JP2013029349A - Impulse current detection device - Google Patents

Impulse current detection device Download PDF

Info

Publication number
JP2013029349A
JP2013029349A JP2011164091A JP2011164091A JP2013029349A JP 2013029349 A JP2013029349 A JP 2013029349A JP 2011164091 A JP2011164091 A JP 2011164091A JP 2011164091 A JP2011164091 A JP 2011164091A JP 2013029349 A JP2013029349 A JP 2013029349A
Authority
JP
Japan
Prior art keywords
frequency
integration circuit
rogowski coil
internal
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011164091A
Other languages
Japanese (ja)
Inventor
Satoshi Asakawa
聡 浅川
Masaaki Ubara
正昭 茆原
Taizo Higaki
泰造 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOTONICS KK
Central Research Institute of Electric Power Industry
Original Assignee
PHOTONICS KK
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOTONICS KK, Central Research Institute of Electric Power Industry filed Critical PHOTONICS KK
Priority to JP2011164091A priority Critical patent/JP2013029349A/en
Publication of JP2013029349A publication Critical patent/JP2013029349A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an impulse current detection device such that an impulse current can be observed with high precision using a Rogowskii coil without using an external integration circuit having a wide bandwidth.SOLUTION: Addition means 6 sums up an electromotive force signal obtained by connecting a resistor 3 for internal integration across the Rogowskii coil and a signal generated by integrating the electromotive force signal by an external integration circuit 7 having a high-range cutting frequency f0 equal to a low-range cutting frequency of an internal integration function of the Rogowskii coil, the frequency f0 being 600-700 Hz and the gain of the external integration circuit 7 being 70-80 db.

Description

本発明は、落雷による衝撃電流を検出するのに適した衝撃電流検出装置に関する。   The present invention relates to an impact current detection apparatus suitable for detecting an impact current caused by a lightning strike.

ロゴスキーコイルを用いた衝撃電流検出装置は、ロゴスキーコイルの起電力出力が衝撃電流の微分出力であるため、元の衝撃電流を観測するにはロゴスキーコイルの起電力の積分成分を取り出す必要がある。   Since the electromotive force output of the Rogowski coil is a differential output of the impact current, the impulse current detection device using the Rogowski coil needs to extract the integral component of the electromotive force of the Rogowski coil to observe the original impact current. There is.

このため、ロゴスキーコイルに所定値の抵抗体を直列に接続して、内部積分型ロゴスキーコイルを構成し、抵抗体の起電力を検出信号とすることが行われている。
しかし、内部積分型ロゴスキーコイルの周波数特性は図3に示したように1KHz以下の低い周波数では微分特性の影響を受ける。なお、図3における楕円で示す領域の共振信号はフィルタ等の適宜の回路技術で除去されている。
このため、冬場の雪雲による雷のように波尾部の継続時間が1秒にも及ぶ電流をロゴスキコイルの内部積分機能を利用して取り出すと正確に再現することが困難である。
For this reason, a resistor having a predetermined value is connected in series to the Rogowski coil to form an internal integration type Rogowski coil, and the electromotive force of the resistor is used as a detection signal.
However, the frequency characteristic of the internal integration type Rogowski coil is affected by the differential characteristic at a low frequency of 1 KHz or less as shown in FIG. Note that the resonance signal in the region indicated by the ellipse in FIG. 3 is removed by an appropriate circuit technique such as a filter.
For this reason, it is difficult to accurately reproduce a current having a wave tail duration of as long as 1 second, such as lightning caused by snow clouds in winter, using the internal integration function of the Rogowski coil.

このため、特許文献1にみられるようにロゴスキーコイルの信号の高周波成分の積分に適した特性を有する第一の外部積分回路と低周波成分の積分に適した特性を有する第二の外部積分回路とを最適化して直列接続して組み合わせ、ロゴスキーコイルのからの信号をその周波数成分に応じて一方の外部積分回路で積分することが提案されている。   Therefore, as shown in Patent Document 1, the first external integration circuit having characteristics suitable for the integration of the high-frequency component of the signal of the Rogowski coil and the second external integration having characteristics suitable for the integration of the low-frequency component. It has been proposed to optimize and combine the circuits in series and integrate the signal from the Rogowski coil with one external integration circuit according to the frequency component.

これによれば冬場の雷電流のような低い周波数成分の信号であっても電流波形を正確に再現できるものの、一方の積分回路で積分された信号が他方の積分回路で再び積分される不都合を回避する必要上、回路定数の合わせこみのための設定が極めて面倒であるという問題がある。   According to this, even if it is a low frequency component signal such as lightning current in winter, the current waveform can be accurately reproduced, but the signal integrated by one integration circuit is integrated again by the other integration circuit. In order to avoid it, there is a problem that the setting for matching circuit constants is extremely troublesome.

このため、特許文献2に見られるように低域周波ほどゲイン特性が大きくなる外部積分回路により積分して全体として低周波領域から高周波領域までの成分を正確に検出できる衝撃電流検出装置も提案されている。
しかしながら直流に近い0.1Hz程度から数MKHzまでの7桁程度の帯域に平坦な利得を有する積分回路を実現することは、安定性やコストの面から困難である。
For this reason, as shown in Patent Document 2, an impact current detection device has also been proposed which can be integrated by an external integration circuit whose gain characteristics increase as the low frequency range, and accurately detect components from the low frequency range to the high frequency range as a whole. ing.
However, it is difficult in terms of stability and cost to realize an integration circuit having a flat gain in a band of about 7 digits from about 0.1 Hz to several MKHz, which is close to direct current.

特開平11-51975号公報Japanese Patent Laid-Open No. 11-51975 特開2001-343403号公報JP 2001-343403 A

本発明は、このような問題に鑑みてなされたものであって、その目的とするところは広い帯域幅の積分回路を必要とすることなく、ロゴスキーコイルを用いて衝撃電流を高い精度で観測できる衝撃電流測定装置を提供することである。   The present invention has been made in view of such problems, and the object of the present invention is to observe an impact current with high accuracy using a Rogowski coil without requiring a wide bandwidth integrating circuit. It is an object of the present invention to provide an impact current measuring device that can be used.

このような課題を達成するために本発明は、ロゴスキーコイルの両端に内部積分用抵抗体を接続して得た起電力信号と、前記起電力信号を前記ロゴスキーコイルの内部積分機能の低域カット周波数f0を高域カット周波数f0とする外部積分回路で積分した信号とを加算手段により加算するとともに、前記周波数f0が600〜700Hzで、また前記外部積分回路の利得が70〜80dbである。   In order to achieve such a problem, the present invention provides an electromotive force signal obtained by connecting an internal integration resistor to both ends of a Rogowski coil, and the electromotive force signal is reduced in the internal integration function of the Rogowski coil. The signal integrated by the external integration circuit having the high frequency cut frequency f0 as the high frequency cut frequency f0 is added by the adding means, the frequency f0 is 600 to 700 Hz, and the gain of the external integration circuit is 70 to 80 db. .

本発明によれば、ロゴスキーコイルの内部積分回路の高域遮断周波数を500〜700Hz程度設定することにより、外部積分回路の垂下特性を積極的に利用して、限りなく直流に近い成分を含むテール部を高い精度で検出できるばかりでなく、外部積分回路はロゴスキーコイルの内部積分機能の0.1Hzから4桁程度の帯域を補正するだけで済むから、広帯域の積分回路が不要となり安価に性能の高い衝撃電流測定装置を提供することができる。   According to the present invention, by setting the high-frequency cutoff frequency of the internal integration circuit of the Rogowski coil to about 500 to 700 Hz, the drooping characteristics of the external integration circuit are positively used, and components that are close to direct current are included. Not only can the tail be detected with high accuracy, but the external integration circuit only needs to correct the band from 0.1 Hz, which is the internal integration function of the Rogowski coil, to a range of about 4 digits. A high performance impact current measuring device can be provided.

図1は、本発明の衝撃電流検出装置の一実施例を示すものであって、ロゴスキーコイル1(図ではインダクタンスL、内部抵抗Rとでシンボリックに表示されている)は、そのインダクタンスL及び内部抵抗Rともに内部積分回路2を形成する抵抗3がその両端に接続に接続されている。   FIG. 1 shows an embodiment of an impact current detection device of the present invention, in which a Rogowski coil 1 (symbolized with an inductance L and an internal resistance R in the figure) has its inductance L and A resistor 3 that forms the internal integration circuit 2 together with the internal resistor R is connected to both ends thereof.

抵抗3は、ロゴスキーコイル1のインダクタンス分及び内部抵抗分とにより内部積分回路2を構成した場合に図2(a)に示したように低域カット周波数が500〜700Hz(図2(a)の点線a)となる値に選定されている。   As shown in FIG. 2A, the resistor 3 has a low-frequency cut frequency of 500 to 700 Hz (FIG. 2A) when the internal integration circuit 2 is constituted by the inductance and internal resistance of the Rogowski coil 1. Is selected to be a dotted line a).

ロゴスキーコイル1の電気的特性は、この実施例ではインダクタンスLが500μHで、 また抵抗3はロゴスキーコイル1の内部抵抗Rとの合成抵抗値が1Ωとなるように選定されている。これにより、内部積分回路2は、500〜700Hz程度から0.1Hzまでの領域は−20db/ディケードの垂下特性を有している。   The electrical characteristics of the Rogowski coil 1 are selected so that the inductance L is 500 μH in this embodiment, and the resistance 3 is 1 Ω combined with the internal resistance R of the Rogowski coil 1. Thereby, the internal integration circuit 2 has a drooping characteristic of −20 db / decade in a region from about 500 to 700 Hz to 0.1 Hz.

ロゴスキーコイル1と抵抗3との接続点には起電力検出用の抵抗4が接続され、抵抗4を介して内部積分回路2の起電力がバッファ5を介して加算回路6の一方の入力端子に出力している。   A resistor 4 for detecting an electromotive force is connected to a connection point between the Rogowski coil 1 and the resistor 3, and the electromotive force of the internal integration circuit 2 is connected to the input circuit 6 via the resistor 4 via the buffer 5. Is output.

また抵抗4には外部積分回路7が接続され、その積分出力信号はバッファ8を介して加算回路6の他方の入力端子に出力している。この外部積分回路7は、図2(b)に示したように高域カット周波数が内部積分回路2の低域カット周波数500〜700Hz(図2(b)の点線a)に一致するように調整されている。   An external integration circuit 7 is connected to the resistor 4, and the integration output signal is output to the other input terminal of the addition circuit 6 via the buffer 8. The external integration circuit 7 is adjusted so that the high-frequency cut frequency matches the low-frequency cut frequency 500 to 700 Hz (dotted line a in FIG. 2B) of the internal integration circuit 2 as shown in FIG. Has been.

さらに、外部積分回路7はその利得、つまり積分回路を構成する演算増幅器の利得が70〜80db程度に設定されている。利得がこれよりも大きい、例えば120dbもあると1/f雑音の影響が大きくなり、低周波成分つまり衝撃電流のテール部を高い精度で検出することが困難となり、また利得が70〜80dbよりも低いと十分な積分効果を得ることができない。   Further, the gain of the external integration circuit 7, that is, the gain of the operational amplifier constituting the integration circuit is set to about 70 to 80 db. If the gain is larger than this, for example, 120 db, the influence of 1 / f noise becomes large, and it becomes difficult to detect the low frequency component, that is, the tail part of the shock current with high accuracy, and the gain is more than 70 to 80 db. If it is low, sufficient integration effect cannot be obtained.

以上のようにロゴスキーコイルの内部積分回路の低域カット周波数を500〜700Hzに、また外部積分回路の高域カット周波数を0.1Hzで、かつ利得を70〜80db
に選択することにより、外部積分回路は、0.1Hz乃至の500〜700Hzで利得が周波数に大きく依存するロゴスキーコイルからの信号の利得を安定に補正して出力することになる。
すなわち、加算回路6のゲインー周波数特性は、図3(c)に示したように直流成分をカットしつつ0.1Hz以上が平坦となる。
As described above, the low frequency cut frequency of the internal integration circuit of the Rogowski coil is 500 to 700 Hz, the high frequency cut frequency of the external integration circuit is 0.1 Hz, and the gain is 70 to 80 db.
In this case, the external integration circuit stably corrects and outputs the gain of the signal from the Rogowski coil whose gain greatly depends on the frequency from 0.1 Hz to 500 to 700 Hz.
That is, the gain-frequency characteristic of the adder circuit 6 is flat at 0.1 Hz or more while cutting the DC component as shown in FIG.

この実施例においてロゴスキーコイル1を雷電流を監視すべき構築物に装着した状態で落雷などにより衝撃電流が発生すると、ロゴスキーコイル1の起電力として検出される。
この起電力は、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2により積分されて衝撃電流値に比例した信号として抵抗4に出力される。
この信号は、バッファ5を経由して加算回路6に一方の入力端子に入力するとともに、外部積分回路7で積分されてバッファ10を経由して加算回路6の他方の入力端子に入力する。
In this embodiment, when an impact current is generated by a lightning strike while the Rogowski coil 1 is mounted on a structure whose lightning current is to be monitored, the electromotive force of the Rogowski coil 1 is detected.
This electromotive force is integrated by the internal integration circuit 2 formed by the inductance L of the Rogowski coil 1 and the combined resistance of the resistance R of the coil and the resistor 3, and is output to the resistor 4 as a signal proportional to the impact current value. The
This signal is input to one input terminal of the adder circuit 6 via the buffer 5, integrated by the external integration circuit 7, and input to the other input terminal of the adder circuit 6 via the buffer 10.

雷電流の低周波成分では、ロゴスキーコイル1のリアクタンスがあまり大きく作用しないので、電流は内部抵抗Rと抵抗3とで決まるのでインダクタンスLの両端電圧が、雷電流を微分した電圧となる。   Since the reactance of the Rogowski coil 1 does not act so much in the low frequency component of the lightning current, the current is determined by the internal resistance R and the resistance 3, so that the voltage across the inductance L is a voltage obtained by differentiating the lightning current.

衝撃電流のテール部は、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2の高域カット周波数500〜700Hz周波数よりも低い周波数の成分を多く含むため、内部積分回路2での積分利得は非常に小さく、実質的にはロゴスキーコイル1で検出した衝撃電流による起電力、つまり抵抗体3に印加した信号だけが外部積分回路7に入力することになる。   The tail portion of the impact current is a component having a frequency lower than the high frequency cut frequency 500 to 700 Hz of the internal integration circuit 2 formed by the inductance L of the Rogowski coil 1 and the combined resistance of the resistance R of the coil and the resistor 3. Therefore, the integral gain in the internal integration circuit 2 is very small, and substantially only the electromotive force due to the impact current detected by the Rogowski coil 1, that is, only the signal applied to the resistor 3 is supplied to the external integration circuit 7. Will be input.

そして、外部積分回路7は、0.1Hzを低域カット周波数、500〜700Hzを高域カット周波数とし、−20db/ディケードの垂下特性を有するから、ロゴスキーコイル1のインダクタンスL及びコイルの抵抗Rと抵抗体3との合成抵抗により形成される内部積分回路2の垂下特性とは相反することになり、0.1Hz乃至500〜700Hzでは平坦化した信号を出力することになる。   Since the external integration circuit 7 has a drooping characteristic of −20 db / decade with 0.1 Hz as a low-frequency cut frequency and 500 to 700 Hz as a high-frequency cut frequency, the inductance L of the Rogowski coil 1 and the resistance R of the coil. Therefore, the drooping characteristic of the internal integration circuit 2 formed by the combined resistance of the resistor 3 and the resistor 3 is contradictory, and a flattened signal is output from 0.1 Hz to 500 to 700 Hz.

他方、雷電流の高周波成分では電流値は、インダクタンスLが大きく作用するため、インダクタンスの両端電圧は電流微分に比例したものが誘起してほぼ入力とつりあっているから直列につないだ抵抗の両端電圧が積分値となる。   On the other hand, in the high frequency component of lightning current, since the inductance L acts greatly on the current value, the voltage across the inductance is induced proportionally to the current differentiation and is almost balanced with the input, so the voltage across the resistor connected in series Is the integral value.

したがって、高い周波数成分の電流はロゴスキーコイルの内部積分機能により電圧信号に変換され、また継続時間が長く低い周波数成分の電流は外部積分回路2により電圧信号に変換され、これら両信号成分は加算器9で合成されて衝撃電流全体の波形パターンを正確に再現した電圧信号を得ることができる。   Therefore, the high frequency component current is converted into a voltage signal by the internal integration function of the Rogowski coil, and the low frequency component current having a long duration is converted into a voltage signal by the external integration circuit 2, and these two signal components are added. It is possible to obtain a voltage signal that is synthesized by the device 9 and accurately reproduces the waveform pattern of the entire impact current.

さらに、雷電流の周波数0.1Hz乃至500〜700Hzのせいぜい4桁程度の領域だけを高利得な外部積分回路2で積分し、また周波数500〜700Hzよりも高い周波数領域の成分はロゴスキコイル自体の利得が周波数特性に依存しない領域の内部積分機能を利用するため、安定な外部積分回路を容易に構成することができ、測定結果に対するトレイサビリティを確保できる測定装置を実現できる。   Further, only the region of about 4 digits of the lightning current frequency of 0.1 Hz to 500 to 700 Hz is integrated by the high gain external integration circuit 2, and the component in the frequency region higher than the frequency of 500 to 700 Hz is the gain of the Rogowski coil itself. However, since the internal integration function in a region that does not depend on the frequency characteristics is used, a stable external integration circuit can be easily configured, and a measurement apparatus that can ensure traceability for the measurement result can be realized.

本発明の衝撃電流検出装置の一実施例を示すブロック図である。It is a block diagram which shows one Example of the impact current detection apparatus of this invention. 図(a)乃至(c)は、それぞれロゴスキーコイル、外部積分回路、及び加算器から出力される信号の周波数ーゲイン特性を示す線図である。FIGS. 9A to 9C are diagrams showing frequency-gain characteristics of signals output from the Rogowski coil, the external integration circuit, and the adder, respectively. 内部積分型ロゴスキコイルの周波数ーゲイン特性を示す線図である。It is a diagram which shows the frequency-gain characteristic of an internal integral type Rogowski coil.

1 ロゴスキーコイル 2 内部積分回路 4 検出用回路 6 加算器 7 外部積分回路 5、8 バッファ     1 Rogowski coil 2 Internal integration circuit 4 Detection circuit 6 Adder 7 External integration circuit 5, 8 Buffer

Claims (1)

衝撃電流をロゴスキーコイルの起電力を積分して検出する衝撃電流検出装置において、前記ロゴスキーコイルの両端に内部積分用抵抗体を接続して得た起電力信号と、前記起電力信号を前記ロゴスキーコイルの内部積分機能の低域カット周波数f0を高域カット周波数f0とする外部積分回路で積分した信号とを加算手段により加算するとともに、前記周波数f0が600〜700Hzで、また前記外部積分回路の利得が70〜80dbである衝撃電流検出装置。 In an impact current detecting device that detects an impact current by integrating an electromotive force of a Rogowski coil, an electromotive force signal obtained by connecting an internal integration resistor to both ends of the Rogowski coil, and the electromotive force signal The signal integrated by an external integration circuit that uses the low-frequency cut frequency f0 of the Rogowski coil internal integration function as the high-frequency cut frequency f0 is added by an adding means, and the frequency f0 is 600 to 700 Hz. An impact current detection device having a circuit gain of 70 to 80 db.
JP2011164091A 2011-07-27 2011-07-27 Impulse current detection device Pending JP2013029349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011164091A JP2013029349A (en) 2011-07-27 2011-07-27 Impulse current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011164091A JP2013029349A (en) 2011-07-27 2011-07-27 Impulse current detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015212105A Division JP2016014689A (en) 2015-10-28 2015-10-28 Impulse current detection device

Publications (1)

Publication Number Publication Date
JP2013029349A true JP2013029349A (en) 2013-02-07

Family

ID=47786532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011164091A Pending JP2013029349A (en) 2011-07-27 2011-07-27 Impulse current detection device

Country Status (1)

Country Link
JP (1) JP2013029349A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502664A (en) * 2014-11-14 2015-04-08 西安交通大学 Low-resistance non-inductive self-integration Rogowski coil integration resistor and manufacturing method thereof
JP2017082689A (en) * 2015-10-28 2017-05-18 正昭 茆原 Detection method and detection device of thunderbolt to wind turbine generator system, and analysis method and analysis device of thunderbolt situations on wind turbine generator system
CN112230042A (en) * 2020-12-11 2021-01-15 南京汇宁桀信息科技有限公司 Impulse current detection circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153646A (en) * 2004-11-29 2006-06-15 Central Res Inst Of Electric Power Ind Impulse current detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006153646A (en) * 2004-11-29 2006-06-15 Central Res Inst Of Electric Power Ind Impulse current detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502664A (en) * 2014-11-14 2015-04-08 西安交通大学 Low-resistance non-inductive self-integration Rogowski coil integration resistor and manufacturing method thereof
JP2017082689A (en) * 2015-10-28 2017-05-18 正昭 茆原 Detection method and detection device of thunderbolt to wind turbine generator system, and analysis method and analysis device of thunderbolt situations on wind turbine generator system
CN112230042A (en) * 2020-12-11 2021-01-15 南京汇宁桀信息科技有限公司 Impulse current detection circuit

Similar Documents

Publication Publication Date Title
JP6499650B2 (en) Apparatus for detecting an AC component in a DC circuit and use of the apparatus
US9459291B2 (en) Voltage detection device
JP2008516508A (en) Impedance detector
KR20150127619A (en) Reducing audio distortion in an audio system
KR20170110103A (en) Electronic integrator for Rogowski coil sensor
CN102128966A (en) Rogowski coil-based integrator circuit for electronic current transformer
CN101989845B (en) Integrator and circuit-breaker having integrator
CN105548662A (en) Hall effect current sensor with rapid transient response function
CN104515931B (en) A kind of DC leakage flow sensor based on magnetic modulation
JP6153387B2 (en) Current sensor
JP2013029349A (en) Impulse current detection device
CN203759090U (en) Current sampling circuit of rail-transit traction data acquisition system
JP6173180B2 (en) Microphone and microphone device
JP2016014689A (en) Impulse current detection device
JP2011038964A (en) Current sensor
CN106788327B (en) Sensor circuit for both contact and non-contact detection
JP6368591B2 (en) Charge amplifier circuit
CN110972044A (en) Loudspeaker control circuit and audio playing device
JP2009216449A (en) Vibration detection circuit and seismometer
CN203012151U (en) Anti-interference inductive sensor
JP5758229B2 (en) Magnetic field detector
CN103424625B (en) Test signal supply equipment and SIC (semiconductor integrated circuit)
RU2726028C1 (en) Method for reducing threshold of sensitivity (intrinsic noise) of first time derivative measuring devices from magnetic induction
WO2024090239A1 (en) Differential input/differential output inverting amplifier circuit and measuring device
JP6437271B2 (en) Driving circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151214

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160108