネル接合よりもキャリアがトンネルする確率が増大する。
図2(C)は、GaAsに格子整合するp型の(Al)GaInP層と、圧縮歪みを有するn型の(Al)GaInP層とを接合したトンネル接合層のバンド構造を示す。
圧縮歪みを有するn型の(Al)GaInPとは、GaAsの格子定数よりも大きな格子定数を有するように組成を調整した(Al)GaInPを、GaAsに格子整合する層に積層することにより、圧縮歪みを持たせたものである。
ここで、GaAsに格子整合するように組成を調整した層とは、例えば、GaInPセル180とGaAsセル160(図1参照)である。
GaAsより格子定数の大きいGaInPは、GaAsに格子整合するGaInPと比較して価電子帯のエネルギーはわずかに下がり、伝導帯のエネルギーは大きく下がり、バンドギャップは小さくなる。
また、そのようなGaAsより格子定数の大きいGaInPにAlを添加すると、伝導帯は上がり、価電子帯は下がり、バンドギャップは大きくなる。
これにより、GaAsに格子整合するp型の(Al)GaInP層と、圧縮歪みを有するn型の(Al)GaInP層とのトンネル接合層では、圧縮歪みを有するn型の(Al)GaInP層の伝導帯、価電子帯ともにGaAsに格子整合するp型の(Al)GaInP層よりも低くなる。ヘテロ接合の所謂タイプII接合が得られる。
GaAsに格子整合するp型の(Al)GaInP層の価電子帯と、圧縮歪みを有するn型の(Al)GaInP層の伝導帯とのエネルギー差E2は、それぞれのバンドギャップよりも小さくなり、図2(A)のトンネル接合よりもキャリアがトンネルする確率が増大する。
なお、GaAsに格子整合するp型の(Al)GaInP層と、圧縮歪みを有するn型の(Al)GaInP層とが等しいバンドギャップを有するようにするためには、圧縮歪みを有するn型の(Al)GaInP層のAl組成を、GaAsに格子整合するp型の(Al)GaInP層のAl組成よりも大きくする必要がある。
以上より、図2(D)に示すように、AlGaAs層と、圧縮歪みを有するn型の(Al)GaInP層とを接合すると、図2(B)に示すAlGaAs層と、GaAsに格子整合する(Al)GaInP層とのトンネル接合よりも、バンドの不連続性が大きくなることがわかる。
図2(D)に示すn型の(Al)GaInP層と、p型のAlGaAs層とは、それぞれ、n+型の(Al)GaInP層171と、p+型の(Al)GaAs層172とに対応する。
トンネル接合は、高濃度に不純物を添加した半導体のp−n接合である。トンネル接合では、高濃度ドーピングによりn型層の伝導帯及びp型層の価電子帯が縮退し、各々のエネルギーがフェルミレベル準位を挟んで重なり合うことにより、キャリアがトンネルする確率が増大してトンネル電流が流れる。
このため、図2(D)に示すように、伝導帯、価電子帯ともにエネルギーの高いAlGaAs層をp+層とし、圧縮歪みを有する(Al)GaInP層をn+層として接合すると、AlGaAs層の価電子帯と、圧縮歪みを有する(Al)GaInP層の伝導帯とのエネルギー差E3は、図2(B)に示すエネルギー差E1よりも小さくなり、キャリアがトンネルする確率がより増大する。
以上のような理由から、実施の形態1では、圧縮歪みを有する(Al)GaInP層171と、(Al)GaAs層172とを含むトンネル接合層170(図1参照)を用いる。圧縮歪みを有する(Al)GaInP層171は、GaAsの格子定数よりも大きな格子定数を有する(Al)GaInP層である。
また、GaInPセル180は、GaAsと格子整合するGaInPの結晶層で構成されるため、圧縮歪みを有する(Al)GaInP層171は、GaInPセル180の格子定数よりも大きな格子定数を有する。
トンネル接合層170は、圧縮歪みを有する(Al)GaInP層171を用いることにより、圧縮歪みを有しない場合に比べて伝導帯及び価電子帯のエネルギーレベルを下げている。
これにより、(Al)GaAs層172の価電子帯と、(Al)GaInP層171の伝導帯とのエネルギー差E3(図2(D)参照)を低減して、トンネル接合層170におけるキャリアの損失を抑制又は低減している。
従って、実施の形態1では、トンネル接合層170の抵抗値が下がり、エネルギー損失が低減し、高効率の化合物半導体太陽電池100を提供することができる。なお、エネルギー損失が低減するのは、トンネル接合層170の抵抗値が低減されるからである。
また、トンネル接合層170では、p+層の価電子帯とn+層の伝導帯のエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、容易にトンネル接合を形成できるようになる。
なお、以上では、トンネル接合層170のn+層として(Al)GaInP層171を用いる形態について説明したが、Alを加えないGaInPでもよい。
また、Alを加えてバンドギャップを大きくするとともに、ヒ素(As)を加えて格子定数を調整した(Al)GaInPAs層をトンネル接合層170のn+層として用いてもよい。(Al)GaInPAsは、正式には、(AlGa1−xIn1−yAs1−z(0≦x<1、0<y<1、0<z<1)であるが、簡略化した表現として(Al)GaInPAsを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
すなわち、トンネル接合層170のn+層の組成式は、(Al)GaInP(As)と表すことができる。(Al)は、Alを含む組成とAlを含まない組成との両方を包含するため、(Al)と表記したものである。同様に、(As)は、Asを含む組成とAsを含まない組成との両方を包含するため、(As)と表記したものである。このように、トンネル接合層170のp+層とn+層の組成は、その都度調整してよい。他の実施の形態でも同様である。
また、トンネル接合層170のp+層として(Al)GaAs層172を含む形態について説明したが、Inを添加したAlGaInAsを用いてもよい。すなわち、トンネル接合層170のp+層は、AlGa(In)Asと表記することができるものであればよい。(In)は、Inを含む組成とInを含まない組成との両方を包含する表記である。
<実施の形態2>
図3は、実施の形態2の化合物半導体太陽電池200を示す断面図である。
化合物半導体太陽電池200は、実施の形態1の化合物半導体太陽電池100のGaAsセル160(1.42eV)及びGaInPセル280(1.9eV)をGaInAsセル260(1.4eV)及びGaInPセル280(1.88eV)それぞれに置き換えたものである。
また、化合物半導体太陽電池200は、さらにGeセル210(0.67eV)を追加することにより、3接合型にしたものである。
化合物半導体太陽電池200は、電極10、Geセル210、GaInPバッファ層213、GaAsバッファ層214、トンネル接合層150、GaInAsセル260、トンネル接合層170、GaInPセル280、コンタクト層40A、及び電極50を含む。
なお、化合物半導体太陽電池200において、実施の形態1の化合物半導体太陽電池100と同様の構成要素には同一符号を付し、その説明を省略する。
化合物半導体太陽電池200は、Geセル210のGe基板211の上に、Ge層212、GaInPバッファ層213、GaAsバッファ層214、トンネル接合層150、GaInAsセル260、トンネル接合層170、GaInPセル280、コンタクト層40A、及び電極50を順次形成し、最後に電極10を形成することで作製できる。
Geセル210は、p型のGe基板211とn型のGe層212を含む。Ge層212は、Ge層212の上に形成されるGaInPバッファ層213のPの拡散を利用してn型にされる。Geセル210は、第3光電変換セルの一例である。
GaInPバッファ層213は、例えば、Geセル210の上に、MOCVD法で形成すればよい。不純物としては、例えば、シリコン(Si)等を用いて導電型をn型にすればよい。GaInPバッファ層213は、第1バッファ層の一例である。
GaAsバッファ層214は、例えば、GaInPバッファ層213の上に、MOCVD法で形成すればよい。不純物としては、例えば、シリコン(Si)等を用いて導電型をn型にすればよい。GaAsバッファ層214は、第2バッファ層の一例である。
トンネル接合層150は、GaAsバッファ層214とGaInAsセル260との間に設けられる。
トンネル接合層150は、n+型のGaAs層151と、p+型のGaAs層152とを有する。導電型をn型にする不純物としては、例えば、Te(テルル)を用いることができ、導電型をp型にする不純物としては、例えば、C(炭素)を用いることができる。n+型のGaAs層151と、p+型のGaAs層152とは、高濃度にドーピングされた薄いpn接合を構成する。
トンネル接合層150のGaAs層151と152は、ともにGaInAsセル260よりも高濃度にドーピングされている。トンネル接合層150は、GaInAsセル260のp型のGa(In)As層262と、Gesセル210のn型のGe層212との間を(トンネル接合により)電流が流れるようにするために設けられる接合層である。
GaInAsセル260は、p型のGaInP層161、p型のGa(In)As層262、n型のGa(In)As層263、及びn型の(Al)GaInP層164を含む。GaInAsセル260は、GaAs系の光電変換セルである。
すなわち、GaInAsセル260は、実施の形態1のGaAsセル160(図1参照)のうちの光電変換を行うpn層を、1.5%のIn組成を有し、バンドギャップが1.40eVのGa(In)As層262及びGa(In)As層263に置き換えたものである。GaInAsセル260は、第2光電変換セルの一例である。
ここで、Ga(In)As層262のGa(In)Asは、正式にはGa1−xInAs(0≦x<1)であるが、簡略化した表現としてGa(In)Asを用いている。また、(In)はInを含む場合と含まない場合を包含した表記である。これは、Ga(In)As層263についても同様である。なお、Ga(In)As層262とGa(In)As層263では、xの値が異なっていてもよい。
GaInPセル280は、実施の形態1のGaInPセル180(1.9eV)と同様に、p型のAl(Ga)InP層181、p型のGaInP層182、n型のGaInP層183、及びn型のAl(Ga)InP層184を含む。GaInPセル280は、成膜条件等を調整することにより、バンドギャップを1.88eVに調整してある。GaInPセル280は、第1光電変換セルの一例である。
実施の形態2では、GaInAsセル260とGaInPセル280との間に、(Al)GaInP層171及び(Al)GaAs層172を含むトンネル接合層170を用いている。
化合物半導体太陽電池200は、Ge基板211の上に順次各層を形成するため、各層はゲルマニウム(Ge)に略格子整合するように構成されている。
このため、実施の形態2における(Al)GaInP層171は、Geの格子定数よりも大きな格子定数を有するように組成を調整した(Al)GaInPを、Geに格子整合する層に積層することにより、圧縮歪みを持たせたものである。
ここでは、Geに格子整合する層とは、Ge層212、GaInPバッファ層213、GaAsバッファ層214、トンネル接合層150、GaInAsセル260、GaInPセル280のすべてである。
なお、ゲルマニウム(Ge)の格子定数は、GaAsの格子定数と略等しいため、実施の形態1の(Al)GaInP層171を略そのまま実施の形態2で用いることができる。GeはGaAsより格子定数が少し大きいので、In組成の大きい(Al)GaInP層171を用いることが好ましい。
トンネル接合層170は、圧縮歪みを有する(Al)GaInP層171を用いることにより、圧縮歪みを有しない場合に比べて伝導帯及び価電子帯のエネルギーレベルを下げている。
これにより、(Al)GaAs層172の価電子帯と、(Al)GaInP層171の伝導帯とのエネルギー差E3(図2(D)参照)を低減して、トンネル接合層170におけるキャリアの損失を抑制又は低減している。
従って、実施の形態2では、トンネル接合層170の抵抗値が下がり、エネルギー損失が低減し、高効率の3接合型の化合物半導体太陽電池200を提供することができる。
また、p+層の価電子帯とn+層の伝導帯のエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、容易にトンネル接合を形成できるようになる。
なお、トンネル接合層150のn+型のGaAs層151に、(Al)GaInP層171と同様に、圧縮歪みを持たせてもよい。この場合には、Geに格子整合するように組成を調整した層(GaInPセル280又はGaInAsセル260)の格子定数よりもGaAs層151の格子定数を大きく設定すればよい。この場合に、トンネル接合層150は、第2トンネル接合層の一例である。
また、圧縮歪みを持たせるGaAs層151のバンドギャップは、GaInAsセル260のバンドギャップとの関係で調整すればよい。
また、以上では、Ge基板211の上にGe層212を形成したGeセル210を含む形態について説明したが、Geセル210の代わりに、GaInNAsなどGaAsに格子整合してGaInAsセル260よりバンドギャップが小さい材料で形成したセルを用いてもよい。この場合に、Geセル210の代わりに用いるセルは、GaInAsセル260よりもバンドギャップが小さいセルであればよい。
<実施の形態3>
図4は、実施の形態3の化合物半導体太陽電池300を示す断面図である。
実施の形態3の化合物半導体太陽電池300は、電極10、InP基板310、GaInPAsセル120、接合層130、トンネル接合層150A、GaAsセル160、トンネル接合層170、GaInPセル180、コンタクト層40A、及び電極50を含む。
化合物半導体太陽電池300は、図1に示す実施の形態1の化合物半導体太陽電池100のGaAs基板110とGaAsバッファ層111を取り除き、InP基板310、GaInPAsセル120、接合層130、トンネル接合層150Aを加えた構成を有する。
この場合に、接合層130とトンネル接合層150Aとが接合することによって2つの積層体が接合され、接合層130とトンネル接合層150Aとでトンネル接合が形成される。
InP基板310は、例えば、p型の単結晶インジウム燐のウエハを用いればよい。不純物としては、例えば、Zn等を用いればよい。
なお、GaInPAsセル120は、第3光電変換セルの一例である。GaAsセル160とGaInPセル180は、それぞれ、第2光電変換セルと第1光電変換セルの一例である。
GaInPAsセル120は、InP基板110の表面に形成される。GaInPAsセル120は、p型のInP層121、p型のGaIn(P)As層122、n型のGaIn(P)As層123、及びn型のAl(Ga)InAs層124を含む。
GaInPAsセル120は、InPと格子整合するGaInPAsの結晶層で構成される。
InP層121、GaIn(P)As層122、GaIn(P)As層123、及びAl(Ga)InAs層124は、この順に、InP基板110の表面に積層されている。
InP層121は、光の入射方向において奥側に配設されるBSF(Back Surface Field)層である。GaInPAsセル120のpn接合は、GaIn(P)As層122とGaIn(P)As層123によって構築される。Al(Ga)InAs層124は、光の入射方向において手前側(光入射側)に配設される窓層である。
ここで、GaInPAsセル120は、pn接合を構築するGaIn(P)As層122とGaIn(P)As層123によって構成され、GaInPAsセル120の光入射側にAl(Ga)InAs層124が形成され、光の入射方向の奥側にInP層121が形成されているものとして捉えてもよい。
InP層121は、BSF層として用いられるため、p型のGaIn(P)As層122とn型のGaIn(P)As層123のバンドギャップ(1.0eV)よりも大きなバンドギャップを有する。InP層121の不純物としては、例えば、Znを用いることができる。
GaIn(P)As層122は、例えば、不純物としてZnを用いることによって導電型がp型にされる。
GaIn(P)As層123は、例えば、不純物としてSiを用いることによって導電型がn型にされる。
GaIn(P)As層122とGaIn(P)As層123は、バンドギャップが1.0eVになるように、Gaの比率xとPの比率yが調整されている。
Al(Ga)InAs層124は、窓層として用いられるため、GaIn(P)As層122とGaIn(P)As層123のバンドギャップ(1.0eV)よりも大きなバンドギャップを有する。
ここで、GaIn(P)As層122のGaIn(P)Asは、正式にはGaIn1−xAs1−y(0<x<1、0≦y<1)であるが、簡略化した表現としてGaIn(P)Asを用いている。また、(P)はPを含む場合と含まない場合を包含した表記である。なお、これはGaIn(P)As層123についても同様である。ただし、GaIn(P)As層122とGaIn(P)As層123では、xとyの値が異なっていてもよい。
Al(Ga)InAs層124のAl(Ga)InAsは、正式には(AlGa1−xIn1−yAs(0<x≦1、0<y<1)であるが、簡略化した表現としてAl(Ga)InAsを用いている。また、(Ga)はGaを含む場合と含まない場合を包含した表記である。
実施の形態3では、Al(Ga)InAs層124のバンドギャップは、一例として1.5eVに設定される。Al(Ga)InAs層124の不純物としては、例えば、Siを用いることができる。
AlGaInAsは、InPに格子整合するため、GaIn(P)As層123に積層するのに適している。
接合層130は、化合物半導体太陽電池300を作製する過程で、清浄化処理と表面活性化処理によってトンネル接合層150Aと接合される。化合物半導体太陽電池300は、2つの積層体を接合することによって作製される。
2つの積層体の一方の最上面に接合層130が形成され、他方の積層体の最上面にトンネル接合層150Aが形成され、接合層130とトンネル接合層150Aを接合することによって図4に示すような化合物半導体太陽電池300が作製される。
接合層130としては、n+型のInP層が用いられる。接合層130の不純物濃度は、Al(Ga)InAs層124の不純物濃度よりも高く設定される。このため、接合層130の導電型はn+型である。
接合層130として用いるInP層は、例えば、バンドギャップが1.35eVのものである。
トンネル接合層150Aは、p+型のGaAs層である。導電型をp型にする不純物としては、例えば、C(炭素)を用いることができる。トンネル接合層150Aは、接合層130と高濃度にドーピングされた薄いpn接合を構成する。
トンネル接合層150A及び接合層130は、GaAsセル160よりも高濃度にドーピングされている。
次に、実施の形態3の化合物半導体太陽電池300の製造方法について説明する。
図5及び図6は、実施の形態3の化合物半導体太陽電池300の製造方法を示す図である。
まず、図5(A)に示すように、GaAs基板20を用いて積層体300Aを作製するとともに、InP基板310を用いて積層体300Bを作製する。GaAs基板20は、第1化合物半導体基板の一例である。InP基板310は、第2化合物半導体基板の一例である。
ここで、積層体300Aに含まれるGaInPセル180は、GaAsと格子整合するGaInPの結晶層で構成されており、GaAs基板20に形成される。また、積層体300Bに含まれるGaInPAsセル120は、InPと格子整合するGaInPAsの結晶層で構成されており、InP基板310に形成される。
このように、積層体300Aと積層体300Bは、格子定数が異なる。実施の形態3の化合物半導体太陽電池300は、互いに格子定数が異なる積層体300Aと積層体300Bとを直接的に接合することによって作製される。
InPの格子定数は約5.87Åであるため、InP基板310の上に形成されるGaInPAsセル120は、InPの格子定数(約5.87Å)に非常に近い格子定数を有するように、組成を調整すればよい。
また、GaAsの格子定数は約5.65Åであるため、GaAs基板20の上に形成されるGaAsセル160及びGaInPセル180の格子定数は、GaAsの格子定数(約5.65Å)に非常に近い格子定数を有するように、組成を調整すればよい。
積層体300Aは、GaAs基板20上に、MOCVD(Metal Organic Chemical Vapor Deposition)法で、GaInPエッチングストップ層30、n+型のGaAsコンタクト層40、GaInPセル180、トンネル接合層170、GaAsセル160、及びトンネル接合層150Aを積層することによって作製される。なお、GaInPエッチングストップ層30のGaInPは、正式にはGaIn1−xP(0<x<1)である。
ここで、GaInPセル180は、GaAsと格子整合するAl(Ga)InP層184、GaInP層183、GaInP層182、及びAl(Ga)InP層181を含む。Al(Ga)InP層181はBSF層であり、Al(Ga)InP層184は窓層である。
また、トンネル接合層170は、(Al)GaAs層172と(Al)GaInP層171を含む。
GaAsセル160は、(Al)GaInP層164、GaAs層163、GaAs層162、及びGaInP層161を含む。GaInP層161はBSF層であり、(Al)GaInP層164は窓層である。
また、トンネル接合層150Aは、p+型のGaAs層で構成される。
積層体300Aの積層(成長)時は、GaAs基板20がある下側が光入射側となり、後に積層体300Bと接合する際に、積層体300Aを天地逆にするので、図1に示す上下関係とは逆方向から成長する。
具体的には、ワイドバンドギャップのセル(GaInPセル180)からナローギャップセル(GaAsセル160)へと順次成長する。また、最終的にp側が下部(光の入射方向における奥側)となる。
また、積層体300Bについては、InP基板310の上に、MOCVD法で、GaInPAsセル120と接合層130を積層(成長)する。図5(A)に示す積層体300Bは、InP基板310とは反対側の接合層130側が光入射側となる。
GaInPAsセル120は、InP基板310側からInP層121、GaIn(P)As層122、GaIn(P)As層123、及びAl(Ga)InAs層124を含む。InP層121はBSF層であり、Al(Ga)InAs層124は、窓層である。
以上のようにして、MOCVD法によるエピタキシャル成長によって、積層体300A及び100Bを作製する。
次に、図5(B)に示すように、エピタキシャル成長によって作製した積層体300A及び100Bを直接的に接合する。
積層体300Aのトンネル接合層150Aと、積層体300Bの接合層130との表面に清浄化処理と表面活性化処理を行い、接合層130及びトンネル接合層150Aを直接的に接合する。表面活性化処理は窒素(N)プラズマ処理で行い、真空中で150℃で接合を行った。
これにより、図5(B)に示す積層体300Cを作製した。積層体300Cは、図5(A)に示す積層体300Bの接合層130の上に、積層体300Aを天地逆にして積層体140が下側にある状態で、接合層130とトンネル接合層150Aを接合して作製したものである。
なお、トンネル接合層150Aは、第1接合層の一例であり、接合層130は、第2接合層の一例である。
積層体300Cは、InP基板310の上に、GaInPAsセル120、接合層130、トンネル接合層150A、GaAsセル160、トンネル接合層170、GaInPセル180、GaAsコンタクト層40、InPエッチングストップ層30、及びGaAs基板20をこの順に積層した構成を有する。
次に、図5(B)に示す積層体300CからGaAs基板20とGaInPエッチングストップ層30をそれぞれ選択エッチングで除去することにより、図6(A)に示す積層体300Dを得る。
GaAs基板20とGaInPエッチングストップ層30のエッチングは、次のようにして行えばよい。
GaAs基板20のエッチングは、例えば、硫酸(HSO)と過酸化水素(H)と水(HO)の混合液をウェットエッチング溶液として用いることによって行うことができる。硫酸(HSO)と過酸化水素(H)と水(HO)の混合液は、GaInPエッチングストップ層30のGaInPを溶解しないため、GaInPエッチングストップ層30でウェットエッチング処理をストップさせることができる。
また、GaInPエッチングストップ層30は、例えば、塩酸(HCl)と水(HO)の混合液でエッチングすればよい。
以上のようにして、積層体300C(図5(B)参照)からGaAs基板20とGaInPエッチングストップ層30をそれぞれ選択エッチングで除去することにより、図6(A)に示す積層体300Dを作製することができる。
次に、GaAsコンタクト層40の上に電極50(上部電極:図1参照)を形成するとともに、InP基板310の上に電極10(下部電極)を形成する。
そして、電極50をマスクとして用いてコンタクト層40(図6(A)参照)のうち電極50(図1参照)の直下に位置する部分以外を除去することにより、図6(B)に示すようにコンタクト層40Aが形成される。
コンタクト層40Aの作製は、例えば、硫酸(HSO)と過酸化水素(H)と水(HO)の混合液をウェットエッチング溶液として用いることによって行うことができる。硫酸(HSO)と過酸化水素(H)と水(HO)の混合液は、Al(Ga)InP層184のAl(Ga)InPを溶解しないため、GaInPセル180のAl(Ga)InP層184でウェットエッチング処理をストップさせることができる。
以上により、実施の形態3の化合物半導体太陽電池300が完成する。図6(B)に示す化合物半導体太陽電池300は、図4に示す化合物半導体太陽電池300と同一である。
化合物半導体太陽電池300には、太陽光は、ワイドバンドギャップのセル側(GaInPセル180側)から入射する構造となる。なお、太陽光が入射するAl(Ga)InP層184の表面には、反射防止膜を設けることが望ましい。図6(B)では反射防止膜を省略する。
以上、実施の形態3では、トンネル接合層170の抵抗値が下がり、エネルギー損失が低減し、高効率の3接合型の化合物半導体太陽電池300、及び、化合物半導体太陽電池300の製造方法を提供することができる。
また、p+層の価電子帯とn+層の伝導帯のエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、容易にトンネル接合を形成できるようになる。
このため、実施の形態3によれば、高効率化を図った化合物半導体太陽電池300、及び、化合物半導体太陽電池300の製造方法を提供することができる。
実施の形態3の化合物半導体太陽電池300のような3接合太陽電池については、例えば、応用物理79巻5号, 2010, P.436に、3つのセルのバンドギャップとしては、1.9eV/1.42eV/1.0eVの組み合わせや、1.7eV/1.2eV/0.67eVの組み合わせが、当該文献における現状の3接合セル(1.88eV/1.4eV/0.67eV)より好ましいことが記載されている。
しかしながら、これらのようなバンドギャップの組み合わせを一つの格子定数で実現することは困難である。
この点において、実施の形態3によれば、2つの格子定数のセル(積層体300Aと100B(図5(A)参照)を直接接合法により接合することによって化合物半導体太陽電池300を作製するので、異なる格子定数のセル同士を含む化合物半導体太陽電池300を容易に実現することができる。
なお、以上では、InP基板10及びGaAs基板20の上にMOCVD法で各セル等を形成する形態について説明したが、各セル等は、MBE(Molecular Beam Epitaxy)法で形成してもよい。
また、以上では、InP基板10及びGaAs基板20をそれぞれ用いた積層体300B及び300Aを用いて化合物半導体太陽電池300を作製する形態について説明したが、InP基板10及びGaAs基板20の組み合わせ以外を用いてもよい。
例えば、Ge基板とInP基板、GaSb基板とGaAs基板、GaSb基板とGe基板、Si基板とGe基板、又は、Si基板とGaAs基板等の組み合わせでも、同様に積層体300B及び300Aを作製することができる。
また、以上では、積層体300Aと300Bを直接的に接合する形態について説明したが、機械的に接合してもよい。
また、以上では、InP格子整合系材料セルとしてGaInPAsセル120を用いる形態について説明したが、InP格子整合系材料セルはGaInPAsセル120に限定されず、GaIn(P)Asで表されるセルを用いることができる。
GaIn(P)Asは、Pを含む組成とPを含まない組成との両方を包含するため、(P)と表記したものである。すなわち、GaIn(P)Asは、GaInPAsとGaInAsとを含む表記である。このため、GaInPAsセル120の代わりに、GaInAsセルを用いてもよい。
また、以上では、GaAs格子整合系材料セルとしてGaInPセル180を用いる形態について説明したが、GaAs格子整合系材料セルはGaInPセル180に限定されず、(Al)GaInP(As)で表されるセルを用いることができる。
(Al)GaInP(As)は、Alを含む組成とAlを含まない組成との両方を包含し、また、Asを含む組成とAsを含まない組成との両方を包含する。このため、(Al)、(As)と表記したものである。すなわち、(Al)GaInP(As)は、AlGaInPAsと、AlGaInPと、GaInPAsと、GaInPとを含む表記である。このため、GaInPセル180の代わりに、AlGaInPセル又はGaInPAsセル又はAlGaInPAsを用いてもよい。
<実施の形態4>
実施の形態3では、GaInPセル180、GaAsセル160、及びGaInPAsセル120によって構成される3接合型の化合物半導体太陽電池300を作製した。3つの光電変換セルのバンドギャップの組み合わせは、1.9eV/1.42eV/1.0eVであった。
実施の形態4では、GaInPセル180、GaAsセル160、及びGaInPAsセル120に、GaInAsセル(0.75eV)を加えることにより、4接合型の化合物半導体太陽電池を提供する。4つの光電変換セルのバンドギャップの組み合わせは、1.9eV/1.42eV/1.0eV/0.75eVである。
図7は、実施の形態4の化合物半導体太陽電池400を示す断面図である。以下、実施の形態3の化合物半導体太陽電池300と同様の構成要素には同一符号を付し、その説明を省略する。
化合物半導体太陽電池400は、電極10、InP基板310、GaInAsセル410、トンネル接合層220、GaInPAsセル120、接合層130、トンネル接合層150A、GaAsセル160、トンネル接合層170、GaInPセル180、コンタクト層40A、及び電極50を含む。なお、GaInAsセル410は、InP系の光電変換セルである。
ここで、GaInPセル180は、第1光電変換セルの一例である。GaAsセル160は、第2光電変換セルの一例である。GaInAsセル410とGaInPAsセル120は、複数の第3光電変換セルの一例である。InP基板310は、第2化合物半導体基板の一例である。
実施の形態4の化合物半導体太陽電池400は、GaInAsセル410(0.75eV)、GaInPAsセル120(1.0eV)、GaAsセル160(1.42eV)、GaInPセル180(1.9eV)を直列接続した4接合型太陽電池である。
図7において、光の入射方向は、図中上から下に向かう方向(GaInPセル180からGaInAsセル410に向かう方向)である。
IEEEの文献(Proceedings of the 28th IEEE Photovoltaic Specialists Conference (4009) pp.1090-1093.)によれば、4接合太陽電池では、およそ1.9eV/1.4eV/1.0eV/0.7eVの組み合わせのバンドギャップバランスが好ましいことが記載されている。
化合物半導体太陽電池400は、実施の形態3の化合物半導体太陽電池300の基板310とGaInPAsセル120との間に、GaInAsセル410とトンネル接合層220を挿入した構成である。
GaInAsセル410は、p型のInP層411、p型のGaInAs層412、n型のGaInAs層413、及びn型のInP層414を含む。InP層411はBSF層であり、InP層414は窓層である。
ここで、GaInAsセル410は、InP層411とInP層414を含まずに、p型のGaInAs層412と、n型のGaInAs層413とによって構成されているものとして捉えてもよい。この場合は、p型のGaInAs層412と、n型のGaInAs層413とによって構成されるGaInAsセル410の入射側にInP層414(窓層)が形成され、光の入射方向における奥側にInP層411(BSF層)が形成されているものとして取り扱えばよい。
p型のGaInAs層412と、n型のGaInAs層413とのバンドギャップは、0.75eVである。
GaInAs層412のGaInAsは、正式にはGaIn1−xAs(0<x<1)であるが、簡略化してGaInAsと記載している。これは、GaInAs層413についても同様である。ただし、GaInAs層412とGaInAs層413では、xの値が異なっていてもよい。
トンネル接合層220は、GaInPAsセル120とGaInAsセル410との間に形成されている。トンネル接合層220は、n+型のInP層221と、p+型のAl(Ga)InAs層222とを含む。
InP層221の導電型をn+型にする不純物としては、例えば、Si(シリコン)を用いることができ、Al(Ga)InAs層222の導電型をp+型にする不純物としては、例えば、C(炭素)を用いることができる。n+型のInP層221と、p+型のAl(Ga)InAs層222とは、高濃度にドーピングされた薄いpn接合を構成する。
トンネル接合層220のInP層221とAl(Ga)InAs層222とは、ともにGaInPAsセル120よりも高濃度にドーピングされている。トンネル接合層220は、GaInPAsセル120のp型のGaIn(P)As層122と、GaInAsセル410のn型のGaInAs層413との間を(トンネル接合により)電流が流れるようにするために設けられる接合層である。
Al(Ga)InAs層222のAl(Ga)InAsは、正式には(AlGa1−xIn1−yAs(0<x≦1、0<y<1)であるが、簡略化した表現としてAl(Ga)InAsを用いている。また、(Ga)はGaを含む場合と含まない場合を包含した表記である。
実施の形態4の化合物半導体太陽電池400は、GaInPセル180、GaAsセル160、GaInPAsセル120、及びGaInAsセル410の4つの光電変換セルにより、1.9eV/1.42eV/1.0eV/0.75eVというバンドギャップの組み合わせを有する。
以上、実施の形態4では、トンネル接合層170の抵抗値が下がり、エネルギー損失が低減し、高効率の4接合型の化合物半導体太陽電池400、及び、化合物半導体太陽電池400の製造方法を提供することができる。
また、p+層の価電子帯とn+層の伝導帯のエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、容易にトンネル接合を形成できるようになる。
このため、実施の形態4によれば、実施の形態3の化合物半導体太陽電池300よりも、さらにエネルギー変換効率の高い化合物半導体太陽電池400を提供することができる。
ここで、図8乃至図14を用いて、実施の形態4の変形例について説明する。
図8は、実施の形態4の第1変形例による化合物半導体太陽電池400Aを示す図である。
化合物半導体太陽電池400Aは、図7に示す化合物半導体太陽電池400のトンネル接合層170をトンネル接合層170Aに置き換えたものである。
トンネル接合層170Aは、GaAsに格子整合するn+型の(Al)GaInP層171A、圧縮歪みを有するn+型の(Al)GaInP層171B、及び、p+型の(Al)GaAs層172を有する。
圧縮歪みを有するn+型の(Al)GaInP層171Bは、図7に示す圧縮歪みを有するn+型の(Al)GaInP層171と同様である。
すなわち、(Al)GaInP層171Bは、正式には(Alx2Ga1−x2y2In1−y2P(0≦x2<1、0<y2<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
(Al)GaInP層171Aの格子定数は、(Al)GaInP層171Bの格子定数よりも小さく、GaAsの格子定数と略等しい。(Al)GaInP層171Aは、(Al)GaInP層171BよりもGaAsセル160側に設けられるため、GaAsに格子整合する格子定数を有するように構成されている。
(Al)GaInP層171Aは、正式には(Alx1Ga1−x1y1In1−y1P(0≦x1<1、0<y1<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
(Al)GaInP層171Aは、第2のn型(Al)GaInP層の一例であり、(Al)GaInP層171Bは、第1のn型(Al)GaInP層の一例である。なお、(Al)GaInP層171Bの方が(Al)GaInP層171AよりもIn組成が大きく、Al組成も大きいため、x2>x1、y2<y1である。
図9は、トンネル接合層170Aのバンド構造を示す図である。
n+層(171A、171B)を2層構成とすることで、圧縮歪を有する(Al)GaInP層171Bは、図7に示す(Al)GaInP層171よりも薄くてよく、より大きな歪でも格子緩和を生じさせることなく形成できる。
例えば、(Al)GaInP層171Bの厚さは5nmであり、10nm以下であることが好ましい。また、(Al)GaInP層171Aの厚さは、15nm〜50nm程度にすればよい。
(Al)GaInP層171Bの圧縮歪を図7に示す(Al)GaInP層171の圧縮歪よりも大きくすることで、バンド構造は、図9に示すようになる。p+型の(Al)GaAs層172の価電子帯と、n+型の(Al)GaInP層171Bの伝導帯とのエネルギー差E4は、図2(D)に示すエネルギー差E3よりも小さくなる。
従って、実施の形態4の第1変形例によれば、トンネル接合層170Aの抵抗値はさらに下がり、エネルギー損失もさらに低減され、より高効率な化合物半導体太陽電池400Aを提供することができる。
また、実施の形態4の第1変形例を次のように変形してもよい。
図10は、実施の形態4の第2変形例による化合物半導体太陽電池400Bを示す図である。
図8に示す実施の形態4の第1変形例の(Al)GaInP層171B((Alx2Ga1−x2y2In1−y2P)において、x2=0として、圧縮ひずみを有するGay2In1−y2P層171B1を用いることができる。n+型の(Al)GaInP層171A、Gay2In1−y2P層171B1、及びp+型の(Al)GaAs層172は、トンネル接合層170A1を構築する。
圧縮ひずみを有するGay2In1−y2P層のバンドギャップはGaInPセル180の吸収層182、183より小さくなり、GaInPセル180を透過してきた光の一部を吸収してしまう恐れがあるが、実施の形態4の第2変形例ではトンネル接合のp+層を(Alx1Ga1−x1y1In1−y1P層171Aとの2層で形成するので、トンネル接合のp+層を一層とする場合よりも、例えば5nm程度と薄くてよい。そのため、吸収の影響を抑えつつ、Alを含まないことにより伝導帯が低い位置にあるためトンネル確率を増大させることができる。
図11は、実施の形態4の第3変形例による化合物半導体太陽電池400Cを示す図である。
化合物半導体太陽電池400Cは、図7に示す化合物半導体太陽電池400のトンネル接合層170をトンネル接合層170Bに置き換えたものである。
トンネル接合層170Bは、圧縮歪みを有するn+型の(Al)GaInP層171、p+型の(Al)GaAs層172A、p+型の(Al)GaAs層172Bを有する。
(Al)GaAs層172Aの(Al)GaAsは、正式にはAlx3Ga1−x3As(0≦x3<1)であるが、簡略化した表現として(Al)GaAsを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
(Al)GaAs層172Bの(Al)GaAsは、正式にはAlx4Ga1−x4As(0≦x4<1)であるが、簡略化した表現として(Al)GaAsを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
p+型の(Al)GaAs層172Aは、図7に示すp+型の(Al)GaAs層172と同様である。
(Al)GaAs層172Aは、(Al)GaAs層172BよりもAl組成が少ない構成を有する。すなわち、x4>x3である。
(Al)GaAs層172Aは、第1のp型(Al)Ga(In)As層の一例であり、(Al)GaAs層172Bは、第2のp型(Al)Ga(In)As層の一例である。
(Al)Ga(In)Asは、正式には、(AlGa1−xIn1−yAs(0≦x<1、0<y≦1)であるが、簡略化した表現として(Al)Ga(In)Asを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記であり、(In)はInを含む場合と含まない場合を包含した表記である。
(Al)GaAs層172Bは光入射側のGaInPセル180と同等以上のバンドギャップを有することが好ましい。キャリアがよりトンネルしやすくするためには、トンネル接合層170Bのp層の価電子帯のエネルギーを上げる必要がある。
そこで、(Al)GaAs層172Bよりも小さなAl組成を有する(Al)GaAs層172Aを(Al)GaInP層171側に設けた。
図12は、トンネル接合層170Bのバンド構造を示す図である。
(Al)GaAs(AlGa1−xAs(0≦x<1))は、Al組成を小さくすると伝導帯のエネルギーは下がり、価電子帯のエネルギーは上がる。
従って、(Al)GaAs層172Bと、より小さなAl組成を有する(Al)GaAs層172Aとを設けることにより、図12に示すように、(Al)GaAs層172Aの伝導帯のエネルギーを下げるとともに、価電子帯のエネルギーを上げることができる。
この結果、(Al)GaAs層172Aの価電子帯と、(Al)GaInP層171の伝導帯とのエネルギー差E5は、図2(D)に示すエネルギー差E3よりも小さくなる。
また、(Al)GaAs層172BよりもAl組成の小さい(Al)GaAs層172Aは、(Al)GaAs層172Bよりもバンドギャップが小さい。このため、(Al)GaAs層172Aの厚さを(Al)GaAs層172Bよりも薄くすることにより、(Al)GaAs層172Aでの光の吸収を低減することができる。(Al)GaAs層172Aの厚さは、例えば、5nm程度であればよく、10nm以下であることが好ましい。
また、(Al)GaAs層172Bの厚さは、例えば、15nm以上50nm以下に設定すればよい。
従って、実施の形態4の第3変形例によれば、トンネル接合層170Bの抵抗値はさらに下がり、エネルギー損失もさらに低減され、より高効率な化合物半導体太陽電池400Cを提供することができる。
図13は、実施の形態4の第4変形例による化合物半導体太陽電池400Dを示す図である。
化合物半導体太陽電池400Dは、図8に示す化合物半導体太陽電池400Aのトンネル接合層170Aと、図11に示す化合物半導体太陽電池400Cのトンネル接合層170Bとを合わせた構成のトンネル接合層170Cを含む。
トンネル接合層170Cは、n+型の(Al)GaInP層171A、圧縮歪みを有するn+型の(Al)GaInP層171B、p+型の(Al)GaAs層172A、及びp+型の(Al)GaAs層172Bを有する。
図14は、トンネル接合層170Cのバンド構造を示す図である。
n+型の(Al)GaInP層171Bの伝導帯と、p+型の(Al)GaAs層172Aの価電子帯とのエネルギー差E6である。これは、トンネル接合層170Aにおけるエネルギー差E4、トンネル接合層170Bにおけるエネルギー差E5よりも小さい。
従って、実施の形態4の第4変形例によれば、トンネル接合層170Cの抵抗値はさらに下がり、エネルギー損失もさらに低減され、より高効率な化合物半導体太陽電池400Dを提供することができる。
<実施の形態5>
図15は、実施の形態5の化合物半導体太陽電池500を示す断面図である。以下、実施の形態4の化合物半導体太陽電池400と同様の構成要素には同一符号を付し、その説明を省略する。
化合物半導体太陽電池500は、電極10、InP基板310、GaInAsセル410、トンネル接合層220、GaInPAsセル520、接合層130、トンネル接合層150A、GaInAsセル560を含む。
化合物半導体太陽電池500は、さらに、トンネル接合層170、AlGaAsセル570、トンネル接合層580、AlGaInPセル590、コンタクト層40A、及び電極50を含む。
実施の形態5の化合物半導体太陽電池500は、GaInAsセル410(0.75eV)、GaInPAsセル520(1.06eV)、GaInAsセル560(1.4eV)、AlGaAsセル570(1.68eV)、及びAlGaInPセル590(2.17eV)を直列接続した5接合型太陽電池である。
AlGaInPセル590(2.17eV)のバンドギャップは、実施の形態4のGaInPセル180のバンドギャップ(1.9eV)よりも大きい。
ここで、AlGaInPセル590、AlGaAsセル570、GaInAsセル560は、それぞれ、第1光電変換セル、第2光電変換セル、第3光電変換セルの一例である。
また、GaInAsセル410とGaInPAsセル520は、複数の第4光電変換セルの一例である。
化合物半導体太陽電池500は、接合層130を含む第1の積層体と、トンネル接合層150Aを含む第2の積層体とを接合することによって作成される。
第1の積層体は、電極10、InP基板310、GaInAsセル410、トンネル接合層220、GaInPAsセル520、接合層130を含む。また、第2の積層体は、トンネル接合層150A、GaInAsセル560、トンネル接合層170、AlGaAsセル570、トンネル接合層580、AlGaInPセル590、コンタクト層40A、及び電極50を含む。
GaInPAsセル520は、p型のInP層121、p型のGaIn(P)As層122、n型のGaIn(P)As層123、及びn型のAl(Ga)InAs層524を含む。Al(Ga)InAs層524は窓層である。
Al(Ga)InAs層524のAl(Ga)InAsは、正式には(AlGa1−xIn1−yAs(0<x≦1、0<y<1)であるが、簡略化した表現としてAl(Ga)InAsを用いている。また、(Ga)はGaを含む場合と含まない場合を包含した表記である。
GaInAsセル560は、p型のGaInP層161、p型のGa(In)As層562、n型のGa(In)As層563、及びn型の(Al)GaInP層164を含む。
Ga(In)As層562のGa(In)Asは、正式にはGaIn1−xAs(0<x≦1)であるが、簡略化した表現としてGa(In)Asを用いている。また、(In)はInを含む場合と含まない場合を包含した表記である。なお、これは、Ga(In)As層563についても同様である。Ga(In)As層562とGa(In)As層563では、xの値が異なっていてもよい。
AlGaAsセル570は、p型の(Al)GaInP層571、p型の(Al)GaAs層572、n型の(Al)GaAs層573、及びn型の(Al)GaInP層574を含む。
(Al)GaInP層571の(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。なお、これは(Al)GaInP層574についても同様である。(Al)GaInP層571と(Al)GaInP層574では、xとyの値が異なっていてもよい。
(Al)GaAs層572の(Al)GaAsは、正式にはAlxGa1−xAs(0≦x<0)であるが、簡略化した表現として(Al)GaAsを用いている。なお、これは、(Al)GaAs層573についても同様である。(Al)GaAs層572と(Al)GaAs層573では、xの値が異なっていてもよい。
AlGaInPセル590は、p型のAl(Ga)InP層591、p型の(Al)GaInP層592、n型の(Al)GaInP層593、及びn型のAl(Ga)InP層594を含む。
Al(Ga)InP層591のAl(Ga)InPは、正式には(AlGa1-xIn1−yP(0≦x≦1、0<y≦1)であるが、簡略化した表現としてAl(Ga)InPを用いている。また、(Ga)はGaを含む場合と含まない場合を包含した表記である。なお、これはAl(Ga)InP層594についても同様である。Al(Ga)InP層591とAl(Ga)InP層594では、xとyの値が異なっていてもよい。
(Al)GaInP層592の(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。なお、これは、(Al)GaInP層593についても同様である。(Al)GaInP層592と(Al)GaInP層593では、xとyの値が異なっていてもよい。
なお、(Al)GaInP層592と(Al)GaInP層593は、Asを含んでもよい。すなわち、AlGaInPセル590は、AlGaInP(As)で表される吸収層を有する構成であってもよい。(As)は、Asを含む組成と、Asを含まない組成の両方を包含する表記である。(Al)GaInP層592と(Al)GaInP層593に、わずかにAsを添加してもよい。
トンネル接合層580は、トンネル接合層170と同様に、圧縮歪みを有するn+型の(Al)GaInP層581と、p+型の(Al)GaAs層582とを有する。
(Al)GaInP層581の(Al)GaInPは、正式には(AlGa1−xIn1−yP(0≦x<1、0<y<1)であるが、簡略化した表現として(Al)GaInPを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。なお、
(Al)GaAs層582の(Al)GaAsは、正式にはAlGa1−xAsであるが、簡略化した表現として(Al)GaAsを用いている。また、(Al)はAlを含む場合と含まない場合を包含した表記である。
(Al)GaInP層581の格子定数は、GaAsの格子定数よりも大きい。また、(Al)GaAs層582は、GaAsに略格子整合する。このため、(Al)GaAs層582に積層される(Al)GaInP層581は格子歪みを有する。(Al)GaInP層581及び(Al)GaAs層582の合計の厚さは、例えば、25nm以上50nm以下である。
(Al)GaInP層581及び(Al)GaAs層582は、それぞれ、(Al)GaInP層171及び(Al)GaAs層172と同様であるが、バンドギャップが2.17eVのAlGaInPセル590を透過した光の吸収を抑制するために、バンドギャップはAlGaInPセル590に対応してワイドギャップ化されている。
図15において、光の入射方向は、図中上から下に向かう方向(AlGaInPセル590からGaInAsセル410に向かう方向)である。
一般にバンドギャップの大きい材料ほどトンネル電流の電流密度を大きくすることが難しい。p+(Al)GaAs層とn+(Al)GaInP層を用いた場合には、p+(Al)GaAs層のAl組成を大きくし、n+(Al)GaInP層のAl組成を大きくすると、p型層の価電子帯とn型層の伝導帯のエネルギー差が大きくなるからである。
実施の形態5では、トンネル接合層170及び580をp+(Al)GaAsと、圧縮歪を有するn+型の(Al)Ga)InP層とを有するpn接合にしたので、p型層の価電子帯とn型層の伝導帯のエネルギー差を小さくできる。
このため、より大きなバンドギャップの材料を用いたトンネル接合でも抵抗値を低減できる。例えば、実施の形態5のように5接合以上の多接合太陽電池の場合には、各セルのバンドギャップのバランス上、例えば1.9eV以上のセルを含むことが必要となる。
従って、実施の形態5の5接合型太陽電池のような場合には、トンネル接合層170及び580を用いることが特に有効である。
実施の形態5の2.17eV/1.68eV/1.40eV/1.06eV/0.75eVの組み合わせの5接合太陽電池のエネルギー変換効率は、実施の形態4の4接合太陽電池よりも高い。
従って、実施の形態5によれば、より高効率な化合物半導体太陽電池500を作製できる。
以上、実施の形態5では、トンネル接合層170及び580の抵抗値が下がり、エネルギー損失が低減し、高効率の5接合型の化合物半導体太陽電池500、及び、化合物半導体太陽電池500の製造方法を提供することができる。
また、p+層の価電子帯とn+層の伝導帯のエネルギー差が大きい場合に比べてキャリア濃度(ドーピング濃度)が低くても良く、容易にトンネル接合を形成できるようになる。
以上、本発明の例示的な実施の形態の化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
100 化合物半導体太陽電池
10 電極
110 GaAs基板
111 GaAsバッファ層
160 GaAsセル
170 トンネル接合層 171 (Al)GaInP層
172 (Al)GaAs層
180 GaInPセル
40A コンタクト層
50 電極
200 化合物半導体太陽電池
210 Geセル
220 トンネル接合層
150 トンネル接合層
260 GaInAsセル
280 GaInPセル
300 化合物半導体太陽電池
310 InP基板
120 GaInPAsセル
130 接合層
150A トンネル接合層
400 化合物半導体太陽電池
410 GaInAsセル
400A、400B、400C 化合物半導体太陽電池
170A、170B、170C トンネル接合層
500 化合物半導体太陽電池
520 GaInPAsセル
560 GaInAsセル
570 AlGaAsセル
580 トンネル接合層
590 AlGaInPセル
特開2001-102608号公報
Proceedings of the 29st IEEE Photovoltaic Specialists Conference (2010) pp.412-417.

Claims (14)

  1. GaAs又はGeに格子整合する第1化合物半導体材料で構成される第1光電変換セルと、
    光の入射方向において前記第1光電変換セルよりも奥側に配設され、第1のp型(Alx1Ga1−x1y1In1−y1As(0≦x1<1、0<y1≦1)層及び第1のn型(Alx2Ga1−x2y2In1−y2P(0≦x2<1、0<y2<1)層を有する第1トンネル接合層と、
    前記光の入射方向において前記第1トンネル接合層よりも奥側に配設され、GaAs系の第2化合物半導体材料で作製される第2光電変換セルと
    を含み、
    前記第1光電変換セルと前記第2光電変換セルとは、前記第1トンネル接合層によって接合されており、
    前記第1のn型(Alx2Ga1−x2y2In1−y2P層の格子定数は、前記第1光電変換セルの格子定数より大きい、化合物半導体太陽電池。
  2. 前記第1光電変換セルの前記第1化合物半導体材料は、(Alx3Ga1−x3y3In1−y3P(0≦x3<1、0<y3<1)である、請求項1記載の化合物半導体太陽電池。
  3. 前記第1光電変換セルのバンドギャップは、1.9eVより大きい、請求項1又は2に記載の化合物半導体太陽電池。
  4. 前記第1トンネル接合層は、前記第1のn型(Alx2Ga1−x2y2In1−y2P層の前記第2光電変換セル側に形成され、GaAs又はGeに格子整合する、第2のn型(Alx4Ga1−x4y4In1−y4Pをさらに有する、請求項1乃至3のいずれか一項記載の化合物半導体太陽電池。
  5. 前記第1のn型(Alx2Ga1−x2y2In1−y2P層のAl組成よりも、前記第2のn型(Alx4Ga1−x4y4In1−y4P層のAl組成の方が大きい、請求項4記載の化合物半導体太陽電池。
  6. 前記第1のn型(Alx2Ga1−x2y2In1−y2P層は、Alを含有しないn型GaInP層である、請求項4記載の化合物半導体太陽電池。
  7. 前記第1トンネル接合層は、前記第1のp型(Alx1Ga1−x1y1In1−y1As層の前記第1光電変換セル側に形成され、前記第1のp型(Alx1Ga1−x1y1In1−y1As層よりもAl組成が多い第2のp型(Alx5Ga1−x5y5In1−y5As(0<x5<1、0<y5≦1)層をさらに有する、請求項1乃至6のいずれか一項記載の化合物半導体太陽電池。
  8. 第3化合物半導体材料で作製され、前記第2光電変換セルの前記光の入射方向における奥側に形成される第1接合層と、
    化合物半導体基板と、
    第4化合物半導体材料で作製され、前記化合物半導体基板に積層される、1又は複数の第3光電変換セルと、
    第5化合物半導体材料で作製され、前記1又は複数の第3光電変換セルに積層される第2接合層と、
    をさらに含み、
    前記第1接合層の前記第2光電変換セルに接続される面とは反対側の面と、前記第2接合層の前記第3光電変換セルに接続される面とは反対側の面とが接合される、請求項1乃至7のいずれか一項記載の化合物半導体太陽電池。
  9. 光の入射方向において前記第2光電変換セルよりも奥側に配設され、第2のp型(Alx6Ga1−x6y6In1−y6As(0≦x6<1、0<y6≦1)層及び第2のn型(Alx7Ga1−x7y7In1−y7P(0≦x7<1、0<y7<1)層を有する第2トンネル接合層と、
    前記光の入射方向において前記第2トンネル接合層よりも奥側に配設され、GaAs系又はGe系の半導体材料製の第3光電変換セルと
    を含み、
    前記第2光電変換セルと前記第3光電変換セルとは、前記第2トンネル接合層によって接合されており、
    前記第3光電変換セルのバンドギャップは、前記第2光電変換セルのバンドギャップより小さく、
    前記第2のn型(Alx7Ga1−x7y7In1−y7P層の格子定数は、前記第2光電変換セルの格子定数より大きい、請求項1乃至7のいずれか一項記載の化合物半導体太陽電池。
  10. 第3化合物半導体材料で作製され、前記第3光電変換セルの前記光の入射方向における奥側に形成される第1接合層と、
    化合物半導体基板と、
    第4化合物半導体材料で作製され、前記化合物半導体基板に積層される、1又は複数の第4光電変換セルと、
    第5化合物半導体材料で作製され、前記1又は複数の第4光電変換セルに積層される第2接合層と、
    をさらに含み、
    前記第1接合層の前記第3光電変換セルに接続される面とは反対側の面と、前記第2接合層の前記第4光電変換セルに接続される面とは反対側の面とが接合される、請求項9記載の化合物半導体太陽電池。
  11. 前記化合物半導体基板は、InP基板である、請求項8又は10記載の化合物半導体太陽電池。
  12. 前記第1光電変換セル、前記第2光電変換セル、前記第3光電変換セル、2層の前記第4光電変換セルにより、少なくとも5つの光電変換セルが積層方向に接合された多接合セルである、請求項10又は11記載の化合物半導体太陽電池。
  13. 第1化合物半導体材料で作製される第1光電変換セルと、第2化合物半導体材料で作製される第2光電変換セルとを含む化合物半導体太陽電池の製造方法であって、
    化合物半導体基板に前記第2光電変換セルを積層する工程と、
    前記第2光電変換セルにp型(Alx1Ga1−x1y1In1−y1As(0≦x1<1、0<y1≦1)層及びn型(Alx2Ga1−x2y2In1−y2P(0≦x2<1、0<y2<1)層を有するトンネル接合層を積層する工程と、
    前記トンネル接合層に前記第1光電変換セルを積層する工程と
    を含み、
    前記第1化合物半導体材料は、GaAs又はGeに格子整合する化合物半導体材料であり、
    前記第2化合物半導体材料は、GaAs系の化合物半導体材料であり、
    前記n型(Al)GaInP層の格子定数は、前記第1光電変換セルの格子定数より大きい、化合物半導体太陽電池の製造方法。
  14. 第1化合物半導体基板に、GaAs又はGeに格子整合する第1化合物半導体材料で作製される第1光電変換セルを積層する工程と、
    前記第1光電変換セルに第1のp型(Alx1Ga1−x1y1In1−y1As(0≦x1<1、0<y1≦1)層及び第1のn型(Alx2Ga1−x2y2In1−y2P(0≦x2<1、0<y2<1)層を有する第1トンネル接合層を積層する工程と、
    第1トンネル接合層に、GaAs系の第2化合物半導体材料で作製される第2光電変換セルを積層する工程と、
    前記第2光電変換セルに、第3化合物半導体材料で作製される第1接合層を積層する工程と、
    第2化合物半導体基板に、第4化合物半導体材料で作製される1又は複数の第3光電変換セルを積層する工程と、
    前記1又は複数の第3光電変換セルに、第5化合物半導体材料で作製される第2接合層を積層する工程と、
    前記第1接合層の前記第2光電変換セルに接続される面とは反対側の面と、前記第2接合層の前記第3光電変換セルに接続される面とは反対側の面とを接合する工程と、
    前記第1化合物半導体基板を除去する工程と
    を含み、
    前記第1のn型(Alx2Ga1−x2y2In1−y2P層の格子定数は、前記第1光電変換セルの格子定数より大きい、化合物半導体太陽電池の製造方法。
JP2015122272A 2014-07-11 2015-06-17 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法 Active JP6582591B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015122272A JP6582591B2 (ja) 2014-07-11 2015-06-17 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
US15/309,067 US11527666B2 (en) 2014-07-11 2015-07-08 Compound-semiconductor photovoltaic cell and manufacturing method of compound-semiconductor photovoltaic cell
PCT/JP2015/003451 WO2016006247A1 (en) 2014-07-11 2015-07-08 Compound-semiconductor photovoltaic cell and manufacturing method of compound-semiconductor photovoltaic cell
EP15819204.7A EP3167491B1 (en) 2014-07-11 2015-07-08 Compound-semiconductor photovoltaic cell and manufacturing method of compound-semiconductor photovoltaic cell
CN201580032429.1A CN106663714B (zh) 2014-07-11 2015-07-08 化合物-半导体光伏电池及化合物-半导体光伏电池的制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014142826 2014-07-11
JP2014142826 2014-07-11
JP2015122272A JP6582591B2 (ja) 2014-07-11 2015-06-17 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法

Publications (2)

Publication Number Publication Date
JP2016028414A true JP2016028414A (ja) 2016-02-25
JP6582591B2 JP6582591B2 (ja) 2019-10-02

Family

ID=55063896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015122272A Active JP6582591B2 (ja) 2014-07-11 2015-06-17 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法

Country Status (5)

Country Link
US (1) US11527666B2 (ja)
EP (1) EP3167491B1 (ja)
JP (1) JP6582591B2 (ja)
CN (1) CN106663714B (ja)
WO (1) WO2016006247A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017005950A1 (de) * 2017-06-21 2018-12-27 Azur Space Solar Power Gmbh Solarzellenstapel
CN108172638B (zh) * 2018-02-11 2024-06-21 扬州乾照光电有限公司 一种三结太阳电池
KR102060383B1 (ko) * 2018-02-23 2019-12-30 한국과학기술연구원 3족-5족 화합물 반도체 장치
CN109728119B (zh) * 2018-11-30 2020-05-12 浙江大学 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
DE102018009744A1 (de) * 2018-12-14 2020-06-18 Azur Space Solar Power Gmbh Stapelförmige monolithische aufrecht-metamorphe Mehrfachsolarzelle
TWI772587B (zh) * 2018-12-28 2022-08-01 晶元光電股份有限公司 半導體元件
DE102020001185A1 (de) * 2020-02-25 2021-08-26 Azur Space Solar Power Gmbh Stapelförmige monolithische aufrecht-metamorphe lll-V-Mehrfachsolarzelle
WO2023172950A2 (en) * 2022-03-09 2023-09-14 Sierra Nevada Corporation Compositionally graded buffer for thermo-photovoltaic systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
WO2013132073A2 (de) * 2012-03-08 2013-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfachsolarzelle und deren verwendung
JP2014123712A (ja) * 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964386A (ja) 1995-08-18 1997-03-07 Japan Energy Corp 多接合太陽電池
JP2001102608A (ja) 1999-09-27 2001-04-13 Japan Energy Corp 太陽電池およびトンネルダイオード
CN101783371B (zh) * 2009-01-15 2012-12-12 晶元光电股份有限公司 堆叠型太阳能电池
US9722131B2 (en) * 2009-03-16 2017-08-01 The Boeing Company Highly doped layer for tunnel junctions in solar cells
US20100282306A1 (en) * 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
JP2011077295A (ja) 2009-09-30 2011-04-14 Asahi Kasei Electronics Co Ltd 接合型太陽電池
JP5215284B2 (ja) 2009-12-25 2013-06-19 シャープ株式会社 多接合型化合物半導体太陽電池
US11417788B2 (en) 2010-11-19 2022-08-16 The Boeing Company Type-II high bandgap tunnel junctions of InP lattice constant for multijunction solar cells
US10170652B2 (en) 2011-03-22 2019-01-01 The Boeing Company Metamorphic solar cell having improved current generation
US20130048063A1 (en) * 2011-08-26 2013-02-28 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Multijunction Solar Cells Lattice Matched to InP Using Sb-Containing Alloys
WO2013074530A2 (en) * 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
JP2013115415A (ja) 2011-12-01 2013-06-10 Sharp Corp 化合物半導体太陽電池
JP6550691B2 (ja) 2013-07-30 2019-07-31 株式会社リコー 化合物半導体太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US20120138130A1 (en) * 2009-05-11 2012-06-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Tunnel diodes comprising stress-compensated compound semiconductor layers
WO2013132073A2 (de) * 2012-03-08 2013-09-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfachsolarzelle und deren verwendung
JP2014123712A (ja) * 2012-11-26 2014-07-03 Ricoh Co Ltd 太陽電池の製造方法

Also Published As

Publication number Publication date
EP3167491A4 (en) 2017-07-26
CN106663714A (zh) 2017-05-10
EP3167491A1 (en) 2017-05-17
WO2016006247A1 (en) 2016-01-14
EP3167491B1 (en) 2021-10-20
CN106663714B (zh) 2019-12-24
US11527666B2 (en) 2022-12-13
US20170077340A1 (en) 2017-03-16
JP6582591B2 (ja) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6582591B2 (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
US10490684B2 (en) Method for producing a compound photovoltaic cell
JP5148976B2 (ja) 積層型化合物半導体太陽電池
JP6446782B2 (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
TWI583012B (zh) 化合物半導體太陽能電池及其製造方法
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
US20120138130A1 (en) Tunnel diodes comprising stress-compensated compound semiconductor layers
US11527667B2 (en) Tunnel junctions for multijunction solar cells
JP2007115916A (ja) 化合物太陽電池及び製造方法
US20180261709A1 (en) Solar battery
JP6405379B2 (ja) バンドギャップ変動型の光起電セル
EP3010046B1 (en) Compound-semiconductor photovoltaic cell and manufacturing method of compound-semiconductor photovoltaic cell
TWI496314B (zh) Compound semiconductor solar cell manufacturing laminated body, compound semiconductor solar cell and manufacturing method thereof
JP5999887B2 (ja) 多接合型太陽電池
JP6536220B2 (ja) 化合物半導体太陽電池及びその製造方法
JP2016028413A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
JP2013172072A (ja) 2接合太陽電池
JP2015038952A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
Sugaya et al. MBE-grown InGaP/GaAs/InGaAsP triple junction solar cells fabricated by advanced bonding technique
CN112563354A (zh) 四结太阳能电池及其制备方法
JP2014086654A (ja) 化合物半導体太陽電池および化合物半導体太陽電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R151 Written notification of patent or utility model registration

Ref document number: 6582591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151