KR101718761B1 - 대각 방향의 방사를 위한 밀리미터파 대역 안테나 - Google Patents

대각 방향의 방사를 위한 밀리미터파 대역 안테나 Download PDF

Info

Publication number
KR101718761B1
KR101718761B1 KR1020150160190A KR20150160190A KR101718761B1 KR 101718761 B1 KR101718761 B1 KR 101718761B1 KR 1020150160190 A KR1020150160190 A KR 1020150160190A KR 20150160190 A KR20150160190 A KR 20150160190A KR 101718761 B1 KR101718761 B1 KR 101718761B1
Authority
KR
South Korea
Prior art keywords
metal layer
microstrip line
antenna
dielectric substrate
long
Prior art date
Application number
KR1020150160190A
Other languages
English (en)
Inventor
박철순
장태환
김홍이
이채준
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020150160190A priority Critical patent/KR101718761B1/ko
Priority to US15/006,206 priority patent/US20170141472A1/en
Application granted granted Critical
Publication of KR101718761B1 publication Critical patent/KR101718761B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2291Supports; Mounting means by structural association with other equipment or articles used in bluetooth or WI-FI devices of Wireless Local Area Networks [WLAN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/26Surface waveguide constituted by a single conductor, e.g. strip conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Abstract

대각 방향의 방사를 위한 밀리미터파 대역 안테나가 개시된다. 유전체 기판의 저면의 적어도 일부 영역에 제1 금속층이 코팅되고, 상면의 적어도 일부 영역에는 마이크로스트립 선로 형태의 제2 금속층이 코팅된다. 유전체 기판의 상면 쪽에서 저면 쪽으로 보았을 때, 제2 금속층은 제1 금속층 영역에 포함되게 배치된다. 제2 금속층의 마이크로스트립 선로는 무선송출할 신호의 파장의 절반 이상의 길이를 가진다. 제1 금속층이 접지된 상태에서, 제2 금속층의 마이크로스트립 선로에 무선송출할 신호가 인가되면, 위쪽 대각선 방향으로의 무선신호 방사패턴을 나타낸다. 제2 금속층은 직선형, Y자형,
Figure 112015111175758-pat00024
-자형 또는 다지형 마이크로스트립 선로 형태로 만들 수 있다. 유전체 기판의 상면에는 제2 금속층과 연결되어 안테나의 임피던스 정합도를 향상시켜주는 임피던스 정합용 금속층이 더 마련될 수도 있다.

Description

대각 방향의 방사를 위한 밀리미터파 대역 안테나 {Millimeter Wave Antenna for Diagonal Radiation}
본 발명은 롱-와이어 안테나에 관한 것으로서, 보다 상세하게는 대각 방향 방사를 위한 밀리미터파 대역 안테나에 관한 것이다.
최근에 와이기그(Wireless Gigabit: WiGig)와 같은 밀리미터파를 활용한 Gbps급 무선 데이터 전송 기술 개발이 활발히 이루어지고 있다. 특히, 통신 단말기의 밀리미터파 대역 고속 데이터 통신과 칩간 통신을 위한 인터페이스를 구성하는 무선통신이 각광을 받고 있다. 그리고 이를 위한 밀리미터파용 안테나가 주목을 받고 있다.
여러 가지의 밀리미터파용 안테나가 발표되었는데, 일반적으로 수평방향과 수직방향의 통신을 위한 안테나가 발표되었다. 예컨대 이동통신 단말기 상에 사용되는 평면 기판 상에 구현된 안테나들도 수직 혹은 수평방향으로 방사하도록 설계되었다. 하지만, 밀리미터파대역에서 실질적으로 사용하기 위해서는 다양한 방향의 전송을 위해 대각방향으로 방사를 하는 안테나가 필요하다.
밀리미터파 대역 통신에서는 고이득과 좁은 빔 폭의 안테나가 필요하다. 그런데 수직 혹은 수평방향으로 방사되도록 설계된 안테나는 빔 폭이 지면에 대각방향까지 포함하지 않기 때문에, 대각방향으로 방사하는 안테나가 별도로 필요하다. 예컨대 롱-와이어 안테나는 이득이 크고 대각방향으로 방사하는 특성이 있어 밀리미터파 대역에서의 응용에 적합하다. 하지만, 현재까지 알려진 롱-와이어 안테나들은 크기가 수 센티미터에서 수 미터까지로 매우 커서 칩과 안테나의 연결 상의 문제로 인해 밀리미터파 대역 통신에 적합하지 않다. 그러므로 밀리미터파를 이용한 다양한 어플리케이션에 적용되기 위하여, 사이즈가 크지 않으면서 고 이득 특성과 동시에 대각방향으로 방사하는 안테나의 개발이 필요하다.
이에 본 발명은 상기한 바와 같은 종래 기술의 문제점을 인식하고 착안한 것으로, 본 발명의 기술적 과제는 대각방향 방사 특성이 좋은 밀리미터파 대역용 안테나를 제공하는 것이다.
본 발명의 또 다른 기술적 과제는 대각방향 방사 특성이 좋고 소형 사이즈로 설계될 수 있는 밀리미터파 대역용 안테나를 제공하는 것이다.
위와 같은 목적을 달성하기 위한 본 발명의 일 실시예에 따르면, 유전체 기판과, 상기 유전체 기판의 저면의 적어도 일부 영역에 코팅된 제1 금속층과, 상기 유전체 기판의 상면의 적어도 일부 영역에 마이크로스트립 선로 형태로 코팅된 제2 금속층을 포함하는 밀리미터파 대역의 롱-와이어 안테나가 제공된다. 이 밀리미터파 대역의 롱-와이어 안테나는 상기 유전체 기판의 상면 쪽에서 저면 쪽으로 보았을 때, 상기 제2 금속층은 상기 제1 금속층 영역에 포함되게 배치된 구조를 갖는다. 또한, 상기 제2 금속층의 마이크로스트립 선로는 무선송출할 신호의 파장의 절반 이상의 길이를 가진다. 이 밀리미터파 대역의 롱-와이어 안테나는, 상기 제1 금속층이 접지된 상태에서, 상기 제2 금속층의 마이크로스트립 선로에 무선송출할 신호가 인가되면, 위쪽 대각선 방향으로의 무선신호 방사패턴을 나타낸다.
본 발명의 일 실시예에 따르면, 상기 제2 마이크로스트립 선로는 직선형 마이크로스트립 선로일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 마이크로스트립 선로는, 선행하는 일부 구간이 직선형 마이크로스트립 선로이고, 후행하는 나머지 구간이 상기 직선형 마이크로스트립 선로의 말단에서 두 갈래로 분기된 마이크로스트립 선로이어서, 전체적으로 Y-자형 마이크로스트립 선로일 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 마이크로스트립 선로는, 선행하는 일부 구간이 직선형 마이크로스트립 선로이고, 후행하는 나머지 구간이 상기 직선형 마이크로스트립 선로의 말단에서 세 갈래 이상으로 분기된 마이크로스트립 선로이어서, 전체적으로 포크 모양을 닮은
Figure 112015111175758-pat00001
-자형 또는 다지형 마이크로스트립 선로일 수 있다.
본 발명의 일 실시예에 따르면, 상기 밀리미터파 대역의 롱-와이어 안테나는 상기 유전체 기판의 상면의 상기 제2 금속층의 양 옆에 코팅 또는 접합된 코플라나 웨이브가이드(GCPW) 선로를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 코플라나 웨이브가이드(GCPW) 선로는, 상기 제2 금속층의 양 옆에 이격되어 상기 유전체 기판의 상면에 코팅된 한 쌍의 접지 금속 패드와, 상기 한 쌍의 접지 금속 패드에서 상기 제1 금속층까지 연통된 비어홀과, 상기 비어홀을 통해 상기 한 쌍의 접지 금속 패드와 상기 제1 금속층을 전기적으로 연결하는 연결 선로를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 선행하는 일부 구간과 상기 후행하는 나머지 구간은 실질적으로 동일한 길이를 가질 수 있다.
본 발명의 일 실시예에 따르면, 상기 밀리미터파 대역의 롱-와이어 안테나는, 상기 유전체 기판의 상면에 코팅되고 상기 제2 금속층과 연결되어, 안테나의 임피던스 정합도를 향상시켜주는 임피던스 정합용 금속층을 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 금속층은 상기 제1 금속층에 비해 무선송출할 신호의 급전방향의 길이가 더 짧아서, 상기 제2 금속층으로 덮이지 않는 상기 제1 금소층의 구간이 존재할 수 있다.
본 발명의 일 실시예에 따르면, 상기 제2 금속층에서 아래쪽 대각선 방향과 위쪽 대각선 방향으로 방사된 무선신호 중 상기 아래쪽 대각선 방향으로 방사된 무선신호는 상기 제1 금속층에 의해 반사되어 상기 위쪽 대각선 방향으로 방사된 무선신호와 함께 전파되도록 하는 구조일 수 있다.
이상과 같은 본 발명에 따른 롱-와이어 안테나를 유전체 기판 내에 구현함으로써 대각방향으로 방사하는 특성을 얻을 수 있다. 또한, 이를 변형한 구조로, 안테나의 높이를 줄일 수 있다. 즉, 본 발명에 따른 안테나는 밀리미터파 대역용이면서, 수직방향이나 수평방향이 아닌 대각방향으로의 방사가 가능하도록 설계하여 다양한 어플리케이션에 적용할 수 있는 장점을 갖는다.
본 발명에 따른 안테나 구조는 효율적인 밀리미터 대역을 이용한 이동단말기 및 무선 시스템에 적합한 안테나 구조가 될 수 있다. 또한, 본 발명에 따르면 이러한 종류의 안테나의 크기를 줄이는 것이 가능하여, 안테나 사용 기기들의 소형화 추세에 부응할 수 있다.
도 1은 이동단말기와 고성능 디스플레이 장치의 수평 방사 패턴을 이용한 전송 방식을 나타낸 도면이다.
도 2는 이동단말기와 고성능 디스플레이 장치의 수직 방사 패턴을 이용한 전송 방식을 나타낸 도면이다.
도 3은 이동단말기와 고성능 디스플레이 장치의 대각 방향 방사 패턴을 이용한 전송 방식을 나타낸 도면이다.
도 4는 본 발명의 기본 개념을 설명하기 위한 2선식 롱-와이어 안테나의 방사 패턴이다.
도 5는 본 발명에 제1 실시예에 따라, 기판 상에 마이크로스트립 선로로 구현된 직선형 롱-와이어 안테나의 정면도이다.
도 6은 본 발명에 제2 실시예에 따라, 기판 상에 마이크로스트립 선로로 구현된 Y-모양 롱-와이어 안테나의 정면도이다.
도 7은 본 발명에 제3 실시예에 따라, 기판 상에 마이크로스트립 선로로 구현된
Figure 112015111175758-pat00002
-자 모양 롱-와이어 안테나의 정면도이다.
도 8은 본 발명의 제1 내지 제3 실시예에 따른 안테나의 측면도이다.
도 9는 본 발명의 제4 실시예에 따라, 기판 상에 접지 코플라나 스트립라인 선로로 구현된 롱-와이어 안테나의 정면도이다.
도 10은 본 발명의 제5 실시예에 따라, 기판 상에 접지 코플라나 스트립라인 선로로 구현된 Y-자 모양 안테나의 정면도이다.
도 11은 본 발명의 제6 실시예에 따라, 기판 상에 접지 코플라나 스트립라인 선로로 구현된
Figure 112015111175758-pat00003
-자 모양 안테나의 정면도이다.
도 12는 본 발명의 제4 내지 제6 실시예에 따른 안테나의 측면도이다.
도 13은 발명의 제7 실시예에 따라, 기판 상에 접지 코플라나 스트립라인 선로로 구현된 일반화된
Figure 112015111175758-pat00004
-자 모양 안테나의 정면도이다.
도 14는 발명의 제8 실시예에 따라, 기판 상에 접지 코플라나 스트립라인 선로로 구현된 롱-와이어 안테나에 임의의 임피던스 매칭 회로가 추가된 안테나의 정면도이다.
도 15는 기판 상에 구현된 롱-와이어 안테나의 반사손실 특성 그래프이다.
도 16은 기판 상에 구현된 Y-자 모양 안테나의 반사손실 특성 그래프이다.
도 17은 기판 상에 구현된
Figure 112015111175758-pat00005
-자 모양 안테나의 반사손실 특성 그래프이다.
도 18은 기판 상에 구현된 롱-와이어 안테나의 E-평면 방사 패턴이다.
도 19는 기판 상에 구현된 롱-와이어 안테나의 H-평면 방사 패턴이다.
도 20은 기판 상에 구현된 Y-자 모양 안테나의 E-평면 방사 패턴이다.
도 21은 기판 상에 구현된 Y-자 모양 안테나의 H-평면 방사 패턴이다.
도 22는 기판 상에 구현된
Figure 112015111175758-pat00006
-자 모양 안테나의 E-평면 방사 패턴이다.
도 23은 기판 상에 구현된
Figure 112015111175758-pat00007
-자 모양 안테나의 H-평면 방사 패턴이다.
도 1은 이동통신 단말기(10)에서 디스플레이 장치(20)로 대용량의 데이터를 무선 방식으로 전송으로 하는 경우를 도시한다. 이동통신 단말기(10)에는 기판 상에 구현된 안테나(비도시)가 내장된다. 그 안테나는 수평 방향 방사 특성을 갖는 안테나이다. 그러므로 대용량 데이터 전송 시, 도시된 것처럼 디스플레이 장치(20)와 비슷한 높이에서 이동통신 단말기(10)를 수평으로 눕힐 때 전송 효율이 높게 나타난다.
도 2는 이동통신 단말기(10)에 내장된 안테나의 수직 방향 방사 패턴을 이용한 전송 방식을 나타낸다. 이동통신 단말기(10)를 수직으로 세울 때, 그와 비슷한 높이에 있는 디스플레이 장치(20)에 대한 전송 효율이 가장 좋다.
그런데 이동 단말기와 같이 밀리미터파 대역을 이용한 무선통신에 있어서, 위와 같은 수직 혹은 수평 방향 통신 뿐 아니라 그 둘의 중간 방향인 대각 방향으로의 방사를 이용한 통신 방법 또한 필요하게 된다. 도 3은 이동통신 단말기(10)에서 대용량 데이터 전송 시 안테나의 대각 방향 방사 패턴을 이용한 무선 전송을 하는 것을 나타낸다. 이런 대각 방향 방사 특성이 우수한 안테나를 제공하는 것이 바로 본 발명이 추구하는 것이다.
이를 위해, 본 발명은 롱-와이어 안테나의 방사 특성에 주목한다. 도체 선로를 길게 연장한(예컨대 1 파장 이상의 길이)하면
대각 방향의 방사 패턴을 얻을 수 있다. 즉, 도 4에 도시된 것처럼, 나란하게 연장된 2가닥의 도체선로로 구성된 롱-와이어 안테나(30)는 각 도체선로에서 길이 방향을 기준으로 아래쪽 대각방향과 위쪽 대각방향으로 방사하는 특성을 보인다. 이런 점에 터잡아, 안테나의 크기를 작게 하면서도, 제한된 공간에 설치하기에도 적합하며, 제작이 용이한 대각 방향 방사 특성을 지닌 안테나 구조를 개발, 발전시킬 필요가 있다.
도 5는 본 발명의 제1 실시예에 따른 직선형 롱-와이어 안테나(40)를 도시한다. 도 8은 이 안테나(40)의 측면도를 나타낸다. 이 롱-와이어 안테나(40)는 유전체 기판(46)을 중심으로 이의 저면과 상면에 하부 금속층과 상부 금속층이 각각 접합 또는 코팅되어 있다. 하부 금속층은 접지 전극판(44)으로 제공되고, 상부 금속층은 급전 선로로 제공되는 마이크로스트립 선로(42)일 수 있다.
직선형 마이크로 스트립선로(42)가 각각 접합 또는 코팅되어 있다. 유전체 기판(46)은 예컨대 일정한 두께를 가진 사각형일 수 있다. 유전체 기판(46)은 예컨대 인쇄회로용 기판으로 만들 수 있다. 마이크로 스트립선로(42)는 유전체 기판(46)의 제1 모서리의 중간 지점에서 x방향(제1 모서리의 맞은편 모서리 쪽)으로 소정 길이(L) 연장된다. 마이크로 스트립선로(42)는 선형 띠 모양이며, 이의 길이(L)와 폭(W)은 임피던스 매칭을 고려하여 정해질 수 있다.
도 6과 도 7은 본 발명의 제2 및 제3 실시예에 따른 안테나 구조(50, 60)를 도시한다. 제1 실시예에 따른 직선형 롱-와이어 안테나(40)에서 임피던스 정합 특성을 개선시키기 위해서 구조를 변형시키거나 추가한 것이다.
구체적으로, 도 6은 직선형 구조의 변형 예로서, Y-자형 롱-와이어 안테나(50)의 정면도이다. Y-자형 롱-와이어 안테나(50)는 유전체 기판(46)의 저면에 접지 전극판(44)이 접합 또는 코팅되어 있는 점에서 제1 실시예와 같으나, 유전체 기판(46)의 상면에 배치된 마이크로 스트립선로(52)가 Y자형인 점에서 제1 실시예와 차이가 있다.
도 7은 Y-자형 안테나(50)에서 가지를 한 개 더 늘인 변형 예로서,
Figure 112015111175758-pat00008
-자형 롱-와이어 안테나(60)의 정면도이다. 이
Figure 112015111175758-pat00009
-자형 롱-와이어 안테나(60)는 유전체 기판(46)의 상면에 배치된 마이크로 스트립선로(62)가
Figure 112015111175758-pat00010
-자 모양인 점에서 제1 실시예와 차이가 있다.
마이크로 스트립선로(42, 52, 62)의 길이(L)는 적어도 전송하려는 무선신호의 반파장의 길이(λ/2) 이상인 것이 바람직하다. 제2 및 제3 실시예에서, 마이크로 스트립선로의 기둥 구간(54, 64)의 x방향 길이와 가지 구간(56, 66)의 x방향 길이는 대략 같게 하는 것이 바람직하다. 예컨대, 마이크로 스트립선로(52, 62)의 길이(L)가 한 파장(λ)일 때, 기둥 구간(54, 64)과 가지 구간(56, 66)은 각각 반파장의 길이(λ/2)일 수 있다.
이러한 구성을 갖는 제1 내지 제3 롱-와이어 안테나(40, 50, 60)는 실질적으로 동일한 방사패턴을 갖는다. 즉, x=0인 지점에서 마이크로 스트립선로(42, 52, 62)에 송신신호가 급전되었을 때, 이들 안테나(40, 50, 60)에서는 x 방향과 z 방향 사이의 대각방향으로 무선 신호가 송출되는 방사 패턴을 갖는다.
다만, 제1 내지 제3 롱-와이어 안테나(40, 50, 60) 간에는 임피던스 매칭에 있어서 차이가 있을 뿐이다. 제1 롱-와이어 안테나(40)의 경우, x=0인 지점, x=L/2인 지점, 그리고 x=L인 지점의 어디에서건 제1 롱-와이어 안테나(40)쪽을 보았을 때 임피던스는 동일한 값(예컨대 200Ω)인다. 이에 비해, 제2 롱-와이어 안테나(50)의 경우, 기둥 구간(54)은 제1 롱-와이어 안테나(40)와 동일하지만, 가지 구간(56)은 두 개의 가지가 병렬로 연결된 것과 같다. 따라서 가지 구간(56)의 시작점(x=L/2)에서 제2 롱-와이어 안테나(50)를 보았을 때의 임피던스는 제1 롱-와이어 안테나(40)의 대응 경우에 비해 1/2로 줄어든다. 예컨대 200Ω의 두 가지가 병렬로 연결된 것과 같아서, x=L/2에서는 임피던스가 100Ω이 된다. 제3 롱-와이어 안테나(60)는 제2 롱-와이어 안테나(50)에 비해 가지의 개수가 더 많다. 그러므로 제3 롱-와이어 안테나(60)의 경우, x=L/2에서의 안테나 임피던스는 제2 롱-와이어 안테나(50)의 그것에 비해 더 작은 값이 될 수 있다.
유전체 기판(46)의 하부 금속인 접지 전극판(44)은 유전체 기판(46)의 저면 전체에 코팅 또는 접합된 것으로 도시되어 있지만, 반드시 그 저면의 전체를 덮을 필요는 없고 일부에만 코팅 또는 접합될 수도 있다.
유전체 기판(46)의 상면에 배치된 마이크로 스트립선로(42, 52, 62)는 정면에서 보았을 때 접지 전극판(44)에 포함되는 관계일 필요가 있다. 마이크로 스트립선로(42, 52, 62)는 그 길이(L)와 폭(W)이 접지 전극판(44)의 그것보다 크지 않고, 배치 위치 또한 대략 접지 전극판(44)의 가운데 부분을 따라 배치된 형태인 것이 바람직하다. 이러한 배치 관계에 의해, 마이크로 스트립선로(42, 52, 62)에서 아래쪽 대각방향으로 방사되는 전자파는 접지 전극판(44)에서 반사되어 위쪽 대각방향으로 퍼져나갈 수 있다.
도 5 내지 7에 예시된 것과 같이 안테나(40, 50, 60) 구조에 따르면, 마이크로 스트립선로(42, 52, 62)의 x방향 길이(L)는 접지 전극판(44)의 x방향 길이(S)보다 짧을 수 있다. 이 경우, 마이크로 스트립선로(42, 52, 62)와 접지 전극판(44)이 x방향으로 같은 위치에서 시작하였을 때, 유전체 기판(46)의 상면에는 마이크로 스트립선로(42, 52, 62)가 없는 구간(66)이 생긴다. 이 마이크로 스트립선로 부재구간(66)은 접지전극판(44)에 의해 반사된 전자파가 x 방향과 z 방향 사이의 대각방향으로 더 많이 방사되는 것을 보장해줄 수 있다.
다음으로, 도 9, 10, 11은 본 발명의 제4 내지 6 실시예에 따른 롱-와이어 안테나(70, 80, 90)의 정면도이고, 도 12는 이들 롱-와이어 안테나(70, 80, 90)의 측면도이다. 이들 세 실시예의 안테나(70, 80, 90)는 유전체 기판(46)의 상면에 마련되는 상부 금속이 마이크로 스트립 선로 대신에 접지 코플라나 웨이브가이드(GCPW) 선로로 구성된 점에서 위에서 설명한 제1 내지 제3 실시예와 다르다.
구체적으로, 도 9에 예시된 제4 실시예에 따른 안테나(70)는, 제1 실시예와 마찬가지로, 유전체 기판(46)의 상부에 금속재의 직선형 마이크로 스트립 선로(42)가 마련되고, 그 마이크로스트립 선로(42)의 양 옆의 유전체 기판(46) 상면에 한 쌍의 코플라나 웨이브가이드(GCPW) 선로(74a, 74b)가 접합 또는 코팅된다. 그 한 쌍의 코플라나 웨이브가이드 선로(74a, 74b) 각각은 유전체 기판의 상면에 코팅된 한 쌍의 접지 금속 패드와, 그 접지 금속 패드에서 유전체 기판(46)을 관통하여 접지 전극판(44)까지 연장된 비어홀(76)이 마련된다. 그 한 쌍의 접지 금속 패드는 그 비어홀(76)을 통과하는 연결선로를 통해 접지 전극판(44)과 전기적으로 연결된다. 따라서 그 한 쌍의 코플라나 웨이브가이드 선로(74a, 74b)는 접지 전극판(44)이 접지되는 경우 함께 접지된다. 그 한 쌍의 코플라나 웨이브가이드 선로(74a, 74b)는 실제 밀리미터파 대역에서 칩과 안테나를 연결함에 있어서 플립-칩 접합 기술 또는 와이어-본딩 기술을 이용하여 그 칩과 안테나가 연결되도록 하는 데 필요한 구조일 수 있다.
도 10에 예시된 제5 실시예에 따른 안테나(80)는, 도 6에 예시된 제2 실시예에 따른 안테나(50)의 Y-자형 마이크로스트립 선로(52)의 기둥 구간(54) 양 옆에 한 쌍의 코플라나 웨이브가이드(GCPW) 선로(74a, 74b)가 더 마련된 구조이다. 도 11에 예시된 제6 실시예에 따른 안테나(90) 역시, 도 7에 예시된 제3 실시예에 따른 안테나(60)의
Figure 112015111175758-pat00011
-자형 마이크로스트립 선로(62)의 기둥 구간(64) 양 옆에 한 쌍의 코플라나 웨이브가이드(GCPW) 선로(74a, 74b)가 더 마련된 구조이다. 이 두 안테나(80, 90)에서, 한 쌍의 코플라나 웨이브가이드(GCPW) 선로(74a, 74b)는 제4 실시예의 안테나(70)와 마찬가지로, 비어홀(76)을 통해 접지 전극판(44)에 전기적으로 연결된다.
위와 같은 실시예들에 의거하면, 도 13 및 도 14에 예시된 구조의 안테나로 변형하는 응용도 유추할 수 있을 것이다. 도 13에 예시된 제7 실시예의 안테나(100)는 제6 실시예에 따른 안테나(90)의 변형예로서, 마이크로스트립 선로(102)의 가지 구간(104)의 선로가지의 개수를 4개 이상으로 마련된 구조이다. 마이크로스트립 선로(102)의 가지 구간(104)의 선로가지의 개수가 많아질수록 그 가지 구간(104)의 임피던스는 더 감소하게 된다.
도 14에 예시된 제8 실시예의 안테나(110)는 도 9에 도시된 제4 실시예에 따른 안테나(70)에 임피던스 매칭회로를 부가한 구조이다. 도면에는 2개의 임피던스 매칭회로(114a, 114b)가 직선형 마이크로스트립 선로(42)의 좌우에 배치되어 서로 전기적으로 연결된 형태가 도시되어 있는데, 이는 예시적인 것이다. 임피던스 매칭회로는 한 개나 또는 3개 이상이 부가될 수도 있을 것이다. 또한, 그것의 형태나 크기 또한, 요구되는 크기의 임피던스를 구성할 수 있다면, 특별한 제한도 없다.
이상과 같은 여러 가지 실시예들에 따른 안테나(40, 50, 60, 70, 80, 90)는 판상의 유전체 기판(46)의 양면에 금속박을 입힌 재료를 이용하여 만들 수 있다. 예컨대, 그 재료의 상면에 여러 형태의 금속 선로(42, 52, 62)는 에칭 공정을 통해 형성할 수 있다. 또한, 한 쌍의 코플라나 웨이브가이드(GCPW) 선로(74a, 74b) 역시 에칭 공정으로 형성할 수 있다.
한편, 도 15, 도 16, 도 17은 본 발명에서 제안하는 대각방향 방사 안테나의 반사손실 특성을 나타낸다. 도 18, 도 19, 도 20, 도 21, 도 22, 도 23은 본 발명에서 제안하는 대각방향 방사 안테나의 E-평면과 H-평면의 방사 패턴을 도시한 그림이다.
도 15 내지 도 23에 나타낸 데이터는 3D EM 시뮬레이션 환경을 통하여 확인된 결과이다. 실시 예로 구현의 가능성을 설명하고자 그 시뮬레이션 결과를 삽입하였다. 시뮬레이션에서, 유전체 기판(46)은 타코닉(Taconic) TLY-5 을 이용하여 유전율(dielectric constant) 2.2, 유전손실(loss tangent) 0.009의 조건을 적용 하였으며, 유전체 기판(46)의 상면과 하면에 접합 또는 코팅된 금속(접지 전극판(44), 마이크로스트립 선로(42, 52, 62) 등)은 구리(Cu)를 사용하여 구성하였다. 설계된 안테나 구조의 크기는 제안된 직선형 롱-와이어 안테나(40, 70), Y-자 모양 안테나(50, 80), 그리고
Figure 112015111175758-pat00012
-자 모양 안테나(60, 90) 모두 가로 2.5mm, 세로 5mm이고, 높이 0.38mm로 설계되었다.
본 실시예의 결과는 Taconic 유전체 기판의 특성을 활용하여 설계하였지만, 평면 기판의 성격을 갖는 다양한 기판들(PCB, Duroid, Alumina, Taconic, Ceramic, LTCC 등)에도 적용될 수 있다.
도 15는 유전체 기판(46) 상에 구현된 직선형 롱-와이어 안테나(40, 70)의 반사 손실을 나타낸다. 이에 따르면, 직선형 롱-와이어 안테나(40, 70)는 -10dB 아래의 주파수 특성은 나타나지 않음을 보인다.
도 16은 유전체 기판(46) 상에 구현된 Y자 모양 안테나(50,80)의 반사 손실을 나타낸다. 54.9GHz에서 61.4GHz까지 6.5GHz의 주파수 대역에서 -10dB 아래의 반사손실 특성을 보인다.
도 17은 유전체 기판(46) 상에 구현된 Ψ자 모양 안테나(60, 90)의 반사 손실을 나타낸다. 56.1GHz에서 66.6GHz까지 약 10.5GHz의 주파수 대역에서 -10dB 아래의 반사손실 특성을 보인다.
직선형 롱-와이어 안테나(40, 70)->Y자 모양 안테나(50,80)->Ψ자 모양 안테나(60, 90)로 가면서, 유전체 기판(46)의 상면에 마련되는 금속 선로(42, 52, 62)가 추가적인 임피던스 매칭요소를 더 갖고 있다. 이런 추가적인 임피던스 매칭요소들에 의해, 직선형 롱-와이어 안테나(40, 70)->Y자 모양 안테나(50,80)->Ψ자 모양 안테나(60, 90)로 갈수록 안테나의 반사손실 특성이 더욱 개선될 것으로 추측할 수 있다. 도 15, 16, 17에 나타낸 반사손실 특성 그래프는 그런 추측이 옳음을 뒷받침해준다. 즉, 추가적인 임피던스 매칭요소들은 임피던스 매칭이 더 잘 이루어지게 하여 안테나의 반사손실 특성을 개선하는 데 기여함을 알 수 있다.
도 18과 도 19는 유전체 기판 상에 구현된 직선형 롱-와이어 안테나(40, 70)의 E평면과 H평면의 방사 패턴을 각각 도시한다. 도 18에서 E-평면의 3-dB 대역폭은 39
Figure 112015111175758-pat00013
이고, 도 19에서 H-평면의 3-dB 대역폭은 66
Figure 112015111175758-pat00014
이며, 안테나 최고 이득은 9.5dBi임을 알 수 있다.
도 20과 도 21은 유전체 기판 상에 구현된 Y-자 모양 안테나(50, 80)의 E-평면과 H-평면의 방사 패턴을 각각 도시한다. 도 20에서 E-평면의 3-dB 대역폭은 39
Figure 112015111175758-pat00015
이고, 도 21에서 H-평면의 3-dB 대역폭은 72
Figure 112015111175758-pat00016
이며, 안테나 최고 이득은 9.9dBi임을 알 수 있다.
도 22와 도 23은 유전체 기판 상에 구현된
Figure 112015111175758-pat00017
-자 모양 안테나(60, 90)의 E-평면과, H-평면의 방사 패턴을 각각 도시한다. 도 22에서 E-평면의 3-dB 대역폭은 39
Figure 112015111175758-pat00018
이고, 도 23에서 H-평면의 3-dB 대역폭은 66
Figure 112015111175758-pat00019
이며, 안테나 최고 이득은 10.2dBi임을 보인다.
도 18 내지 도 23을 통해, 안테나 구조에서 추가적인 임피던스 매칭회로가 부가될수록 임피던스 매칭이 더 잘 이루어져, 안테나 이득이 증가함을 확인할 수 있다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
본 발명은 다양한 밀리미터파 안테나의 제조에 이용될 수 있다.
40: 직선형 롱-와이어 안테나
42: 상부 금속층(직선형 마이크로스트립 급전선로)
44: 하부 금속층(접지 전극판)
46: 유전체 기판
50: Y-자형 롱-와이어 안테나
52: 상부 금속층(Y-자형 마이크로스트립 급전선로)
60:
Figure 112015111175758-pat00020
-자형 롱-와이어 안테나
62: 상부 금속층(
Figure 112015111175758-pat00021
-자형 마이크로스트립 급전선로)
54, 64: 마이크로 스트립선로의 기둥 구간
56, 66: 마이크로 스트립선로의 가지 구간
70: 접지 코플라나 웨이브가이드(GCPW) 선로 부가 직선형 롱-와이어 안테나
74a, 74b: 한 쌍의 코플라나 웨이브가이드 선로
76: 비어홀
80: 접지 코플라나 웨이브가이드(GCPW) 선로 부가 Y-자형 롱-와이어 안테나
90: 접지 코플라나 웨이브가이드(GCPW) 선로 부가
Figure 112015111175758-pat00022
-자형 롱-와이어 안테나

Claims (10)

  1. 유전체 기판;
    상기 유전체 기판의 저면의 적어도 일부 영역에 코팅된 제1 금속층;
    상기 유전체 기판의 상면의 적어도 일부 영역에 마이크로스트립 선로 형태로 코팅된 제2 금속층; 및
    상기 유전체 기판의 상면의 상기 제2 금속층의 양 옆에 코팅 또는 접합된 코플라나 웨이브가이드(GCPW) 선로를 포함하며,
    상기 코플라나 웨이브가이드(GCPW) 선로는, 상기 제2 금속층의 양 옆에 이격되어 상기 유전체 기판의 상면에 코팅된 한 쌍의 접지 금속 패드와, 상기 한 쌍의 접지 금속 패드에서 상기 제1 금속층까지 연통된 비어홀과, 상기 비어홀을 통해 상기 한 쌍의 접지 금속 패드와 상기 제1 금속층을 전기적으로 연결하는 연결 선로를 구비하며,
    상기 유전체 기판의 상면 쪽에서 저면 쪽으로 보았을 때, 상기 제2 금속층은 상기 제1 금속층 영역에 포함되게 배치되고,
    상기 제2 금속층의 마이크로스트립 선로는 무선송출할 신호의 파장의 절반 이상의 길이를 가지며,
    상기 제1 금속층이 접지된 상태에서, 상기 제2 금속층의 마이크로스트립 선로에 무선송출할 신호가 인가되면, 위쪽 대각선 방향으로의 무선신호 방사패턴을 나타내는 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  2. 제1항에 있어서, 상기 마이크로스트립 선로는 직선형 마이크로스트립 선로인 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  3. 제1항에 있어서, 상기 마이크로스트립 선로는, 선행하는 일부 구간이 직선형 마이크로스트립 선로이고, 후행하는 나머지 구간이 상기 직선형 마이크로스트립 선로의 말단에서 두 갈래로 분기된 마이크로스트립 선로이어서, 전체적으로 Y-자형 마이크로스트립 선로인 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  4. 제1항에 있어서, 상기 마이크로스트립 선로는, 선행하는 일부 구간이 직선형 마이크로스트립 선로이고, 후행하는 나머지 구간이 상기 직선형 마이크로스트립 선로의 말단에서 세 갈래 이상으로 분기된 마이크로스트립 선로이어서, 전체적으로 포크 모양을 닮은
    Figure 112016111773483-pat00023
    -자형 또는 다지형 마이크로스트립 선로인 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  5. 삭제
  6. 삭제
  7. 제3항 또는 제4항에 있어서, 상기 선행하는 일부 구간과 상기 후행하는 나머지 구간은 실질적으로 동일한 길이를 갖는 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  8. 제1항에 있어서, 상기 유전체 기판의 상면에 코팅되고 상기 제2 금속층과 연결되어, 안테나의 임피던스 정합도를 향상시켜주는 임피던스 정합용 금속층을 더 구비하는 것을 특징으로 밀리미터파 대역의 롱-와이어 안테나.
  9. 제1항에 있어서, 상기 제2 금속층은 상기 제1 금속층에 비해 무선송출할 신호의 급전방향의 길이가 더 짧아서, 상기 제2 금속층으로 덮이지 않는 상기 제1 금속층의 구간이 존재하는 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
  10. 제9항에 있어서, 상기 제2 금속층에서 아래쪽 대각선 방향과 위쪽 대각선 방향으로 방사된 무선신호 중 상기 아래쪽 대각선 방향으로 방사된 무선신호는 상기 제1 금속층에 의해 반사되어 상기 위쪽 대각선 방향으로 방사된 무선신호와 함께 전파되는 것을 특징으로 하는 밀리미터파 대역의 롱-와이어 안테나.
KR1020150160190A 2015-11-16 2015-11-16 대각 방향의 방사를 위한 밀리미터파 대역 안테나 KR101718761B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150160190A KR101718761B1 (ko) 2015-11-16 2015-11-16 대각 방향의 방사를 위한 밀리미터파 대역 안테나
US15/006,206 US20170141472A1 (en) 2015-11-16 2016-01-26 Millimeter wave antenna for diagonal radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150160190A KR101718761B1 (ko) 2015-11-16 2015-11-16 대각 방향의 방사를 위한 밀리미터파 대역 안테나

Publications (1)

Publication Number Publication Date
KR101718761B1 true KR101718761B1 (ko) 2017-03-23

Family

ID=58495976

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150160190A KR101718761B1 (ko) 2015-11-16 2015-11-16 대각 방향의 방사를 위한 밀리미터파 대역 안테나

Country Status (2)

Country Link
US (1) US20170141472A1 (ko)
KR (1) KR101718761B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258408A (zh) * 2018-02-11 2018-07-06 上海健康医学院 一种用于通信的天线
CN109560378A (zh) * 2018-12-08 2019-04-02 上海电力学院 一种小型化y型贴片超宽带单极子天线

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9866069B2 (en) * 2014-12-29 2018-01-09 Ricoh Co., Ltd. Manually beam steered phased array
JP6610245B2 (ja) * 2015-12-25 2019-11-27 セイコーエプソン株式会社 電子機器
KR102096417B1 (ko) * 2017-02-28 2020-04-02 동우 화인켐 주식회사 필름 타입의 마이크로스트립 패치 안테나
WO2022133428A1 (en) * 2020-12-15 2022-06-23 Hellen Systems Antenna eloran communication system
US11757196B2 (en) 2020-12-15 2023-09-12 Hellen Systems Antenna ELORAN communication system
TWI806241B (zh) * 2021-11-16 2023-06-21 和碩聯合科技股份有限公司 天線模組及電子裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020273A (ko) * 1998-09-18 2000-04-15 한병성 직접 삽입방식을 이용한 고온초전도 마이크로스트립 안테나
KR20050071968A (ko) * 2004-01-05 2005-07-08 삼성전자주식회사 극소형 초광대역 마이크로스트립 안테나
KR101174825B1 (ko) * 2011-09-30 2012-08-17 지앤씨테크(주) 평면 안테나

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101208831A (zh) * 2005-06-06 2008-06-25 松下电器产业株式会社 平面天线装置以及使用该平面天线装置的无线通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020273A (ko) * 1998-09-18 2000-04-15 한병성 직접 삽입방식을 이용한 고온초전도 마이크로스트립 안테나
KR20050071968A (ko) * 2004-01-05 2005-07-08 삼성전자주식회사 극소형 초광대역 마이크로스트립 안테나
KR101174825B1 (ko) * 2011-09-30 2012-08-17 지앤씨테크(주) 평면 안테나

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258408A (zh) * 2018-02-11 2018-07-06 上海健康医学院 一种用于通信的天线
CN109560378A (zh) * 2018-12-08 2019-04-02 上海电力学院 一种小型化y型贴片超宽带单极子天线

Also Published As

Publication number Publication date
US20170141472A1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR101718761B1 (ko) 대각 방향의 방사를 위한 밀리미터파 대역 안테나
KR101454878B1 (ko) 수평 방사와 수직 방사의 선택적 이용이 가능한 매립형 혼 안테나
US7675466B2 (en) Antenna array feed line structures for millimeter wave applications
US9142889B2 (en) Compact tapered slot antenna
US7119745B2 (en) Apparatus and method for constructing and packaging printed antenna devices
US10418708B2 (en) Wideband antenna
KR101309469B1 (ko) 알에프 모듈
CN110800155A (zh) 过渡装置、过渡结构和集成式封装结构
KR20180105833A (ko) 다이폴 안테나 장치 및 이를 이용한 배열 안테나 장치
CN109428153A (zh) 天线部件、车载雷达和汽车
JP3996879B2 (ja) 誘電体導波管とマイクロストリップ線路の結合構造およびこの結合構造を具備するフィルタ基板
US8022784B2 (en) Planar transmission line-to-waveguide transition apparatus having an embedded bent stub
US20220328978A1 (en) Antenna module and communication device equipped with the same
TWI786852B (zh) 天線結構和天線封裝
CN104966903B (zh) 一种用于60GHz毫米波通信的悬置微带天线阵列及其天线
US20120326940A1 (en) Multi-band antenna and electronic apparatus having the same
CN210074169U (zh) 一种基于接地共面波导的矩形微带串馈天线
US8829659B2 (en) Integrated circuit
JP4552091B2 (ja) ブロードバンド共面導波フィード円偏波アンテナ
US10333226B2 (en) Waveguide antenna with cavity
US9755313B2 (en) Chip antenna for near field communication and method of manufacturing the same
WO2022105567A1 (en) Dielectrically loaded printed dipole antenna
US20190103666A1 (en) Mountable Antenna Fabrication and Integration Methods
US11069949B2 (en) Hollow-waveguide-to-planar-waveguide transition circuit comprising a coupling conductor disposed over slots in a ground conductor
Vettikalladi et al. 60 GHz membrane supported aperture coupled patch antenna based on FR4 and new thin Pyralux substrate

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 4