JP2016014230A - Fire-resistant exterior wall structure for wooden building - Google Patents

Fire-resistant exterior wall structure for wooden building Download PDF

Info

Publication number
JP2016014230A
JP2016014230A JP2014135633A JP2014135633A JP2016014230A JP 2016014230 A JP2016014230 A JP 2016014230A JP 2014135633 A JP2014135633 A JP 2014135633A JP 2014135633 A JP2014135633 A JP 2014135633A JP 2016014230 A JP2016014230 A JP 2016014230A
Authority
JP
Japan
Prior art keywords
cellular concrete
lightweight cellular
concrete panel
wall structure
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014135633A
Other languages
Japanese (ja)
Other versions
JP6497854B2 (en
Inventor
能之 鎌田
Takayuki Kamata
能之 鎌田
小川 晃博
Akihiro Ogawa
晃博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Construction Materials Corp
Original Assignee
Asahi Kasei Construction Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Construction Materials Corp filed Critical Asahi Kasei Construction Materials Corp
Priority to JP2014135633A priority Critical patent/JP6497854B2/en
Publication of JP2016014230A publication Critical patent/JP2016014230A/en
Application granted granted Critical
Publication of JP6497854B2 publication Critical patent/JP6497854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fire-resistant exterior wall structure for a wooden building having fireproof performance, easily constructed and inexpensively built.SOLUTION: A fire-resistant exterior wall structure 1 includes a structural face material 24 attached to an outdoor side of a structural member 2 constituted with wood, a furring strip material 42a attached to an outdoor side face of the structural face material 24, and a lightweight cellular concrete panel 44 attached to an outdoor side face of the furring strip material 42a. The lightweight cellular concrete panel 44 has density d of 200 kg/mor more and 550 kg/mor less, a thickness t of 45 mm or more and 100 mm or less, and an ignition loss value α of 5 wt.% or more and 15 wt.% or less, and a value of d(kg/m)×t(mm)×α(wt%)÷100000 is 4000 or more and 30000 or less.

Description

本発明は、木造建築物の耐火外壁構造に関するものである。   The present invention relates to a fireproof outer wall structure of a wooden building.

最近、木造耐火建築物に関する研究がさかんに行われている。その背景としては、国の主導による木材のさらなる利用の推進、木造建築物の一層の普及、都市部における地震等による防災の観点からの建築物の耐火性能の向上などが挙げられる。   Recently, there have been many studies on wooden refractory buildings. The reasons include the promotion of further use of timber under the initiative of the country, further spread of wooden buildings, and improvement of fire resistance of buildings from the viewpoint of disaster prevention due to earthquakes in urban areas.

木造耐火建築物を構築するためには、建築物の主要構造部である、外壁、床、梁、柱、屋根、階段を耐火構造とすることが求められる。また、木造耐火建築物には、火災が発生しその消火後も、その建築物が倒壊せずに自立していることが求められる。   In order to construct a wooden fireproof building, it is required to make the outer walls, floors, beams, columns, roofs, and stairs, which are the main structural parts of the building, have a fireproof structure. Also, wooden fireproof buildings are required to be self-supporting without collapsing after the fire has occurred and the fire has extinguished.

建築物の外壁が耐火構造であると認められるためには、耐火性能を評価する試験を行い基準に合格しなければならない。評価試験方法はJIS−A−1304に規定されている。その試験方法は、外壁構造の試験体を屋外側からの加熱または屋内側からの加熱を計2回行う。加熱条件はISO−834で規定されており、その条件は、試験体を設置した炉内の温度を1時間かけて約950℃まで上昇させた後、加熱を止めてそのまま3時間放置するといったものである。   In order for an outer wall of a building to be recognized as fireproof, it must pass a test that tests fireproof performance. The evaluation test method is defined in JIS-A-1304. In the test method, a test body having an outer wall structure is heated from the outdoor side or from the indoor side twice in total. The heating conditions are specified in ISO-834, and the condition is that the temperature in the furnace in which the test body is installed is raised to about 950 ° C. over 1 hour, and then the heating is stopped and left as it is for 3 hours. It is.

従来の木造建築物の耐火外壁構造としては、火災が発生した時に木材で構成された構造部材が炭化や着火しないよう、構造部材が不燃材料で被覆された構造がある。その構造では、構造部材の屋内側に不燃性の内装部材が配置され、屋外側に不燃性の外装部材が配置されている。特に、外装部材については、さかんに研究開発が行われている。従来の木造建築物の耐火外壁構造としては、特許文献1および特許文献2に記載された構造が知られている。   As a conventional fireproof outer wall structure of a wooden building, there is a structure in which a structural member made of wood is covered with a noncombustible material so that the structural member made of wood is not carbonized or ignited when a fire occurs. In the structure, a nonflammable interior member is disposed on the indoor side of the structural member, and a nonflammable exterior member is disposed on the outdoor side. In particular, research and development has been conducted on exterior members. As a conventional fireproof outer wall structure of a wooden building, the structures described in Patent Document 1 and Patent Document 2 are known.

特許文献1には、木材で構成された構造部材の屋外側の外装部材が軽量気泡コンクリートパネルを突き付け接合してからなる第1被覆層と、ケイ酸カルシウム板を突き付け接合してからなる第2被覆層とが積層されて構成されるとともに、第1被覆層が屋外側に設置され、軽量気泡コンクリートパネルの目地部と、ケイ酸カルシウム目地部とが、互いに重ならないようにした構造が開示されている。   Patent Document 1 discloses a first covering layer formed by pressing and joining a lightweight cellular concrete panel with an exterior exterior member of a structural member made of wood, and a second covering formed by pressing and joining a calcium silicate plate. A structure is disclosed in which the coating layer is laminated and the first coating layer is installed on the outdoor side so that the joint portion of the lightweight cellular concrete panel and the calcium silicate joint portion do not overlap each other. ing.

特許文献2には、外装部材が一種類のケイ酸カルシウム板であるが、ケイ酸カルシウム板の厚さ寸法と密度とが異なる二種類のケイ酸カルシウムを用いていた構造が開示されている。この構造では、ケイ酸カルシウム板を三枚、重ね張りし、かつケイ酸カルシウム板同士の目地部が重ならないようにしている。   Patent Document 2 discloses a structure in which the exterior member is one type of calcium silicate plate, but two types of calcium silicates having different thickness dimensions and densities are used. In this structure, three calcium silicate plates are overlapped and the joint portions of the calcium silicate plates are not overlapped.

特開2005−299194号公報JP 2005-299194 A 特開2011−256536号公報JP 2011-256536 A

従来の木造建築物の耐火外壁構造の外装部材として、種類の異なる材料を複数重ねて張り合わせた構造や、同じ材料を複数重ねて張り合わせた構造が挙げられる。特許文献1の外壁構造では、軽量気泡コンクリートパネルとケイ酸カルシウム板との二種類の外装部材が用いられると共に、外装部材の目地部を互いにずらす必要があった。また、特許文献2の外壁構造では、外装部材として比重と厚さの異なるケイ酸カルシウム板を重ね張りし、かつ目地部を互いにずらす必要があった。外装部材を数種類或いは複数重ねて張り合わせて、また目地部を互いにずらすのは耐火性能を高めるためである。   As a conventional exterior member of a fire-resistant outer wall structure of a wooden building, there are a structure in which a plurality of different types of materials are laminated together and a structure in which a plurality of the same materials are laminated together. In the outer wall structure of Patent Document 1, two types of exterior members, a lightweight cellular concrete panel and a calcium silicate plate, are used, and the joint portions of the exterior member need to be shifted from each other. Moreover, in the outer wall structure of patent document 2, it was necessary to laminate | stack the calcium silicate board from which specific gravity and thickness differ as an exterior member, and to shift a joint part mutually. The reason why several kinds or a plurality of exterior members are laminated and the joint portions are shifted from each other is to improve fire resistance.

しかし、外装部材が数種類存在すると、材料の調達や品質管理が非常に手間となり、コストアップに繋がっていた。また、外装部材を複数施工することにより工数が増加し、工期が長くなる場合があった。さらに外装部材の目地部を互いにずらす必要があったため、設計および施工が複雑になり工期も長くなる傾向があった。   However, when several types of exterior members are present, procurement of materials and quality control become very laborious, leading to cost increase. Moreover, the number of man-hours increases and the construction period may be prolonged by constructing a plurality of exterior members. Furthermore, since the joint portions of the exterior member had to be shifted from each other, the design and construction were complicated and the construction period tended to be long.

そこで本発明は、このような従来技術の有する課題を解決するものであり、耐火性能を有し、施工が容易であると共に低コストの木造建築物の耐火外壁構造を提供することを目的とする。   Then, this invention solves the subject which such a prior art has, and aims at providing the fireproof outer wall structure of a wooden building which has fireproof performance, is easy to construct, and is low-cost. .

上記課題を解決すべく、本発明は、以下の[1]〜[5]に関する。   In order to solve the above problems, the present invention relates to the following [1] to [5].

[1]木造建築物の耐火外壁構造であって、木材で構成された構造部材の屋外側に取り付けられた構造用面材と、構造用面材の屋外側の面に取り付けられた胴縁材と、胴縁材の屋外側の面に取り付けられた軽量気泡コンクリートパネルと、を備え、軽量気泡コンクリートパネルは、密度dが200kg/m以上550kg/m以下であり、かつ厚さtが45mm以上100mm以下であり、かつ強熱減量値αが5wt%以上15wt%以下であり、かつd(kg/m)×t(mm)×α(wt%)÷100000の値が4000以上30000以下であることを特徴とする。 [1] A fire-resistant outer wall structure of a wooden building, which is a structural face member attached to the outdoor side of a structural member made of wood, and a body frame member attached to the outdoor side surface of the structural face member And a lightweight cellular concrete panel attached to the outdoor side surface of the waistband material, and the lightweight cellular concrete panel has a density d of 200 kg / m 3 or more and 550 kg / m 3 or less and a thickness t of The ignition loss value α is not less than 45 mm and not more than 100 mm, and not less than 5 wt% and not more than 15 wt%, and d (kg / m 3 ) × t 3 (mm 3 ) × α (wt%) ÷ 100,000 is 4000 It is characterized by being 30000 or less.

また、[2]前記軽量気泡コンクリートパネルの密度dは、250kg/m以上400kg/m以下であってもよい。 [2] The density d of the lightweight cellular concrete panel may be 250 kg / m 3 or more and 400 kg / m 3 or less.

また、[3]前記軽量気泡コンクリートパネルの厚さtは、45mm以上75mm以下であってもよい。   [3] A thickness t of the lightweight cellular concrete panel may be 45 mm or more and 75 mm or less.

また、[4]前記軽量気泡コンクリートパネルの強熱減量値αは、8wt%以上13wt%以下であってもよい。   [4] The ignition loss value α of the lightweight cellular concrete panel may be 8 wt% or more and 13 wt% or less.

また、[5]前記d(kg/m)×t(mm)×α(wt%)÷100000の値は、5000以上150000以下であってもよい。 [5] The value of d (kg / m 3 ) × t 3 (mm 3 ) × α (wt%) ÷ 100,000 may be 5000 or more and 150,000 or less.

かかる構成では、外装部材として軽量気泡コンクリートパネルを備えている。この軽量気泡コンクリートパネルは、上述した設計パラメーターを有しているため、充分なパネル強度が確保され、パネル重量の増加を抑制しつつ、高い耐火性能を発揮することが可能である。パネル重量の増加が抑制されるので、施工性や建築物の耐震性の低下が抑制される。また、外装部材が一層の軽量気泡コンクリートパネルであるので、目地部を互いにずらすといった作業も不要になる。従って、施工が簡易でありかつ低コストの木造建築物の耐火外壁構造を実現できる。   In such a configuration, a lightweight cellular concrete panel is provided as an exterior member. Since this lightweight cellular concrete panel has the design parameters described above, sufficient panel strength is ensured, and it is possible to exhibit high fire resistance while suppressing an increase in panel weight. Since the increase in the panel weight is suppressed, the deterioration of workability and the earthquake resistance of the building is suppressed. Further, since the exterior member is a lightweight lightweight concrete panel, the work of shifting the joints from each other is not necessary. Therefore, it is possible to realize a fire-resistant outer wall structure of a wooden building that is simple in construction and low in cost.

ここで、軽量気泡コンクリートの設計パラメーターと耐火性能との関係について詳細に説明する。木造建築物の耐火外壁構造における外装部材を一層の軽量気泡コンクリートパネルで構成するには、軽量気泡コンクリートパネルの耐火性能と大きく関わる以下の3個のパラメーターを考慮して、軽量気泡コンクリートパネルを設計する必要がある。3個のパラメーターとは、(1)軽量気泡コンクリートパネルの密度、(2)軽量気泡コンクリートパネルの厚さ、及び(3)軽量気泡コンクリートが有する「水」の量、つまり軽量気泡コンクリートを構成するケイ酸カルシウム水和物が有する「水」の量である。   Here, the relationship between the design parameters of the lightweight cellular concrete and the fire resistance performance will be described in detail. In order to configure the exterior members of a fire-resistant outer wall structure of a wooden building with a single layer of lightweight cellular concrete panels, the lightweight cellular concrete panels are designed in consideration of the following three parameters that are largely related to the fire performance of lightweight cellular concrete panels. There is a need to. The three parameters are (1) the density of the lightweight cellular concrete panel, (2) the thickness of the lightweight cellular concrete panel, and (3) the amount of “water” that the lightweight cellular concrete has, that is, the lightweight cellular concrete. It is the amount of “water” that calcium silicate hydrate has.

軽量気泡コンクリートパネルの耐火性能を決める要因は何であるか、本発明者らは鋭意研究を重ねた。研究の結果、本発明者らは、軽量気泡コンクリートパネルの耐火性能は、軽量気泡コンクリートが有する「水」の量で決まることを見出した。ここで述べる「水」は、軽量気泡コンクリートを構成しているケイ酸カルシウム水和物が有する「水」である。つまり、ケイ酸カルシウムに水和している「水」である。軽量気泡コンクリートパネルの耐火性能は、ケイ酸カルシウム水和物が有する「水」の量が多いほど向上する。   The present inventors have intensively studied what factors determine the fire resistance of lightweight cellular concrete panels. As a result of the study, the present inventors have found that the fire resistance performance of the lightweight cellular concrete panel is determined by the amount of “water” possessed by the lightweight cellular concrete. The “water” described here is “water” of the calcium silicate hydrate constituting the lightweight cellular concrete. In other words, it is “water” hydrated with calcium silicate. The fire resistance performance of the lightweight cellular concrete panel improves as the amount of “water” contained in the calcium silicate hydrate increases.

ここで、軽量気泡コンクリートパネルの密度を大きくすることで、ケイ酸カルシウム水和物の絶対量が増えるため、耐火性能は向上する。逆に密度が小さくなると、耐火性能は低下する。一方、密度を大きくすることで、パネル重量が増えるため、施工性が低下したり、建物重量の増加により耐震性能の低下する場合がある。また、密度を下げすぎると、軽量気泡コンクリートパネルの物理的強度が不足する場合がある。   Here, since the absolute amount of calcium silicate hydrate increases by increasing the density of the lightweight cellular concrete panel, the fire resistance performance is improved. On the other hand, when the density is reduced, the fire resistance is lowered. On the other hand, when the density is increased, the panel weight increases, so that the workability may decrease, or the earthquake resistance may decrease due to the increase in the building weight. Moreover, if the density is too low, the physical strength of the lightweight cellular concrete panel may be insufficient.

また、軽量気泡コンクリートパネルの厚さを大きくすることで、ケイ酸カルシウム水和物の絶対量が増えるため、耐火性能は向上する。逆に厚さが小さくなると、耐火性能は低下する。一方、軽量気泡コンクリートパネルの厚さが増えることで、施工性が低下したり、建物重量の増加により耐震性能が低下する場合がある。また、厚さが薄すぎると、軽量気泡コンクリートパネルの物理的強度が不足する場合がある。   Moreover, since the absolute amount of calcium silicate hydrate increases by increasing the thickness of the lightweight cellular concrete panel, the fire resistance performance is improved. On the other hand, when the thickness is reduced, the fire resistance is lowered. On the other hand, when the thickness of the lightweight cellular concrete panel increases, the workability may decrease, and the earthquake resistance may decrease due to an increase in the building weight. If the thickness is too thin, the physical strength of the lightweight cellular concrete panel may be insufficient.

また、軽量気泡コンクリートが有する水の量、つまり軽量気泡コンクリートパネルを構成するケイ酸カルシウム水和物が有する水の量が増えると、耐火性能は向上する。逆にケイ酸カルシウム水和物が有する水の量が下がると、耐火性能は低下する。しかし、軽量気泡コンクリート中のケイ酸カルシウム水和物が有する水を実際に定量することは困難である。そこで、本発明では軽量気泡コンクリートが有する水の量は、軽量気泡コンクリートを加熱して減少した重量を軽量気泡コンクリートが有する水の量と定義する。その値を「強熱減量値」と定義する。従って、強熱減量値の値が大きいほど耐火性能が高いといえる。   Moreover, when the amount of water contained in the lightweight cellular concrete, that is, the amount of water contained in the calcium silicate hydrate constituting the lightweight cellular concrete panel is increased, the fire resistance performance is improved. Conversely, when the amount of water contained in the calcium silicate hydrate decreases, the fire resistance performance decreases. However, it is difficult to actually quantify the water of calcium silicate hydrate in lightweight cellular concrete. Therefore, in the present invention, the amount of water contained in the lightweight cellular concrete is defined as the amount of water contained in the lightweight cellular concrete by reducing the weight of the lightweight cellular concrete by heating. This value is defined as “ignition loss value”. Therefore, it can be said that the greater the ignition loss value, the higher the fire resistance.

上述したように、外壁構造に用いる軽量気泡コンクリートパネルは、耐火性能に深く関連する強熱減量値のみを考慮して設計することは適当でない。すなわち、耐震性能や施工性などに関わるパネル強度やパネル重量と関係がある軽量気泡コンクリートパネルの厚さや密度を、併せて考慮する必要がある。   As described above, it is not appropriate to design the lightweight cellular concrete panel used for the outer wall structure considering only the ignition loss value deeply related to the fire resistance performance. That is, it is necessary to consider the thickness and density of lightweight cellular concrete panels that are related to panel strength and panel weight related to seismic performance and workability.

本発明者らは上述した3個のパラメーターについて鋭意検討を重ねた結果、(1)密度dが200kg/m以上550kg/m以下であり、(2)厚さtが45mm以上100mm以下であり、(3)強熱減量値αが5wt%以上15t%以下であり、かつd(kg/m)×t(mm)×α(wt%)÷100000の値が4000以上30000以下である場合に、パネル重量とパネル強度と耐火性能との全てについて要求を満たすことが可能であることを見出した。 As a result of intensive studies on the above three parameters, the present inventors have (1) a density d of 200 kg / m 3 or more and 550 kg / m 3 or less, and (2) a thickness t of 45 mm or more and 100 mm or less. (3) The ignition loss value α is 5 wt% or more and 15 t% or less, and the value of d (kg / m 3 ) × t 3 (mm 3 ) × α (wt%) ÷ 100,000 is 4000 or more and 30000 or less. In this case, it has been found that it is possible to satisfy the requirements for all of panel weight, panel strength, and fire resistance.

本発明によれば、耐火性能を有し、施工が容易であると共に低コストの木造建築物の耐火外壁構造を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it has fireproof performance, construction is easy, and the fireproof outer wall structure of a low-cost wooden building can be provided.

図1は、本発明の一実施形態に係る木造建築物の耐火外壁構造の一部を切り欠いて示す斜視図である。FIG. 1 is a perspective view showing a part of a fireproof outer wall structure of a wooden building according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る木造建築物の耐火外壁構造を示す水平断面図である。FIG. 2 is a horizontal sectional view showing a fireproof outer wall structure of a wooden building according to an embodiment of the present invention.

以下、図面を参照しつつ、本発明に係る木造建築物の耐火外壁構造の好適な一実施形態について詳細に説明する。なお、本実施形態として、木造枠組壁工法の枠組体に耐火外壁構造を適用した例を用いて説明する。図1は、本発明の一実施形態に係る耐火外壁構造の一部を切り欠いて示す斜視図である。図2は、本発明の一実施形態に係る耐火外壁構造を示した水平断面図である。   Hereinafter, a preferred embodiment of a fireproof outer wall structure of a wooden building according to the present invention will be described in detail with reference to the drawings. In addition, as this embodiment, it demonstrates using the example which applied the fireproof outer wall structure to the frame structure of the wooden frame wall construction method. FIG. 1 is a perspective view showing a part of a fireproof outer wall structure according to an embodiment of the present invention. FIG. 2 is a horizontal sectional view showing a fireproof outer wall structure according to an embodiment of the present invention.

ここで、「木造建築物」とは、柱、梁、桁などの主要構造部材を木材でつくった建築物の総称であり、建築物の構法とは、木造軸組工法や木造枠組壁工法などの構法をいう。「木材」とは、木製の材料のことをいい、木材繊維を加工して形成される木質材料も含む。「構造部材」とは、木造軸組構法の軸組材(梁、柱、筋交い等)や木造枠組壁構法の枠組体といった建築物の荷重および外力を支える主要な部分をいう。「耐火構造」、「耐火性能」の用語の意義は、建築基準法第2条および建築基準法施行令第107条に定めるものと同義である。   Here, "wooden building" is a general term for buildings in which main structural members such as pillars, beams, girders, etc. are made of wood, and the construction method of a building is a wooden frame construction method, a wooden frame construction method, etc. The construction method. “Wood” refers to a wooden material, and includes a woody material formed by processing wood fibers. The “structural member” refers to a main part that supports the load and external force of a building such as a frame member (a beam, a column, a brace, etc.) of a wooden frame structure method or a frame structure of a wooden frame wall method. The meanings of the terms “fireproof structure” and “fireproof performance” are the same as those defined in Article 2 of the Building Standard Law and Article 107 of the Building Standard Law Enforcement Order.

<耐火外壁構造1>
図1、図2に示されるように、本実施形態に係る耐火外壁構造1は、建物の屋内と屋外とを仕切る壁体であり、枠組壁工法に用いられる構造を採用している。耐火外壁構造1は、構造部材2と、構造部材2の屋内側に設けられた内装部材3と、構造部材2の屋外側に設けられた外装部材4と、を備えている。
<Fireproof outer wall structure 1>
As FIG. 1 and FIG. 2 show, the fireproof outer wall structure 1 which concerns on this embodiment is a wall body which partitions the indoor and outdoor of a building, and the structure used for a frame wall construction method is employ | adopted. The fireproof outer wall structure 1 includes a structural member 2, an interior member 3 provided on the indoor side of the structural member 2, and an exterior member 4 provided on the outdoor side of the structural member 2.

<構造部材2>
構造部材2は、壁体の骨格となる部材であり、建築物の荷重および外力を支える。構造部材2は、複数のたて枠材21と、複数のたて枠材21の上端同士を連結する上枠材22と、複数のたて枠材21の下端同士を連結する下枠材23と、を有している。そして、構造部材2の屋外側の面には、構造用面材24がたて枠材21に取り付けられて配置されている。
<Structural member 2>
The structural member 2 is a member that becomes a skeleton of the wall body, and supports the load and external force of the building. The structural member 2 includes a plurality of vertical frame members 21, an upper frame member 22 that connects the upper ends of the plurality of vertical frame members 21, and a lower frame member 23 that connects the lower ends of the plurality of vertical frame members 21. And have. A structural face member 24 is attached to the frame member 21 on the surface of the structural member 2 on the outdoor side.

たて枠材21、上枠材22および下枠材23は、いずれも枠組壁工法用の木材として知られる例えば38mm×89mmの断面寸法を備えた長尺の木製部材であり、釘またはビス等で互いに止め付けられている。たて枠材21は、455mm以下の水平間隔で等間隔に立設されている。   The vertical frame member 21, the upper frame member 22, and the lower frame member 23 are long wooden members each having a cross-sectional dimension of, for example, 38 mm × 89 mm, which are known as wood for a frame wall construction method, such as nails or screws. Are fastened together. The vertical frame material 21 is erected at equal intervals with a horizontal interval of 455 mm or less.

構造用面材24は、たて枠材21と上枠材22と下枠材23とで構成された骨組に釘打ちで固定され、屋外側の面を構成している。このように、たて枠材21と、上枠材22と、下枠材23と、構造用面材24とが一体化されることにより、構造部材2としての性能を発揮する。   The structural face material 24 is fixed by nailing to a frame composed of the vertical frame material 21, the upper frame material 22, and the lower frame material 23, and constitutes an outdoor-side surface. In this manner, the vertical frame member 21, the upper frame member 22, the lower frame member 23, and the structural face member 24 are integrated, thereby exhibiting performance as the structural member 2.

構造用面材24は、例えば厚さが9mm、密度が0.55g/cmの日本農林規格に適合する構造用合板を用いることができる。また、構造用面材24としては、例えば9mm以上の構造用合板、厚さが9mm以上の構造用パネル、厚さが9mm以上のパーティクルボード、厚さが12mm以上のシージングボード等の木質系ボードや、厚さが12mm〜25mmの硬質木片セメント板、厚さが9mm以上のパルプセメント板、厚さが9mm以上のフレキシブル板、厚さが9mm以上のケイ酸カルシウム板、厚さが9mm以上の火山性ガラス質複層板や、厚さが12mm以上の石膏ボード等を用いることができる。 As the structural face material 24, for example, a structural plywood conforming to Japanese Agricultural Standards having a thickness of 9 mm and a density of 0.55 g / cm 3 can be used. Further, as the structural face material 24, for example, a structural board having a thickness of 9 mm or more, a structural panel having a thickness of 9 mm or more, a particle board having a thickness of 9 mm or more, or a sieving board having a thickness of 12 mm or more. And a hard wood chip cement board with a thickness of 12 mm to 25 mm, a pulp cement board with a thickness of 9 mm or more, a flexible board with a thickness of 9 mm or more, a calcium silicate board with a thickness of 9 mm or more, a thickness of 9 mm or more A volcanic glassy multilayer board, a gypsum board having a thickness of 12 mm or more, and the like can be used.

<断熱材25>
耐火外壁構造1の建築様式は木造枠組壁工法であるので、互いに隣り合うたて枠材21間に断熱材25が充填されていることが断熱性能の向上の点から好ましい。断熱材25としては、例えば密度24kg/mのグラスウールや、ロックウールなどを用いることができる。なお、耐火外壁構造1の建築様式が木造軸組工法である場合には、柱と間柱の間および間柱と間柱の間に断熱材が充填してもよい。
<Insulation 25>
Since the architectural style of the refractory outer wall structure 1 is a wooden frame wall construction method, it is preferable from the viewpoint of improving heat insulation performance that the heat insulating material 25 is filled between the adjacent frame materials 21. As the heat insulating material 25, for example, glass wool having a density of 24 kg / m 3 or rock wool can be used. In addition, when the architectural style of the fireproof outer wall structure 1 is a wooden frame construction method, a heat insulating material may be filled between the columns and the intercolumns and between the intercolumns and the intercolumns.

<内装部材3>
内装部材3は、壁体の屋内側の壁面を構成し、屋内で発生した火災などの炎から構造部材2を保護する。内装部材3は、構造部材2の屋内側に取り付けられた強化石膏ボードによる内装下張層31と、内装下張層31の屋内側に積層された強化石膏ボードによる内装上張層32とを有している。
<Interior member 3>
The interior member 3 constitutes a wall surface on the indoor side of the wall body, and protects the structural member 2 from a flame such as a fire generated indoors. The interior member 3 includes an interior underlayer 31 made of reinforced gypsum board attached to the indoor side of the structural member 2 and an interior overcoat layer 32 made of reinforced gypsum board laminated on the indoor side of the interior underlayer 31. doing.

内装下張層31は、複数の強化石膏ボードの小口面を互いに突き合わせ接合して構成されている。内装下張層31は、石膏ボード用の釘によって構造部材2に固定されている。   The interior underlayer 31 is configured by abutting and joining the small edge surfaces of a plurality of reinforced gypsum boards to each other. The interior underlayer 31 is fixed to the structural member 2 with a gypsum board nail.

内装上張層32は、複数の強化石膏ボードの小口面を互いに突き合わせ接合して構成されている。内装上張層32は、石膏ボード用の釘によって、内装下張層31を貫通して構造部材2に固定されている。   The interior overlying layer 32 is configured by butting and joining the small edge surfaces of a plurality of reinforced gypsum boards. The interior upper layer 32 penetrates the interior underlayer 31 and is fixed to the structural member 2 with a plaster board nail.

これら強化石膏ボードの厚さは21mm以上であり、かさ比重が0.75以上のものを用いることが好ましい。このような強化石膏ボードによれば、屋内での火災発生時に強化石膏ボード内の水分が火災の熱によって水蒸気化されるため、火災の熱を消費して熱の伝達を遅らせることが可能になる。従って、構造部材2の炭化や着火を防ぐことができ、屋内側からの熱に対する耐火性能を確保することができる。なお、内装部材3は、内装下張層31と内装上張層32との間に挟み込まれたアルミニウム箔を有していてもよい。   These reinforced gypsum boards preferably have a thickness of 21 mm or more and a bulk specific gravity of 0.75 or more. According to such a reinforced gypsum board, the water in the reinforced gypsum board is vaporized by the heat of the fire when a fire occurs indoors, so it is possible to consume the heat of the fire and delay the transfer of heat. . Therefore, carbonization and ignition of the structural member 2 can be prevented, and fire resistance against heat from the indoor side can be ensured. The interior member 3 may have an aluminum foil that is sandwiched between the interior underlayer 31 and the interior overlayer 32.

<外装部材4>
外装部材4は、壁体の屋外側の壁面を構成し、屋外で発生した火災などの炎から構造部材2を保護する。外装部材4は、構造部材2の屋外側の面に形成された防水層41と、防水層41の屋外側の面に形成された通気層42(図2参照)と、通気層42の屋外側に配置された軽量気泡コンクリートパネル層43と、を有している。
<Exterior member 4>
The exterior member 4 constitutes a wall surface on the outdoor side of the wall body, and protects the structural member 2 from flames such as a fire that occurs outdoors. The exterior member 4 includes a waterproof layer 41 formed on the outdoor side surface of the structural member 2, a ventilation layer 42 (see FIG. 2) formed on the outdoor side surface of the waterproof layer 41, and the outdoor side of the ventilation layer 42. A lightweight cellular concrete panel layer 43 disposed on the wall.

防水層41は、外装部材4の隙間から染み込んだ雨水などから構造部材2を保護し、構造用面材24の屋外側の面に接着材、テープやステープルなどにより貼り付けられている。防水層41としてはJIS―A―6006によるアスファルトフェルトやJIS―A―6111による透湿防水シートを用いることが好ましい。   The waterproof layer 41 protects the structural member 2 from rainwater or the like that has penetrated from the gaps in the exterior member 4 and is attached to the surface on the outdoor side of the structural face material 24 with an adhesive, tape, staple, or the like. As the waterproof layer 41, it is preferable to use an asphalt felt according to JIS-A-6006 or a moisture-permeable waterproof sheet according to JIS-A-6111.

通気層42は、上下方向に空気を通流させて湿気による構造部材2の腐食を防ぐ。通気層42は、防水層41の屋外側に複数の胴縁材42aを水平方向に所定間隔をあけて設置することにより構成されている。胴縁材42aにより、防水層41と軽量気泡コンクリートパネル層43との間であって互いに隣り合う胴縁材42aの間に、外装部材4の下端部から上端部に連通する空間が形成される。胴縁材42aは、例えばすぎ材からなる18mm×90mmの断面寸法を備えた細長い薄板状の部材である。胴縁材42aは、釘やビス等によって構造部材2に固定されている。   The ventilation layer 42 allows air to flow in the vertical direction and prevents corrosion of the structural member 2 due to moisture. The ventilation layer 42 is configured by installing a plurality of trunk edges 42a at predetermined intervals in the horizontal direction on the outdoor side of the waterproof layer 41. A space that communicates from the lower end portion of the exterior member 4 to the upper end portion is formed between the waterproof layer 41 and the lightweight cellular concrete panel layer 43 and between the adjacent trunk edge materials 42a. . The trunk edge member 42a is an elongated thin plate-like member having a cross-sectional dimension of 18 mm × 90 mm made of, for example, a surplus material. The trunk edge member 42a is fixed to the structural member 2 with nails, screws, or the like.

軽量気泡コンクリートパネル層43は、胴縁材42aの屋外側の面に複数の軽量気泡コンクリートパネル44を突き付け接合して構成されている。   The lightweight cellular concrete panel layer 43 is formed by pressing and joining a plurality of lightweight cellular concrete panels 44 to the outdoor side surface of the trunk edge material 42a.

軽量気泡コンクリートパネル44は、板状に成型されたパネルであり、軽量、高断熱性、高加工性、高耐火性能といった優れた特性を有している。従って、軽量気泡コンクリートパネルは、超高層ビルから一般住宅まで、幅広い分野で数多くの建築に採用されている。例えば、軽量気泡コンクリートパネルは、外壁、間仕切り、床、屋根等の部位に使われている。軽量気泡コンクリートパネルは、珪酸質原料、石灰質原料、水および発泡剤などを混合して得られたスラリーを型枠に注入し、混合物を発泡させる。続いて、半硬化状になった混合物をオートクレーブで高温高圧蒸気養生して得られる。   The lightweight cellular concrete panel 44 is a panel molded into a plate shape and has excellent characteristics such as light weight, high heat insulation, high workability, and high fire resistance. Therefore, lightweight cellular concrete panels are used in many buildings in a wide range of fields, from high-rise buildings to ordinary houses. For example, lightweight cellular concrete panels are used in parts such as outer walls, partitions, floors, and roofs. In the lightweight cellular concrete panel, a slurry obtained by mixing a siliceous raw material, a calcareous raw material, water, a foaming agent, and the like is poured into a mold to foam the mixture. Subsequently, the semi-cured mixture is obtained by curing at high temperature and high pressure steam in an autoclave.

軽量気泡コンクリートパネル44は、板状のパネルである。軽量気泡コンクリートパネル44は、ビス打ちなどによって構造部材2に固定されている。軽量気泡コンクリートパネル44は、その密度dが200kg/m以上550kg/m以下であり、かつその厚さtが45mm以上100mm以下であり、かつその強熱減量値αが5wt%以上15wt%以下である。そして、密度d(kg/m)×厚さt(mm)×強熱減量値α(wt%)÷100000の値が4000以上30000以下である。このようなパラメーターを満たす軽量気泡コンクリートパネル44によれば、屋外からの火災に対しても、構造部材2の炭化や着火を防ぐことができる。 The lightweight cellular concrete panel 44 is a plate-like panel. The lightweight cellular concrete panel 44 is fixed to the structural member 2 by screwing or the like. The lightweight cellular concrete panel 44 has a density d of 200 kg / m 3 or more and 550 kg / m 3 or less, a thickness t of 45 mm or more and 100 mm or less, and an ignition loss value α of 5 wt% or more and 15 wt%. It is as follows. The value of density d (kg / m 3 ) × thickness t 3 (mm 3 ) × ignition loss value α (wt%) ÷ 100,000 is 4000 or more and 30000 or less. According to the lightweight cellular concrete panel 44 satisfying such parameters, the structural member 2 can be prevented from being carbonized or ignited against a fire from the outside.

軽量気泡コンクリートパネル44は、その内部に補強鉄筋や補強金網が埋設されていることが好ましい。ここで、補強鉄筋とは、鉄筋を所望の形状に配列し、交差接点を溶接加工したものである。また、補強金網とは、鉄を網状に加工したもので、例えばラス網等がその代表例である。補強鉄筋または補強金網の形状、寸法、鉄筋の太さ、金網の目の大きさ等は限定されるものではない。これら補強鉄筋または補強金網は、耐久性上有効な防錆材処理が施されていることが好ましい。防錆材としては、公知の合成樹脂系材料等を使用できる。   The lightweight cellular concrete panel 44 preferably has a reinforcing reinforcing bar and a reinforcing wire mesh embedded therein. Here, the reinforcing reinforcing bars are obtained by arranging reinforcing bars in a desired shape and welding the crossing contacts. Further, the reinforcing wire mesh is obtained by processing iron into a net shape, and a lath net or the like is a typical example. The shape, size, thickness of the reinforcing bar, size of the mesh of the reinforcing mesh, etc. are not limited. These reinforcing reinforcing bars or reinforcing wire meshes are preferably subjected to a rust preventive treatment effective for durability. As the rust preventive material, a known synthetic resin material or the like can be used.

軽量気泡コンクリートパネル44の密度dが大きいほど、軽量気泡コンクリートを構成するケイ酸カルシウム水和物の絶対量が多くなり、耐火性能は向上する。しかし、軽量気泡コンクリートパネル44の密度dが大きいほど、パネル重量が重くなる。このパネル重量の増加によれば、施工性が低下したり、建物重量が重くなるので耐震性能が低下したり、軽量気泡コンクリートパネル44を製造する時の原材料が増加するので製造コストが増大するといった場合が生じ得る。   As the density d of the lightweight cellular concrete panel 44 is larger, the absolute amount of calcium silicate hydrate constituting the lightweight cellular concrete is increased, and the fire resistance performance is improved. However, as the density d of the lightweight cellular concrete panel 44 increases, the panel weight increases. According to the increase in the panel weight, the workability is reduced, the building weight is increased, the seismic performance is reduced, and the raw material for manufacturing the lightweight cellular concrete panel 44 is increased, so that the manufacturing cost is increased. Cases can arise.

一方、軽量気泡コンクリートパネル44の密度dが低いほど、パネル重量が軽くなる。従って、施工性が向上したり、建物重量が軽くなることによって耐震性能が向上したり、軽量気泡コンクリートパネル44を製造する時の原材料が低減して製造コストが低減するといったメリットがある。しかし、軽量気泡コンクリートパネル44の密度dが低いほど、ケイ酸カルシウム物の絶対量が減るので耐火性能が低下したり、パネル強度が低下する場合が生じ得る。   On the other hand, the lower the density d of the lightweight cellular concrete panel 44, the lighter the panel weight. Therefore, there are advantages that workability is improved, earthquake resistance is improved by reducing the weight of the building, and raw materials for manufacturing the lightweight cellular concrete panel 44 are reduced, thereby reducing manufacturing costs. However, as the density d of the lightweight cellular concrete panel 44 is lower, the absolute amount of calcium silicate is reduced, so that the fire resistance may be lowered or the panel strength may be lowered.

そこで、本発明者らは鋭意検討を重ねた結果、軽量気泡コンクリートパネル44の密度dの範囲は、200kg/m以上550kg/m以下であり、好ましくは230kg/m以上500kg/m以下であり、より好ましくは250kg/m以上400kg/m以下であることを見出した。ここで、密度dが200kg/m未満になると、パネル強度が低く、かつ耐火性能が低いため、実用的ではない。一方、密度dが550kg/mを超えると、パネル重量が重いため、施工性が低下し、かつ建物重量が重くなり耐震性能は低下するため、実用的ではない。 Therefore, as a result of intensive studies, the present inventors have found that the range of the density d of the lightweight cellular concrete panel 44 is 200 kg / m 3 or more and 550 kg / m 3 or less, preferably 230 kg / m 3 or more and 500 kg / m 3. It has been found that it is not less than 250 kg / m 3 and more preferably not more than 400 kg / m 3 . Here, when the density d is less than 200 kg / m 3 , the panel strength is low and the fire resistance is low, which is not practical. On the other hand, when the density d exceeds 550 kg / m 3 , the panel weight is heavy, so that the workability is reduced and the building weight is increased and the seismic performance is lowered, which is not practical.

また、軽量気泡コンクリートパネル44の厚さtが大きいほど、軽量気泡コンクリートパネル44を構成するケイ酸カルシウム水和物の絶対量が多くなり耐火性能は向上する。しかし、軽量気泡コンクリートパネル44の厚さtが大きいほど、パネル重量が重くなる。このパネル重量の増加によれば、施工性が低下したり、建物重量が重くなるので耐震性能が低下したり、軽量気泡コンクリートパネル44を製造する時の原材料が増加するので製造コストが増大するといった場合が生じ得る。   Further, as the thickness t of the lightweight cellular concrete panel 44 is increased, the absolute amount of calcium silicate hydrate constituting the lightweight cellular concrete panel 44 is increased, and the fire resistance is improved. However, the greater the thickness t of the lightweight cellular concrete panel 44, the greater the panel weight. According to the increase in the panel weight, the workability is reduced, the building weight is increased, the seismic performance is reduced, and the raw material for manufacturing the lightweight cellular concrete panel 44 is increased, so that the manufacturing cost is increased. Cases can arise.

一方、軽量気泡コンクリートパネル44の厚さtが小さいほど、パネル重量が軽くなる。パネル重量の軽量化によれば、施工性が向上したり、建物重量が軽くなるので耐震性能が向上したり、軽量気泡コンクリートパネル44を製造する時の原材料が低減するので製造コストが低減するといったメリットがある。しかし、ケイ酸カルシウム水和物の絶対量が減ることによる耐火性能が低下する場合が生じ得る。   On the other hand, the smaller the thickness t of the lightweight cellular concrete panel 44, the lighter the panel weight. According to the weight reduction of the panel weight, the workability is improved, the building weight is lightened, the earthquake resistance is improved, and the raw material for producing the lightweight cellular concrete panel 44 is reduced, so that the manufacturing cost is reduced. There are benefits. However, there may be a case where the fire resistance performance decreases due to a decrease in the absolute amount of calcium silicate hydrate.

そこで、本発明者らは鋭意検討を重ねた結果、軽量気泡コンクリートパネル44の厚さtの範囲は、45mm以上100mm以下であり、好ましくは45mm以上80mm以下であり、より好ましくは45mm以上75mm以下であることを見出した。ここで、厚さtが45mm未満になると、耐火性能が低いため、実用的ではない。一方、厚さtが100mmを超えると、施工性が低下し、実用的ではない。   Therefore, as a result of intensive studies, the present inventors have found that the range of the thickness t of the lightweight cellular concrete panel 44 is 45 mm to 100 mm, preferably 45 mm to 80 mm, more preferably 45 mm to 75 mm. I found out. Here, when the thickness t is less than 45 mm, the fire resistance is low, which is not practical. On the other hand, when the thickness t exceeds 100 mm, the workability deteriorates and is not practical.

また、軽量気泡コンクリートパネル44の強熱減量値αが大きいほど、その軽量気泡コンクリートパネル44の耐火性能は高い。すなわち、強熱減量値αが大きい場合には、軽量気泡コンクリートパネル44が有する水の量、つまり軽量気泡コンクリートを構成するケイ酸カルシウム水和物が有する「水」が軽量気泡コンクリート中に多く存在しているためである。しかし、ケイ酸カルシウム水和物を多く含有する軽量気泡コンクリートパネル44の製造は、技術的に困難であるため軽量気泡コンクリート中に存在できるケイ酸カルシウム水和物の量には上限がある。一方、強熱減量値αが小さいほど、その軽量気泡コンクリートパネル44の耐火性能は低いといえる。   Further, as the ignition loss value α of the lightweight cellular concrete panel 44 is larger, the fire resistance performance of the lightweight cellular concrete panel 44 is higher. That is, when the ignition loss value α is large, the amount of water that the lightweight cellular concrete panel 44 has, that is, the “water” that the calcium silicate hydrate constituting the lightweight cellular concrete has is large in the lightweight cellular concrete. It is because it is doing. However, the production of lightweight cellular concrete panels 44 containing a large amount of calcium silicate hydrate is technically difficult, so there is an upper limit to the amount of calcium silicate hydrate that can be present in lightweight cellular concrete. On the other hand, the smaller the ignition loss value α, the lower the fire resistance performance of the lightweight cellular concrete panel 44.

そこで、本発明者らは鋭意検討を重ねた結果、軽量気泡コンクリートパネル44の強熱減量値αの範囲は5wt%以上15wt%以下であり、好ましくは7wt%以上14wt%以下、より好ましくは8wt%以上13wt%以下であることを見出した。ここで、強熱減量値αが5wt%未満になると、耐火性能が低いため、耐火外壁構造1に要求される耐火性能を満足することができない。   Accordingly, as a result of intensive studies, the inventors have determined that the range of the ignition loss value α of the lightweight cellular concrete panel 44 is 5 wt% or more and 15 wt% or less, preferably 7 wt% or more and 14 wt% or less, more preferably 8 wt%. % To 13 wt%. Here, when the ignition loss value α is less than 5 wt%, the fire resistance is low, so the fire resistance required for the fire resistant outer wall structure 1 cannot be satisfied.

しかし、軽量気泡コンクリートパネル44に要求されるパネル重量とパネル強度と耐火性能とを全て満足するためには、軽量気泡コンクリートパネル44が上記の3個のパラメーターである、(1)密度d(kg/m)、(2)厚さt(mm)、(3)強熱減量値α(wt%)が上記の数値範囲に存在する場合でも十分ではない場合が生じ得る。 However, in order to satisfy all of the panel weight, panel strength, and fire resistance required for the lightweight cellular concrete panel 44, the lightweight cellular concrete panel 44 has the above three parameters: (1) density d (kg / M 3 ), (2) thickness t (mm), and (3) ignition loss value α (wt%) may be insufficient even in the above numerical range.

例えば、密度dと厚さtと強熱減量値αとが上記の数値範囲に入っている場合であっても、上記数値範囲の上限値に近い密度dと厚さtとを有する軽量気泡コンクリートパネル44は、耐火性能を満たすが、パネル重量が大きくなるので施工性が低下し実用的ではない場合がある。   For example, even if the density d, the thickness t, and the ignition loss value α are within the above numerical range, the lightweight cellular concrete having the density d and the thickness t close to the upper limit of the numerical range. The panel 44 satisfies the fire resistance performance, but the panel weight increases, so that the workability is lowered and may not be practical.

また、密度dが上記の数値範囲に入っているが、密度dが上記数値範囲の下限値に近い軽量気泡コンクリートパネル44は、耐火性能を満足しない場合も生じ得る。その場合には、軽量気泡コンクリートパネル44の厚さt、または強熱減量値αを大きくする必要がある。   Moreover, although the density d is in the above numerical range, the lightweight cellular concrete panel 44 in which the density d is close to the lower limit of the numerical range may not satisfy the fire resistance. In that case, it is necessary to increase the thickness t of the lightweight cellular concrete panel 44 or the ignition loss value α.

従って、軽量気泡コンクリートパネル44に要求されるパネル重量、パネル強度および耐火性能の全てを満足するためには、軽量気泡コンクリートパネル44は、上記の3個のパラメーターを総合的に評価する必要がある。その評価方法について本発明者らは鋭意研究を重ねた結果、密度d(kg/m)×(厚さt)(mm)×強熱減量値α(wt%)÷100000という新たなパラメーターにより評価し得ることを見出した。 Accordingly, in order to satisfy all of the panel weight, panel strength, and fire resistance required for the lightweight cellular concrete panel 44, the lightweight cellular concrete panel 44 needs to comprehensively evaluate the above three parameters. . As a result of intensive studies on the evaluation method, the present inventors have conducted a new study of density d (kg / m 3 ) × (thickness t) 3 (mm 3 ) × ignition loss value α (wt%) ÷ 100,000. We found that it can be evaluated by parameters.

そして、新たなパラメーターである密度d(kg/m3)×(厚さt)(mm)×強熱減量値α(wt%)÷100000の値が4000以上30000以下であり、好ましくは4500以上25000以下、より好ましくは5000以上15000以下である場合に、パネル重量とパネル強度と耐火性能とを好適に満足し得ることを見出した。 The value of density d (kg / m3) × (thickness t) 3 (mm 3 ) × ignition loss value α (wt%) ÷ 100,000, which is a new parameter, is not less than 4000 and not more than 30000, preferably 4500 It has been found that the panel weight, the panel strength, and the fire resistance can be suitably satisfied when the value is 25000 or less and more preferably 5000 or more and 15000 or less.

軽量気泡コンクリートパネル44を備える耐火外壁構造1によれば、軽量気泡コンクリートパネル44に要求されるパネル重量と、パネル強度と、耐火性能とをバランスよく満たすことが可能である。従って、外装部材4を僅か一種類の材料で、かつ一層の外装部材すなわち軽量気泡コンクリートパネル44で構成することができる。このため、施工が簡易で、かつ低コストの耐火外壁構造1を実現できる。例えば、耐火外壁構造1によれば、屋外側または屋内側からのISO−834で規定された加熱条件で1時間の加熱を行い、その加熱を止めてから3時間放置させた後構造部材に炭化や着火は全く見られないことが確認できている。そして、耐火外壁構造1によれば、木造の耐火建築物を容易に建築することが可能となり、木造建築のより大きな普及を図ることができる。   According to the fireproof outer wall structure 1 including the lightweight cellular concrete panel 44, it is possible to satisfy the panel weight, the panel strength, and the fireproof performance required for the lightweight cellular concrete panel 44 in a balanced manner. Therefore, the exterior member 4 can be composed of only one kind of material and a single exterior member, that is, a lightweight cellular concrete panel 44. For this reason, construction is simple and low-cost fireproof outer wall structure 1 is realizable. For example, according to the fireproof outer wall structure 1, heating is performed for 1 hour under the heating conditions specified by ISO-834 from the outdoor side or indoor side, and after the heating is stopped, the structural member is carbonized. It has been confirmed that no ignition is observed. And according to the fireproof outer wall structure 1, it becomes possible to construct | assemble a wooden fireproof building easily, and the greater spread of wooden construction can be aimed at.

また、耐火外壁構造1は、木材で構成された構造部材2の屋内側は、強化石膏ボードによる内装下張層31と、内装下張層31の屋内側に、強化石膏ボードによる内装上張層32とを積層してなる二層構造を有している。この二層構造によれば、屋内からの火災に対して、木材で構成された構造部材2に伝達される火災の熱を減少させ、構造部材2の炭化や着火を防ぐことができる。   The fireproof outer wall structure 1 includes an interior underlayer 31 made of reinforced gypsum board on the indoor side of the structural member 2 made of wood, and an interior overcoat layer made of reinforced gypsum board on the indoor side of the interior underlayer 31. 32 is laminated. According to this two-layer structure, the heat of the fire transmitted to the structural member 2 made of wood can be reduced and the carbonization and ignition of the structural member 2 can be prevented against an indoor fire.

次に、図1、図2に示される耐火外壁構造1を用いて耐火性能評価試験を行った場合の実施例について説明する。なお、本発明は以下の実施例に例示される具体的な寸法に限定されるものではない。   Next, the Example at the time of performing a fireproof performance evaluation test using the fireproof outer wall structure 1 shown by FIG. 1, FIG. 2 is described. In addition, this invention is not limited to the specific dimension illustrated by a following example.

まず耐火外壁構造1について詳しく説明する。その構造は構造部材2、内装部材3および外装部材4から構成されており、木造枠組壁工法に用いられる構造を採用している。   First, the fireproof outer wall structure 1 will be described in detail. The structure is comprised from the structural member 2, the interior member 3, and the exterior member 4, and the structure used for the wooden frame wall construction method is employ | adopted.

<構造部材2>
構造部材2は、複数のたて枠材21と、複数のたて枠材21の上端同士を連結する上枠材22、複数のたて枠材21の下端同士を連結する下枠材23とを備え、たて枠の屋外側の面に取り付けられた構造用面材から構成されている。たて枠材21、上枠材22および下枠材23は、いずれも枠組壁工法用の木材として用いられる38mm×89mmの断面寸法を備えた長尺の木製部材である。たて枠材21、上枠材22および下枠材23はビスで互いに留め付けた。たて枠材21は、455mmの等間隔で立設させた。構造用面材24は厚さが9mmの構造用合板を用いた。その構造用面材24はたて枠の屋外側の面に釘を打ち付けて、たて枠材21、上枠材22および下枠材23に固定した。また、隣り合うたて枠材21の間に断熱材25として、密度24kg/mのグラスウールを充填した。
<Structural member 2>
The structural member 2 includes a plurality of vertical frame members 21, an upper frame member 22 that connects the upper ends of the plurality of vertical frame members 21, and a lower frame member 23 that connects the lower ends of the plurality of vertical frame members 21. It is comprised from the structural surface material attached to the surface of the outdoor side of a vertical frame. The vertical frame member 21, the upper frame member 22, and the lower frame member 23 are long wooden members each having a cross-sectional dimension of 38 mm × 89 mm used as wood for the frame wall construction method. The vertical frame member 21, the upper frame member 22, and the lower frame member 23 were fastened to each other with screws. The vertical frame material 21 was erected at equal intervals of 455 mm. The structural face material 24 was a structural plywood having a thickness of 9 mm. The structural face material 24 was fixed to the vertical frame material 21, the upper frame material 22, and the lower frame material 23 by hitting nails on the outdoor side surface of the vertical frame. In addition, glass wool having a density of 24 kg / m 3 was filled as the heat insulating material 25 between the adjacent vertical frame members 21.

<内装部材3>
内装部材3は、構造部材2の屋内側の面に、内装下張層31として厚さが21mmの強化石膏ボードと、内装下張層31の屋内側に内装上張層32として厚さが21mmの強化石膏ボードとが積層された二層構造で構成した。内装下張層31は、複数の強化石膏ボードを互いに突き合わせ接合して構成されている。石膏ボード用の釘によって構造部材2に打ち付けた。内装上張層32は、複数の強化石膏ボードを互いに突き合わせ接合して構成されている。内装上張層32は釘によって、内装下張層31を貫通して、構造部材2に打ち付けた。また、内装上張層32の目地部には、内装材用目地処理剤としてJIS―A―6914による石膏ボード用目地処理剤を施し平滑に仕上げた。
<Interior member 3>
The interior member 3 has a reinforcing gypsum board having a thickness of 21 mm as an interior underlayer 31 on the surface of the structural member 2 on the indoor side, and a thickness of 21 mm as an interior upper layer 32 on the interior side of the interior underlayer 31. The reinforced gypsum board was laminated with a two-layer structure. The interior underlayer 31 is configured by abutting and joining a plurality of reinforced gypsum boards to each other. The structural member 2 was struck with nails for plasterboard. The interior overlying layer 32 is configured by abutting and joining a plurality of reinforced gypsum boards to each other. The interior upper layer 32 penetrated the interior underlayer 31 with nails and was applied to the structural member 2. Further, a joint treatment agent for gypsum board according to JIS-A-6914 was applied to the joint portion of the interior overlying layer 32 as a joint treatment agent for interior material to finish it smoothly.

<外装部材4>
外装部材4は、構造用面材24の屋外側に防水層41、該防水層41の屋外側の面に通気層42、胴縁材42aの屋外側の面に軽量気泡コンクリートパネル層43で構成されている。防水層41は透湿防水シート(メーカー:旭・デユポン・フラッシュ・スパンプロダクト(株)、商品名:タイベック)であり、ステープルを用いて構造用面材24の屋外側の面に貼り付けた。その透湿防水シートの継ぎ目は縦横とも90mmで重ね合わせした。通気層42は、防水層41の屋外側に、複数の胴縁材42aを水平方向に所定間隔をあけて、釘を用いて構造用面材24に打ち付けて設置することにより構成した。胴縁材42aは、すぎ材からなる18mm×90mmの断面寸法を備えた細長い薄板状の部材である。軽量気泡コンクリートパネル層43は、胴縁材42aの屋外側の面に複数の軽量気泡コンクリートパネル44を突き付け接合して構成させた。軽量気泡コンクリートパネル44はビスによって構造部材2に打ち付け、固定させた。また、軽量気泡コンクリートパネル層43の目地部には、アクリル系のシーリング材を施した。
<Exterior member 4>
The exterior member 4 includes a waterproof layer 41 on the outdoor side of the structural face material 24, a ventilation layer 42 on the outdoor side surface of the waterproof layer 41, and a lightweight cellular concrete panel layer 43 on the outdoor side surface of the trunk edge material 42 a. Has been. The waterproof layer 41 is a moisture permeable waterproof sheet (manufacturer: Asahi, Deyupon, Flash, Span Product Co., Ltd., trade name: Tyvek), and was affixed to the outdoor side surface of the structural face material 24 using staples. The seam of the moisture permeable waterproof sheet was overlapped at 90 mm both vertically and horizontally. The ventilation layer 42 is configured by placing a plurality of trunk edge members 42a on the outdoor side of the waterproof layer 41 with a predetermined interval in the horizontal direction and hitting the structural face material 24 using nails. The trunk edge member 42a is an elongated thin plate-like member having a cross-sectional dimension of 18 mm × 90 mm made of a surplus material. The lightweight cellular concrete panel layer 43 was formed by abutting and joining a plurality of lightweight cellular concrete panels 44 to the outdoor side surface of the trunk edge material 42a. The lightweight cellular concrete panel 44 was fixed to the structural member 2 with screws. An acrylic sealing material was applied to the joints of the lightweight cellular concrete panel layer 43.

本実施例の耐火外壁構造1は上記の構造部材2、内装部材3および外装部材4で構成させた。   The fire-resistant outer wall structure 1 of the present example was constituted by the structural member 2, the interior member 3, and the exterior member 4.

次に軽量気泡コンクリートパネル44についての各値の測定方法および耐火外壁構造の耐火性能評価試験法について説明する。   Next, a method for measuring each value of the lightweight cellular concrete panel 44 and a fire resistance evaluation test method for the fire resistant outer wall structure will be described.

<軽量気泡コンクリートパネルの密度d>
軽量気泡コンクリートパネルから100(mm)×100(mm)×40(mm)のサイズのブロックを切りだし、そのブロックを105℃の乾燥機で恒量になるまで乾燥させた。その乾燥後の重量W(kg)と、そのブロックの体積V(m)を測定し、式(1)により算出した。
密度d(kg/m)=W/V…(1)
<Density of lightweight cellular concrete panel>
A block having a size of 100 (mm) × 100 (mm) × 40 (mm) was cut out from the lightweight cellular concrete panel, and the block was dried to a constant weight with a dryer at 105 ° C. The weight W (kg) after the drying and the volume V (m 3 ) of the block were measured and calculated by the formula (1).
Density d (kg / m 3 ) = W / V (1)

<軽量気泡コンクリートパネルの厚さt>
ノギスによって、1mmの単位まで軽量気泡コンクリートパネルの厚さtを測定した。
<Thickness t of lightweight cellular concrete panel>
The thickness t of the lightweight cellular concrete panel was measured to the unit of 1 mm with a caliper.

<軽量気泡コンクリートパネルの強熱減量値α>
軽量気泡コンクリートを粉末状になるまで粉砕させた。その粉末を105℃の乾燥機で恒量になるまで乾燥させた。その乾燥後の重量をA(g)とした。次に、その恒量になった粉末を1000℃の電気炉を用いて、1時間加熱した。加熱後の重量を計測し、その重量をB(g)とした。強熱減量値αは式(2)により算出した。
強熱減量値α(wt%)=(A−B)×100/B…(2)
<Light loss value α of lightweight cellular concrete panel>
The lightweight cellular concrete was pulverized until it became powdery. The powder was dried with a dryer at 105 ° C. until a constant weight was reached. The weight after drying was defined as A (g). Next, the powder which became the constant weight was heated for 1 hour using the electric furnace of 1000 degreeC. The weight after heating was measured, and the weight was defined as B (g). The ignition loss value α was calculated by the equation (2).
Ignition loss value α (wt%) = (A−B) × 100 / B (2)

<軽量気泡コンクリートパネルの含水率β>
軽量気泡コンクリートパネルから600(mm)×600(mm)×40(mm)のサイズのブロックを切りだし、そのブロックの重量C(kg)を計測した。そのブロックを105℃の乾燥機で恒量になるまで乾燥させた。その乾燥後の重量D(kg)を計測する。軽量気泡コンクリートパネルの含水率βは式(3)により算出した。
含水率β(wt%)=(C−D)×100/D…(3)
<Moisture content β of lightweight cellular concrete panel>
A block having a size of 600 (mm) × 600 (mm) × 40 (mm) was cut out from the lightweight cellular concrete panel, and the weight C (kg) of the block was measured. The block was dried with a dryer at 105 ° C. until a constant weight was reached. The dried weight D (kg) is measured. The moisture content β of the lightweight cellular concrete panel was calculated by the formula (3).
Moisture content β (wt%) = (C−D) × 100 / D (3)

<耐火外壁構造の耐火性能評価法>
耐火外壁構造の試験体を屋外または屋内から、ISO−834に規定された加熱曲線に従って1時間の加熱を行い、その後、加熱を止め、そのまま3時間放置した。その後、試験体を解体し、構造部材2の炭化や着火の有無を目視で検査した。また、屋外からの加熱の時には、構造用面材24の屋外側の表面に熱電対を取り付け、データロガーを用いて、1分毎に温度を計測した。その時に計測された最高の温度を「構造用面材24の最高温度」と呼ぶ。
<Evaluation method of fireproof performance of fireproof outer wall structure>
A specimen having a fire-resistant outer wall structure was heated from the outdoors or indoors for 1 hour according to the heating curve defined in ISO-834, and then the heating was stopped and left as it was for 3 hours. Thereafter, the test body was disassembled, and the structural member 2 was visually inspected for carbonization and ignition. Further, when heating from the outside, a thermocouple was attached to the surface of the structural face material 24 on the outdoor side, and the temperature was measured every minute using a data logger. The highest temperature measured at that time is referred to as “the highest temperature of the structural face material 24”.

(実施例1)
実施例1では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=375(kg/m
厚さt=50(mm)
強熱減量値α=11.5(wt%)
密度d×(厚さt)×強熱減量値α÷100000=5391
含水率β=2.6(wt%)
Example 1
In Example 1, fire resistance performance evaluation of the fire resistant outer wall structure 1 comprised of the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 375 (kg / m 3 )
Thickness t = 50 (mm)
Ignition loss value α = 11.5 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 5391
Moisture content β = 2.6 (wt%)

(実施例1の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。
屋外からの加熱:構造部材2に炭化や着火が見られなかった。
また、構造用面材24の最高温度は245℃であった。
(Fire resistance evaluation result of Example 1)
Indoor heating: No carbonization or ignition was observed in the structural member 2.
Heating from outside: The structural member 2 was not carbonized or ignited.
The maximum temperature of the structural face material 24 was 245 ° C.

(実施例2)
実施例2では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=490(kg/m
厚さt=50(mm)
強熱減量値α=8.1(wt%)
密度d×(厚さt)×強熱減量値α÷100000=4961
含水率β=2.8(wt%)
(Example 2)
In Example 2, fire resistance performance evaluation of the fire resistant outer wall structure 1 constituted by the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 490 (kg / m 3 )
Thickness t = 50 (mm)
Ignition loss value α = 8.1 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 4961
Moisture content β = 2.8 (wt%)

(実施例2の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。屋外からの加熱:構造部材2に炭化や着火が見られなかった。また、構造用面材24の最高温度は240℃であった。
(Fire resistance evaluation result of Example 2)
Indoor heating: No carbonization or ignition was observed in the structural member 2. Heating from outside: The structural member 2 was not carbonized or ignited. The maximum temperature of the structural face material 24 was 240 ° C.

(実施例3)
実施例3では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=275(kg/m
厚さt=75(mm)
強熱減量値α=11.4(wt%)
密度d×(厚さt)×強熱減量値α÷100000=13226
含水率β=2.9(wt%)
(Example 3)
In Example 3, fire resistance performance evaluation of the fire resistant outer wall structure 1 constituted by the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 275 (kg / m 3 )
Thickness t = 75 (mm)
Ignition loss value α = 11.4 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 13226
Moisture content β = 2.9 (wt%)

(実施例3の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。屋外からの加熱:構造部材2に炭化や着火が見られなかった。また、構造用面材24の最高温度は120℃であった。
(Fire resistance evaluation result of Example 3)
Indoor heating: No carbonization or ignition was observed in the structural member 2. Heating from outside: The structural member 2 was not carbonized or ignited. The maximum temperature of the structural face material 24 was 120 ° C.

(実施例4)
実施例4では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=510(kg/m
厚さt=50(mm)
強熱減量値α=11.8(wt%)
密度d×(厚さt)×強熱減量値α÷100000=7526
含水率β=2.9(wt%)
Example 4
In Example 4, the fireproof performance evaluation of the fireproof outer wall structure 1 composed of the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 510 (kg / m 3 )
Thickness t = 50 (mm)
Ignition loss value α = 11.8 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 7526
Moisture content β = 2.9 (wt%)

(実施例4の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。屋外からの加熱:構造部材2に炭化や着火が見られなかった。また、構造用面材24の最高温度は220℃であった。
(Fire resistance evaluation result of Example 4)
Indoor heating: No carbonization or ignition was observed in the structural member 2. Heating from outside: The structural member 2 was not carbonized or ignited. The maximum temperature of the structural face material 24 was 220 ° C.

(比較例1)
比較例1では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=350(kg/m
厚さt=50(mm)
強熱減量値α=8.3(wt%)
密度d×(厚さt)×強熱減量値α÷100000=3631
含水率β=3.0(wt%)
(Comparative Example 1)
In Comparative Example 1, fire resistance performance evaluation of the fire resistant outer wall structure 1 constituted by the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 350 (kg / m 3 )
Thickness t = 50 (mm)
Ignition loss value α = 8.3 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 3631
Moisture content β = 3.0 (wt%)

(比較例1の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。屋外からの加熱:構造部材2に炭化が見られた。また、構造部材2が発火したため、途中で試験を中断した。
(Results of fire resistance evaluation of Comparative Example 1)
Indoor heating: No carbonization or ignition was observed in the structural member 2. Heating from outside: Carbonization was observed in the structural member 2. Moreover, since the structural member 2 ignited, the test was interrupted.

(比較例2)
比較例2では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=490(kg/m
厚さt=37(mm)
強熱減量値α=8.8(wt%)
密度d×(厚さt)×強熱減量値α÷100000=2184
含水率β=3.1(wt%)
(Comparative Example 2)
In Comparative Example 2, fire resistance performance evaluation of the fire resistant outer wall structure 1 composed of the structural member 2, the interior member 3, and the exterior member 4 was performed. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 490 (kg / m 3 )
Thickness t = 37 (mm)
Ignition loss value α = 8.8 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100000 = 2184
Moisture content β = 3.1 (wt%)

(比較例2の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。
屋外からの加熱:構造部材2に炭化が見られた。また、構造部材2が発火したため、途中で試験を中断した。
(Fire resistance evaluation result of Comparative Example 2)
Indoor heating: No carbonization or ignition was observed in the structural member 2.
Heating from outside: Carbonization was observed in the structural member 2. Moreover, since the structural member 2 ignited, the test was interrupted.

(比較例3)
比較例3では、構造部材2、内装部材3および外装部材4で構成された耐火外壁構造1の耐火性能評価を行った。軽量気泡コンクリートパネル44の密度d、厚さt、強熱減量値αは以下のとおりである。
密度d=375(kg/m
厚さt=37(mm)
強熱減量値α=11.7(wt%)
密度d×(厚さt)×強熱減量値α÷100000=2222
含水率β=2.6(wt%)
(Comparative Example 3)
In Comparative Example 3, the fire resistance performance of the fire resistant outer wall structure 1 constituted by the structural member 2, the interior member 3, and the exterior member 4 was evaluated. The density d, thickness t, and ignition loss value α of the lightweight cellular concrete panel 44 are as follows.
Density d = 375 (kg / m 3 )
Thickness t = 37 (mm)
Ignition loss value α = 11.7 (wt%)
Density d × (thickness t) 3 × ignition loss value α ÷ 100,000 = 2222
Moisture content β = 2.6 (wt%)

(比較例3の耐火性能評価結果)
屋内からの加熱:構造部材2に炭化や着火が見られなかった。
屋外からの加熱:構造部材2に炭化が見られた。また、構造部材2が発火したため、途中で試験を中断した。
(Fire resistance evaluation result of Comparative Example 3)
Indoor heating: No carbonization or ignition was observed in the structural member 2.
Heating from outside: Carbonization was observed in the structural member 2. Moreover, since the structural member 2 ignited, the test was interrupted.

実施例1〜4に示すように、屋内側および屋外側からの加熱を行った結果、構造部材2に炭化や着火が見られなかったことから、耐火外壁構造1は「耐火構造」であることがわかった。   As shown in Examples 1 to 4, as a result of heating from the indoor side and the outdoor side, the structural member 2 was not carbonized or ignited, so the fire-resistant outer wall structure 1 is a “fire-resistant structure”. I understood.

木造建築物の耐火外壁構造を、施工が簡便で、低コストであり、外装部材が僅か一種類で、かつ一層の外装部材だけで耐火構造として達成するには、鋭意検討の結果、その外装部材は軽量気泡コンクリートパネルである結論に至った。その耐火外壁構造は、木材で構成された構造部材の屋外側に取り付けられた構造用面材と、該構造用面材の屋外側の面に取り付けられた胴縁材と、該胴縁材の屋外側の面に外装部材として軽量気泡コンクリートパネル44が構成され、該軽量気泡コンクリートパネルの密度dが200kg/m以上550kg/m以下であり、かつその厚さtが45mm以上100mm以下であり、かつその強熱減量値αが5wt%以上15wt%以下であり、かつd(kg/m)×t(mm)×α(wt%)÷100000の値が4000以上30000以下である。 In order to achieve a fire-resistant outer wall structure of a wooden building with a simple construction, low cost, only one type of exterior member, and a fire-resistant structure with only one exterior member, as a result of intensive studies, the exterior member The conclusion is that it is a lightweight cellular concrete panel. The fireproof outer wall structure includes a structural face member attached to an outdoor side of a structural member made of wood, a trunk edge member attached to an outdoor side surface of the structural face member, and A lightweight cellular concrete panel 44 is configured as an exterior member on the outdoor side surface, and the density d of the lightweight cellular concrete panel is 200 kg / m 3 or more and 550 kg / m 3 or less, and the thickness t is 45 mm or more and 100 mm or less. And the ignition loss value α is 5 wt% or more and 15 wt% or less, and the value of d (kg / m 3 ) × t 3 (mm 3 ) × α (wt%) ÷ 100,000 is 4000 or more and 30000 or less. is there.

以上、本発明の一実施例形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、本実施形態は、木造枠組壁工法に用いる壁体に、本発明を適用した場合を一例として説明したが、木造軸組工法などの他の壁体に適用しても良い。   As mentioned above, although one Example form of this invention was described, this invention is not limited to the said embodiment. For example, although this embodiment demonstrated as an example the case where this invention was applied to the wall body used for a wooden frame wall construction method, you may apply to other wall bodies, such as a wooden frame construction method.

本発明によれば、外装部材を僅か一種類の材料でかつ一層の外装部材、すなわち軽量気泡コンクリートパネル44で構成することができ、施工が容易な、低コストの木造建築物の耐火外壁構造を提供することができる。よって、木造の耐火建築物を容易に建築することが可能となり、木造建築のより大きな普及を図ることができる。   According to the present invention, the exterior member can be composed of only one type of material and a single exterior member, that is, the lightweight cellular concrete panel 44, and the fire-resistant outer wall structure of a low-cost wooden building that is easy to construct. Can be provided. Therefore, it becomes possible to construct a wooden fireproof building easily, and the wooden construction can be more widely spread.

1…耐火外壁構造、2…構造部材、3…内装部材、4…外装部材、21…枠材、22…上枠材、23…下枠材、24…構造用面材、25…断熱材、31…内装下張層、32…内装上張層、41…防水層、42…通気層、42a…胴縁材、43…軽量気泡コンクリートパネル層、44…軽量気泡コンクリートパネル、D…重量、d…密度、t…厚さ、V…体積、W…重量、α…強熱減量値、β…含水率。 DESCRIPTION OF SYMBOLS 1 ... Fireproof outer wall structure, 2 ... Structural member, 3 ... Interior member, 4 ... Exterior member, 21 ... Frame material, 22 ... Upper frame material, 23 ... Lower frame material, 24 ... Structural surface material, 25 ... Thermal insulation material, DESCRIPTION OF SYMBOLS 31 ... Interior undercoat layer, 32 ... Interior overcoat layer, 41 ... Waterproofing layer, 42 ... Breathable layer, 42a ... Body edge material, 43 ... Lightweight cellular concrete panel layer, 44 ... Lightweight cellular concrete panel, D ... Weight, d ... density, t ... thickness, V ... volume, W ... weight, α ... ignition loss value, β ... moisture content.

Claims (5)

木造建築物の耐火外壁構造であって、
木材で構成された構造部材の屋外側に取り付けられた構造用面材と、
前記構造用面材の屋外側の面に取り付けられた胴縁材と、
前記胴縁材の屋外側の面に取り付けられた軽量気泡コンクリートパネルと、
を備え、
前記軽量気泡コンクリートパネルは、密度dが200kg/m以上550kg/m以下であり、かつ厚さtが45mm以上100mm以下であり、かつ強熱減量値αが5wt%以上15wt%以下であり、かつd(kg/m)×t(mm)×α(wt%)÷100000の値が4000以上30000以下であることを特徴とする、木造建築物の耐火外壁構造。
A fireproof outer wall structure of a wooden building,
A structural face material attached to the outdoor side of a structural member made of wood;
A torso material attached to the outdoor side surface of the structural face material;
A lightweight cellular concrete panel attached to the outdoor side surface of the waistband;
With
The lightweight cellular concrete panel has a density d of 200 kg / m 3 or more and 550 kg / m 3 or less, a thickness t of 45 mm or more and 100 mm or less, and an ignition loss value α of 5 wt% or more and 15 wt% or less. and d (kg / m 3) × t 3 (mm 3) × α wherein the value of (wt%) ÷ 100000 is 4000 to 30,000, refractory outer wall structure of the wooden buildings.
前記軽量気泡コンクリートパネルの密度dは、250kg/m以上400kg/m以下であることを特徴とする、請求項1記載の木造建築物の耐火外壁構造。 2. The fireproof outer wall structure of a wooden building according to claim 1, wherein a density d of the lightweight cellular concrete panel is 250 kg / m 3 or more and 400 kg / m 3 or less. 前記軽量気泡コンクリートパネルの厚さtは、45mm以上75mm以下であることを特徴とする、請求項1又は2に記載の木造建築物の耐火外壁構造。   The fireproof outer wall structure of a wooden building according to claim 1 or 2, wherein a thickness t of the lightweight cellular concrete panel is 45 mm or more and 75 mm or less. 前記軽量気泡コンクリートパネルの強熱減量値αは、8wt%以上13wt%以下であることを特徴とする、請求項1〜3のいずれか一項に記載の木造建築物の耐火外壁構造。   The fire-resistant outer wall structure of a wooden building according to any one of claims 1 to 3, wherein an ignition loss value α of the lightweight cellular concrete panel is 8 wt% or more and 13 wt% or less. d(kg/m3)×t(mm)×α(wt%)÷100000の値は、5000以上15000以下であることを特徴とする、請求項1〜4のいずれか一項に記載の木造建築物の耐火外壁構造。 The value of d (kg / m3) × t 3 (mm 3 ) × α (wt%) ÷ 100,000 is 5000 or more and 15000 or less, according to any one of claims 1 to 4, Fireproof outer wall structure of a wooden building.
JP2014135633A 2014-07-01 2014-07-01 Fireproof outer wall structure of wooden building Active JP6497854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135633A JP6497854B2 (en) 2014-07-01 2014-07-01 Fireproof outer wall structure of wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135633A JP6497854B2 (en) 2014-07-01 2014-07-01 Fireproof outer wall structure of wooden building

Publications (2)

Publication Number Publication Date
JP2016014230A true JP2016014230A (en) 2016-01-28
JP6497854B2 JP6497854B2 (en) 2019-04-10

Family

ID=55230634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135633A Active JP6497854B2 (en) 2014-07-01 2014-07-01 Fireproof outer wall structure of wooden building

Country Status (1)

Country Link
JP (1) JP6497854B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428322Y2 (en) * 1985-09-10 1992-07-09
JPH10131366A (en) * 1996-10-30 1998-05-19 Onoda Autoclaved Light Weight Concrete Co Ltd Mounting structure of alc panel
JP2000034795A (en) * 1998-05-15 2000-02-02 Sumitomo Metal Mining Co Ltd Alc thin plate and its mounting bracket
JP2004100228A (en) * 2002-09-06 2004-04-02 Tokiwa Electric Co Ltd Noncombustible heat insulating panel
JP2005179148A (en) * 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2005299194A (en) * 2004-04-09 2005-10-27 Mitsui Home Co Ltd External wall structure of wooden building
JP2005336843A (en) * 2004-05-26 2005-12-08 Sumitomo Kinzoku Kozan Siporex Kk Reinforcing panel body
JP2007031270A (en) * 2005-06-22 2007-02-08 Asahi Kasei Construction Materials Co Ltd Low specific gravity lightweight foamed concrete, and method for producing the same
JP2009299296A (en) * 2008-06-10 2009-12-24 Sumitomo Metal Mining Siporex Kk Fire-resistive covering structure, mounting bracket for alc panel, and alc panel fixing method
JP2012028322A (en) * 2010-07-20 2012-02-09 Samsung Sdi Co Ltd Positive electrode and lithium battery including the same
WO2013122974A1 (en) * 2012-02-17 2013-08-22 United States Gypsum Company Gypsum products with high efficiency heat sink additives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428322Y2 (en) * 1985-09-10 1992-07-09
JPH10131366A (en) * 1996-10-30 1998-05-19 Onoda Autoclaved Light Weight Concrete Co Ltd Mounting structure of alc panel
JP2000034795A (en) * 1998-05-15 2000-02-02 Sumitomo Metal Mining Co Ltd Alc thin plate and its mounting bracket
JP2004100228A (en) * 2002-09-06 2004-04-02 Tokiwa Electric Co Ltd Noncombustible heat insulating panel
JP2005179148A (en) * 2003-12-22 2005-07-07 Asahi Kasei Corp Lightweight cellular concrete and its producing method
JP2005299194A (en) * 2004-04-09 2005-10-27 Mitsui Home Co Ltd External wall structure of wooden building
JP2005336843A (en) * 2004-05-26 2005-12-08 Sumitomo Kinzoku Kozan Siporex Kk Reinforcing panel body
JP2007031270A (en) * 2005-06-22 2007-02-08 Asahi Kasei Construction Materials Co Ltd Low specific gravity lightweight foamed concrete, and method for producing the same
JP2009299296A (en) * 2008-06-10 2009-12-24 Sumitomo Metal Mining Siporex Kk Fire-resistive covering structure, mounting bracket for alc panel, and alc panel fixing method
JP2012028322A (en) * 2010-07-20 2012-02-09 Samsung Sdi Co Ltd Positive electrode and lithium battery including the same
WO2013122974A1 (en) * 2012-02-17 2013-08-22 United States Gypsum Company Gypsum products with high efficiency heat sink additives

Also Published As

Publication number Publication date
JP6497854B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
KR100735576B1 (en) The insulation panel with reinforcement and construct method of panel thereof
US8539721B2 (en) Lightweight building structure produced by using a mortar and a method for the production
CN2532147Y (en) Composite wall board
JP6497924B2 (en) Outer insulation and fireproof outer wall structure of wooden building
GB2478844A (en) A prefabricated wall panel with a structural support frame comprising concrete.
JP6499435B2 (en) Outer insulation and fireproof outer wall structure of wooden building
JP6497923B2 (en) Outer insulation and fireproof outer wall structure of wooden building
KR101642294B1 (en) Both-sides high insulation wall structure using insulation panel
JP2011256536A (en) Exterior wall structure of wooden building
JP6497922B2 (en) Outer insulation and fireproof outer wall structure of wooden building
JP6497854B2 (en) Fireproof outer wall structure of wooden building
KR20200026671A (en) Fiber composite panel combined with ore powder and manufacturing method thereof
KR101219873B1 (en) The Architecture Method Featured Expandedform Stuffing Framework
Iringová Lightweight building envelopes in prefabricated buildings in terms of fire resistance
JP6619895B2 (en) Fireproof outer wall structure of wooden building
Iringová Impact of fire protection on the design of energy-efficient and eco-friendly building envelopes in timber structures
JP6497855B2 (en) Fireproof outer wall structure of wooden building
KR101373627B1 (en) Vermiculite board, composite panel and its manufacturing method
CN106149966A (en) A kind of multi-layer combined skeleton sandwich layer self-insulating external wall panel
JP4630866B2 (en) External heat insulating wall construction structure and external heat insulating wall construction method using the same
CN104963440A (en) Self-supporting-type self-insulation composite curtain wall plate
CN105089166A (en) Self-supporting assembled light-weight heat insulation wall body
RU105652U1 (en) SMALL BUILDING OF MODULAR DESIGN (OPTIONS)
RU2715943C1 (en) Multilayered building panel
CN206829512U (en) A kind of housing roof wall-panel assembled structure based on light gauge cold-formed steel shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190312

R150 Certificate of patent or registration of utility model

Ref document number: 6497854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150