JP2016015679A - 誘電体アンテナ - Google Patents

誘電体アンテナ Download PDF

Info

Publication number
JP2016015679A
JP2016015679A JP2014137704A JP2014137704A JP2016015679A JP 2016015679 A JP2016015679 A JP 2016015679A JP 2014137704 A JP2014137704 A JP 2014137704A JP 2014137704 A JP2014137704 A JP 2014137704A JP 2016015679 A JP2016015679 A JP 2016015679A
Authority
JP
Japan
Prior art keywords
antenna
dielectric
antenna body
bodies
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137704A
Other languages
English (en)
Other versions
JP6282011B2 (ja
Inventor
美咲 田端
Misaki Tabata
美咲 田端
重光 戸蒔
Shigemitsu Tomaki
重光 戸蒔
出 相馬
Izuru Soma
出 相馬
一成 木村
Kazunari Kimura
一成 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014137704A priority Critical patent/JP6282011B2/ja
Publication of JP2016015679A publication Critical patent/JP2016015679A/ja
Application granted granted Critical
Publication of JP6282011B2 publication Critical patent/JP6282011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

【課題】導体よりなるアンテナ本体を有する平面アンテナに比べて寸法精度が緩和される誘電体アンテナを実現する。
【解決手段】誘電体アンテナ1は、アンテナ本体2と伝送部3と支持部4を備えている。アンテナ本体2は、高周波電力と電磁波の相互変換を行う。伝送部3は、アンテナ本体2に供給する高周波電力またはアンテナ本体2から出力される高周波電力の伝送を行う。支持部4は、アンテナ本体2および伝送部3を支持している。アンテナ本体2は、誘電体によって構成されている。アンテナ本体2は、所定の長さ、幅および厚みを有する板状である。アンテナ本体2の厚みは、15μm〜50μmの範囲内である。アンテナ本体2の長さと幅は、いずれも、0.3mm〜3mmの範囲内である。
【選択図】図1

Description

本発明は、誘電体よりなるアンテナ本体を有する誘電体アンテナに関する。
近年、30GHz〜300GHzの周波数帯であるミリ波帯、特に60GHz付近の周波数帯を用いた無線通信技術が注目されている。ミリ波帯を用いた無線通信には、通信バンド幅を広くできることから大容量且つ高速の通信が可能になるという特長や、電磁波の波長が短いためにアンテナを小型化できるという特長や、電磁波の指向性が高いために干渉の少ない通信が可能になるという特長がある。
アンテナは、一般的に、高周波電力と電磁波の相互変換を行うアンテナ本体と、アンテナ本体に供給する高周波電力またはアンテナ本体から出力される高周波電力の伝送を行う伝送部とを備えている。送信用のアンテナでは、アンテナ本体は放射素子であり、伝送部は、放射素子に対する高周波電力の供給すなわち給電に用いられる。
ミリ波帯用に限られないが、アンテナとしては、導体よりなるアンテナ本体を有するものが知られている。この種のアンテナとしては、例えば、特許文献1、2に記載されているような、導体板よりなるアンテナ本体を有する平面アンテナがある。
一方、誘電体よりなるアンテナ本体を有するアンテナも知られている。この種のアンテナとしては、例えば、特許文献3に記載されているような誘電体共振器アンテナがある。この誘電体共振器アンテナは、誘電体よりなるブロック状のアンテナ本体の内部での電磁波の共振を利用して電磁波を放射するものである。
また、特許文献4には、誘電体よりなる細長い放射要素を有するアンテナが記載されている。
特開2011−155479号公報 特開2012−191317号公報 特開平11−308039号公報 特表2008−527876号公報
従来、ミリ波帯用のアンテナを実現する上では、以下のような種々の課題があった。まず、導体よりなるアンテナ本体を有するアンテナでは、電磁波の波長が短いミリ波帯においてアンテナ本体の導体損が大きくなるため、利得を十分に大きくすることが難しいという問題点がある。
また、ミリ波帯用のアンテナには、アンテナ本体を小型化できるという利点の反面、アンテナ本体に高い寸法精度が要求されるという課題があった。特に、ミリ波帯用の誘電体共振器アンテナを実現しようとすると、誘電体よりなるブロック状のアンテナ本体が非常に小さくなり、上記の課題が顕著になる。
なお、特許文献4には、ミリ波帯よりも波長が長い周波数帯用のアンテナが記載されている。特許文献4には、一例として、誘電定数が135で、1×1×20mmの寸法のアーム(放射要素)を具備するアンテナは4320MHzで共振することが記載されている。もし、このアームの寸法の比率を維持したままで、特許文献4に記載された技術によってミリ波帯用のアンテナを実現しようとすると、アームが非常に小さくなって、アンテナの製造が困難になることが予想される。
本発明はかかる問題点に鑑みてなされたもので、その目的は、ミリ波帯用の誘電体アンテナであって、導体よりなるアンテナ本体を有する平面アンテナに比べて寸法精度が緩和される誘電体アンテナを提供することにある。
本発明の誘電体アンテナは、アンテナ本体と伝送部とを備えている。アンテナ本体は、第1の比誘電率を有する第1の誘電体よりなり、高周波電力と電磁波の相互変換を行う。伝送部は、アンテナ本体に供給する高周波電力またはアンテナ本体から出力される高周波電力の伝送を行う。
本発明の誘電体アンテナにおいて、アンテナ本体は、所定の長さ、幅および厚みを有する板状である。アンテナ本体の厚みは、15μm〜50μmの範囲内である。アンテナ本体の長さと幅は、いずれも、0.3mm〜3mmの範囲内である。
本発明の誘電体アンテナにおいて、第1の比誘電率は150〜500の範囲内であることが好ましく、第1の誘電体の誘電正接は0.01以下であることが好ましい。
また、本発明の誘電体アンテナにおいて、アンテナ本体は、50GHz〜70GHzの範囲内の共振周波数を有していてもよい。
また、本発明の誘電体アンテナにおいて、アンテナ本体の長さは、アンテナ本体の幅の1〜5倍の範囲内であってもよい。
また、本発明の誘電体アンテナは、更に、第1の比誘電率よりも小さい第2の比誘電率を有する第2の誘電体よりなり、アンテナ本体を支持する支持部を備えていてもよい。
また、本発明の誘電体アンテナにおいて、伝送部は、導体よりなる線路部を有していてもよい。この場合、線路部は、アンテナ本体に直接接続されていてもよいし、アンテナ本体に対して電磁気的に結合してもよい。
本発明の誘電体アンテナでは、アンテナ本体の長さ、幅および厚みのうち、厚みのみが、ミリ波帯の電磁波の自由空間における波長に比べて非常に小さい。これにより、本発明によれば、ミリ波帯用の誘電体アンテナであって、導体よりなるアンテナ本体を有する平面アンテナに比べて寸法精度が緩和される誘電体アンテナを実現することができるという効果を奏する。
本発明の第1の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第1の実施の形態に係る誘電体アンテナの一例の反射減衰特性を示す特性図である。 第1の比較例の平面アンテナの斜視図である。 第1の比較例の平面アンテナの反射減衰特性を示す特性図である。 第1のシミュレーションによって求めた第1の比誘電率と利得との関係を示す特性図である。 第2のシミュレーションによって求めたアンテナ本体の厚みと利得との関係を示す特性図である。 第3のシミュレーションによって求めた第1の誘電体の誘電正接と利得との関係を示す特性図である。 第4のシミュレーションによって求めた第1の比誘電率およびアンテナ本体の長さと、アンテナ本体の共振周波数との関係を示す特性図である。 本発明の第2の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第2の実施の形態に係る誘電体アンテナの断面図である。 本発明の第2の実施の形態についての実施例の誘電体アンテナの反射減衰特性を示す特性図である。 第2の比較例の平面アンテナの斜視図である。 第2の比較例の平面アンテナの断面図である。 第2の比較例の平面アンテナの反射減衰特性を示す特性図である。 第2の比較例の平面アンテナにおけるアンテナ本体の寸法の変化に対する特性の変化を示す特性図である。 本発明の第2の実施の形態についての実施例の誘電体アンテナにおけるアンテナ本体の寸法の変化に対する特性の変化を示す特性図である。 第2の比較例モデルを示す斜視図である。 第5の実施例モデルを示す斜視図である。 第6のシミュレーションで求めたアンテナ本体の長さと幅の比率と利得との関係を示す特性図である。 本発明の第3の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第3の実施の形態に係る誘電体アンテナの断面図である。 本発明の第3の実施の形態についての実施例の誘電体アンテナの反射減衰特性を示す特性図である。 本発明の第4の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第4の実施の形態に係る誘電体アンテナの断面図である。 本発明の第4の実施の形態についての実施例の誘電体アンテナの反射減衰特性を示す特性図である。 本発明の第5の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第5の実施の形態に係る誘電体アンテナの断面図である。 本発明の第6の実施の形態に係る誘電体アンテナの斜視図である。 本発明の第6の実施の形態に係る誘電体アンテナの側面図である。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図1を参照して、本発明の第1の実施の形態に係る誘電体アンテナの構造について説明する。図1は、本実施の形態に係る誘電体アンテナの斜視図である。
本実施の形態に係る誘電体アンテナ1は、ミリ波帯用のアンテナである。図1に示したように、誘電体アンテナ1は、アンテナ本体2と、伝送部3と、支持部4とを備えている。アンテナ本体2は、高周波電力と電磁波の相互変換を行う。伝送部3は、アンテナ本体2に供給する高周波電力またはアンテナ本体2から出力される高周波電力の伝送を行う。
支持部4は、アンテナ本体2および伝送部3を支持している。支持部4は、上面と下面と4つの側面を有する直方体形状である。アンテナ本体2は、支持部4の上面に配置されている。
ここで、図1に示したように、X方向、Y方向およびZ方向を定義する。X方向、Y方向およびZ方向は、互いに直交する。Z方向は、支持部4の上面に垂直な方向である。
アンテナ本体2は、第1の比誘電率E1を有する第1の誘電体によって構成されている。また、アンテナ本体2は、所定の長さ、幅および厚みを有する板状である。本実施の形態におけるアンテナ本体2は、特に、薄く且つ一方向に長い直方体形状である。アンテナ本体2は、その長手方向がX方向と一致し、その下面が支持部4の上面に接するように配置されている。アンテナ本体2の長さは、X方向についてのアンテナ本体2の寸法である。アンテナ本体2の幅は、Y方向についてのアンテナ本体2の寸法である。アンテナ本体2の厚みは、Z方向についてのアンテナ本体2の寸法である。
アンテナ本体2の厚みは、15μm〜50μmの範囲内である。アンテナ本体2の長さと幅は、いずれも、0.3mm〜3mmの範囲内である。アンテナ本体2の長さは、アンテナ本体2の幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
支持部4は、第1の比誘電率E1よりも小さい第2の比誘電率E2を有する第2の誘電体によって構成されている。
伝送部3は、マイクロストリップ線路である。伝送部3は、支持部4の上面に配置された線路部5と、支持部4の下面に配置された接地導体板6とを有している。線路部5と接地導体板6は、いずれも、導体、特に金属によって構成されている。線路部5と接地導体板6を構成する金属としては、例えばCu、AuまたはAgを用いることができる。接地導体板6は、グランドに接続される。
線路部5は、X方向に延びている。線路部5は、X方向の両端に位置する第1の端部と第2の端部を有している。第1の端部は、支持部4の上面と1つの側面との間の稜線に接する位置に配置されている。第2の端部は、X方向におけるアンテナ本体2の一端部に接している。このようにして、線路部5は、アンテナ本体2に直接接続されている。
第1の比誘電率E1は、150〜500の範囲内であることが好ましい。また、第1の誘電体の誘電正接は、0.01以下であることが好ましい。第2の比誘電率E2は、第1の比誘電率E1の1/10以下であることが好ましい。第1の誘電体を構成する誘電体材料としては、例えば、チタン酸カルシウム、チタン酸ストロンチウム等の高誘電率のセラミック材料を用いることができる。第2の誘電体を構成する誘電体材料としては、ポリテトラフルオロエチレン等の樹脂や、アルミナ等のセラミックや、ガラスや、これらの複合材料を用いることができる。
アンテナ本体2は、50GHz〜70GHzの範囲内の共振周波数を有していることが好ましい。アンテナ本体2の共振周波数は、アンテナ本体2が送信(放射)または受信する電磁波の周波数帯域内に存在する。
本実施の形態に係る誘電体アンテナ1では、アンテナ本体2の長さ、幅および厚みのうち、厚みのみが、ミリ波帯の電磁波の自由空間における波長に比べて非常に小さい。例えば、60GHzの電磁波の自由空間における波長は5mmであることから、アンテナ本体2の厚みは、60GHzの電磁波の自由空間における波長の1/100以下である。
次に、本実施の形態に係る誘電体アンテナ1の作用について説明する。誘電体アンテナ1を送信用アンテナとして使用する場合には、図示しない高周波電力供給源から線路部5の第1の端部に、高周波電力が供給される。この高周波電力は、伝送部3によって線路部5の第2の端部に伝送されて、アンテナ本体2に供給される。アンテナ本体2は、供給された高周波電力を電磁波に変換して、この電磁波を送信(放射)する。
誘電体アンテナ1を受信用アンテナとして使用する場合には、アンテナ本体2は、受信した電磁波を高周波電力に変換して、線路部5の第2の端部から伝送部3へ出力する。この高周波電力は、伝送部3によって線路部5の第1の端部に伝送されて、第1の端部に接続された図示しない回路へ送られる。
本実施の形態では、アンテナ本体2の下方に接地導体板6が存在している。そのため、本実施の形態では、アンテナ本体2は、主にアンテナ本体2の上方に向けて電磁波を放射し、また、主にアンテナ本体2の上方からの電磁波を受信する。
次に、本実施の形態に係る誘電体アンテナ1の一例とその反射減衰特性について説明する。この例では、アンテナ本体2の厚みは20μmであり、アンテナ本体2の長さは1.8mmであり、アンテナ本体2の幅は0.55mmである。また、この例では、第1の比誘電率E1は250であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。
図2は、上記の一例の誘電体アンテナ1の反射減衰特性を示す特性図である。図2において、横軸は周波数、縦軸は減衰量である。図2に示した反射減衰特性では、約65.6GHzにおいて減衰量が最大になっている。この減衰量が最大になる周波数が、アンテナ本体2の共振周波数である。
次に、第1の比較例の平面アンテナと比較しながら、本実施の形態に係る誘電体アンテナ1の効果について説明する。図3は、第1の比較例の平面アンテナ101の斜視図である。第1の比較例の平面アンテナ101は、アンテナ本体102と、伝送部103と、支持部104とを備えている。伝送部103は、支持部104の上面に配置された線路部105と、支持部104の下面に配置された接地導体板106とを有している。伝送部103と支持部104の構成は、誘電体アンテナ1における伝送部3と支持部4と同じである。アンテナ本体102は、導体、特にCuによって構成されて、支持部104の上面に配置されている。アンテナ本体102の厚み(Z方向の寸法)は20μmであり、アンテナ本体102の長さ(X方向の寸法)は1.2mmであり、アンテナ本体102の幅(Y方向の寸法)は0.55mmである。
図4は、第1の比較例の平面アンテナ101の反射減衰特性を示す特性図である。図4において、横軸は周波数、縦軸は減衰量である。図4に示した反射減衰特性では、約62.3GHzにおいて減衰量が最大になっている。この減衰量が最大になる周波数が、アンテナ本体102の共振周波数である。
前述の誘電体アンテナ1の一例と第1の比較例の平面アンテナ101は、アンテナ本体2の共振周波数とアンテナ本体102の共振周波数が近くなるように設計している。一方、誘電体アンテナ1の一例におけるアンテナ本体2は、第1の比較例の平面アンテナ101におけるアンテナ本体102よりも大きい。具体的には、アンテナ本体2は、アンテナ本体102と比較して、厚みと幅は等しいが、長さが大きい。
このように、本実施の形態に係る誘電体アンテナ1によれば、ほぼ同等の特性を有する平面アンテナ101のアンテナ本体102と比較して、アンテナ本体2を大きくすることができる。そのため、本実施の形態に係る誘電体アンテナ1によれば、導体よりなるアンテナ本体102を有する第1の比較例の平面アンテナ101と比較して、寸法精度が緩和される。具体的には、本実施の形態に係る誘電体アンテナ1によれば、第1の比較例の平面アンテナ101と比較して、寸法の誤差に対する特性の変化が小さくなる。これについては、第2の実施の形態において具体的に説明する。
本実施の形態に係る誘電体アンテナ1において、第1の比較例の平面アンテナ101のアンテナ本体102と比較して、アンテナ本体2を大きくすることができる理由は、以下のように考えられる。なお、以下の説明では、アンテナ本体2の共振周波数と、アンテナ本体102の共振周波数は等しいものとする。
まず、第1の比較例の平面アンテナ101では、アンテナ本体102で共振する電磁波の電磁界は、主に、アンテナ本体102と接地導体板106との間の支持部104内に存在する。そのため、アンテナ本体102で共振する電磁波の実効波長は、支持部104内の電磁波の波長、すなわち自由空間における波長の1/√(E2)に近い。
一方、本実施の形態に係る誘電体アンテナ1では、第1の誘電体よりなるアンテナ本体2の厚みは、アンテナ本体2で共振する電磁波の自由空間における波長に比べて非常に小さい。具体的には、前述のように、アンテナ本体2の厚みは、60GHzの電磁波の自由空間における波長の1/100以下である。このように、電磁波の自由空間における波長に比べて極めて薄い誘電体よりなるアンテナ本体2で共振する電磁波の電磁界は、アンテナ本体2の内部、ならびにアンテナ本体2の上面近くの空間上に存在すると考えられる。この場合、アンテナ本体2で共振する電磁波の実効波長は、第1の比誘電率E1を有する第1の誘電体よりなるアンテナ本体2の内部における波長と自由空間における波長との中間の値ではあるものの、比較的、自由空間における波長に近い値になると考えられる。そのため、アンテナ本体2で共振する電磁波の実効波長は、第1の比較例の平面アンテナ101のアンテナ本体102で共振する電磁波の実効波長よりも長くなると考えられる。その結果、アンテナ本体2の大きさは、アンテナ本体102よりも大きくなると考えられる。
以上説明したように、本実施の形態に係る誘電体アンテナ1では、アンテナ本体2の長さ、幅および厚みのうち、厚みのみが、ミリ波帯の電磁波の自由空間における波長に比べて非常に小さい。これにより、本実施の形態によれば、ミリ波帯用の誘電体アンテナ1であって、導体よりなるアンテナ本体を有する平面アンテナに比べて寸法精度が緩和される誘電体アンテナ1を実現することができる。
なお、アンテナ本体2の長さと幅が大きく異なると、アンテナ本体2の幅が小さくなり過ぎて、アンテナ本体2の幅に、高い寸法精度が要求されるおそれがある。そのため、アンテナ本体2の長さは、アンテナ本体2の幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
以下、本実施の形態に係る誘電体アンテナ1に関して行った第1ないし第4のシミュレーションの結果について説明する。
[第1のシミュレーション]
始めに、第1のシミュレーションについて説明する。第1のシミュレーションは、第1の比誘電率E1の好ましい範囲を求めるために行った。第1のシミュレーションでは、第1の比較例モデルと第1の実施例モデルとを用いた。
第1の比較例モデルは、図3に示した第1の比較例の平面アンテナ101のモデルである。シミュレーションによって求めた第1の比較例モデルの絶対利得(以下、単に利得と記す。)は、5.089dBであった。
第1の実施例モデルは、図1に示した本実施の形態に係る誘電体アンテナ1のモデルである。第1の実施例モデルにおいて、アンテナ本体2の厚みは20μmであり、アンテナ本体2の長さは1.80mmであり、アンテナ本体2の幅は0.55mmであり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。第1のシミュレーションでは、第1の比誘電率E1を変化させて、第1の比誘電率E1と第1の実施例モデルの利得との関係を求めた。その結果を、以下の表1と図5に示す。表1と図5には、第1の比較例モデルの利得も示している。図5において、横軸は第1の比誘電率E1、縦軸は利得(dB)である。また、図5において、白抜きの四角は第1の比較例モデルの利得を示し、複数の塗りつぶした四角は、第1の実施例モデルにおける第1の比誘電率E1と利得との関係を示している。
Figure 2016015679
表1および図5に示したように、第1の実施例モデルにおいて、第1の比誘電率E1が150〜500の範囲内であれば、第1の比較例モデルとほぼ同等以上の利得が得られる。そのため、本実施の形態に係る誘電体アンテナ1において、第1の比誘電率E1は、150〜500の範囲内であることが好ましい。
[第2のシミュレーション]
次に、第2のシミュレーションについて説明する。第2のシミュレーションは、アンテナ本体2の厚みの好ましい範囲を求めるために行った。第2のシミュレーションでは、前記の第1の比較例モデルと、第2の実施例モデルとを用いた。
第2の実施例モデルは、図1に示した本実施の形態に係る誘電体アンテナ1のモデルである。第2の実施例モデルにおいて、アンテナ本体2の長さは1.80mmであり、アンテナ本体2の幅は0.55mmであり、第1の比誘電率E1は250であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。第2のシミュレーションでは、アンテナ本体2の厚みを変化させて、アンテナ本体2の厚みと第2の実施例モデルの利得との関係を求めた。その結果を、以下の表2と図6に示す。表2と図6には、第1の比較例モデルの利得も示している。図6において、横軸はアンテナ本体2の厚み(μm)、縦軸は利得(dB)である。また、図6において、白抜きの四角は第1の比較例モデルの利得を示し、複数の塗りつぶした四角は、第2の実施例モデルにおけるアンテナ本体2の厚みと利得との関係を示している。
Figure 2016015679
表2および図6に示したように、第2の実施例モデルにおいて、アンテナ本体2の厚み15μm〜50μmの範囲内であれば、第1の比較例モデルとほぼ同等以上の利得が得られる。そのため、本実施の形態に係る誘電体アンテナ1において、アンテナ本体2の厚みは、15μm〜50μmの範囲内であることが好ましい。
[第3のシミュレーション]
次に、第3のシミュレーションについて説明する。第3のシミュレーションは、第1の誘電体の誘電正接の好ましい範囲を求めるために行った。第3のシミュレーションでは、前記の第1の比較例モデルと、第3の実施例モデルとを用いた。
第3の実施例モデルは、図1に示した本実施の形態に係る誘電体アンテナ1のモデルである。第3の実施例モデルにおいて、アンテナ本体2の厚みは20μmであり、アンテナ本体2の長さは1.80mmであり、アンテナ本体2の幅は0.55mmであり、第1の比誘電率E1は250であり、第2の比誘電率E2は2.55である。第3のシミュレーションでは、第1の誘電体の誘電正接を変化させて、第1の誘電体の誘電正接と第3の実施例モデルの利得との関係を求めた。その結果を、以下の表3と図7に示す。表3と図7には、第1の比較例モデルの利得も示している。また、表3には、誘電正接の逆数であるQ値も示している。図7において、横軸は第1の誘電体の誘電正接、縦軸は利得(dB)である。また、図7において、白抜きの四角は第1の比較例モデルの利得を示し、複数の塗りつぶした四角は、第3の実施例モデルにおける第1の誘電体の誘電正接と利得との関係を示している。
Figure 2016015679
表3および図7に示したように、第3の実施例モデルにおいて、第1の誘電体の誘電正接が0.01以下であれば、第1の比較例モデルとほぼ同等以上の利得が得られる。そのため、本実施の形態に係る誘電体アンテナ1において、第1の誘電体の誘電正接は0.01以下であることが好ましい。
[第4のシミュレーション]
次に、第4のシミュレーションについて説明する。第4のシミュレーションは、第1の比誘電率E1およびアンテナ本体2の長さと、アンテナ本体2の共振周波数との関係を調べるために行った。第4のシミュレーションでは、第4の実施例モデルを用いた。
第4の実施例モデルは、図1に示した本実施の形態に係る誘電体アンテナ1のモデルである。第4の実施例モデルにおいて、アンテナ本体2の厚みは20μmであり、アンテナ本体2の幅は0.5mmであり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。第4のシミュレーションでは、第1の比誘電率E1を150〜400の範囲で変化させ、アンテナ本体2の長さ1.4mm、1.5mm、1.6mmと変化させて、アンテナ本体2の共振周波数(GHz)を求めた。その結果を、以下の表4と図8に示す。表4において、アンテナ本体2の長さと第1の比誘電率E1以外の数値は、アンテナ本体2の共振周波数(GHz)である。また、図8において、横軸はアンテナ本体2の長さ、縦軸はアンテナ本体2の共振周波数(GHz)である。
Figure 2016015679
表4および図8から、本実施の形態に係る誘電体アンテナ1では、第1の比誘電率E1が大きくなるほどアンテナ本体2の共振周波数は低くなり、アンテナ本体2の長さが大きくなるほどアンテナ本体2の共振周波数は低くなることが分かる。従って、本実施の形態において、アンテナ本体2の共振周波数は、第1の比誘電率E1とアンテナ本体2の長さの少なくとも一方を調整することによって調整可能である。
[第2の実施の形態]
次に、本発明の第2の実施の形態に係る誘電体アンテナについて説明する。始めに、図9および図10を参照して、本実施の形態に係る誘電体アンテナの構造について説明する。図9は、本実施の形態に係る誘電体アンテナの斜視図である。図10は、本実施の形態に係る誘電体アンテナの断面図である。
第1の実施の形態と同様に、本実施の形態に係る誘電体アンテナ21もミリ波帯用のアンテナである。図9および図10に示したように、誘電体アンテナ21は、アンテナ本体22と、伝送部23と、支持部24とを備えている。アンテナ本体22は、高周波電力と電磁波の相互変換を行う。伝送部23は、アンテナ本体22に供給する高周波電力またはアンテナ本体22から出力される高周波電力の伝送を行う。
支持部24は、アンテナ本体22および伝送部23を支持している。支持部24は、上面と下面と4つの側面を有する直方体形状である。支持部24は、第1層24Aと、この第1層24Aの上に配置された第2層24Bとを有している。
ここで、図9および図10に示したように、X方向、Y方向およびZ方向を定義する。X方向、Y方向およびZ方向は、互いに直交する。Z方向は、支持部24の上面(第2層24Bの上面)に垂直な方向である。
伝送部23は、マイクロストリップ線路である。伝送部23は、第1層24Aと第2層24Bの間に配置された線路部25と、支持部24の下面(第1層24Aの下面)に配置された接地導体板26とを有している。線路部25と接地導体板26は、いずれも、導体、特に金属によって構成されている。線路部25と接地導体板26を構成する金属としては、例えばCu、AuまたはAgを用いることができる。接地導体板26は、グランドに接続される。
線路部25は、第1の部分25Aと第2の部分25Bとを有している。第1の部分25Aは、X方向に延び、X方向の両端に位置する第1の端部と第2の端部を有している。第1の端部は、支持部24の第1層24Aの上面と1つの側面との間の稜線に接する位置に配置されている。第2の部分25Bは、第1の部分25Aの第2の端部に接続されている。Z方向から見た第2の部分25Bの形状は、正方形または長方形である。第2の部分25BのY方向の寸法は、第1の部分25AのY方向の寸法よりも大きい。
アンテナ本体22は、アンテナ本体22の少なくとも一部が第2層24Bを介して第2の部分25Bと対向するように、第2層24Bの上面に配置されている。アンテナ本体22は、第1の比誘電率E1を有する第1の誘電体によって構成されている。アンテナ本体22は、所定の長さ、幅および厚みを有する板状である。アンテナ本体22の厚みは、Z方向についてのアンテナ本体22の寸法である。Z方向から見たアンテナ本体22の形状は、2つの辺がX方向に平行で、他の2つの辺がY方向に平行な正方形または長方形である。Z方向から見たアンテナ本体22の形状が長方形である場合には、その長方形の長辺の寸法がアンテナ本体22の長さであり、その長方形の短辺の寸法がアンテナ本体22の幅である。Z方向から見たアンテナ本体22の形状が正方形である場合には、その正方形のX方向に平行な辺の寸法を長さと定義してもよいし、その正方形のY方向に平行な辺の寸法を長さと定義してもよい。いずれの場合も、アンテナ本体22の長さと幅は等しい。
アンテナ本体22の厚みは、15μm〜50μmの範囲内である。アンテナ本体22の長さと幅は、いずれも、0.3mm〜3mmの範囲内である。アンテナ本体22の長さは、アンテナ本体22の幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
本実施の形態では、線路部25は、アンテナ本体22に直接接続されていない。本実施の形態では、線路部25、特に第2の部分25Bが、アンテナ本体22に対して電磁気的に結合し、これにより、伝送部23とアンテナ本体22との間で高周波電力の授受が行われる。
Z方向から見たアンテナ本体22の形状は、Z方向から見た第2の部分25Bの形状と同じであってもよいし、異なっていてもよい。図9には、Z方向から見たアンテナ本体22の形状が、Z方向から見た第2の部分25Bの形状よりも大きい例を示している。
支持部24は、第1の比誘電率E1よりも小さい第2の比誘電率E2を有する第2の誘電体によって構成されている。第1の比誘電率E1、第1の誘電体の誘電正接および第2の比誘電率E2の好ましい範囲は、第1の実施の形態と同様である。また、第1の誘電体を構成する誘電体材料や、第2の誘電体を構成する誘電体材料の例も、第1の実施の形態と同様である。
アンテナ本体22は、50GHz〜70GHzの範囲内の共振周波数を有していることが好ましい。アンテナ本体22の共振周波数は、アンテナ本体22が送信(放射)または受信する電磁波の周波数帯域内に存在する。
次に、本実施の形態に係る誘電体アンテナ21の作用について説明する。誘電体アンテナ21を送信用アンテナとして使用する場合には、図示しない高周波電力供給源から線路部25の第1の部分25Aの第1の端部に、高周波電力が供給される。この高周波電力は、伝送部23によって線路部25の第2の部分25Bに伝送され、更に、第2の部分25Bに電磁気的に結合するアンテナ本体22に供給される。アンテナ本体22は、供給された高周波電力を電磁波に変換して、この電磁波を送信(放射)する。
誘電体アンテナ21を受信用アンテナとして使用する場合には、アンテナ本体22は、受信した電磁波を高周波電力に変換して、線路部25の第2の部分25Bへ出力する。この高周波電力は、伝送部23によって線路部25の第1の部分25Aの第1の端部に伝送されて、第1の端部に接続された図示しない回路へ送られる。
誘電体アンテナ21および第2の部分25Bは、互いに共振周波数が異なる2つの共振モードを有する。これにより、誘電体アンテナ21によれば、第1の実施の形態に係る誘電体アンテナ1に比べて、送受信可能な周波数帯域を広くすることが可能になる。
次に、本実施の形態に係る誘電体アンテナ21の実施例とその反射減衰特性について説明する。この実施例では、アンテナ本体22の厚みは20μmであり、アンテナ本体22の長さと幅は、いずれも1.45mmである。また、第2の部分25Bの長さと幅は、いずれも0.9mmである。また、第1の比誘電率E1は200であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。
図11は、実施例の誘電体アンテナ21の反射減衰特性を示す特性図である。図11において、横軸は周波数、縦軸は減衰量である。この反射減衰特性において、減衰量が10dB以上となる周波数帯域を、送受信可能な周波数帯域と定義すると、送受信可能な周波数帯域は、約60GHz〜約74GHzである。
次に、第2の比較例の平面アンテナと比較しながら、本実施の形態に係る誘電体アンテナ21の効果について説明する。図12は、第2の比較例の平面アンテナの斜視図である。図13は、第2の比較例の平面アンテナの断面図である。
第2の比較例の平面アンテナ121は、アンテナ本体122と、伝送部123と、支持部124とを備えている。支持部124は、アンテナ本体122および伝送部123を支持している。支持部124は、上面と下面と4つの側面を有する直方体形状である。支持部124は、第1層124Aと、この第1層124Aの上に配置された第2層124Bとを有している。
伝送部123は、第1層124Aと第2層124Bの間に配置された線路部125と、支持部124の下面(第1層124Aの下面)に配置された接地導体板126とを有している。線路部125と接地導体板126は、いずれも、導体、特にCuによって構成されている。線路部125は、第1の部分125Aと第2の部分125Bとを有している。第1の部分125Aは、X方向に延び、X方向の両端に位置する第1の端部と第2の端部を有している。第1の端部は、支持部124の第1層124Aの上面と1つの側面との間の稜線に接する位置に配置されている。第2の部分125Bは、第1の部分125Aの第2の端部に接続されている。第2の部分125BのY方向の寸法は、第1の部分125AのY方向の寸法よりも大きい。
アンテナ本体122は、アンテナ本体122の少なくとも一部が第2層124Bを介して第2の部分125Bと対向するように、第2層124Bの上面に配置されている。アンテナ本体122は、導体、特にCuによって構成されている。アンテナ本体122は、所定の長さ、幅および厚みを有する板状である。アンテナ本体122の厚みは、Z方向についてのアンテナ本体122の寸法である。Z方向から見たアンテナ本体122の形状は、2つの辺がX方向に平行で、他の2つの辺がY方向に平行な正方形または長方形である。アンテナ本体122の厚みは20μmであり、アンテナ本体122の長さと幅は、いずれも1.10mmである。
図14は、第2の比較例の平面アンテナ121の反射減衰特性を示す特性図である。図14において、横軸は周波数、縦軸は減衰量である。
前述の実施例の誘電体アンテナ21と第2の比較例の平面アンテナ121は、それらの送受信可能な周波数帯域が互いに近くなるように設計している。一方、実施例の誘電体アンテナ21におけるアンテナ本体22は、第2の比較例の平面アンテナ121におけるアンテナ本体122よりも大きい。
このように、本実施の形態に係る誘電体アンテナ21によれば、ほぼ同等の特性を有する平面アンテナ121のアンテナ本体122と比較して、アンテナ本体22を大きくすることができる。そのため、本実施の形態に係る誘電体アンテナ21によれば、導体よりなるアンテナ本体122を有する第2の比較例の平面アンテナ121と比較して、寸法精度が緩和される。具体的には、本実施の形態に係る誘電体アンテナ21によれば、第2の比較例の平面アンテナ121と比較して、寸法の誤差に対する特性の変化が小さくなる。以下、これを示す第5のシミュレーションの結果について説明する。
[第5のシミュレーション]
第5のシミュレーションでは、第2の比較例の平面アンテナ121について、アンテナ本体122の長さと幅を、設計値に対して±25μmだけ変化させたときの、平面アンテナ121の反射減衰特性の変化を調べた。その結果を、図15に示す。図15において、横軸は周波数、縦軸は減衰量である。図15において、符号131で示す線は、アンテナ本体122の長さと幅が設計値通りである場合における平面アンテナ121の反射減衰特性を示している。また、図15において、符号132で示す線は、アンテナ本体122の長さと幅が設計値よりも25μmだけ小さい場合における平面アンテナ121の反射減衰特性を示している。また、図15において、符号133で示す線は、アンテナ本体122の長さと幅が設計値よりも25μmだけ大きい場合における平面アンテナ121の反射減衰特性を示している。
また、第5のシミュレーションでは、前述の実施例の誘電体アンテナ21について、アンテナ本体22の長さと幅を、設計値に対して±25μmだけ変化させたときの、誘電体アンテナ21の反射減衰特性の変化を調べた。その結果を、図16に示す。図16において、横軸は周波数、縦軸は減衰量である。図16において、符号31で示す線は、アンテナ本体22の長さと幅が設計値通りである場合における誘電体アンテナ21の反射減衰特性を示している。また、図16において、符号32で示す線は、アンテナ本体22の長さと幅が設計値よりも25μmだけ小さい場合における誘電体アンテナ21の反射減衰特性を示している。また、図16において、符号33で示す線は、アンテナ本体22の長さと幅が設計値よりも25μmだけ大きい場合における誘電体アンテナ21の反射減衰特性を示している。
図15と図16を比較すると、誘電体アンテナ21では、第2の比較例の平面アンテナ121と比較して、アンテナ本体22の寸法の誤差に対する特性の変化が小さく、アンテナ本体22の寸法精度が緩和されることが分かる。
[第6のシミュレーション]
次に、第6のシミュレーションについて説明する。第6のシミュレーションは、アンテナ本体22の長さとの幅の比率の好ましい範囲を求めるために行った。第6のシミュレーションでは、第2の比較例モデルと第5の実施例モデルとを用いた。第2の比較例モデルと第5の実施例モデルは、送受信可能な周波数帯域がほぼ等しくなるように設計している。
図17は、第2の比較例モデル141を示す斜視図である。第2の比較例モデル141は、平面アンテナのモデルである。図17に示したように、第2の比較例モデル141は、アンテナ本体142と、伝送部143と、支持部144とを備えている。支持部144は、アンテナ本体142および伝送部143を支持している。支持部144は、上面と下面と4つの側面を有する直方体形状である。支持部144は、第1層144Aと、この第1層144Aの上に配置された第2層144Bとを有している。
伝送部143は、第1層144Aと第2層144Bの間に配置された線路部145と、支持部144の下面(第1層144Aの下面)に配置された接地導体板146とを有している。線路部145と接地導体板146は、いずれも、導体、特にCuによって構成されている。線路部145は、第1の部分145Aと第2の部分145Bとを有している。第1の部分145Aは、X方向に延び、X方向の両端に位置する第1の端部と第2の端部を有している。第1の端部は、支持部144の第1層144Aの上面と1つの側面との間の稜線に接する位置に配置されている。第2の部分145Bは、第1の部分145Aの第2の端部に接続されている。第2の部分145BのY方向の寸法は、第1の部分145AのY方向の寸法よりも大きい。
アンテナ本体142は、アンテナ本体142の少なくとも一部が第2層144Bを介して第2の部分145Bと対向するように、第2層144Bの上面に配置されている。アンテナ本体142は、導体、特にCuによって構成されている。アンテナ本体142は、所定の長さ、幅および厚みを有する板状である。アンテナ本体142の厚みは、Z方向についてのアンテナ本体142の寸法である。Z方向から見たアンテナ本体142の形状は、2つの辺がX方向に平行で、他の2つの辺がY方向に平行な正方形または長方形である。
第2の比較例モデル141では、アンテナ本体142のY方向の寸法をアンテナ本体142の長さと定義し、アンテナ本体142のX方向の寸法をアンテナ本体142の幅と定義する。アンテナ本体142の長さは、アンテナ本体142の幅以上である。
図18は、第5の実施例モデルを示す斜視図である。第5の実施例モデルは、図9に示した本実施の形態に係る誘電体アンテナ21のモデルである。第5の実施例モデルでは、アンテナ本体22のY方向の寸法をアンテナ本体22の長さと定義し、アンテナ本体22のX方向の寸法をアンテナ本体22の幅と定義する。アンテナ本体22の長さは、アンテナ本体22の幅以上である。第5の実施例モデルにおいて、アンテナ本体22の厚みは20μmであり、第1の比誘電率E1は200であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。
以下、第2の比較例モデル141におけるアンテナ本体142の長さと、第5の実施例モデルにおけるアンテナ本体22の長さを、共に記号Lで表す。また、第2の比較例モデル141におけるアンテナ本体142の幅と、第5の実施例モデルにおけるアンテナ本体22の幅を、共に記号Wで表す。
第6のシミュレーションでは、第2の比較例モデル141について、アンテナ本体142の上面の面積を一定にしたままで、アンテナ本体142の長さLと幅Wの比率L/Wを変化させて、比率L/Wと利得との関係を求めた。その結果を、以下の表5に示す。
Figure 2016015679
また、第6のシミュレーションでは、第5の実施例モデルについて、アンテナ本体22の上面の面積を一定にしたままで、アンテナ本体22の長さLと幅Wの比率L/Wを変化させて、比率L/Wと利得との関係を求めた。その結果を、以下の表6に示す。
Figure 2016015679
また、表5と表6に示したL/Wと利得との関係を図19に示す。図19において、横軸はL/Wであり、縦軸は利得(dB)である。図19において、符号41で示した線と、この線で結んだ複数の点は、第2の比較例モデル141についてのL/Wと利得との関係を示している。また、図19において、符号42で示した線と、この線で結んだ複数の点は、第5の実施例モデルについてのL/Wと利得との関係を示している。
図19から分かるように、L/Wが4〜5の範囲では、第5の実施例モデルの利得と第2の比較例モデル141の利得はほぼ等しい。また、L/Wが1〜3.5の範囲では、第5の実施例モデルの利得は、第2の比較例モデル141の利得よりも大きい。このことから、本実施の形態において、アンテナ本体22の長さLは、アンテナ本体22の幅Wの1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
[第3の実施の形態]
次に、本発明の第3の実施の形態に係る誘電体アンテナについて説明する。始めに、図20および図21を参照して、本実施の形態に係る誘電体アンテナの構造について説明する。図20は、本実施の形態に係る誘電体アンテナの斜視図である。図21は、本実施の形態に係る誘電体アンテナの断面図である。
第1および第2の実施の形態と同様に、本実施の形態に係る誘電体アンテナ51もミリ波帯用のアンテナである。図20および図21に示したように、誘電体アンテナ51は、2つのアンテナ本体52A,52Bと、伝送部53と、支持部54とを備えている。アンテナ本体52A,52Bは、高周波電力と電磁波の相互変換を行う。伝送部53は、アンテナ本体52A,52Bに供給する高周波電力またはアンテナ本体52A,52Bから出力される高周波電力の伝送を行う。
支持部54は、アンテナ本体52A,52Bおよび伝送部53を支持している。支持部54は、上面と下面と4つの側面を有する直方体形状である。支持部54は、下から順に配置された第1層54A、第2層54B、第3層54Cおよび第4層54Dを有している。
ここで、図20および図21に示したように、X方向、Y方向およびZ方向を定義する。X方向、Y方向およびZ方向は、互いに直交する。Z方向は、支持部54の上面(第4層54Dの上面)に垂直な方向である。
伝送部53は、第2層54Bと第3層54Cの間に配置された線路部531と、第1層54Aと第2層54Bの間に配置された接地導体板532と、第3層54Cと第4層54Dの間に配置された接地導体板533とを有している。線路部531と接地導体板532,533は、いずれも、導体、特に金属によって構成されている。この金属としては、例えばCu、AuまたはAgを用いることができる。接地導体板532,533は、グランドに接続される。
線路部531は、第1の部分531Aと第2の部分531Bとを有している。第1の部分531Aは、X方向に延び、X方向の両端に位置する第1の端部と第2の端部を有している。第1の端部は、支持部54の第2層54Bの上面と1つの側面との間の稜線に接する位置に配置されている。第2の部分531Bは、第1の部分531Aの第2の端部に接続されている。第2の部分531BのY方向の寸法は、第1の部分531AのY方向の寸法と等しい。
接地導体板532と接地導体板533は、互いに対向する位置に配置されている。第1の部分531Aの少なくとも一部は、第2層54Bを介して接地導体板532に対向していると共に、第3層54Cを介して接地導体板533に対向している。第1の部分531Aの少なくとも一部と接地導体板532,533は、ストリップ線路を構成している。
アンテナ本体52A,52Bは、第2層54Bと第3層54Cの間において、第2の部分531BのY方向の両側に配置されている。第2の部分531Bは、線路部531のうち、アンテナ本体52A,52Bに挟まれた部分である。図21は、X方向に垂直で、第2の部分531Bおよびアンテナ本体52A,52Bと交差する断面を示している。
アンテナ本体52A,52Bは、第1の比誘電率E1を有する第1の誘電体によって構成されている。アンテナ本体52A,52Bは、それぞれ、所定の長さ、幅および厚みを有する板状である。アンテナ本体52A,52Bの厚みは、Z方向についてのアンテナ本体52A,52Bの寸法である。Z方向から見たアンテナ本体52A,52Bの形状は、それぞれ、2つの辺がX方向に平行で、他の2つの辺がY方向に平行な正方形または長方形である。本実施の形態では、Y方向についてのアンテナ本体52A,52Bの寸法は、X方向についてのアンテナ本体52A,52Bの寸法以上である。従って、Y方向についてのアンテナ本体52A,52Bの寸法がアンテナ本体52A,52Bの長さであり、X方向についてのアンテナ本体52A,52Bの寸法がアンテナ本体52A,52Bの幅である。
アンテナ本体52A,52Bの厚みは、15μm〜50μmの範囲内である。アンテナ本体52A,52Bの長さと幅は、いずれも、0.3mm〜3mmの範囲内である。アンテナ本体52A,52Bの長さは、アンテナ本体52A,52Bの幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
アンテナ本体52Aと第2の部分531Bとの間と、アンテナ本体52Bと第2の部分531Bとの間には、それぞれ隙間が形成されている。従って、本実施の形態では、線路部531は、アンテナ本体52A,52Bに直接接続されていない。本実施の形態では、線路部531、特に第2の部分531Bが、アンテナ本体52A,52Bに対して電磁気的に結合し、これにより、伝送部53とアンテナ本体52A,52Bとの間で高周波電力の授受が行われる。
支持部54は、第1の比誘電率E1よりも小さい第2の比誘電率E2を有する第2の誘電体によって構成されている。第1の比誘電率E1、第1の誘電体の誘電正接および第2の比誘電率E2の好ましい範囲は、第1の実施の形態と同様である。また、第1の誘電体を構成する誘電体材料や、第2の誘電体を構成する誘電体材料の例も、第1の実施の形態と同様である。
アンテナ本体52A,52Bは、50GHz〜70GHzの範囲内の共振周波数を有していることが好ましい。アンテナ本体52A,52Bの共振周波数は、アンテナ本体52A,52Bが送信(放射)または受信する電磁波の周波数帯域内に存在する。
次に、本実施の形態に係る誘電体アンテナ51の作用について説明する。誘電体アンテナ51を送信用アンテナとして使用する場合には、図示しない高周波電力供給源から線路部531の第1の部分531Aの第1の端部に、高周波電力が供給される。この高周波電力は、伝送部53によって線路部531の第2の部分531Bに伝送され、更に、第2の部分531Bに電磁気的に結合するアンテナ本体52A,52Bに供給される。アンテナ本体52A,52Bは、供給された高周波電力を電磁波に変換して、この電磁波を送信(放射)する。
誘電体アンテナ51を受信用アンテナとして使用する場合には、アンテナ本体52A,52Bは、受信した電磁波を高周波電力に変換して、線路部531の第2の部分531Bへ出力する。この高周波電力は、伝送部53によって線路部531の第1の部分531Aの第1の端部に伝送されて、第1の端部に接続された図示しない回路へ送られる。
本実施の形態では、アンテナ本体52A,52Bの上方と下方には、接地導体板532,533が存在していない。そのため、本実施の形態では、アンテナ本体52A,52Bは、アンテナ本体52A,52Bの上方および下方に向けて電磁波を放射することができると共に、アンテナ本体52A,52Bの上方および下方からの電磁波を受信することが可能である。
次に、本実施の形態に係る誘電体アンテナ51の実施例とその反射減衰特性について説明する。この実施例では、アンテナ本体52A,52Bの厚みは20μmであり、アンテナ本体52A,52Bの長さは1.70mmであり、アンテナ本体52A,52Bの幅は0.4mmである。また、第1の比誘電率E1は200であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。
図22は、実施例の誘電体アンテナ51の反射減衰特性を示す特性図である。図22において、横軸は周波数、縦軸は減衰量である。この反射減衰特性では、減衰量が10dB以上となる周波数帯域が広い。そのため、本実施の形態によれば、送受信可能な周波数帯域を広くすることが可能になる。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
[第4の実施の形態]
次に、本発明の第4の実施の形態に係る誘電体アンテナについて説明する。図23は、本実施の形態に係る誘電体アンテナの斜視図である。図24は、本実施の形態に係る誘電体アンテナの断面図である。
本実施の形態に係る誘電体アンテナ51は、以下の点で、第3の実施の形態に係る誘電体アンテナ51と異なっている。本実施の形態では、図24に示したように、アンテナ本体52A,52Bは、支持部54における第3層54Cと第4層54Dの間に配置されている。図24は、X方向に垂直で、第2の部分531Bおよびアンテナ本体52A,52Bと交差する断面を示している。また、本実施の形態では、線路部531の第2の部分531BのY方向の寸法は、線路部531の第1の部分531AのY方向の寸法よりも大きい。
第3の実施の形態と同様に、本実施の形態においても、線路部531は、アンテナ本体52A,52Bに直接接続されておらず、線路部531、特に第2の部分531Bが、アンテナ本体52A,52Bに対して電磁気的に結合する。
次に、本実施の形態に係る誘電体アンテナ51の実施例とその反射減衰特性について説明する。この実施例では、アンテナ本体52A,52Bの厚みは20μmであり、アンテナ本体52A,52Bの長さは1.6mmであり、アンテナ本体52A,52Bの幅は0.3mmである。また、第1の比誘電率E1は200であり、第1の誘電体の誘電正接は0.001であり、第2の比誘電率E2は2.55である。
図25は、実施例の誘電体アンテナ51の反射減衰特性を示す特性図である。図25において、横軸は周波数、縦軸は減衰量である。この反射減衰特性では、減衰量が10dB以上となる周波数帯域が広い。そのため、本実施の形態によれば、送受信可能な周波数帯域を広くすることが可能になる。
本実施の形態におけるその他の構成、作用および効果は、第3の実施の形態と同様である。
[第5の実施の形態]
次に、本発明の第5の実施の形態に係る誘電体アンテナについて説明する。図26は、本実施の形態に係る誘電体アンテナの斜視図である。図27は、本実施の形態に係る誘電体アンテナの断面図である。
本実施の形態に係る誘電体アンテナ51は、以下の点で、第4の実施の形態に係る誘電体アンテナ51と異なっている。本実施の形態に係る誘電体アンテナ51は、第4の実施の形態における2つのアンテナ本体52A,52Bの代わりに、4つのアンテナ本体521,522,523,524を備えている。アンテナ本体521,522,523,524は、いずれも、第1の比誘電率E1を有する第1の誘電体によって構成されている。
図27に示したように、アンテナ本体521,522は、支持部54の第1層54Aの下面に配置され、アンテナ本体523,524は、支持部54の第4層54Dの上面に配置されている。アンテナ本体521,522はY方向に並んでおり、アンテナ本体523,524もY方向に並んでいる。図27は、X方向に垂直で、第2の部分531Bおよびアンテナ本体521,522,523,524と交差する断面を示している。
アンテナ本体521,522,523,524は、それぞれ、所定の長さ、幅および厚みを有する板状である。アンテナ本体521,522,523,524の厚みは、Z方向についてのアンテナ本体521,522,523,524の寸法である。Z方向から見たアンテナ本体521,522,523,524の形状は、それぞれ、2つの辺がX方向に平行で、他の2つの辺がY方向に平行な正方形または長方形である。本実施の形態では、Y方向についてのアンテナ本体521,522,523,524の寸法は、X方向についてのアンテナ本体521,522,523,524の寸法以上である。従って、Y方向についてのアンテナ本体521,522,523,524の寸法がアンテナ本体521,522,523,524の長さであり、X方向についてのアンテナ本体521,522,523,524の寸法がアンテナ本体521,522,523,524の幅である。
アンテナ本体521,522,523,524の厚みは、15μm〜50μmの範囲内である。アンテナ本体521,522,523,524の長さと幅は、いずれも、0.3mm〜3mmの範囲内である。アンテナ本体521,522,523,524の長さは、アンテナ本体521,522,523,524の幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
本実施の形態では、線路部531は、アンテナ本体521,522,523,524に直接接続されておらず、線路部531、特に第2の部分531Bが、アンテナ本体521,522,523,524に対して電磁気的に結合する。
アンテナ本体521,522,523,524は、50GHz〜70GHzの範囲内の共振周波数を有していることが好ましい。アンテナ本体521,522,523,524の共振周波数は、アンテナ本体521,522,523,524が送信(放射)または受信する電磁波の周波数帯域内に存在する。
次に、本実施の形態に係る誘電体アンテナ51の作用について説明する。誘電体アンテナ51を送信用アンテナとして使用する場合には、図示しない高周波電力供給源から線路部531の第1の部分531Aの第1の端部に、高周波電力が供給される。この高周波電力は、伝送部53によって線路部531の第2の部分531Bに伝送され、更に、第2の部分531Bに電磁気的に結合するアンテナ本体521,522,523,524に供給される。アンテナ本体521,522,523,524は、供給された高周波電力を電磁波に変換して、この電磁波を送信(放射)する。
誘電体アンテナ51を受信用アンテナとして使用する場合には、アンテナ本体521,522,523,524は、受信した電磁波を高周波電力に変換して、線路部531の第2の部分531Bへ出力する。この高周波電力は、伝送部53によって線路部531の第1の部分531Aの第1の端部に伝送されて、第1の端部に接続された図示しない回路へ送られる。
本実施の形態におけるその他の構成、作用および効果は、第4の実施の形態と同様である。
[第6の実施の形態]
次に、本発明の第6の実施の形態に係る誘電体アンテナについて説明する。図28は、本実施の形態に係る誘電体アンテナの斜視図である。図29は、本実施の形態に係る誘電体アンテナの側面図である。
本実施の形態に係る誘電体アンテナ51は、以下の点で、第4の実施の形態に係る誘電体アンテナ51と異なっている。本実施の形態に係る誘電体アンテナ51は、第4の実施の形態における2つのアンテナ本体52A,52Bの代わりに、2つのアンテナ本体62A,62Bを備えている。アンテナ本体62A,62Bは、いずれも、第1の比誘電率E1を有する第1の誘電体によって構成されている。
アンテナ本体62A,62Bは、支持部54の1つの側面に配置されている。図27は、アンテナ本体62A,62Bが配置された支持部54の1つの側面を示している。
アンテナ本体62A,62Bは、それぞれ、所定の長さ、幅および厚みを有する板状である。アンテナ本体62A,62Bの厚みは、X方向についてのアンテナ本体62A,62Bの寸法である。X方向から見たアンテナ本体62A,62Bの形状は、それぞれ、2つの辺がY方向に平行で、他の2つの辺がZ方向に平行な正方形または長方形である。本実施の形態では、Y方向についてのアンテナ本体62A,62Bの寸法は、Z方向についてのアンテナ本体61A,62Bの寸法以上である。従って、Y方向についてのアンテナ本体62A,62Bの寸法がアンテナ本体62A,62Bの長さであり、Z方向についてのアンテナ本体62A,62Bの寸法がアンテナ本体62A,62Bの幅である。
アンテナ本体62A,62Bの厚みは、15μm〜50μmの範囲内である。アンテナ本体62A,62Bの長さと幅は、いずれも、0.3mm〜3mmの範囲内である。アンテナ本体62A,62Bの長さは、アンテナ本体62A,62Bの幅の1〜5倍の範囲内であることが好ましく、1〜3.5倍の範囲内であることがより好ましい。
本実施の形態では、線路部531の第2の部分531Bは、アンテナ本体62A,62Bの近くに配置されている。線路部531は、アンテナ本体62A,62Bに直接接続されておらず、線路部531、特に第2の部分531Bが、アンテナ本体62A,62Bに対して電磁気的に結合する。
アンテナ本体62A,62Bは、50GHz〜70GHzの範囲内の共振周波数を有していることが好ましい。アンテナ本体62A,62Bの共振周波数は、アンテナ本体62A,62Bが送信(放射)または受信する電磁波の周波数帯域内に存在する。
次に、本実施の形態に係る誘電体アンテナ51の作用について説明する。誘電体アンテナ51を送信用アンテナとして使用する場合には、図示しない高周波電力供給源から線路部531の第1の部分531Aの第1の端部に、高周波電力が供給される。この高周波電力は、伝送部53によって線路部531の第2の部分531Bに伝送され、更に、第2の部分531Bに電磁気的に結合するアンテナ本体62A,62Bに供給される。アンテナ本体62A,62Bは、供給された高周波電力を電磁波に変換して、この電磁波を送信(放射)する。
誘電体アンテナ51を受信用アンテナとして使用する場合には、アンテナ本体62A,62Bは、受信した電磁波を高周波電力に変換して、線路部531の第2の部分531Bへ出力する。この高周波電力は、伝送部53によって線路部531の第1の部分531Aの第1の端部に伝送されて、第1の端部に接続された図示しない回路へ送られる。
本実施の形態におけるその他の構成、作用および効果は、第4の実施の形態と同様である。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、アンテナ本体の形状は、特許請求の範囲に記載された要件を満たす限り任意である。
1…誘電体アンテナ、2…アンテナ本体、3…伝送部、4…支持部。

Claims (8)

  1. 第1の比誘電率を有する第1の誘電体よりなり、高周波電力と電磁波の相互変換を行うアンテナ本体と、
    前記アンテナ本体に供給する高周波電力または前記アンテナ本体から出力される高周波電力の伝送を行う伝送部とを備えた誘電体アンテナであって、
    前記アンテナ本体は、所定の長さ、幅および厚みを有する板状であり、
    前記アンテナ本体の厚みは、15μm〜50μmの範囲内であり、
    前記アンテナ本体の長さと幅は、いずれも0.3mm〜3mmの範囲内であることを特徴とする誘電体アンテナ。
  2. 前記第1の比誘電率は150〜500の範囲内であり、前記第1の誘電体の誘電正接は0.01以下であることを特徴とする請求項1記載の誘電体アンテナ。
  3. 前記アンテナ本体は、50GHz〜70GHzの範囲内の共振周波数を有することを特徴とする請求項1または2記載の誘電体アンテナ。
  4. 前記アンテナ本体の長さは、前記アンテナ本体の幅の1〜5倍の範囲内であることを特徴とする請求項1ないし3のいずれかに記載の誘電体アンテナ。
  5. 更に、前記第1の比誘電率よりも小さい第2の比誘電率を有する第2の誘電体よりなり、前記アンテナ本体を支持する支持部を備えたことを特徴とする請求項1ないし4のいずれかに記載の誘電体アンテナ。
  6. 前記伝送部は、導体よりなる線路部を有することを特徴とする請求項1ないし5のいずれかに記載の誘電体アンテナ。
  7. 前記線路部は、前記アンテナ本体に直接接続されていることを特徴とする請求項6記載の誘電体アンテナ。
  8. 前記線路部は、前記アンテナ本体に対して電磁気的に結合することを特徴とする請求項6記載の誘電体アンテナ。
JP2014137704A 2014-07-03 2014-07-03 誘電体アンテナ Active JP6282011B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137704A JP6282011B2 (ja) 2014-07-03 2014-07-03 誘電体アンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137704A JP6282011B2 (ja) 2014-07-03 2014-07-03 誘電体アンテナ

Publications (2)

Publication Number Publication Date
JP2016015679A true JP2016015679A (ja) 2016-01-28
JP6282011B2 JP6282011B2 (ja) 2018-02-21

Family

ID=55231551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137704A Active JP6282011B2 (ja) 2014-07-03 2014-07-03 誘電体アンテナ

Country Status (1)

Country Link
JP (1) JP6282011B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230819A1 (ja) * 2019-05-16 2020-11-19 Agc株式会社 平面アンテナ、アンテナ積層体及び車両用窓ガラス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144198A (ja) * 1990-10-04 1992-05-18 Matsushita Electric Ind Co Ltd マイクロ波吸収体
JPH05262562A (ja) * 1992-03-17 1993-10-12 Fine Ceramics Center フォルステライト磁器の作製方法
US5952972A (en) * 1996-03-09 1999-09-14 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Broadband nonhomogeneous multi-segmented dielectric resonator antenna system
JP2001077624A (ja) * 1999-09-01 2001-03-23 Hitachi Cable Ltd 誘電体アンテナ
JP2002068829A (ja) * 2000-08-23 2002-03-08 Japan Fine Ceramics Center 磁器および磁器の製造方法
US20090128262A1 (en) * 2007-11-15 2009-05-21 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144198A (ja) * 1990-10-04 1992-05-18 Matsushita Electric Ind Co Ltd マイクロ波吸収体
JPH05262562A (ja) * 1992-03-17 1993-10-12 Fine Ceramics Center フォルステライト磁器の作製方法
US5952972A (en) * 1996-03-09 1999-09-14 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Industry Through The Communications Research Centre Broadband nonhomogeneous multi-segmented dielectric resonator antenna system
JP2001077624A (ja) * 1999-09-01 2001-03-23 Hitachi Cable Ltd 誘電体アンテナ
JP2002068829A (ja) * 2000-08-23 2002-03-08 Japan Fine Ceramics Center 磁器および磁器の製造方法
US20090128262A1 (en) * 2007-11-15 2009-05-21 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATABAK RASHIDIAN AND LOTFOOLLAH ASHAFAI: "A Highly-Efficient Planar Dielectric Radiating Structure", 2013 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM) PROCEEDINGS, JPN6016027387, July 2013 (2013-07-01), US, pages 16, XP032552158, ISSN: 0003361104, DOI: 10.1109/USNC-URSI.2013.6715322 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020230819A1 (ja) * 2019-05-16 2020-11-19 Agc株式会社 平面アンテナ、アンテナ積層体及び車両用窓ガラス
US11967769B2 (en) 2019-05-16 2024-04-23 AGC Inc. Planar antenna, layered antenna structure, and window glass for vehicle
JP7511134B2 (ja) 2019-05-16 2024-07-05 Agc株式会社 平面アンテナ、アンテナ積層体及び車両用窓ガラス

Also Published As

Publication number Publication date
JP6282011B2 (ja) 2018-02-21

Similar Documents

Publication Publication Date Title
US9793611B2 (en) Antenna
Haraz et al. Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks
US9627775B2 (en) Microstrip antenna
KR100799875B1 (ko) 칩 안테나 및 이를 포함하는 이동통신 단말기
JP4246004B2 (ja) 誘電体共振広帯域アンテナ
CN105470611B (zh) 高频电力转换机构
US8665158B2 (en) Printed filtering antenna
EP1271691A2 (en) Dielectric resonator antenna
KR101505595B1 (ko) 탑 로우딩된 미앤더 선로 방사체의 소형 안테나
CN105428802B (zh) 一种具有滤波特性的宽带缝隙天线
JP2014150526A (ja) アンテナアセンブリ及び該アンテナアセンブリを備える通信装置
JP5666642B2 (ja) 小型アンテナ
TW201345177A (zh) 多輸入多輸出天線裝置
KR101718761B1 (ko) 대각 방향의 방사를 위한 밀리미터파 대역 안테나
CN205211937U (zh) 一种具有滤波特性的宽带缝隙天线
KR101371765B1 (ko) 무선 전력 전송 장치 및 무선 전력 송수신 시스템
JP2015062276A (ja) アンテナ
TW201926802A (zh) 利用非輻射耦合邊實現隔離之多天線系統
CN103500876B (zh) Uhf频段双频圆极化低剖面空气微带天线
JP6282011B2 (ja) 誘電体アンテナ
CN103794874A (zh) 双t形开槽式双频微带天线
CN101847785A (zh) 双频平面式微带天线
KR101939948B1 (ko) 원형편파 특성이 개선된 소형 예루살렘 십자형 패치 안테나
KR102690950B1 (ko) 다중 대역을 이용하는 안테나
CN111373603B (zh) 通信设备

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161220

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6282011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150