JP2016015375A - Light emitting element - Google Patents

Light emitting element Download PDF

Info

Publication number
JP2016015375A
JP2016015375A JP2014135958A JP2014135958A JP2016015375A JP 2016015375 A JP2016015375 A JP 2016015375A JP 2014135958 A JP2014135958 A JP 2014135958A JP 2014135958 A JP2014135958 A JP 2014135958A JP 2016015375 A JP2016015375 A JP 2016015375A
Authority
JP
Japan
Prior art keywords
layer
type semiconductor
light emitting
side electrode
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014135958A
Other languages
Japanese (ja)
Inventor
理紀也 鈴木
Rikiya Suzuki
理紀也 鈴木
倉又 朗人
Akito Kuramata
朗人 倉又
飯塚 和幸
Kazuyuki Iizuka
和幸 飯塚
結樹 小石川
Yuki Koishikawa
結樹 小石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Koha Co Ltd
Original Assignee
Tamura Corp
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Koha Co Ltd filed Critical Tamura Corp
Priority to JP2014135958A priority Critical patent/JP2016015375A/en
Priority to PCT/JP2015/068880 priority patent/WO2016002800A1/en
Publication of JP2016015375A publication Critical patent/JP2016015375A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Abstract

PROBLEM TO BE SOLVED: To provide a light emitting element connected to a substrate having (AlGaIn)O(0≤x≤1,0≤y≤1,0≤z≤1, x+y+z=1) crystal as a mother crystal, and having an n-side electrode with high optical reflectance.SOLUTION: In one embodiment, a light emitting element 1 which has an n-type semiconductor substrate 10 containing (AlGaIn)Ocrystal as a mother crystal and an n-side electrode 15 connected to the n-type semiconductor substrate 10, and in which the n-side electrode 15 has a laminated structure including a Ti layer 15a contacting with the n-type semiconductor substrate 10 and an Ag layer 15b containing Ag on the Ti layer 15a as a main component, is provided.

Description

本発明は、発光素子に関する。   The present invention relates to a light emitting element.

従来、Ga基板上に形成されたLED素子が知られている(例えば、特許文献1参照)。 Conventionally, Ga 2 O 3 LED elements formed on a substrate is known (e.g., see Patent Document 1).

特許文献1のLED素子においては、Ga基板に接続されるn側電極として、Ti膜とAu膜を積層した積層構造を有するTi/Au電極が用いられている。TiはGaと低抵抗でオーミック接触するため、Ti/Au電極とGa基板の接触抵抗を低くすることができる。 In the LED element of Patent Document 1, a Ti / Au electrode having a laminated structure in which a Ti film and an Au film are laminated is used as an n-side electrode connected to a Ga 2 O 3 substrate. Since Ti makes ohmic contact with Ga 2 O 3 with low resistance, the contact resistance between the Ti / Au electrode and the Ga 2 O 3 substrate can be lowered.

特許第5078039号公報Japanese Patent No. 5078039

一方、Tiは光反射率があまり高くないため、特許文献1のLED素子においては、Ti/Au電極がGa基板内を進んでTi/Au電極へ向かう光を吸収し、LED素子の光取出効率を低下させる原因となっている。 On the other hand, since Ti does not have a high light reflectivity, in the LED element of Patent Document 1, the Ti / Au electrode absorbs light that travels in the Ga 2 O 3 substrate and travels toward the Ti / Au electrode. This is a cause of lowering the light extraction efficiency.

本発明の目的の1つは、(AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有する基板に接続された、光反射率の高いn側電極とを有する発光素子を提供することにある。 One object of the present invention is to provide a substrate having an (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal. It is providing the light emitting element which has an n side electrode with a high light reflectance connected to.

本発明の一態様は、上記目的を達成するために、以下の[1]〜[8]の発光素子を提供する。   In order to achieve the above object, one embodiment of the present invention provides the following light-emitting elements [1] to [8].

[1](AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有するn型半導体基板と、前記n型半導体基板に接続されるn側電極と、を有し、前記n側電極は、前記n型半導体基板に接触するTi層と、前記Ti層上のAgを主成分とするAg層とを含む積層構造を有する、発光素子。 [1] An n-type semiconductor substrate having (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal, an n-side electrode connected to an n-type semiconductor substrate, wherein the n-side electrode includes a Ti layer in contact with the n-type semiconductor substrate and an Ag layer mainly composed of Ag on the Ti layer. A light-emitting element having a stacked structure.

[2]前記Ti層の厚さが4.5nm以下である、前記[1]に記載の発光素子。 [2] The light emitting device according to [1], wherein the thickness of the Ti layer is 4.5 nm or less.

[3]前記Ti層の厚さが2nm以下である、前記[2]に記載の発光素子。 [3] The light emitting device according to [2], wherein the thickness of the Ti layer is 2 nm or less.

[4]前記Ti層の厚さが0.5nm以上である、前記[1]〜[3]のいずれか1項に記載の発光素子。 [4] The light emitting device according to any one of [1] to [3], wherein the thickness of the Ti layer is 0.5 nm or more.

[5]前記Ag層のAg濃度が95%以上である、前記[1]〜[4]のいずれか1項に記載の発光素子。 [5] The light emitting device according to any one of [1] to [4], wherein the Ag concentration of the Ag layer is 95% or more.

[6]前記n型半導体基板がGa結晶からなる、前記[1]〜[5]のいずれか1項に記載の発光素子。 [6] The light emitting device according to any one of [1] to [5], wherein the n-type semiconductor substrate is made of a Ga 2 O 3 crystal.

[7]前記n側電極上に、バリアメタルとAuを主成分とするパッド層とを含む積層構造を有するパッド電極が形成され、前記バリアメタルは、前記n側電極と前記パッド層との間に位置し、前記Ag層に含まれるAgと前記パッド層に含まれるAuとの反応を防ぐ、前記[1]〜[6]のいずれか1項に記載の発光素子。 [7] A pad electrode having a laminated structure including a barrier metal and a pad layer mainly composed of Au is formed on the n-side electrode, and the barrier metal is interposed between the n-side electrode and the pad layer. The light emitting device according to any one of [1] to [6], wherein the light emitting device is located at a position where the reaction between Ag contained in the Ag layer and Au contained in the pad layer is prevented.

[8]前記n側電極が貫通電極である、前記[1]〜[7]のいずれか1項に記載の発光素子。 [8] The light emitting device according to any one of [1] to [7], wherein the n-side electrode is a through electrode.

本発明によれば、(AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有する基板に接続された、光反射率の高いn側電極とを有する発光素子を提供することができる。 According to the present invention, (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) is connected to a substrate having a crystal as a mother crystal. In addition, a light-emitting element having an n-side electrode with high light reflectance can be provided.

図1(a)は、第1の実施の形態に係る発光素子の垂直断面図である。図1(b)は、発光素子のn型電極とパッド電極の拡大断面図である。FIG. 1A is a vertical cross-sectional view of the light emitting device according to the first embodiment. FIG. 1B is an enlarged cross-sectional view of the n-type electrode and the pad electrode of the light emitting element. 図2は、n側電極のTi層の厚さと、n側電極とn型半導体基板の接触抵抗との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the thickness of the Ti layer of the n-side electrode and the contact resistance between the n-side electrode and the n-type semiconductor substrate. 図3は、n側電極のTi層の厚さと、n側電極のTi層側から入射する光の反射率との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the thickness of the Ti layer of the n-side electrode and the reflectance of light incident from the Ti layer side of the n-side electrode. 図4は、第2の実施の形態に係る発光素子の垂直断面図である。FIG. 4 is a vertical cross-sectional view of the light emitting device according to the second embodiment. 図5は、第3の実施の形態に係る発光素子の垂直断面図である。FIG. 5 is a vertical sectional view of the light emitting device according to the third embodiment.

〔第1の実施の形態〕
(発光素子の構造)
図1(a)は、第1の実施の形態に係る発光素子1の垂直断面図である。
[First Embodiment]
(Structure of light emitting element)
FIG. 1A is a vertical cross-sectional view of the light-emitting element 1 according to the first embodiment.

発光素子1は、n型半導体基板10と、n型半導体基板10の一方の表面に誘電体層11を介して形成されたn型半導体層12と、n型半導体層12のn型半導体基板10の反対側に形成されたp型半導体層14と、n型半導体層12とp型半導体層14に挟まれた発光層13と、n型半導体基板10のn型半導体層12と反対側の面上に接続されたn側電極15と、n側電極15のn型半導体基板10と反対側の面上のパッド電極16と、p型半導体層14の発光層13と反対側の面上に接続されたp側電極17と、p側電極17のp型半導体層14と反対側の面上のパッド電極18とを有する。   The light-emitting element 1 includes an n-type semiconductor substrate 10, an n-type semiconductor layer 12 formed on one surface of the n-type semiconductor substrate 10 via a dielectric layer 11, and an n-type semiconductor substrate 10 of the n-type semiconductor layer 12. A p-type semiconductor layer 14 formed on the opposite side of the n-type semiconductor layer, a light-emitting layer 13 sandwiched between the n-type semiconductor layer 12 and the p-type semiconductor layer 14, and a surface of the n-type semiconductor substrate 10 opposite to the n-type semiconductor layer 12 Connected to the n-side electrode 15 connected above, the pad electrode 16 on the surface of the n-side electrode 15 opposite to the n-type semiconductor substrate 10, and the surface of the p-type semiconductor layer 14 opposite to the light emitting layer 13. And the pad electrode 18 on the surface of the p-side electrode 17 opposite to the p-type semiconductor layer 14.

また、誘電体層11、n型半導体層12、発光層13、p型半導体層14から構成される積層体の側面は、SiO等の絶縁材料からなる絶縁膜19に覆われる。 Further, the dielectric layer 11, n-type semiconductor layer 12, the side surface of the formed laminate a light emitting layer 13, p-type semiconductor layer 14 is covered with an insulating film 19 made of an insulating material such as SiO 2.

図1(b)は、発光素子1のn型電極15とパッド電極16の拡大断面図である。   FIG. 1B is an enlarged cross-sectional view of the n-type electrode 15 and the pad electrode 16 of the light-emitting element 1.

n側電極15は、n側電極15がn型半導体基板10にオーミック接触するための、n型半導体基板10に接触するTi層15aと、Ti層15aを透過する光を反射するためのAg層15bとを含む積層構造を有する。図1(b)の矢印は、発光層13から発せられてn側電極15により反射される光の経路を概略的に表すものである。   The n-side electrode 15 includes a Ti layer 15a that is in contact with the n-type semiconductor substrate 10 so that the n-side electrode 15 is in ohmic contact with the n-type semiconductor substrate 10, and an Ag layer that reflects light transmitted through the Ti layer 15a. 15b. An arrow in FIG. 1B schematically represents a path of light emitted from the light emitting layer 13 and reflected by the n-side electrode 15.

Ti層15aは、Tiからなる。Tiは、n型の(AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶と低抵抗でオーミック接触するが、光反射率が低いという性質を有する。 The Ti layer 15a is made of Ti. Ti is in ohmic contact with an n-type (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal with low resistance, It has the property of low light reflectance.

Ag層15bは、Agを主成分とする材料、すなわち、Ag又はAg合金からなる。Ag層15bのAg濃度は、反射率を高めるために、95%以上であることが好ましい。   The Ag layer 15b is made of a material containing Ag as a main component, that is, Ag or an Ag alloy. The Ag concentration of the Ag layer 15b is preferably 95% or more in order to increase the reflectance.

Ti層15aの厚さは、発光層13から発せられる光のTi層15aによる吸収を抑えて、n側電極15の反射率の低下を抑えるために、4.5nm以下であることが好ましく、2nm以下であることがより好ましい。また、n側電極15をn型半導体基板10に低抵抗で接触させるために0.5nm以上であることが好ましい。   The thickness of the Ti layer 15a is preferably 4.5 nm or less in order to suppress the light emitted from the light emitting layer 13 from being absorbed by the Ti layer 15a and suppress the decrease in the reflectivity of the n-side electrode 15. The following is more preferable. Further, in order to bring the n-side electrode 15 into contact with the n-type semiconductor substrate 10 with low resistance, the thickness is preferably 0.5 nm or more.

Ag層15bの厚さは、発光層13から発せられる光を透過せずに反射できる厚さであればよく、例えば、270nmである。   The thickness of the Ag layer 15b may be a thickness that can reflect the light emitted from the light emitting layer 13 without transmitting it, and is, for example, 270 nm.

パッド電極16は、密着層16a、バリアメタル16b、パッド層16cを含む積層構造を有する。パッド層16cは、ワイヤーボンディング等により外部電極が接続される低抵抗の層であり、Auからなる。バリアメタル16bは、Ag層15bに含まれるAgのAg層15bからパッド層16cへの拡散を防ぎ、Ag層15bに含まれるAgとパッド電極16に含まれるAuとの反応を防ぐ。密着層16aは、パッド電極16をn側電極15に密着させるための層である。   The pad electrode 16 has a laminated structure including an adhesion layer 16a, a barrier metal 16b, and a pad layer 16c. The pad layer 16c is a low resistance layer to which an external electrode is connected by wire bonding or the like, and is made of Au. The barrier metal 16b prevents diffusion of Ag contained in the Ag layer 15b from the Ag layer 15b to the pad layer 16c, and prevents reaction between Ag contained in the Ag layer 15b and Au contained in the pad electrode 16. The adhesion layer 16 a is a layer for closely attaching the pad electrode 16 to the n-side electrode 15.

密着層16aは、例えば、厚さ10nmのNi膜からなる。バリアメタル16bは、例えば、厚さ50nmのTi膜と、厚さ20nmのPt膜とから構成される積層構造を有する。パッド層16cは、例えば、厚さ4000nmのAu膜からなる。   The adhesion layer 16a is made of, for example, a Ni film having a thickness of 10 nm. The barrier metal 16b has, for example, a stacked structure including a Ti film having a thickness of 50 nm and a Pt film having a thickness of 20 nm. The pad layer 16c is made of, for example, an Au film having a thickness of 4000 nm.

p側電極17は、p型半導体層14にオーミック接合する電極であり、例えば、厚さ270nmのAg濃度99%のAg合金膜と、厚さ10nmのNi膜と、厚さ10nmのAu膜とを積層した積層構造を有する。   The p-side electrode 17 is an electrode that is in ohmic contact with the p-type semiconductor layer 14. For example, an Ag alloy film with a thickness of 270 nm, an Ag concentration of 99%, a Ni film with a thickness of 10 nm, and an Au film with a thickness of 10 nm It has the laminated structure which laminated | stacked.

パッド電極18は、例えば、厚さ100nmのTi膜、厚さ50nmのPt膜、厚さ500nmのAu膜を積層した積層構造を有する。   The pad electrode 18 has a laminated structure in which, for example, a Ti film having a thickness of 100 nm, a Pt film having a thickness of 50 nm, and an Au film having a thickness of 500 nm are laminated.

n型半導体基板10は、(AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有し、Si等のn型ドーパントを含む。 The n-type semiconductor substrate 10 has (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal, and Si N-type dopants such as

n型半導体基板10のn型ドーパントの濃度は、高いほど電気抵抗が下がるが、光吸収が大きくなるという問題がある。そのため、n型半導体基板10のn型ドーパントの濃度は、光吸収を抑えるため、1×1019/cm−3以下であることが好ましく、5×1018/cm−3以下であることがより好ましい。また、導電性を確保するために、5×1017/cm−3以上であることが好ましい。 The higher the n-type dopant concentration of the n-type semiconductor substrate 10 is, the lower the electrical resistance is, but there is a problem that light absorption increases. Therefore, the concentration of the n-type dopant in the n-type semiconductor substrate 10 is preferably 1 × 10 19 / cm −3 or less and more preferably 5 × 10 18 / cm −3 or less in order to suppress light absorption. preferable. Moreover, in order to ensure electroconductivity, it is preferable that it is 5 * 10 < 17 > / cm < -3 > or more.

n型半導体基板10は、n側電極15が形成される側の面に凹凸を有することが好ましい。この凹凸の形成により、発光素子1の光取出効率が向上する。   The n-type semiconductor substrate 10 preferably has irregularities on the surface on which the n-side electrode 15 is formed. By forming the irregularities, the light extraction efficiency of the light emitting element 1 is improved.

n型半導体層12は、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有し、Si等のn型ドーパントを含む。n型半導体層12は、n型クラッド層から構成される単層構造、又はn型クラッド層を含む多層構造を有し、例えば、厚さ5μmのn型クラッド層からなる単層構造を有する。 The n-type semiconductor layer 12 has an Al x Ga y In z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal, and is an n-type such as Si Contains a dopant. The n-type semiconductor layer 12 has a single-layer structure composed of an n-type clad layer or a multilayer structure including an n-type clad layer, for example, a single-layer structure composed of an n-type clad layer having a thickness of 5 μm.

発光層13は、例えば、5層の厚さ2nmのアンドープ(InGa1−x)N(0≦x≦1)結晶膜と5層の厚さ6nmのアンドープ(InGa1−y)N(0≦y≦1、y≦x)結晶膜が1層ずつ交互に積層された多重量子井戸構造を有する。発光層13の発光波長は、例えば、450nmである。 The light emitting layer 13 includes, for example, five undoped (In x Ga 1-x ) N (0 ≦ x ≦ 1) crystal films having a thickness of 2 nm and five undoped layers (In y Ga 1-y ) having a thickness of 6 nm. N (0 ≦ y ≦ 1, y ≦ x) has a multiple quantum well structure in which crystal layers are alternately stacked one by one. The emission wavelength of the light emitting layer 13 is, for example, 450 nm.

p型半導体層14は、AlGaInN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有し、Mg等のp型ドーパントを含む。p型半導体層14は、p型クラッド層から構成される単層構造、又はp型クラッド層を含む多層構造を有し、例えば、発光層13に接する厚さ50nmのp型クラッド層と、p側電極17に接する厚さ10nmのp型コンタクト層とからなる多層構造を有する。 The p-type semiconductor layer 14 has an Al x Ga y In z N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal, and is a p-type such as Mg. Contains a dopant. The p-type semiconductor layer 14 has a single-layer structure composed of a p-type cladding layer or a multilayer structure including the p-type cladding layer. For example, a p-type cladding layer having a thickness of 50 nm in contact with the light-emitting layer 13, and p It has a multilayer structure consisting of a p-type contact layer having a thickness of 10 nm in contact with the side electrode 17.

誘電体層11は、SiNを主成分とするSiN層やHfOを主成分とするHfO層等の、n型半導体基板10との屈折率の差が0.15以下である誘電体層である。例えば、n型半導体基板10の屈折率が1.9である場合は、誘電体層11の屈折率は1.75以上かつ2.05以下である。 The dielectric layer 11, a SiN layer and HfO 2 mainly composed of SiN of HfO 2 layer mainly composed, a dielectric layer a difference in refractive index is 0.15 or less of the n-type semiconductor substrate 10 is there. For example, when the refractive index of the n-type semiconductor substrate 10 is 1.9, the refractive index of the dielectric layer 11 is 1.75 or more and 2.05 or less.

誘電体層11は、n型半導体基板10上に、n型半導体基板10の表面を部分的に覆うように形成される。誘電体層11のパターン形状は限定されず、例えば、メサパターン、リセスパターン、ラインアンドスペースパターンである。   Dielectric layer 11 is formed on n-type semiconductor substrate 10 so as to partially cover the surface of n-type semiconductor substrate 10. The pattern shape of the dielectric layer 11 is not limited and is, for example, a mesa pattern, a recess pattern, or a line and space pattern.

誘電体層11の屈折率はn型半導体基板10の屈折率に近い方が、n型半導体基板10と誘電体層11の界面での全反射を抑制し、発光した光を効率的に取り出すことができる。誘電体層11がSiN層である場合は、O等のSi、N以外の元素を含んでもよい。   When the refractive index of the dielectric layer 11 is closer to the refractive index of the n-type semiconductor substrate 10, the total reflection at the interface between the n-type semiconductor substrate 10 and the dielectric layer 11 is suppressed, and the emitted light is efficiently extracted. Can do. When the dielectric layer 11 is a SiN layer, elements other than Si and N such as O may be included.

誘電体層11の成膜温度等の形成条件を制御することにより、誘電体層11の屈折率を調整して、誘電体層11の屈折率とn型半導体基板10の屈折率の差をより小さくすることができる。   The refractive index of the dielectric layer 11 is adjusted by controlling the formation conditions such as the film formation temperature of the dielectric layer 11, and the difference between the refractive index of the dielectric layer 11 and the refractive index of the n-type semiconductor substrate 10 is further increased. Can be small.

なお、例えば、誘電体層11の代わりにn型半導体基板10との屈折率の差が大きいSiO層を形成した場合、SiO層とn型半導体基板10の界面の反射率が大きく、n型半導体基板10とn型半導体層12の間の光透過率が低くなる。SiO層の屈折率はおよそ1.4〜1.55であり、n型半導体基板10の屈折率との差が0.35以上である。 Incidentally, for example, the case of forming the SiO 2 layer a difference in refractive index is large between the n-type semiconductor substrate 10 instead of the dielectric layer 11, the reflectivity of the interface between the SiO 2 layer and the n-type semiconductor substrate 10 is large, n The light transmittance between the type semiconductor substrate 10 and the n-type semiconductor layer 12 is lowered. The refractive index of the SiO 2 layer is approximately 1.4 to 1.55, and the difference from the refractive index of the n-type semiconductor substrate 10 is 0.35 or more.

n型半導体層12は、n型半導体基板10表面を下地とするエピタキシャル結晶成長により形成されるため、誘電体層11がn型半導体基板10の表面を完全に覆うことはない。n型半導体層12は、誘電体層11、及びn型半導体基板10の表面の誘電体層11に覆われていない部分に接触する。   Since the n-type semiconductor layer 12 is formed by epitaxial crystal growth using the surface of the n-type semiconductor substrate 10 as a base, the dielectric layer 11 does not completely cover the surface of the n-type semiconductor substrate 10. The n-type semiconductor layer 12 contacts the dielectric layer 11 and a portion of the surface of the n-type semiconductor substrate 10 that is not covered by the dielectric layer 11.

n型半導体層12を構成する窒化物半導体結晶は、n型半導体基板10の上面の誘電体層11に覆われていない領域から成長し、誘電体層11からは成長しない。このように、窒化物半導体結晶が選択的に成長し、更に横方向へ成長することで、誘電体層11を覆いこむ。この際に、n型半導体層12中の転位密度が低減され、結晶品質が向上する。なお、このような選択横方向成長を用いた結晶成長方法はELO(Epitaxial Lateral Overgrowth)などと呼ばれる。   The nitride semiconductor crystal constituting the n-type semiconductor layer 12 grows from a region not covered by the dielectric layer 11 on the upper surface of the n-type semiconductor substrate 10 and does not grow from the dielectric layer 11. Thus, the nitride semiconductor crystal grows selectively and further grows in the lateral direction, thereby covering the dielectric layer 11. At this time, the dislocation density in the n-type semiconductor layer 12 is reduced, and the crystal quality is improved. Such a crystal growth method using selective lateral growth is called ELO (Epitaxial Lateral Overgrowth).

発光素子1においては、n型半導体層12と誘電体層11の間では、誘電体層11がパターン加工されているため光が散乱しやすく、n型半導体層などにおける多重全反射を抑制することで、損失を抑えることができる。また、誘電体層11とn型半導体基板10との間では、誘電体層11とn型半導体基板10の屈折率の差が小さいため光が透過しやすい。このため、発光素子1におけるn型半導体層12とn型半導体基板10の間の光の取り出し効率が高い。   In the light emitting element 1, light is easily scattered between the n-type semiconductor layer 12 and the dielectric layer 11 because the dielectric layer 11 is patterned, thereby suppressing multiple total reflection in the n-type semiconductor layer and the like. Thus, loss can be suppressed. Further, between the dielectric layer 11 and the n-type semiconductor substrate 10, light is easily transmitted because the difference in refractive index between the dielectric layer 11 and the n-type semiconductor substrate 10 is small. For this reason, the light extraction efficiency between the n-type semiconductor layer 12 and the n-type semiconductor substrate 10 in the light-emitting element 1 is high.

発光素子1は、例えば、n型半導体基板10側から光を取り出すLED(Light Emitting Diode)であり、キャンタイプのステムにAuSn共晶接合等を用いて実装される。   The light-emitting element 1 is, for example, an LED (Light Emitting Diode) that extracts light from the n-type semiconductor substrate 10 side, and is mounted on a can-type stem using AuSn eutectic bonding or the like.

また、発光素子1はレーザーダイオードであってもよい。レーザーダイオードである場合、光が発光層13中で反射を繰り返して増幅されるような構造、例えば、発光層13とn型半導体層12、発光層13とp型半導体層14に屈折率差があり、発光層13の側面が劈開面である構造を有する。   The light emitting element 1 may be a laser diode. In the case of a laser diode, the refractive index difference between the light emitting layer 13 and the n-type semiconductor layer 12 and the light emitting layer 13 and the p-type semiconductor layer 14 is such that light is repeatedly reflected and amplified in the light emitting layer 13. The light emitting layer 13 has a structure in which the side surface is a cleavage plane.

(発光素子の製造方法)
以下に、本実施の形態の発光素子の製造方法の一例について説明する。
(Manufacturing method of light emitting element)
Below, an example of the manufacturing method of the light emitting element of this Embodiment is demonstrated.

まず、CMP(Chemical Mechanical Polishing)処理されたn型半導体基板10に有機洗浄、SPM(Sulfuric acid/ hydrogen peroxide mixture)洗浄を施す。   First, organic cleaning and SPM (Sulfuric acid / hydrogen peroxide mixture) cleaning are performed on the n-type semiconductor substrate 10 that has been subjected to CMP (Chemical Mechanical Polishing).

次に、n型半導体基板10上に誘電体層11を形成する。具体的には、プラズマCVD(Chemical Vapor Deposition)法等により300〜350℃の成長温度でn型半導体基板10上に形成した、厚さ1μm程度のSiN膜を、フォトリソグラフィーとドライエッチングにより加工して、誘電体層11を形成する。   Next, the dielectric layer 11 is formed on the n-type semiconductor substrate 10. Specifically, a SiN film having a thickness of about 1 μm formed on the n-type semiconductor substrate 10 at a growth temperature of 300 to 350 ° C. by a plasma CVD (Chemical Vapor Deposition) method or the like is processed by photolithography and dry etching. Thus, the dielectric layer 11 is formed.

次に、MOCVD法等により、n型半導体基板10上に、n型半導体層12、発光層13、p型半導体層14を順次エピタキシャル成長させる。ここで、n型半導体層12は、例えば、1000〜1100℃の成長温度で形成される。発光層13は、例えば、700〜800℃の成長温度で形成される。p型半導体層14は、例えば、900〜1050℃の成長温度で形成される。   Next, the n-type semiconductor layer 12, the light emitting layer 13, and the p-type semiconductor layer 14 are sequentially epitaxially grown on the n-type semiconductor substrate 10 by MOCVD or the like. Here, the n-type semiconductor layer 12 is formed at a growth temperature of 1000 to 1100 ° C., for example. The light emitting layer 13 is formed at a growth temperature of 700 to 800 ° C., for example. The p-type semiconductor layer 14 is formed at a growth temperature of 900 to 1050 ° C., for example.

次に、n側電極15及びp側電極17を形成する。具体的には、n側電極15及びp側電極17は、例えば、フォトリソグラフィーと蒸着により各々の上記の積層構造を形成した後、窒素雰囲気中、500℃、5分間の条件で熱処理を施すことにより得られる。なお、n側電極15を形成する前に、フォトリソグラフィーとドライエッチングにより、n型半導体基板10のn側電極15が形成される側の面に凹凸を形成することが好ましい。その後、n側電極15上にパッド電極16を形成する。   Next, the n-side electrode 15 and the p-side electrode 17 are formed. Specifically, the n-side electrode 15 and the p-side electrode 17 are each subjected to heat treatment under conditions of 500 ° C. and 5 minutes in a nitrogen atmosphere after forming each of the above laminated structures by photolithography and vapor deposition, for example. Is obtained. Before forming the n-side electrode 15, it is preferable to form irregularities on the surface of the n-type semiconductor substrate 10 where the n-side electrode 15 is formed by photolithography and dry etching. Thereafter, the pad electrode 16 is formed on the n-side electrode 15.

次に、フォトリソグラフィーとドライエッチングにより、誘電体層11、n型半導体層12、発光層13、p型半導体層14から構成される積層体にメサ加工を施した後、その積層体の側面を覆うようにスパッタ等により絶縁膜19を形成する。p側電極17上の絶縁膜19は、フォトリソグラフィーとエッチング等により、選択的に除去される。その後、p側電極17上にパッド電極18を形成する。   Next, after mesa processing is performed on the laminated body composed of the dielectric layer 11, the n-type semiconductor layer 12, the light emitting layer 13, and the p-type semiconductor layer 14 by photolithography and dry etching, the side surface of the laminated body is removed. An insulating film 19 is formed by sputtering or the like so as to cover it. The insulating film 19 on the p-side electrode 17 is selectively removed by photolithography and etching. Thereafter, the pad electrode 18 is formed on the p-side electrode 17.

次に、ウエハ状態のn型半導体基板10をダイシングにより分割することによりチップ化された発光素子1を得る。チップ化された発光素子1の平面形状は、例えば、一片の長さが1mmの正方形である。   Next, the n-type semiconductor substrate 10 in a wafer state is divided by dicing to obtain a light emitting device 1 that is made into chips. The planar shape of the light-emitting element 1 formed into a chip is, for example, a square having a length of 1 mm.

(n側電極とn型半導体基板の接触抵抗の評価)
図2は、n側電極15のTi層15aの厚さと、n側電極15とn型半導体基板10の接触抵抗との関係を示すグラフである。ここで、本評価においては、n型半導体基板10としてGa基板を用い、n側電極15のAg層15bとしてAg濃度99%、Pd濃度1%のAg合金を用いた。
(Evaluation of contact resistance between n-side electrode and n-type semiconductor substrate)
FIG. 2 is a graph showing the relationship between the thickness of the Ti layer 15 a of the n-side electrode 15 and the contact resistance between the n-side electrode 15 and the n-type semiconductor substrate 10. Here, in this evaluation, a Ga 2 O 3 substrate was used as the n-type semiconductor substrate 10, and an Ag alloy having an Ag concentration of 99% and a Pd concentration of 1% was used as the Ag layer 15 b of the n-side electrode 15.

図2のプロットマーク◇は、n型半導体基板10のキャリア濃度が3.0×1018/cmであるときの測定値である。プロットマーク○は、n型半導体基板10のキャリア濃度が7.0×1018/cmであるときの測定値である。プロットマーク□は、n型半導体基板10のキャリア濃度が1.3×1019/cmであるときの測定値である。 The plot mark の in FIG. 2 is a measured value when the carrier concentration of the n-type semiconductor substrate 10 is 3.0 × 10 18 / cm 3 . The plot mark ◯ is a measured value when the carrier concentration of the n-type semiconductor substrate 10 is 7.0 × 10 18 / cm 3 . The plot mark □ is a measured value when the carrier concentration of the n-type semiconductor substrate 10 is 1.3 × 10 19 / cm 3 .

また、図2の3本の点線は、厚さ50nmのTi膜と厚さ500nmのAu膜を積層した積層構造を有する従来のTi/Au電極とn型半導体基板10の接触抵抗を表す。これら3本の点線は、それぞれn型半導体基板10のキャリア濃度が3.0×1018/cm、7.0×1018/cm、1.3×1019/cmであるときの測定値を表す。 Also, the three dotted lines in FIG. 2 represent the contact resistance between a conventional Ti / Au electrode having a laminated structure in which a 50 nm thick Ti film and a 500 nm thick Au film are laminated and the n-type semiconductor substrate 10. These three dotted lines indicate the case where the carrier concentration of the n-type semiconductor substrate 10 is 3.0 × 10 18 / cm 3 , 7.0 × 10 18 / cm 3 , and 1.3 × 10 19 / cm 3 , respectively. Represents the measured value.

図2は、Ti層15aの厚さが少なくとも0.5nm以上のときに、n型半導体基板10との接触抵抗が十分に小さくなることを示している(従来のTi/Au電極の接触抵抗には及ばなくても十分に小さい)。なお、Ti層15aの厚さが0、すなわちTi層15aが設けられない場合は、n側電極15とn型半導体基板10はオーミック接触せず、電流が流れにくい。   FIG. 2 shows that when the thickness of the Ti layer 15a is at least 0.5 nm or more, the contact resistance with the n-type semiconductor substrate 10 becomes sufficiently small (the contact resistance of the conventional Ti / Au electrode). Is small enough if not.) When the thickness of the Ti layer 15a is 0, that is, when the Ti layer 15a is not provided, the n-side electrode 15 and the n-type semiconductor substrate 10 are not in ohmic contact, and current does not flow easily.

本評価の結果から、n側電極15をGa基板に接続する場合には、Ti層15aの厚さが0.5nm以上であることが好ましいことがわかった。 From the result of this evaluation, it was found that when the n-side electrode 15 is connected to the Ga 2 O 3 substrate, the thickness of the Ti layer 15a is preferably 0.5 nm or more.

また、Ga結晶と(AlGaIn結晶がほぼ同じ特性を有することから、n側電極15をn型半導体基板10に接続する場合には、Ti層15aの厚さが0.5nm以上であることが好ましいといえる。 In addition, since the Ga 2 O 3 crystal and the (Al x Ga y In z ) 2 O 3 crystal have substantially the same characteristics, when the n-side electrode 15 is connected to the n-type semiconductor substrate 10, the Ti layer 15 a It can be said that the thickness is preferably 0.5 nm or more.

(n側電極の光反射率の評価)
図3は、n側電極15のTi層15aの厚さと、n側電極15のTi層15a側から入射する光の反射率との関係を示すグラフである。図3の縦軸は、Ag濃度100%のAgミラーの反射率を基準(100%)とした相対反射率である。ここで、本評価においては、n側電極15のAg層15bとしてAg濃度99%、Pd濃度1%のAg合金を用いた。
(Evaluation of light reflectance of n-side electrode)
FIG. 3 is a graph showing the relationship between the thickness of the Ti layer 15 a of the n-side electrode 15 and the reflectance of light incident from the Ti layer 15 a side of the n-side electrode 15. The vertical axis in FIG. 3 represents the relative reflectance with reference to the reflectance (100%) of an Ag mirror with an Ag concentration of 100%. Here, in this evaluation, an Ag alloy having an Ag concentration of 99% and a Pd concentration of 1% was used as the Ag layer 15b of the n-side electrode 15.

図3のプロットマーク◆は、成膜後にアニール処理を施していないn側電極15の測定値であり、プロットマーク□は、成膜後にアニール処理を施したn側電極15の測定値である。図3は、アニール処理の前後でn側電極15の反射率がほとんど変化しないことを示している。   The plot mark ◆ in FIG. 3 is a measured value of the n-side electrode 15 that has not been annealed after film formation, and the plot mark □ is a measured value of the n-side electrode 15 that has been annealed after film formation. FIG. 3 shows that the reflectance of the n-side electrode 15 hardly changes before and after the annealing process.

図3の点線は、厚さ50nmのTi膜と厚さ500nmのAu膜を積層した積層構造を有する従来のTi/Au電極の相対反射率(53.5%)を示す。図3によれば、n側電極15のTi層15aの厚さがおよそ4.5nm以下のときに従来のTi/Au電極よりも反射率が大きくなる。そして、およそ2.0nm以下のときに相対反射率が80%よりも大きくなる。   The dotted line in FIG. 3 shows the relative reflectance (53.5%) of a conventional Ti / Au electrode having a laminated structure in which a Ti film having a thickness of 50 nm and an Au film having a thickness of 500 nm are laminated. According to FIG. 3, the reflectance is higher than that of the conventional Ti / Au electrode when the thickness of the Ti layer 15a of the n-side electrode 15 is about 4.5 nm or less. And relative reflectance becomes larger than 80% when it is about 2.0 nm or less.

以下の表1に、図3に示される各測定点の数値を表す。   Table 1 below shows the numerical values at each measurement point shown in FIG.

Figure 2016015375
Figure 2016015375

本評価の結果から、n側電極15のTi層15aの厚さは4.5nm以下であることが好ましく、2.0nm以下であることがより好ましいことがわかった。   From the result of this evaluation, it was found that the thickness of the Ti layer 15a of the n-side electrode 15 is preferably 4.5 nm or less, and more preferably 2.0 nm or less.

〔第2の実施の形態〕
第2の実施の形態は、第1の実施の形態の発光素子1と異なる構造を有する発光素子についての形態である。発光素子の構成部材等、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Second Embodiment]
The second embodiment is a mode of a light emitting element having a structure different from that of the light emitting element 1 of the first embodiment. The description of the same points as those of the first embodiment, such as the constituent members of the light emitting element, will be omitted or simplified.

(発光素子の構造)
図4は、第2の実施の形態に係る発光素子2の垂直断面図である。
(Structure of light emitting element)
FIG. 4 is a vertical cross-sectional view of the light-emitting element 2 according to the second embodiment.

発光素子2は、n型半導体基板10と、n型半導体基板10の一方の表面に誘電体層11を介して形成されたn型半導体層12と、n型半導体層12のn型半導体基板10の反対側に形成されたp型半導体層14と、n型半導体層12とp型半導体層14に挟まれた発光層13と、n型半導体基板10のn型半導体層12が形成されている側の面上に接続されたn側電極15と、n側電極15のn型半導体基板10と反対側の面上のパッド電極16と、p型半導体層14の発光層13と反対側の面上のp側電極17と、p側電極17のp型半導体層14と反対側の面上のパッド電極18とを有する。   The light-emitting element 2 includes an n-type semiconductor substrate 10, an n-type semiconductor layer 12 formed on one surface of the n-type semiconductor substrate 10 via a dielectric layer 11, and an n-type semiconductor substrate 10 of the n-type semiconductor layer 12. The p-type semiconductor layer 14 formed on the opposite side, the n-type semiconductor layer 12 and the light-emitting layer 13 sandwiched between the p-type semiconductor layers 14 and the n-type semiconductor layer 12 of the n-type semiconductor substrate 10 are formed. N-side electrode 15 connected on the side surface, pad electrode 16 on the side of n-side electrode 15 opposite to n-type semiconductor substrate 10, and surface of p-type semiconductor layer 14 opposite to light-emitting layer 13 The upper p-side electrode 17 and the pad electrode 18 on the surface opposite to the p-type semiconductor layer 14 of the p-side electrode 17 are provided.

また、誘電体層11、n型半導体層12、発光層13、p型半導体層14から構成される積層体の側面は、SiO等の絶縁材料からなる絶縁膜19に覆われる。 Further, the dielectric layer 11, n-type semiconductor layer 12, the side surface of the formed laminate a light emitting layer 13, p-type semiconductor layer 14 is covered with an insulating film 19 made of an insulating material such as SiO 2.

発光素子2は、横型の発光素子であり、n側電極15がn型半導体基板10のn型半導体層12が形成されている側の面上に接続される点で、第1の実施の形態に係る発光素子1と異なる。   The light-emitting element 2 is a horizontal light-emitting element, and is the first embodiment in that the n-side electrode 15 is connected to the surface of the n-type semiconductor substrate 10 on the side where the n-type semiconductor layer 12 is formed. It differs from the light emitting element 1 which concerns on.

発光素子2のn側電極15は、第1の実施の形態に係る発光素子1のn側電極15と同様の積層構造を有するため、発光層13から発せられてn型半導体基板10内をn側電極15に向かって進む光を効率よく反射することができる。このため、第1の実施の形態に係る発光素子1と同様に、発光素子2は高い光取出効率を有する。   Since the n-side electrode 15 of the light-emitting element 2 has the same stacked structure as the n-side electrode 15 of the light-emitting element 1 according to the first embodiment, the n-side electrode 15 is emitted from the light-emitting layer 13 and passes through the n-type semiconductor substrate 10. Light traveling toward the side electrode 15 can be efficiently reflected. For this reason, the light emitting element 2 has high light extraction efficiency similarly to the light emitting element 1 which concerns on 1st Embodiment.

〔第3の実施の形態〕
第3の実施の形態は、第1の実施の形態の発光素子1と異なる構造を有する発光素子についての形態である。発光素子の構成部材等、第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Third Embodiment]
The third embodiment is a mode of a light emitting element having a structure different from that of the light emitting element 1 of the first embodiment. The description of the same points as those of the first embodiment, such as the constituent members of the light emitting element, will be omitted or simplified.

(発光素子の構造)
図5は、第3の実施の形態に係る発光素子3の垂直断面図である。
(Structure of light emitting element)
FIG. 5 is a vertical sectional view of the light-emitting element 3 according to the third embodiment.

発光素子3は、n型半導体基板10と、n型半導体基板10の一方の表面に誘電体層11を介して形成されたn型半導体層12と、n型半導体層12のn型半導体基板10の反対側に形成されたp型半導体層14と、n型半導体層12とp型半導体層14に挟まれた発光層13と、p型半導体層14の発光層13と反対側の面上に形成されたp側電極22と、誘電体層11、n型半導体層12、発光層13、p型半導体層14、及びp側電極22を貫通するn側電極20と、p側電極22のp型半導体層14と反対側の面上に絶縁膜19を介して形成され、n側電極20に接続されるパッド電極21とp側電極22のp型半導体層14と反対側の面上のパッド電極23とを有する。   The light-emitting element 3 includes an n-type semiconductor substrate 10, an n-type semiconductor layer 12 formed on one surface of the n-type semiconductor substrate 10 via a dielectric layer 11, and an n-type semiconductor substrate 10 of the n-type semiconductor layer 12. On the opposite side of the p-type semiconductor layer 14, the light-emitting layer 13 sandwiched between the n-type semiconductor layer 12 and the p-type semiconductor layer 14, and the surface of the p-type semiconductor layer 14 opposite to the light-emitting layer 13. The formed p-side electrode 22, the dielectric layer 11, the n-type semiconductor layer 12, the light emitting layer 13, the p-type semiconductor layer 14, the n-side electrode 20 that penetrates the p-side electrode 22, and the p-side electrode 22 p The pad on the surface opposite to the p-type semiconductor layer 14 of the pad electrode 21 and the p-side electrode 22 formed on the surface opposite to the p-type semiconductor layer 14 via the insulating film 19 and connected to the n-side electrode 20 And an electrode 23.

また、誘電体層11、n型半導体層12、発光層13、p型半導体層14から構成される積層体の側面は、SiO等の絶縁材料からなる絶縁膜19に覆われる。この積層体は、絶縁膜19により、n側電極20及びパッド電極21と直接接触しない。 Further, the dielectric layer 11, n-type semiconductor layer 12, the side surface of the formed laminate a light emitting layer 13, p-type semiconductor layer 14 is covered with an insulating film 19 made of an insulating material such as SiO 2. This laminated body is not in direct contact with the n-side electrode 20 and the pad electrode 21 due to the insulating film 19.

n側電極20は、n側電極20がn型半導体基板10にオーミック接触するための、n型半導体基板10に接触するTi層20aと、Ti層20aを透過する光を反射するためのAg層20bとを含む積層構造を有する貫通電極である。発光素子3は、図5に示されるように、電流分散のために複数のn側電極20を有することが好ましい。   The n-side electrode 20 includes a Ti layer 20a in contact with the n-type semiconductor substrate 10 for ohmic contact with the n-type semiconductor substrate 10, and an Ag layer for reflecting light transmitted through the Ti layer 20a. And a through electrode having a laminated structure including 20b. As shown in FIG. 5, the light emitting element 3 preferably has a plurality of n-side electrodes 20 for current dispersion.

Ti層20a、Ag層20bは、それぞれ第1の実施の形態に係るn側電極15のTi層15a、Ag層15bと同様の材料からなる。   The Ti layer 20a and the Ag layer 20b are made of the same material as that of the Ti layer 15a and the Ag layer 15b of the n-side electrode 15 according to the first embodiment, respectively.

また、Ti層20aの厚さは、第1の実施の形態に係るn側電極15のTi層15aと同様に、4.5nm以下であることが好ましく、2nm以下であることがより好ましい。また、n側電極20をn型半導体基板10に低抵抗で接触させるために0.5nm以上であることが好ましい。   In addition, the thickness of the Ti layer 20a is preferably 4.5 nm or less, and more preferably 2 nm or less, like the Ti layer 15a of the n-side electrode 15 according to the first embodiment. Moreover, in order to make the n-side electrode 20 contact the n-type semiconductor substrate 10 with low resistance, it is preferably 0.5 nm or more.

パッド電極21は、第1の実施の形態に係るパッド電極16と同様に、密着層21a、バリアメタル21b、パッド層21cを含む積層構造を有する。密着層21a、バリアメタル21b、パッド層21cは、それぞれ第1の実施の形態に係る密着層16a、バリアメタル16b、パッド層16cと同様の材料からなり、同様の厚さを有する。   Similar to the pad electrode 16 according to the first embodiment, the pad electrode 21 has a laminated structure including an adhesion layer 21a, a barrier metal 21b, and a pad layer 21c. The adhesion layer 21a, the barrier metal 21b, and the pad layer 21c are made of the same material as the adhesion layer 16a, the barrier metal 16b, and the pad layer 16c according to the first embodiment, respectively, and have the same thickness.

p側電極22は、p型半導体層14にオーミック接合する電極であり、例えば、厚さ270nmのAg濃度99%のAg合金膜と、厚さ10nmのNi膜と、厚さ10nmのAu膜とを積層した積層構造を有する。   The p-side electrode 22 is an electrode that is in ohmic contact with the p-type semiconductor layer 14. For example, an Ag alloy film with a thickness of 270 nm, an Ag concentration of 99%, a Ni film with a thickness of 10 nm, and an Au film with a thickness of 10 nm It has the laminated structure which laminated | stacked.

パッド電極23は、例えば、厚さ100nmのTi膜、厚さ50nmのPt膜、厚さ500nmのAu膜を積層した積層構造を有する。   The pad electrode 23 has, for example, a stacked structure in which a Ti film having a thickness of 100 nm, a Pt film having a thickness of 50 nm, and an Au film having a thickness of 500 nm are stacked.

発光素子3は、横型の発光素子であり、主にn側電極20が貫通電極である点において、第1の実施の形態に係る発光素子1と異なる。   The light emitting element 3 is a horizontal light emitting element, and is different from the light emitting element 1 according to the first embodiment in that the n-side electrode 20 is mainly a through electrode.

発光素子3のn側電極20は、第1の実施の形態に係る発光素子1のn側電極15と同様の積層構造を有するため、発光層13から発せられてn型半導体基板10内をn側電極20に向かって進む光を効率よく反射することができる。このため、第1の実施の形態に係る発光素子1と同様に、発光素子3は高い光取出効率を有する。   Since the n-side electrode 20 of the light-emitting element 3 has the same stacked structure as the n-side electrode 15 of the light-emitting element 1 according to the first embodiment, the n-side electrode 20 is emitted from the light-emitting layer 13 and passes through the n-type semiconductor substrate 10. Light traveling toward the side electrode 20 can be efficiently reflected. For this reason, the light emitting element 3 has high light extraction efficiency similarly to the light emitting element 1 which concerns on 1st Embodiment.

(実施の形態の効果)
上記第1〜3の実施の形態によれば、n側電極が発光層から発せられた光を効率的に反射することができるため、n側電極の光吸収に起因する発光素子の光取出効率の低下を抑えることができる。
(Effect of embodiment)
According to the first to third embodiments, since the n-side electrode can efficiently reflect the light emitted from the light emitting layer, the light extraction efficiency of the light emitting element due to the light absorption of the n side electrode. Can be suppressed.

以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

また、上記実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   Moreover, the said embodiment does not limit the invention which concerns on a claim. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

1、2、3…発光素子、 10…n型半導体基板10、 12…n型半導体層、 13…発光層、 14…p型半導体層、 15、20…n側電極、 15a、20a…Ti層、 15b、20b…Ag層、 16、21…パッド電極、 16b、21b…バリアメタル、 16c、21c…パッド層 DESCRIPTION OF SYMBOLS 1, 2, 3 ... Light emitting element, 10 ... N type semiconductor substrate 10, 12 ... N type semiconductor layer, 13 ... Light emitting layer, 14 ... P type semiconductor layer, 15, 20 ... N side electrode, 15a, 20a ... Ti layer 15b, 20b ... Ag layer, 16, 21 ... pad electrode, 16b, 21b ... barrier metal, 16c, 21c ... pad layer

Claims (8)

(AlGaIn(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)結晶を母結晶として有するn型半導体基板と、
前記n型半導体基板に接続されるn側電極と、
を有し、
前記n側電極は、前記n型半導体基板に接触するTi層と、前記Ti層上のAgを主成分とするAg層とを含む積層構造を有する、
発光素子。
An n-type semiconductor substrate having a (Al x Ga y In z ) 2 O 3 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z = 1) crystal as a mother crystal;
An n-side electrode connected to the n-type semiconductor substrate;
Have
The n-side electrode has a laminated structure including a Ti layer in contact with the n-type semiconductor substrate and an Ag layer mainly composed of Ag on the Ti layer.
Light emitting element.
前記Ti層の厚さが4.5nm以下である、
請求項1に記載の発光素子。
The thickness of the Ti layer is 4.5 nm or less,
The light emitting device according to claim 1.
前記Ti層の厚さが2nm以下である、
請求項2に記載の発光素子。
The thickness of the Ti layer is 2 nm or less,
The light emitting device according to claim 2.
前記Ti層の厚さが0.5nm以上である、
請求項1〜3のいずれか1項に記載の発光素子。
The thickness of the Ti layer is 0.5 nm or more,
The light emitting element of any one of Claims 1-3.
前記Ag層のAg濃度が95%以上である、
請求項1〜4のいずれか1項に記載の発光素子。
The Ag concentration of the Ag layer is 95% or more,
The light emitting element of any one of Claims 1-4.
前記n型半導体基板がGa結晶からなる、
請求項1〜5のいずれか1項に記載の発光素子。
The n-type semiconductor substrate is made of Ga 2 O 3 crystal;
The light emitting element of any one of Claims 1-5.
前記n側電極上に、バリアメタルとAuを主成分とするパッド層とを含む積層構造を有するパッド電極が形成され、
前記バリアメタルは、前記n側電極と前記パッド層との間に位置し、前記Ag層に含まれるAgと前記パッド層に含まれるAuとの反応を防ぐ、
請求項1〜6のいずれか1項に記載の発光素子。
A pad electrode having a laminated structure including a barrier metal and a pad layer mainly composed of Au is formed on the n-side electrode,
The barrier metal is located between the n-side electrode and the pad layer, and prevents reaction between Ag contained in the Ag layer and Au contained in the pad layer;
The light emitting element of any one of Claims 1-6.
前記n側電極が貫通電極である、
請求項1〜7のいずれか1項に記載の発光素子。
The n-side electrode is a through electrode;
The light emitting element of any one of Claims 1-7.
JP2014135958A 2014-07-01 2014-07-01 Light emitting element Pending JP2016015375A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014135958A JP2016015375A (en) 2014-07-01 2014-07-01 Light emitting element
PCT/JP2015/068880 WO2016002800A1 (en) 2014-07-01 2015-06-30 Light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135958A JP2016015375A (en) 2014-07-01 2014-07-01 Light emitting element

Publications (1)

Publication Number Publication Date
JP2016015375A true JP2016015375A (en) 2016-01-28

Family

ID=55019331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135958A Pending JP2016015375A (en) 2014-07-01 2014-07-01 Light emitting element

Country Status (2)

Country Link
JP (1) JP2016015375A (en)
WO (1) WO2016002800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180807A (en) * 2019-04-23 2020-11-05 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program and specific conductivity measurement system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260101A (en) * 2004-03-12 2005-09-22 Univ Waseda Ga2O3-BASED SEMICONDUCTOR ELEMENT
JP2006032737A (en) * 2004-07-16 2006-02-02 Koha Co Ltd Light emitting element
JP2009081468A (en) * 2009-01-19 2009-04-16 Univ Waseda Ga2O3-BASED SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD OF Ga2O3-BASED SEMICONDUCTOR ELEMENT
JP2009188422A (en) * 2009-04-14 2009-08-20 Stanley Electric Co Ltd Semiconductor light emitting element
JP2011129915A (en) * 2009-12-18 2011-06-30 Lg Innotek Co Ltd Light emitting device, light emitting device package, and illumination system
JP2012114343A (en) * 2010-11-26 2012-06-14 Toyoda Gosei Co Ltd Semiconductor light-emitting element
JP2012124342A (en) * 2010-12-08 2012-06-28 Nichia Chem Ind Ltd Nitride-based semiconductor light-emitting element
WO2013011674A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Semiconductor light emitting element
JP2013135234A (en) * 2011-12-26 2013-07-08 Lg Innotek Co Ltd Light-emitting device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260101A (en) * 2004-03-12 2005-09-22 Univ Waseda Ga2O3-BASED SEMICONDUCTOR ELEMENT
JP2006032737A (en) * 2004-07-16 2006-02-02 Koha Co Ltd Light emitting element
JP2009081468A (en) * 2009-01-19 2009-04-16 Univ Waseda Ga2O3-BASED SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD OF Ga2O3-BASED SEMICONDUCTOR ELEMENT
JP2009188422A (en) * 2009-04-14 2009-08-20 Stanley Electric Co Ltd Semiconductor light emitting element
JP2011129915A (en) * 2009-12-18 2011-06-30 Lg Innotek Co Ltd Light emitting device, light emitting device package, and illumination system
JP2012114343A (en) * 2010-11-26 2012-06-14 Toyoda Gosei Co Ltd Semiconductor light-emitting element
JP2012124342A (en) * 2010-12-08 2012-06-28 Nichia Chem Ind Ltd Nitride-based semiconductor light-emitting element
WO2013011674A1 (en) * 2011-07-15 2013-01-24 パナソニック株式会社 Semiconductor light emitting element
JP2013135234A (en) * 2011-12-26 2013-07-08 Lg Innotek Co Ltd Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180807A (en) * 2019-04-23 2020-11-05 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program and specific conductivity measurement system
JP7215313B2 (en) 2019-04-23 2023-01-31 富士通株式会社 Specific conductivity measurement method, specific conductivity calculation program, and specific conductivity measurement system

Also Published As

Publication number Publication date
WO2016002800A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
US7141828B2 (en) Flip-chip light emitting diode with a thermally stable multiple layer reflective p-type contact
US7518153B2 (en) Nitride semiconductor light emitting device
JP4368225B2 (en) Method for manufacturing nitride-based semiconductor light-emitting device
JP6452651B2 (en) Semiconductor optical device manufacturing method and semiconductor optical device
JP2008205005A (en) Gallium-nitride-based light emitting device element
JP2005223165A (en) Nitride-based light emitting element
JP2009200178A (en) Semiconductor light-emitting device
US20150263223A1 (en) Semiconductor light emitting element
JP2008112957A (en) GaN-BASED LED CHIP
JP2007103690A (en) Semiconductor light emitting device and its fabrication process
JP2010067858A (en) Nitride-based semiconductor device and method of manufacturing the same
JP2009206265A (en) Semiconductor light-emitting device and method of manufacturing semiconductor light-emitting device
CN107112722A (en) Optical semiconductor device
JP5245529B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2010263251A (en) Light-emitting device and method of manufacturing the same
JP2010263251A5 (en)
CN116210092A (en) Infrared LED element
JP5646545B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
WO2016002800A1 (en) Light-emitting element
JP2012178453A (en) GaN-BASED LED ELEMENT
JP5582025B2 (en) Semiconductor element
KR20090111889A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2016015376A (en) Light emitting element
JP2009060142A (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020