JP2016014689A - Impulse current detection device - Google Patents

Impulse current detection device Download PDF

Info

Publication number
JP2016014689A
JP2016014689A JP2015212105A JP2015212105A JP2016014689A JP 2016014689 A JP2016014689 A JP 2016014689A JP 2015212105 A JP2015212105 A JP 2015212105A JP 2015212105 A JP2015212105 A JP 2015212105A JP 2016014689 A JP2016014689 A JP 2016014689A
Authority
JP
Japan
Prior art keywords
frequency
integration circuit
rogowski coil
internal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015212105A
Other languages
Japanese (ja)
Inventor
聡 浅川
Satoshi Asakawa
聡 浅川
正昭 茆原
Masaaki Ubara
正昭 茆原
泰造 檜垣
Taizo Higaki
泰造 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTONICS KK
Central Research Institute of Electric Power Industry
Original Assignee
PHOTONICS KK
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTONICS KK, Central Research Institute of Electric Power Industry filed Critical PHOTONICS KK
Priority to JP2015212105A priority Critical patent/JP2016014689A/en
Publication of JP2016014689A publication Critical patent/JP2016014689A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an impulse current detection device such that an impulse current can be observed with high precision using a Rogowskii coil without using an external integration circuit having a wide bandwidth.SOLUTION: Addition means 6 sums up an electromotive force signal obtained by connecting a resistor 3 for internal integration across the Rogowskii coil and a signal generated by integrating the electromotive force signal by an external integration circuit 7 having a high-range cutting frequency f0 equal to a low-range cutting frequency of an internal integration function of the Rogowskii coil, the frequency f0 being 600-700 Hz and the gain of the external integration circuit 7 being 70-80 db.

Description

本発明は、落雷による衝撃電流を検出するのに適した衝撃電流検出装置に関する。   The present invention relates to an impact current detection apparatus suitable for detecting an impact current caused by a lightning strike.

ロゴスキーコイルを用いた衝撃電流検出装置は、ロゴスキーコイルの起電力出力が衝撃電流の微分出力であるため、元の衝撃電流を観測するにはロゴスキーコイルの起電力の積分成分を取り出す必要がある。   Since the electromotive force output of the Rogowski coil is a differential output of the impact current, the impulse current detection device using the Rogowski coil needs to extract the integral component of the electromotive force of the Rogowski coil to observe the original impact current. There is.

このため、ロゴスキーコイルに所定値の抵抗体を直列に接続して、内部積分型ロゴスキーコイルを構成し、抵抗体の起電力を検出信号とすることが行われている。
しかし、内部積分型ロゴスキーコイルの周波数特性は図3に示したように1KHz以下の低い周波数では微分特性の影響を受ける。なお、図3における楕円で示す領域の共振信号はフィルタ等の適宜の回路技術で除去されている。
このため、冬場の雪雲による雷のように波尾部の継続時間が1秒にも及ぶ電流をロゴスキコイルの内部積分機能を利用して取り出すと正確に再現することが困難である。
For this reason, a resistor having a predetermined value is connected in series to the Rogowski coil to form an internal integration type Rogowski coil, and the electromotive force of the resistor is used as a detection signal.
However, the frequency characteristic of the internal integration type Rogowski coil is affected by the differential characteristic at a low frequency of 1 KHz or less as shown in FIG. Note that the resonance signal in the region indicated by the ellipse in FIG. 3 is removed by an appropriate circuit technique such as a filter.
For this reason, it is difficult to accurately reproduce a current having a wave tail duration of as long as 1 second, such as lightning caused by snow clouds in winter, using the internal integration function of the Rogowski coil.

このため、特許文献1にみられるようにロゴスキーコイルの信号の高周波成分の積分に適した特性を有する第一の外部積分回路と低周波成分の積分に適した特性を有する第二の外部積分回路とを最適化して直列接続して組み合わせ、ロゴスキーコイルのからの信号をその周波数成分に応じて一方の外部積分回路で積分することが提案されている。   Therefore, as shown in Patent Document 1, the first external integration circuit having characteristics suitable for the integration of the high-frequency component of the signal of the Rogowski coil and the second external integration having characteristics suitable for the integration of the low-frequency component. It has been proposed to optimize and combine the circuits in series and integrate the signal from the Rogowski coil with one external integration circuit according to the frequency component.

これによれば冬場の雷電流のような低い周波数成分の信号であっても電流波形を正確に再現できるものの、一方の積分回路で積分された信号が他方の積分回路で再び積分される不都合を回避する必要上、回路定数の合わせこみのための設定が極めて面倒であるという問題がある。   According to this, even if it is a low frequency component signal such as lightning current in winter, the current waveform can be accurately reproduced, but the signal integrated by one integration circuit is integrated again by the other integration circuit. In order to avoid it, there is a problem that the setting for matching circuit constants is extremely troublesome.

このため、特許文献2に見られるように低域周波ほどゲイン特性が大きくなる外部積分回路により積分して全体として低周波領域から高周波領域までの成分を正確に検出できる衝撃電流検出装置も提案されている。
しかしながら直流に近い0.1Hz程度から数MKHzまでの7桁程度の帯域に平坦な利得を有する積分回路を実現することは、安定性やコストの面から困難である。
For this reason, as shown in Patent Document 2, an impact current detection device has also been proposed which can be integrated by an external integration circuit whose gain characteristics increase as the low frequency range, and accurately detect components from the low frequency range to the high frequency range as a whole. ing.
However, it is difficult in terms of stability and cost to realize an integration circuit having a flat gain in a band of about 7 digits from about 0.1 Hz to several MKHz, which is close to direct current.

特開平11-51975号公報Japanese Patent Laid-Open No. 11-51975 特開2001-343403号公報JP 2001-343403 A

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは広い帯域幅の積分回路を必要とすることなく、ロゴスキーコイルを用いて衝撃電流を高い精度で観測できる衝撃電流測定装置を提供することである。   The present invention has been made in view of such problems, and the object of the present invention is to observe an impact current with high accuracy using a Rogowski coil without requiring a wide bandwidth integrating circuit. It is an object of the present invention to provide an impact current measuring device that can be used.

このような課題を達成するために本発明は、ロゴスキーコイルとともに内部積分回路を構成して当該内部積分回路の低域カット周波数が第一の周波数になるように選定された抵抗体をロゴスキーコイルの両端に接続して得た信号と、低域カット周波数が第二の周波数であると共に高域カット周波数が前記第一の周波数である外部積分回路でロゴスキーコイルからの信号を積分した信号とを加算するようにしている。また、本発明は、前記第一の周波数が500〜700Hzの範囲であるようにしたり、また、前記第二の周波数が0.1Hzであるようにしたりしても良い。   In order to achieve such a problem, the present invention comprises an internal integration circuit together with a Rogowski coil, and a resistor selected so that the low-frequency cut frequency of the internal integration circuit becomes the first frequency. The signal obtained by connecting both ends of the coil and the signal obtained by integrating the signal from the Rogowski coil with an external integration circuit whose low-frequency cut frequency is the second frequency and whose high-frequency cut frequency is the first frequency. And are added. In the present invention, the first frequency may be in the range of 500 to 700 Hz, or the second frequency may be 0.1 Hz.

本発明によれば、ロゴスキーコイルの内部積分回路の高域遮断周波数を500〜700Hz程度設定することにより、外部積分回路の垂下特性を積極的に利用して、限りなく直流に近い成分を含むテール部を高い精度で検出できるばかりでなく、外部積分回路はロゴスキーコイルの内部積分機能の0.1Hzから4桁程度の帯域を補正するだけで済むから、広帯域の積分回路が不要となり安価に性能の高い衝撃電流測定装置を提供することができる。   According to the present invention, by setting the high-frequency cutoff frequency of the internal integration circuit of the Rogowski coil to about 500 to 700 Hz, the drooping characteristics of the external integration circuit are positively used, and components that are close to direct current are included. Not only can the tail be detected with high accuracy, but the external integration circuit only needs to correct the band from 0.1 Hz, which is the internal integration function of the Rogowski coil, to a range of about 4 digits. A high performance impact current measuring device can be provided.

本発明の衝撃電流検出装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the impact current detection apparatus of this invention. 図(a)乃至(c)は、それぞれロゴスキーコイル、外部積分回路、及び加算器から出力される信号の周波数ーゲイン特性を示す線図である。FIGS. 9A to 9C are diagrams showing frequency-gain characteristics of signals output from the Rogowski coil, the external integration circuit, and the adder, respectively. 内部積分型ロゴスキコイルの周波数ーゲイン特性を示す線図である。It is a diagram which shows the frequency-gain characteristic of an internal integral type Rogowski coil.

図1は、本発明の衝撃電流検出装置の一実施例を示すものであって、ロゴスキーコイル1(図ではインダクタンスL、内部抵抗Rとでシンボリックに表示されている)は、そのインダクタンスL及び内部抵抗Rともに内部積分回路2を形成する抵抗3がその両端に接続に接続されている。   FIG. 1 shows an embodiment of an impact current detection device of the present invention, in which a Rogowski coil 1 (symbolized with an inductance L and an internal resistance R in the figure) has its inductance L and A resistor 3 that forms the internal integration circuit 2 together with the internal resistor R is connected to both ends thereof.

抵抗3は、ロゴスキーコイル1のインダクタンス分及び内部抵抗分とにより内部積分回路2を構成した場合に図2(a)に示したように低域カット周波数が500〜700Hz(図2(a)の点線a)となる値に選定されている。   As shown in FIG. 2A, the resistor 3 has a low-frequency cut frequency of 500 to 700 Hz (FIG. 2A) when the internal integration circuit 2 is constituted by the inductance and internal resistance of the Rogowski coil 1. Is selected to be a dotted line a).

ロゴスキーコイル1の電気的特性は、この実施例ではインダクタンスLが500μHで、 また抵抗3はロゴスキーコイル1の内部抵抗Rとの合成抵抗値が1Ωとなるように選定されている。これにより、内部積分回路2は、500〜700Hz程度から0.1Hzまでの領域は−20db/ディケードの垂下特性を有している。   The electrical characteristics of the Rogowski coil 1 are selected so that the inductance L is 500 μH in this embodiment, and the resistance 3 is 1 Ω combined with the internal resistance R of the Rogowski coil 1. Thereby, the internal integration circuit 2 has a drooping characteristic of −20 db / decade in a region from about 500 to 700 Hz to 0.1 Hz.

ロゴスキーコイル1と抵抗3との接続点には起電力検出用の抵抗4が接続され、抵抗4を介して内部積分回路2の起電力がバッファ5を介して加算回路6の一方の入力端子に出力している。   A resistor 4 for detecting an electromotive force is connected to a connection point between the Rogowski coil 1 and the resistor 3, and the electromotive force of the internal integration circuit 2 is connected to the input circuit 6 via the resistor 4 via the buffer 5. Is output.

また抵抗4には外部積分回路7が接続され、その積分出力信号はバッファ8を介して加算回路6の他方の入力端子に出力している。この外部積分回路7は、図2(b)に示したように高域カット周波数が内部積分回路2の低域カット周波数500〜700Hz(図2(b)の点線a)に一致するように調整されている。   An external integration circuit 7 is connected to the resistor 4, and the integration output signal is output to the other input terminal of the addition circuit 6 via the buffer 8. The external integration circuit 7 is adjusted so that the high-frequency cut frequency matches the low-frequency cut frequency 500 to 700 Hz (dotted line a in FIG. 2B) of the internal integration circuit 2 as shown in FIG. Has been.

さらに、外部積分回路7はその利得、つまり積分回路を構成する演算増幅器の利得が70〜80db程度に設定されている。   Further, the gain of the external integration circuit 7, that is, the gain of the operational amplifier constituting the integration circuit is set to about 70 to 80 db.

以上のようにロゴスキーコイルの内部積分回路の低域カット周波数を500〜700Hzに、また外部積分回路の低域カット周波数を0.1Hzで、かつ利得を70〜80dbに選択することにより、外部積分回路は、0.1Hz乃至500〜700Hzで利得が周波数に大きく依存するロゴスキーコイルからの信号の利得を安定に補正して出力することになる。
すなわち、加算回路6のゲインー周波数特性は、図2(c)に示したように直流成分をカットしつつ0.1Hz以上が平坦となる。
As described above, the low-frequency cut frequency of the internal integration circuit of the Rogowski coil is selected to be 500 to 700 Hz, the low-frequency cut frequency of the external integration circuit is set to 0.1 Hz, and the gain is set to 70 to 80 db. The integrating circuit stably corrects and outputs the gain of the signal from the Rogowski coil whose gain greatly depends on the frequency from 0.1 Hz to 500 to 700 Hz.
That is, the gain-frequency characteristic of the adder circuit 6 is flat at 0.1 Hz or higher while cutting the DC component as shown in FIG.

この実施例においてロゴスキーコイル1を雷電流を監視すべき構築物に装着した状態で落雷などにより衝撃電流が発生すると、ロゴスキーコイル1の起電力として検出される。
この起電力は、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2により積分されて衝撃電流値に比例した信号として抵抗4に出力される。
この信号は、バッファ5を経由して加算回路6の一方の入力端子に入力するとともに、外部積分回路7で積分された信号はバッファ8を経由して加算回路6の他方の入力端子に入力する。
In this embodiment, when an impact current is generated by a lightning strike while the Rogowski coil 1 is mounted on a structure whose lightning current is to be monitored, the electromotive force of the Rogowski coil 1 is detected.
This electromotive force is integrated by the internal integration circuit 2 formed by the inductance L of the Rogowski coil 1 and the combined resistance of the coil resistance R and the resistor 3, and is output to the resistor 4 as a signal proportional to the impact current value. The
This signal is input to one input terminal of the addition circuit 6 via the buffer 5, and the signal integrated by the external integration circuit 7 is input to the other input terminal of the addition circuit 6 via the buffer 8. .

雷電流の低周波成分では、ロゴスキーコイル1のリアクタンスがあまり大きく作用しないので、電流は内部抵抗Rと抵抗3とで決まるのでインダクタンスLの両端電圧が、雷電流を微分した電圧となる。   Since the reactance of the Rogowski coil 1 does not act so much in the low frequency component of the lightning current, the current is determined by the internal resistance R and the resistance 3, so that the voltage across the inductance L is a voltage obtained by differentiating the lightning current.

衝撃電流のテール部は、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2の高域カット周波数500〜700Hz周波数よりも低い周波数の成分を多く含むため、内部積分回路2での積分利得は非常に小さく、実質的にはロゴスキーコイル1で検出した衝撃電流による起電力、つまり抵抗体3に印加した信号だけが外部積分回路7に入力することになる。   The tail portion of the impact current is a component having a frequency lower than the high frequency cut frequency 500 to 700 Hz of the internal integration circuit 2 formed by the inductance L of the Rogowski coil 1 and the combined resistance of the resistance R of the coil and the resistor 3. Therefore, the integral gain in the internal integration circuit 2 is very small, and substantially only the electromotive force due to the impact current detected by the Rogowski coil 1, that is, only the signal applied to the resistor 3 is supplied to the external integration circuit 7. Will be input.

そして、外部積分回路7は、0.1Hzを低域カット周波数、500〜700Hzを高域カット周波数とし、−20db/ディケードの垂下特性を有するから、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2の垂下特性とは相反することになり、0.1Hz乃至500〜700Hzでは平坦化した信号を出力することになる。   Since the external integration circuit 7 has a drooping characteristic of −20 db / decade with 0.1 Hz as a low-frequency cut frequency and 500 to 700 Hz as a high-frequency cut frequency, the inductance L of the Rogowski coil 1 and the resistance R of the coil. Therefore, the drooping characteristic of the internal integration circuit 2 formed by the combined resistance of the resistor 3 and the resistor 3 is contradictory, and a flattened signal is output from 0.1 Hz to 500 to 700 Hz.

他方、雷電流の高周波成分では電流値は、インダクタンスLが大きく作用するため、インダクタンスの両端電圧は電流微分に比例したものが誘起してほぼ入力とつりあっているから直列につないだ抵抗の両端電圧が積分値となる。   On the other hand, in the high frequency component of lightning current, since the inductance L acts greatly on the current value, the voltage across the inductance is induced proportionally to the current differentiation and is almost balanced with the input, so the voltage across the resistor connected in series Is the integral value.

したがって、高い周波数成分の電流はロゴスキーコイルの内部積分機能により電圧信号に変換され、また継続時間が長く低い周波数成分の電流は外部積分回路2により電圧信号に変換され、これら両信号成分は加算器9で合成されて衝撃電流全体の波形パターンを正確に再現した電圧信号を得ることができる。   Therefore, the high frequency component current is converted into a voltage signal by the internal integration function of the Rogowski coil, and the low frequency component current having a long duration is converted into a voltage signal by the external integration circuit 2, and these two signal components are added. It is possible to obtain a voltage signal that is synthesized by the device 9 and accurately reproduces the waveform pattern of the entire impact current.

さらに、雷電流の周波数0.1Hz乃至500〜700Hzのせいぜい4桁程度の領域だけを高利得な外部積分回路2で積分し、また周波数500〜700Hzよりも高い周波数領域の成分はロゴスキコイル自体の利得が周波数特性に依存しない領域の内部積分機能を利用するため、安定な外部積分回路を容易に構成することができ、測定結果に対するトレイサビリティを確保できる測定装置を実現できる。   Further, only the region of about 4 digits of the lightning current frequency of 0.1 Hz to 500 to 700 Hz is integrated by the high gain external integration circuit 2, and the component in the frequency region higher than the frequency of 500 to 700 Hz is the gain of the Rogowski coil itself. However, since the internal integration function in a region that does not depend on the frequency characteristics is used, a stable external integration circuit can be easily configured, and a measurement apparatus that can ensure traceability for the measurement result can be realized.

1 ロゴスキーコイル
2 内部積分回路
4 検出用回路
6 加算器
7 外部積分回路
5、8 バッファ
1 Rogowski coil 2 Internal integration circuit
4 Detection circuit
6 Adder 7 External integration circuit 5, 8 Buffer

このような課題を達成するために本発明は、ロゴスキーコイルとともに内部積分回路を構成して当該内部積分回路の低域カット周波数が第一の周波数になるように選定された抵抗体をロゴスキーコイルの両端に接続して得た信号と、低域カット周波数が第二の周波数であると共に高域カット周波数が前記第一の周波数であり且つ前記内部積分回路の低域カット周波数側の垂下特性と相反する高域カット周波数側の垂下特性を有する外部積分回路でロゴスキーコイルからの信号を積分した信号とを加算するようにしている。また、本発明は、前記第一の周波数が500〜700Hzの範囲であるようにしたり、また、前記第二の周波数が0.1Hzであるようにしたりしても良い。 In order to achieve such a problem, the present invention comprises an internal integration circuit together with a Rogowski coil, and a resistor selected so that the low-frequency cut frequency of the internal integration circuit becomes the first frequency. a signal obtained by connecting across the coil, drooping low cut frequency is low cut frequency side of the second high frequency cut frequency the first frequency der Ri and the internal integrator circuit with the frequency A signal obtained by integrating the signal from the Rogowski coil is added by an external integration circuit having a drooping characteristic on the high-frequency cut frequency side which is inconsistent with the characteristic . In the present invention, the first frequency may be in the range of 500 to 700 Hz, or the second frequency may be 0.1 Hz.

Claims (3)

ロゴスキーコイルとともに内部積分回路を構成して当該内部積分回路の低域カット周波数が第一の周波数になるように選定された抵抗体を前記ロゴスキーコイルの両端に接続して得た信号と、低域カット周波数が第二の周波数であると共に高域カット周波数が前記第一の周波数である外部積分回路で前記ロゴスキーコイルからの信号を積分した信号とを加算する衝撃電流検出装置。   A signal obtained by configuring an internal integration circuit together with the Rogowski coil and connecting a resistor selected at both ends of the Rogowski coil so that the low-frequency cut frequency of the internal integration circuit becomes the first frequency; An impact current detection device that adds a signal obtained by integrating a signal from the Rogowski coil with an external integration circuit in which a low-frequency cut frequency is a second frequency and a high-frequency cut frequency is the first frequency. 前記第一の周波数が500〜700Hzの範囲である請求項1記載の衝撃電流検出装置。   The impact current detection device according to claim 1, wherein the first frequency is in a range of 500 to 700 Hz. 前記第二の周波数が0.1Hzである請求項1または2記載の衝撃電流検出装置。   The impact current detection device according to claim 1 or 2, wherein the second frequency is 0.1 Hz.
JP2015212105A 2015-10-28 2015-10-28 Impulse current detection device Pending JP2016014689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015212105A JP2016014689A (en) 2015-10-28 2015-10-28 Impulse current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015212105A JP2016014689A (en) 2015-10-28 2015-10-28 Impulse current detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011164091A Division JP2013029349A (en) 2011-07-27 2011-07-27 Impulse current detection device

Publications (1)

Publication Number Publication Date
JP2016014689A true JP2016014689A (en) 2016-01-28

Family

ID=55230947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015212105A Pending JP2016014689A (en) 2015-10-28 2015-10-28 Impulse current detection device

Country Status (1)

Country Link
JP (1) JP2016014689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436680A (en) * 2022-09-30 2022-12-06 西北核技术研究所 Small-resistance signal resistor for self-integrating Rogowski coil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153646A (en) * 2004-11-29 2006-06-15 Central Res Inst Of Electric Power Ind Impulse current detector
JP2010197135A (en) * 2009-02-24 2010-09-09 Coexe Co Ltd Surge current detection circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153646A (en) * 2004-11-29 2006-06-15 Central Res Inst Of Electric Power Ind Impulse current detector
JP2010197135A (en) * 2009-02-24 2010-09-09 Coexe Co Ltd Surge current detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115436680A (en) * 2022-09-30 2022-12-06 西北核技术研究所 Small-resistance signal resistor for self-integrating Rogowski coil

Similar Documents

Publication Publication Date Title
JP4828542B2 (en) Impedance detector
JP6499650B2 (en) Apparatus for detecting an AC component in a DC circuit and use of the apparatus
JP5253687B1 (en) Voltage detector
KR20170110103A (en) Electronic integrator for Rogowski coil sensor
EP2871485A1 (en) Current detection device
CN101989845B (en) Integrator and circuit-breaker having integrator
CN104515931B (en) A kind of DC leakage flow sensor based on magnetic modulation
JP6153387B2 (en) Current sensor
JP2013029349A (en) Impulse current detection device
JP2014145758A (en) Impedance source circuit and impedance source circuit providing method
JP2016014689A (en) Impulse current detection device
JP6173180B2 (en) Microphone and microphone device
RU2631019C1 (en) Compensation accelerometer
US11082017B2 (en) Amplifier with a compensator with a network of at least third order
KR102345505B1 (en) Current detecting circuit
US11258411B2 (en) Amplifier with an at least second order filter in the control loop
CN106788327B (en) Sensor circuit for both contact and non-contact detection
US20200252034A1 (en) Analog based speaker thermal protection in class-d amplifiers
JP2009216449A (en) Vibration detection circuit and seismometer
JP6698045B2 (en) amplifier
CN110972044A (en) Loudspeaker control circuit and audio playing device
JPH0691387B2 (en) Charge amplifier
JP5758229B2 (en) Magnetic field detector
WO2024090239A1 (en) Differential input/differential output inverting amplifier circuit and measuring device
JP6437271B2 (en) Driving circuit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180416

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325