JP2016010138A - 通信装置、通信システム及び通信方法 - Google Patents

通信装置、通信システム及び通信方法 Download PDF

Info

Publication number
JP2016010138A
JP2016010138A JP2014131739A JP2014131739A JP2016010138A JP 2016010138 A JP2016010138 A JP 2016010138A JP 2014131739 A JP2014131739 A JP 2014131739A JP 2014131739 A JP2014131739 A JP 2014131739A JP 2016010138 A JP2016010138 A JP 2016010138A
Authority
JP
Japan
Prior art keywords
physical path
class
bandwidth
path
physical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014131739A
Other languages
English (en)
Inventor
謙二 湊
Kenji Minato
謙二 湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014131739A priority Critical patent/JP2016010138A/ja
Priority to US14/696,697 priority patent/US9667482B2/en
Publication of JP2016010138A publication Critical patent/JP2016010138A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/125Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

【課題】パケットロスレスを実現できる通信装置等を提供する。【解決手段】RBは、TRILL網内の物理パスの状態変化を検出する検出部と、状態変化を検出すると、状態変化の物理パス毎に、当該物理パスに割り当てる予測トラヒック量を、当該トラヒック内のTC毎に算出する第1の算出部とを有する。RBは、物理パス毎に、第1の算出部で算出したTC毎の予測トラヒック量に応じて、当該物理パスの物理帯域に対する、当該物理パスに割り当てる各TCの帯域の割当比率を算出する第2の算出部を有する。RBは、物理パス毎に、第2の算出部で算出したTC毎の帯域の割当比率を設定する設定部を有する。RBは、物理パス毎に設定したTC毎の帯域の割当比率に応じて、当該物理パスに流す各TCのトラヒックの流量を制御する制御部を有する。【選択図】図3

Description

本発明は、通信装置、通信システム及び通信方法に関する。
一般的なレイヤ2の冗長化構成の通信網内の通信装置では、STP(Spanning Tree Protocol)を採用し、パケット転送のループを回避するため、ブロッキングポートを形成することになる。しかしながら、STPを採用した通信装置では、ループを回避できる反面、ブロッキングポートに接続したパスが使用不可になるため、使用帯域を有効活用できない。
そこで、レイヤ2の冗長化プロトコルであるTRILL(Transparent Interconnection of Lots of Links)がRFC6325で標準化されている。TRILLは、例えば、イーサネット(登録商標)等の通信網のパスを冗長化する技術である。しかも、TRILLは、ブロッキングポートを形成することなく、ループを回避できる仕組みを備えているため、STPに比較して使用帯域の有効活用が図れる。
TRILLは、レイヤ3のルーティングプロトコルであるIS−IS(Intermediate System to Intermediate System)をレイヤ2に応用し、例えば、運用パスの障害時に運用パスから冗長パスに高速に切り替えることができる。TRILL対応のL2スイッチ機能を内蔵した通信装置には、複数の通信装置で構成するTRILL網内の物理パスの内、SPF(Shortest Path First)方式で最短距離のパスを決定する機能がある。
しかも、TRILL網の各通信装置は、TRILL網内で各物理パスのコストを認識しているため、TRILL網内で現在使用中の物理パスが障害等で使用できなくなった場合、割当可能な複数の冗長パスから最小コストのパスに自律的に切り替える機能もある。
また、主にデータセンタで使用することを目的とし、例えば、パケットロスレスを実現するイーサネット拡張機能のDCB(Data Center Bridging)が知られている。尚、DCBは、IEEE(The Institute of Electrical and Electronics Engineers. Inc.)で規定されている。
また、DCBには、ETS(Enhanced Transmission Selection)機能がある。ETS機能は、トラヒックを、定義された優先順位を付したTC(Traffic Class)に分類し、物理パスの物理帯域に対する、各TCの最低保証帯域の割当比率を指定できるプロトコルである(IEEE802.1Qaz参照)。尚、TCは、トラヒックの類似性に基づいてグループ化されるトラヒックのカテゴリに相当する。TCは、トラヒックのフレーム内のPCP(Priority Code Point)フィールド値に割り当てられる。PCPは、IEEE802.1pで定義された優先度を指定する3ビットのフィールドに相当し、フレームの優先度を0〜7で示し、例えば、音声、動画やデータ等の各種トラヒックを優先順位付けするものである。従って、例えば、ストレージ等のパケットロスレスが要求されるトラヒックのパケットには、物理パスに優先的に割り当てるように優先度の高いTCを割り当てることでパケットロスレスを実現する。
つまり、ETS機能は、物理パスに割り当てるトラヒックの帯域の内、TC毎に、割当可能な最低帯域を保証し、この最低帯域までは低優先であっても割当可能とし、TC単位の帯域保証を実現する仕組みと言える。
次に、ETSの設定例について具体的に説明する。物理パスに割り当てるトラヒックを、例えば、TC1〜3に分類し、TC1の予測トラヒック量を100Mバイト/秒、TC2の予測トラヒック量を200Mバイト/秒、TC3の予測トラヒック量を100Mバイト/秒とする。更に、物理パスは、最大トラヒック量を1Gバイト/秒とする1G回線である。ETSは、物理パスに割り当てるトラヒックの各TCの予測トラヒック量に応じて、物理パスの物理帯域に対する、TC1の割当比率を25%、TC2の割当比率を50%、TC3の割当比率を25%に割り当てる。その結果、TC1の帯域のトラヒック量は250Mバイト/秒、TC2の帯域のトラヒック量は500Mバイト/秒、TC3の帯域のトラヒック量は250Mバイト/秒まで保証されることになる。尚、ETSの設定内容、すなわち各TCの帯域の割当比率は、ユーザが設定変更しない限り、その設定内容は変更されない。
また、近年、DCB及びTRILLを併用することで堅牢な通信網を構築し、パケットロスレスが必要なストレージI/O等のFCoE(Fibre Channel over Ethernet(登録商標))に活用することも考えられている。
特開2002−44147号公報
TRILLでは、運用パスに障害等が生じて冗長パスに切替えられた場合に、各パスに割り当てるトラヒックの各TCのトラヒック量や帯域の割当比率が大きく変動することになる。しかしながら、各パスに割り当てる各TCのトラヒック量がETSの設定した帯域の割当比率を超過した場合に、そのまま、超過した分のパケットが破棄されることになる。例えば、優先度の高いTCの帯域の割当比率を超過してトラヒックが流れ込んだ場合、当該TCに対応する優先度の高いパケットが破棄され、パケットロスや輻輳等が生じる。
つまり、TRILLでパスが自律的に切り替えられた場合でも、ETSの設定内容、すなわち物理パス毎の各TCの帯域の割当比率が自動的に更新されるものではない。従って、ETSの各TCの帯域の割当比率を超えるトラヒックが流れた場合に優先度の高いパケットのロスや輻輳等が生じる。
一つの側面では、トラヒック内のパケットロスレスを実現できる通信装置、通信システム及び通信方法を提供することを目的とする。
一つの態様では、検出部と、第1の算出部と、第2の算出部と、設定部と、制御部とを有する。検出部は、レイヤ2冗長化プロトコルの通信網内の物理パスの状態変化を検出する。第1の算出部は、前記状態変化を検出すると、前記状態変化の物理パス毎に、当該物理パスに割り当てる予測トラヒック量を、当該トラヒック内のクラス毎に算出する。第2の算出部は、前記物理パス毎に、算出した前記クラス毎の予測トラヒック量に応じて、当該物理パスの物理帯域に対する、当該物理パスに割り当てる各クラスの帯域の割当比率を算出する。設定部は、前記物理パス毎に、前記第2の算出部で算出した前記各クラスの帯域の割当比率を設定する。制御部は、前記物理パス毎に設定した前記各クラスの帯域の割当比率に応じて、当該物理パスに流す各クラスのトラヒックの流量を制御する。
一つの態様では、トラヒック内のデータロスレスを実現できる。
図1は、本実施例の通信システムの一例を示す説明図である。 図2は、本実施例のRB内のハードウェア構成の一例を示すブロック図である。 図3は、本実施例のRBのCPU内の機能構成の一例を示すブロック図である。 図4は、優先度テーブルの一例を示す説明図である。 図5は、ユーザ別テーブルの一例を示す説明図である。 図6は、パス別テーブルの一例を示す説明図である。 図7は、ETSテーブルの一例を示す説明図である。 図8は、ETS設定処理に関わるDCB制御部の処理動作の一例を示すフローチャートである。 図9は、パス切替時の通信システムの一例を示す説明図である。 図10は、パス切替時のユーザ別テーブルの一例を示す説明図である。 図11は、優先度に応じた再計算後のパス別テーブルの一例を示す説明図である。 図12は、パス切替時のETSテーブルの一例を示す説明図である。
以下、図面に基づいて、本願の開示する通信装置、通信システム及び通信方法の実施例を詳細に説明する。尚、各実施例により、開示技術が限定されるものではない。また、以下に示す各実施例は、矛盾を起こさない範囲で適宜組み合わせても良い。
図1は、本実施例の通信システム1の一例を示す説明図である。図1に示す通信システム1は、イーサネット(登録商標)等の通信網内の、例えば、2台のES(End Station)2と、2台のES2との間でレイヤ2の冗長構成を確保したTRILL網1Aとを有する。ES2は、例えば、パソコン、サーバやストレージ等の機器である。
TRILL網1Aは、例えば、6台のRB(Routing Bridge)3を有する。RB3は、TRILLプロトコル機能を実装したL2スイッチ等を内蔵した通信装置である。RB3は、2台の終端RB3A,3Fと、4台の中継RB3B,3C,3D,3Eとを有する。終端RB3Aは、TRILL網1Aと、TRILL網1Aと異なる、ES2Aを収容する通信網との間の境界に配置され、ES2Aと接続するTRILL網1A側Ingressの終端装置である。終端RB3Fは、TRILL網1Aと、対向側のES2Bを収容する通信網との間の境界に配置され、対向側のES2Bと接続するTRILL網1A側Egressの終端装置である。
中継RB3B,3C,3D,3Eは、終端RB3Aと終端RB3Fとの間を接続する物理パス4中に配置されたTRILL網1A内の中継装置である。中継RB3B,3C,3D,3Eは、TRILL網1A内のTRILLフレームを転送する役割を担う。各中継RB3は、通常、冗長構成の接続形態をとるため、物理パス4内の複数の冗長パスの内、特定の冗長パスに負荷が偏らないようにTRILLフレームを分散すべく、出力先パスを割当制御する。TRILL網1A内のRB3同士を接続する物理パス4は、説明の便宜上、例えば、1G回線とする。
図1に示すES2Aは、TRILL網1Aを通じて対向側のES2Bと接続する。ES2Aは、TRILL網1A側の終端RB3Aと接続する。対向側のES2Bは、TRILL網1A側の終端RB3Fと接続する。ES2Aは、対向側のES2Bに通信フレームを伝送すべく、通信フレームを終端RB3Aに伝送する。終端RB3Aは、通信フレームにTRILLヘッダを付加してカプセル化し、カプセル化したTRILLフレームをTRIIL網1A内の物理パス4上の中継RB3を経由して対向側の終端RB3Fに伝送する。
対向側の終端RB3Fは、カプセル化したTRILLフレームを受信し、TRILLフレームからTRILLヘッダを外してカプセル解除し、カプセル解除された通信フレームを対向側のES2Bに伝送する。従って、ES2側のユーザは、TRILL網1A内の内部構成を意識することなく、透過的に使用し、TRILL網1A自体が論理的な1台のL2スイッチのイメージとなる。
TRILL網1A内の各RB3は、隣接するRB3との間でTRILL HELLOフレームを相互に交換することで、自律的に隣接関係を認識する。更に、各RB3は、隣接するRB3との間でLSP(Link State Packet)フレームを相互に交換することで、隣接関係及びパスコスト等の同一トポロジー情報を共有し、最短経路(最少パスコスト)でTRILLフレームのルーティングを可能にする。
図2は、実施例1のRB3内のハードウェア構成の一例を示すブロック図である。図2に示すRB3は、回線インタフェース11と、パススイッチ12と、FPGA(Field Programmable Gate Array)13と、ブートローダ14と、電源15と、FAN16とを有する。RB3は、不揮発性メモリ17と、ROM(Read Only Memory)18と、メモリ19と、操作インタフェース20と、CPU(Central Processing Unit)21と、バススイッチ22とを有する。
回線インタフェース11は、物理パス4と接続する、例えば、RJ45やSFP(Small Form-Factor Pluggable)等の通信ポートに相当する。パススイッチ12は、回線インタフェース11内の通信ポートを切替えることで、その通信ポートに接続する物理パス4を切替接続する、例えば、Switch Siliconである。FPGA13は、例えば、構成情報を設定変更可能にする集積回路である。ブートローダ14は、FPGA13内の構成情報を設定変更する際に変更プログラムを起動するための、例えばBoot Flashである。電源15は、RB3全体に電力を供給する部位である。FAN16は、RB3内部の機器を冷却する空調機器である。不揮発性メモリ17は、プログラム等の各種情報を記憶した記憶領域である。ROM18は、各種設定情報を記憶した、例えば、EEPROM(Electrically Erasable Programmable Read Only Memory)である。メモリ19は、例えば、トポロジー情報等の各種情報を記憶する、例えば、DDR3(Double-Data-Rate3)のSDRAM(Synchronous Dynamic Random Access Memory)である。
操作インタフェース20は、コンソール端末と接続してRB3内の設定内容を変更するためのインタフェースに相当し、例えば、RS−232Cのインタフェースである。CPU21は、RB3全体を制御する中央処理装置である。バススイッチ22は、CPU21とFPGA13との間、CPU21とパススイッチ12との間のバスラインを切替接続する、例えば、PCIe(Peripheral Component Interconnect-express) Switchである。FPGA13とパススイッチ12との間は、EBI(External Bus Interface)で接続する。
図3は、実施例1のRB3のCPU21内の機能構成の一例を示すブロック図である。図3に示すCPU21は、ROM18に格納された通信制御プログラムを読み出し、通信制御プログラムに基づき各種プロセスを機能として実行する。CPU21は、機能として、監視制御部31と、送受信部32と、TRILL制御部33と、DCB制御部34と、CLI(Command Line Interface)制御部35とを有する。
監視制御部31は、パススイッチ12を通じて回線インタフェース13内のポートの状態を監視し、ポート状態の変化を検出した場合に、その変化検出をTRILL制御部33に通知する。更に、監視制御部31は、例えば、TRILL制御部33からの指示に基づき、ポートを開閉制御する。
送受信部32は、パススイッチ12を通じて、TRILL網1A内のRB3との間で制御フレームを送受信し、制御フレームを受信した場合にTRILL制御部33に通知すると共に、TRILL制御部33からの指示に応じて制御フレームを送信する。尚、制御フレームには、例えば、HELLO、LSP(Link State PDU)、CSNP(Complete Sequence Number PDU)やPSNP(Partial Sequence Number PDU)等のフレームがある。
HELLOフレームは、各RB3がブロードキャスト設定された通信ポートで周期的に送受信し、RB3の生存確認に使用する制御フレームである。LSPフレームは、各RB3が自装置までのパス距離を報告するPDUに相当し、TRILL網1A内の全RB3に伝達され、全RB3が同一トポロジー情報を算出するのに使用する制御フレームである。CSNPフレーム及びPSNPフレームは、リンクステート情報の同期を確保するために使用する制御フレームである。
TRILL制御部33は、TRIILプロトコルの各種処理を制御する。DCB制御部34は、DCBプロトコルの各種処理を制御する。更に、メモリ19は、ネットワーク情報DB41と、優先度テーブル42と、ユーザ別テーブル43と、パス別テーブル44と、ETSテーブル45とを有する。ネットワーク情報DB41は、RB3の隣接関係や物理パスのパスコスト等のネットワーク情報を蓄積する。
図4は、優先度テーブル42の一例を示す説明図である。図4に示す優先度テーブル42は、TC種別42A毎に、各TCを分類するクラス群の優先度42Bを管理する。TC種別42Aは、TCの種別に相当し、例えば、TC0〜TC7の8種類に分類する。優先度42Bは、例えば、優先順位が高い順に「最高」、「高」及び「普通」の3クラス群に分類する。TC0〜TC2は、例えば、「普通」のクラス群に相当し、主にLANトラヒックのデータを対象とする。TC3〜TC6は、例えば、「高」のクラス群に相当し、主にストレージトラヒックのデータを対象とする。TC7は、例えば、「最高」のクラス群に相当し、主にIPCのデータを対象とする。
図5は、ユーザ別テーブル43の一例を示す説明図である。図5に示すユーザ別テーブル43は、ユーザ43A毎に、各TC0〜TC7の予測トラヒック量43Bを管理している。ユーザ43Aは、VLAN(Virtual Local Area Network)を識別するIDである。尚、予測トラヒック量43Bは、物理パス4に割り当てるVLANのTC毎の予測量である。
DCB制御部34は、図5に示すユーザ別テーブル43を参照し、例えば、ユーザAに関し、TC0に150Mバイト/秒、TC1に50Mバイト/秒、TC2に50Mバイト/秒、TC7に50Mバイト/秒の予測トラヒック量を識別できる。
図6は、パス別テーブル44の一例を示す説明図である。図6に示すパス別テーブル44は、ユーザ44A毎の各TCの予測トラヒック量44Bを物理パス4毎に管理している。更に、パス別テーブル44は、TC毎の合計の予測トラヒック量44C及び、ユーザ(VLAN)毎の合計の予測トラヒック量44Dを管理している。図6の(A)に示すパス別テーブル44は、例えば、終端RB3Aと中継RB3Bとの間の物理パス4A(4)の各TCの予測トラヒック量を管理している。図6の(B)に示すパス別テーブル44は、例えば、終端RB3Aと中継RB3Cとの間の物理パス4B(4)の各TCの予測トラヒック量を管理している。
DCB制御部34は、図6の(A)に示すパス別テーブル44を参照し、例えば、物理パス4Aに関し、各TCの予測トラヒック量を識別できる。DCB制御部34は、TC0が150Mバイト/秒、TC1が50Mバイト/秒、TC2が50Mバイト/秒、TC3が100Mバイト/秒、TC4が50Mバイト/秒の予想トラヒック量を識別できる。更に、DCB制御部34は、TC5が50Mバイト/秒、TC6が0Mバイト/秒、TC7が50Mバイト/秒の予測トラヒック量を識別できる。
図7は、ETSテーブル45の一例を示す説明図である。図7に示すETSテーブル45は、物理パス4に割り当てるVLANの各TCの帯域の割当比率45Aを管理している。割当比率45Aは、物理パス4の物理帯域全体に対する、割当対象のVLANの各TCの最低保証帯域の割当比率である。図7の(A)に示すETSテーブル45は、終端RB3Aと中継RB3Bとの間の物理パス4Aの各TCの帯域の割当比率45Aを管理している。図7の(B)に示すETSテーブル45は、終端RB3Aと中継RB3Cとの間の物理パス4Bの各TCの帯域の割当比率45Aを管理している。
DCB制御部34は、図7の(A)に示すETSテーブル45を参照し、物理パス4Aに関し、TC0が30%、TC1が10%、TC2が10%、TC3が20%、TC4が10%、TC5が10%、TC6が0%、TC7が10%として割当比率を識別できる。
TRILL制御部33は、状態管理部51と、プロトコル制御部52と、パス決定部53とを有する。状態管理部51は、監視制御部31を通じて各RB3の状態、例えば、ポート状態やパスコスト等の状態情報を収集し、収集した状態情報を管理する。状態管理部51は、監視制御部31を通じて、物理パス4の障害等でポート状態の変化を検出した場合、状態変化をプロトコル制御部52に通知する。
プロトコル制御部52は、TRILL制御部33全体を制御する。プロトコル制御部52は、送受信部32を通じて他のRB3との間でHELLOフレームを相互交換することで自律的に隣接関係を学習する。プロトコル制御部52は、送受信部32を通じて他のRB3との間でLSP等の制御フレームを相互交換することで、RB3の隣接関係や物理パス4のパスコスト等のネットワーク情報を収集し、収集したネットワーク情報をネットワーク情報DB41に蓄積する。
更に、TRILLには、TRILL網1A内の終端RB3A及び3F間で同一コストの冗長パスが複数存在する場合に、トラヒック単位で冗長パスを分散して割り当てる仕組みとしてECMP(Equal Cost Multi Path)機能がある。尚、ECMP機能の分散方式は、RFCでは規定されていないため、レイヤ2の観点からトラヒックをVLAN単位で冗長パスに割り当てるものとする。
パス決定部53は、例えば、物理パス4の障害等による状態変化を検出した場合、各トラヒックである各VLANに割り当てるべき物理パス4を決定する。パス決定部53は、割当処理部53Aと、ポート設定部53Bと、ハードウェア設定部53Cとを有する。割当処理部53Aは、物理パス4内の同一コストの冗長パス4の内、各VLANに割り当てるべき、出力先パスを決定する。ポート設定部53Bは、VLANに割り当てるべき出力先パスを決定した後、VLANを割り当てる出力先パスの通信ポートを設定する。ハードウェア設定部53Cは、VLANを出力先パスに割り当てる際、出力先パス側のハードウェア処理、例えば、フレーム転送ルール等の各種処理の割当処理を実行する。
DCB制御部34は、ETS設定部61と、DCBX通信部62とを有する。ETS設定部61は、検出部71と、第1の算出部72と、割当部73と、第2の算出部74と、設定部75と、制御部76とを有する。検出部71は、TRILL制御部33内のプロトコル制御部52からの物理パス4の状態変化を検出する。尚、物理パス4の状態変化には、例えば、TRILLプロトコルによる冗長パスへの切替等の運用変更やTRILL網1Aの再構築等の状態変化がある。
第1の算出部72は、物理パス4の状態変化を検出した場合に、例えば、統計情報等に基づき、物理パス4に割り当てる割当対象のVLANのTC毎の予測トラヒック量を算出する。尚、割当対象のVLANは、物理パス4に割り当てる全VLANに相当する。第1の算出部72は、VLANのTC毎の予測トラヒック量をユーザ別テーブル43及びパス別テーブル44内に記憶する。
割当部73は、各TCの優先度に基づき、各TCの予測トラヒック量を物理パス4内の余剰帯域に割り当てる。尚、優先度は、TCを3個のクラス群に分類し、クラス群は、優先順位の高い方から、例えば、「最高」、「高」及び「普通」の順となる。余剰帯域は、物理パス4内の物理帯域の内、割当可能な未割当の空き帯域である。第2の算出部74は、物理パス4毎に、割当部73で余剰帯域に割り当てた各TCの予測トラヒック量に応じて、当該物理パス4内の物理帯域全体に対する各TCの帯域の割当比率を算出する。
設定部75は、第2の算出部74で算出した物理パス4毎の各TCの帯域の割当比率をETSテーブル45に記憶する。制御部76は、ETSテーブル45内の物理パス4毎に設定した各TCの帯域の割当比率をポート設定部53Bに設定し、各TCの帯域の割当比率に応じて物理パス4内を流れるトラヒックの流量をTC単位で制御する。
DCBX(Data Center Bridging eXchange)通信部62は、DCBXでTRILL網1A内の各RB3との間でDCBに関する制御情報を相互に通知する。制御情報には、PFC(Priority-based Flow Control)、ETSやCN(Congestion Notification)等がある。PFCは、輻輳によるフレームロスを回避するため、同一物理パス4を流れるVLANに対して、トラヒック毎に優先順位を付与し、優先順位毎にリンクを論理的に分離するための情報である。PFCを用いることで、特定の優先順位に対してのみ、PAUSEを送信することでTC毎のフロー制御が可能になる。CNは、受信ポートが受信キューをモニタし、輻輳を送信ポートに通知し、輻輳を受信した送信ポート側でシェーピングを行うことでフレームロスが発生しないように転送量を調整するための情報である。DCBXは、DCBで使用されるリンクパラメータをRB3同士で検出し交換するために、802.1AB(LLDP:Link Layer Discovery Protocol)を拡張したプロトコルである。
DCBX通信部62は、TRILL網1A内の各RB3に対して、物理パス4に設定中の各TCの帯域の割当比率、すなわちETSの設定内容を通知する。その結果、各RB3は、物理パス4の各TCの帯域の割当比率、すなわち更新したETS設定内容をTRILL網1A内で共有できる。そして、各RB3は、ETS設定内容に応じて、例えば、受信ポートの受信パラメータを設定する。
CLI制御部35は、例えば、優先度テーブル42、ユーザ別テーブル43、パス別テーブル44及びETSテーブル45内の各種情報を利用者の設定操作で変更可能にする制御部である。
次に本実施例の通信システム1の動作について説明する。図8は、ETS設定処理に関わるDCB制御部34の処理動作の一例を示すフローチャートである。図8に示すETS設定処理は、例えば、物理パス4の状態変化に応じて、物理パス4のETSの設定内容を自律的に更新する処理である。
図8においてDCB制御部34内のETS設定部61内の第1の算出部72は、物理パス4に割り当てる割当対象のVLANのTC毎に予測トラヒック量を算出する(ステップS11)。尚、割当対象のVLANは、物理パス4に割り当てる全VLANに相当する。ETS設定部61内の割当部73は、物理パス4内に割り当てる割当対象のVLANの全TCの予測トラヒック量が当該物理パス4の余剰帯域に相当するトラヒック量を超えたか否かを判定する(ステップS12)。尚、余剰帯域は、物理パス4の物理帯域の内、VLANに割当可能なトラヒック量に相当する空き帯域である。
割当部73は、全TCの予測トラヒック量が物理パス4の余剰帯域相当のトラヒック量を超えた場合に(ステップS12肯定)、優先度「最高」及び「高」のクラス群の全TCの予測トラヒック量の総和が余剰帯域相当のトラヒック量を超えたか否かを判定する(ステップS13)。尚、例えば、優先度「最高」のTCはTC7、優先度「高」の全TCは、TC3〜TC6に相当する。割当部73は、図6に示すパス別テーブル44を参照し、優先度「最高」及び「高」のクラス群の全TCの予測トラヒック量を取得する。
割当部73は、優先度「最高」及び「高」のクラス群の全TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えた場合(ステップS13肯定)、優先度「最高」のTCの予測トラヒック量相当の帯域を余剰帯域に割り当てる(ステップS14)。
割当部73は、物理パス4内に余剰帯域があるか否かを判定する(ステップS15)。第1の算出部72は、物理パス4内に余剰帯域がある場合(ステップS15肯定)、割当対象のVLAN内に優先度「高」のTCがあるか否かを判定する(ステップS16)。
割当部73は、割当対象のVLAN内に優先度「高」のTCがある場合(ステップS16肯定)、余剰帯域内に割り当てる優先度「高」の各TCの予測トラヒック量を再計算する(ステップS17)。尚、割当部73は、余剰帯域×(該当TCの予測トラヒック量÷優先度「高」の全TCの予測トラヒック量の合計)で優先度「高」の各TCの予測トラヒック量を算出するものである。
割当部73は、再計算した優先度「高」の各TCの予測トラヒック量を余剰帯域に割り当てる(ステップS18)。割当部73は、物理パス4内に余剰帯域があるか否かを判定する(ステップS19)。
第1の算出部72は、物理パス4内に余剰帯域がある場合(ステップS19肯定)、余剰帯域に割り当てる優先度「普通」の各TCの予測トラヒック量を再計算する(ステップS20)。尚、優先度「普通」の各TCは、TC0〜TC2に相当する。割当部73は、余剰帯域×(該当TCの予測トラヒック量÷優先度「普通」の全TCの予測トラヒック量の合計)で優先度「普通」の各TCの予測トラヒック量を算出するものである。更に、割当部73は、再計算した優先度「普通」の各TCの予測トラヒック量を余剰帯域に割り当てる(ステップS21)。
第2の算出部74は、割当部73にて物理パス4内の物理帯域に割り当てた各TCの予測トラヒック量に応じて、物理パス4の物理帯域に対する各TCの帯域の割当比率を算出する(ステップS22)。設定部75は、算出した各TCの帯域の割当比率をETSテーブル45に記憶する(ステップS23)。制御部76は、ETSテーブル45の各TCの帯域の割当比率をポート設定部53Bに設定し(ステップS24)、物理パス4内の各TCの帯域の割当比率を、DCBX通信部62を通じてTRILL網1A内の各RB3に通知する(ステップS25)。その結果、各RB3は、各RB3で算出した物理パス4毎の各TCの帯域の割当比率をTRILL網1A全体で更新できる。
更に、制御部76は、未設定の物理パス4があるか否かを判定する(ステップS26)。尚、未設定の物理パス4とは、状態変化を検出した物理パス4の内、ETS設定内容の更新前の物理パス4である。制御部76は、未設定の物理パス4がある場合(ステップS26肯定)、未設定の物理パス4を選定する(ステップS27)。第1の算出部72は、未選定の物理パス4を選定した後、物理パス4内の割当対象のVLANのTC毎に予測トラヒック量を算出すべく、ステップS11に移行する。
割当部73は、物理パス4内の全TCの予測トラヒック量が当該物理パス4の余剰帯域相当のトラヒック量を超えなかった場合(ステップS12否定)、余剰帯域に割当対象のVLANの全TCの予測トラヒック量を割り当てる(ステップS28)。更に、割当部73は、物理パス4内の各TCの帯域の割当比率を算出すべく、ステップS22に移行する。
割当部73は、優先度「最高」及び「高」の全ての予測トラヒック量の総和が余剰帯域相当のトラヒック量を超えなかった場合(ステップS13否定)、余剰帯域に優先度「最高」及び「高」の予測トラヒック量を割り当てる(ステップS29)。更に、割当部73は、物理パス4内に余剰帯域があるか否かを判定すべく、ステップS19に移行する。
割当部73は、物理パス4内に余剰帯域がない場合(ステップS15否定)、又は、物理パス4内に余剰帯域がない場合(ステップS19否定)、物理パス4内に割り当てた各TCの帯域の割当比率を算出すべく、ステップS22に移行する。
割当部73は、割当対象のVLAN内に優先度「高」のTCがない場合(ステップS16否定)、割当対象のVLAN内に優先度「普通」のTCがあるか否かを判定する(ステップS30)。割当部73は、割当対象のVLAN内に優先度「普通」のTCがある場合(ステップS30肯定)、余剰帯域に割り当てる優先度「普通」の各TCの予測トラヒック量を再計算すべく、ステップS20に移行する。
割当部73は、割当対象のVLAN内に優先度「普通」のTCがない場合(ステップS30否定)、物理パス4の物理帯域に対する各TCの帯域の割当比率を算出すべく、ステップS22に移行する。
図8に示すETS設定処理を実行するETS設定部61は、物理パス4毎に、割当対象のVLANのTC毎の予測トラヒック量を算出する。ETS設定部61は、優先度「最高」及び「高」の各TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えた場合、優先度「最高」の予測トラヒック量を余剰帯域に割当てる。更に、ETS設定部61は、優先度「最高」の予測トラヒック量を余剰帯域に割当後、余剰帯域に割り当てる優先度「高」の各TCの予測トラヒック量を再計算し、再計算した優先度「高」の各TCの予測トラヒック量を余剰帯域に割り当てる。ETS設定部61は、優先度「高」の予測トラヒック量を余剰帯域に割当後、余剰帯域がある場合に、余剰帯域に割り当てる優先度「普通」の各TCの予測トラヒック量を再計算し、再計算した優先度「普通」の各TCの予測トラヒック量を余剰帯域に割り当てる。そして、ETS設定部61は、割当後の各TCの予測トラヒック量に応じて各TCの帯域の割当比率を算出し、各TCの帯域の割当比率をETSテーブル45に記憶する。その結果、物理パス4の状態変化に応じて物理パス4のETSの設定内容を自律的に更新するため、ETSの設定内容に応じて当該物理パス4に流すVLANの流量を制御することでパケットロスレスを実現できる。
ETS設定部61は、優先度「高」の各TCの予測トラヒック量が余剰帯域に割当後、余剰帯域がない場合、割当後の各TCの予測トラヒック量に応じて各TCの帯域の割当比率を算出し、各TCの帯域の割当比率をETSテーブル45内に記憶する。その結果、物理パス4の状態変化に応じて物理パス4のETSの設定内容を自律的に更新するため、ETSの設定内容に応じて当該物理パス4に流すVLANの流量を制御することでパケットロスレスを実現できる。
ETS設定部61は、優先度「最高」の各TCの予測トラヒック量が余剰帯域に割当後、余剰帯域がない場合、割当後の各TCの予測トラヒック量に応じて各TCの帯域の割当比率を算出し、各TCの帯域の割当比率をETSテーブル45内に記憶する。その結果、物理パス4の状態変化に応じて物理パス4のETSの設定内容を自律的に更新するため、ETSの設定内容に応じて当該物理パス4に流すVLANの流量を制御することでパケットロスレスを実現できる。
ETS設定部61は、割当対象のVLANの全TCの予測トラヒック量の総和が余剰帯域相当のトラヒック量を超えなかった場合、全TCの予測トラヒック量を余剰帯域に割り当てる。そして、ETS設定部61は、割当後の各TCの予測トラヒック量に応じて各TCの帯域の割当比率を算出し、各TCの帯域の割当比率をETSテーブル45内に記憶する。その結果、物理パス4の状態変化に応じて物理パス4のETSの設定内容を自律的に更新するため、ETSの設定内容に応じて当該物理パス4に流すVLANの流量を制御することでパケットロスレスを実現できる。
尚、図8に示すETS設定処理では、ステップS13にて優先度「最高」及び「高」の各TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えたか否かを判定した。しかしながら、割当対象のトラヒック内に優先度「最高」のTCがない場合は、「高」及び「普通」の各TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えたか否かを判定する。そして、「高」及び「普通」の各TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えた場合に、ステップS14にて「高」の各TCの予測トラヒック量相当の帯域を余剰帯域に割り当てるようにしても良い。
また、ステップS13にて割当対象のトラヒック内に優先度「高」のTCがない場合、「最高」及び「普通」の各TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えたか否かを判定するようにしても良い。
図9は、パス切替時の通信システム1の一例を示す説明図である。終端RB3Aは、中継RB3Bとの間の物理パス4AにユーザA及びユーザBのVLANを設定し、中継RB3Cとの間の物理パス4BにユーザC及びユーザDのVLANを設定したとする。TRILL網1A内の終端RB3Aは、中継RB3Bとの間の物理パス4Aで障害が発生した場合、ユーザA及びユーザBのVLANを中継RB3Cとの間の物理パス4Bに自律的に切り替える。つまり、終端RB3Aは、中継RB3Cとの間の物理パス4BにユーザA,B,C及びDのVLANを設定する。
終端RB3AのETS設定部61内の検出部71は、物理パス4Aから物理パス4Bへの切替に応じて物理パス4A及び4Bの状態変化を検出する。ETS設定部61内の第1の算出部72は、切替先の物理パス4B内の各TCの予測トラヒック量を算出し、算出した各TCの予測トラヒック量を、図10に示すようにパス別テーブル44内に記憶する。
図10は、パス切替後のパス別テーブル44の一例を示す説明図である。尚、図10のパス別テーブル44は、パス切替後の物理パス4Bのパス別テーブル44である。割当部73は、図10のパス別テーブル44を参照し、各TCの予測トラヒック量を識別する。割当部73は、TC0が200Mバイト/秒、TC1が50Mバイト/秒、TC2が50Mバイト/秒、TC3が500Mバイト/秒、TC4が250Mバイト/秒、TC5が250Mバイト/秒、TC6が0Mバイト/秒、TC7が200Mバイト/秒を識別する。
割当部73は、優先度「最高」及び「高」の全TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えたか否かを判定する。尚、優先度「最高」及び「高」の全TCの予測トラヒック量は、図10に示すようにTC3、TC4、TC5及びTC7の予測トラヒック量の合計が1200Mバイト/秒とする。また、物理パス4Bは1G(1000M)回線とする。割当部73は、優先度「最高」及び「高」の全TCの予測トラヒック量(1200Mバイト/秒)が余剰帯域相当のトラヒック量(1Gバイト/秒)を超えた場合、優先度「最高」のTC7の予測トラヒック量(200Mバイト/秒)を余剰帯域に割り当てる。尚、余剰帯域は、1G−200M=800Mバイト/秒のトラヒック量に相当する帯域となる。
更に、割当部73は、余剰帯域に割り当てる優先度「高」の各TCの予測トラヒック量を再計算する。割当部73は、余剰帯域×(該当TCの予測トラヒック量÷優先度「高」の全TCの予測トラヒック量の合計)で優先度「高」の各TCの予測トラヒック量を算出する。割当部73は、優先度「高」のTC3の予測トラヒック量として800M×(500M÷1000M)=400Mバイト/秒を算出する。また、割当部73は、優先度「高」のTC4の予測トラヒック量として800M×(250M÷1000M)=200Mバイト/秒を算出する。また、割当部73は、優先度「高」のTC5の予測トラヒック量として800M×(250M÷1000M)=200Mバイト/秒を算出する。割当部73は、図11に示すテーブルに現在割当中の優先度「最高」及び「高」の全TCの予測トラヒック量を記憶する。
そして、割当部73は、優先度「高」の各TCの予測トラヒック量を余剰帯域に割り当てた後、物理パス4B内に余剰帯域があるか否かを判定する。第2の算出部74は、物理パス4内に余剰帯域がないため、図11に示す割当後の各TCの帯域の割当比率を算出する。第2の算出部74は、優先度「最高」及び「高」のTC7,TC6、TC5,TC4及びTC3の帯域の割当比率を算出する。第2の算出部74は、物理パス4B内の各TCの帯域の割当比率として、例えば、TC7は200M÷1000M=20%、TC6は0M÷1000M=0%、TC5は200M÷1000M=20%を算出する。更に、第2の算出部74は、割当比率として、TC4は200M÷1000M=20%、TC3は400M÷1000M=40%を算出する。そして、物理パス4Bの各TCの帯域の割当比率がパス切替後の物理パス4BのETSの設定内容となる。
そして、設定部75は、第2の算出部74で算出した物理パス4B内の各TCの帯域の割当比率を、図12に示すようにETSテーブル45に記憶する。制御部76は、ETSテーブル45内の物理パス4BのETSの設定内容に応じて当該物理パス4B内に流入するVLANの流量をTC単位で制御する。その結果、TRILL網1A内で物理パス4Bが切替えられた場合でも、物理パス4Bの切替後のVLANの割当状況に応じた各TCの帯域の割当比率、すなわちETSの設定内容を更新することで、優先度の高いパケットのパケットロスレスを実現できる。
上記実施例のRB3は、物理パス4の状態変化を検出すると、状態変化の物理パス4毎に、物理パス4に割り当てる割当対象のVLANの予測トラヒック量をTC毎に算出する。更に、RB3は、物理パス4毎に、算出したTC毎の予測トラヒック量に応じて、当該物理パス4の物理帯域に対する、各TCの帯域の割当比率を算出する。更に、RB3は、物理パス4毎に、算出したTC毎の帯域の割当比率(ETS)を設定し、物理パス4毎に設定した各TCの帯域の割当比率に応じて当該物理パス4に流す割当対象のVLANの流量をTC単位で制御する。その結果、物理パス4の状態が変化した場合でも、物理パス4毎の状態変化に応じて、割当対象のVLANの各TCの帯域の割当比率を更新するため、物理パス4に流れるVLANの優先度の高いパケットのパケットロスレスを実現できる。
例えば、TRILLプロトコルを用いて障害発生の運用パスから冗長パスに切り替えた場合でも、冗長パス内の切替後の各TCの予測トラヒック量の変化に応じて冗長パスのETSの設定内容を更新する。そして、切替後の冗長パスのETSの設定内容、すなわち、各TCの帯域の割当比率に応じて、冗長パスに流れるVLANの破棄されるパケット量を少なくするパケットロスレスを実現できる。しかも、ETS設定内容は、切替後のVLANの割当状況に応じて自律的に更新されるため、利用者側の操作負担を軽減できる。
RB3は、物理パス4に割り当てる全TCの予測トラヒック量が余剰帯域相当のトラヒック量を超えた場合に、優先度が高いクラス群内の各TCの予測トラヒック量に余剰帯域を優先的に割り当てる。その結果、割当対象のVLANの予測トラヒック量が余剰帯域相当のトラヒック量を超えた場合でも、例えば、「最高」→「高」→「普通」の順に優先度が高いクラス群のTCから予測トラヒック量を余剰帯域に割り当てる。例えば、優先度の高いストレージI/O等のパケットロスレスが必要なTCから帯域を優先的に割り当てる。
RB3は、優先度が高い未割当のクラス群内の各TCの予測トラヒック量に余剰帯域を割り当てた場合に、クラス群内の各TCの予測トラヒック量を再計算する。その結果、余剰帯域に割り当てた優先度のクラス群の各TCの最適な予測トラヒック量を取得できる。
RB3は、未割当のクラス群内の各TCの予測トラヒック量に余剰帯域を割り当てた後に、当該物理パス4の余剰帯域がある場合に、未割当のクラス群の内、優先度が高いクラス群内の各TCの予測トラヒック量に余剰帯域を割り当てる。その結果、例えば、「最高」→「高」→「普通」の順に優先度が高いクラス群のTCから予測トラヒック量を余剰帯域に割り当てる。
RB3は、物理パス4毎にTC毎の帯域の割当比率を設定した場合に、物理パス4の各TCの帯域の割当比率(ETSの設定内容)をTRILL網1A内の各RB3にDCBXで通知する。その結果、TRILL網1A内の各RB3は、ETSの設定内容をTRILL網1A全体で更新できる。
上記実施例では、例えば、TC0〜TC7を「最高」、「高」及び「普通」の3個のクラス群に分類したが、3個に限定されるものではない。また、上記実施例のTRILL網1Aでは、例えば、6台のRB3で構成するようにしたが、6台に限定されるものではない。
また、図示した各部の各構成要素は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各部の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。
更に、各装置で行われる各種処理機能は、CPU(Central Processing Unit)(又はMPU(Micro Processing Unit)、MCU(Micro Controller Unit)等のマイクロ・コンピュータ)上で、その全部又は任意の一部を実行するようにしても良い。また、各種処理機能は、CPU(又はMPU、MCU等のマイクロ・コンピュータ)で解析実行するプログラム上、又はワイヤードロジックによるハードウェア上で、その全部又は任意の一部を実行するようにしても良いことは言うまでもない。
1 通信システム
1A TRILL網
3 RB
4 物理パス
62 DCBX通信部
71 検出部
72 第1の算出部
73 割当部
74 第2の算出部
75 設定部
76 制御部

Claims (7)

  1. レイヤ2冗長化プロトコルの通信網内の物理パスの状態変化を検出する検出部と、
    前記状態変化を検出すると、前記状態変化の物理パス毎に、当該物理パスに割り当てる予測トラヒック量を、当該トラヒック内のクラス毎に算出する第1の算出部と、
    前記物理パス毎に、算出した前記クラス毎の予測トラヒック量に応じて、当該物理パスの物理帯域に対する、当該物理パスに割り当てる各クラスの帯域の割当比率を算出する第2の算出部と、
    前記物理パス毎に、前記第2の算出部で算出した前記各クラスの帯域の割当比率を設定する設定部と、
    前記物理パス毎に設定した前記各クラスの帯域の割当比率に応じて、当該物理パスに流す各クラスのトラヒックの流量を制御する制御部と
    を有することを特徴とする通信装置。
  2. 前記物理パスに割り当てる全クラスの予測トラヒック量が当該物理パスの余剰帯域相当のトラヒック量を超えた場合に、未割当のクラス群の内、優先度が最高のクラス群内の各クラスの予測トラヒック量を当該物理パスの余剰帯域に割り当てる割当部を有することを特徴とする請求項1に記載の通信装置。
  3. 前記割当部は、
    前記未割当のクラス群の内、優先度が最高のクラス群内の各クラスの予測トラヒック量を当該物理パスの余剰帯域に割り当てた場合に、当該余剰帯域に対する、当該余剰帯域に割り当てられたクラス群内の各クラスの予測トラヒック量を算出することを特徴とする請求項2に記載の通信装置。
  4. 前記割当部は、
    前記未割当のクラス群内の各クラスの予測トラヒック量を当該物理パスの余剰帯域に割り当てた後に、当該物理パスに余剰帯域がある場合に、前記未割当のクラス群の内、優先度が最高のクラス群内の各クラスの予測トラヒック量を当該物理パスの余剰帯域に割り当てることを特徴とする請求項2又は3に記載の通信装置。
  5. 前記設定部にて前記物理パス毎に前記各クラスの帯域の割当比率を設定した場合に、前記物理パスの前記各クラスの帯域の割当比率を、前記通信網内の他の通信装置に通知する通知部を有することを特徴とする請求項1〜3の何れか一つに記載の通信装置。
  6. 通信装置が、
    レイヤ2冗長化プロトコルの通信網内の物理パスの状態変化を検出すると、前記状態変化の物理パス毎に、当該物理パスに割り当てる予測トラヒック量を、当該トラヒック内のクラス毎に算出し、
    前記物理パス毎に、算出した前記クラス毎の予測トラヒック量に応じて、当該物理パスの物理帯域に対する、当該物理パスに割り当てる各クラスの帯域の割当比率を算出し、
    前記物理パス毎に、算出した前記各クラスの帯域の割当比率を設定し、
    前記物理パス毎に設定した前記各クラスの帯域の割当比率に応じて、当該物理パスに流す各クラスのトラヒックの流量を制御する
    処理を実行することを特徴とする通信方法。
  7. レイヤ2冗長化プロトコルの通信網内の物理パスで複数の通信装置を通信接続する通信システムであって、
    各通信装置は、
    前記物理パスの状態変化を検出する検出部と、
    前記状態変化を検出すると、前記状態変化の物理パス毎に、当該物理パスに割り当てる予測トラヒック量を、当該トラヒック内のクラス毎に算出する第1の算出部と、
    前記物理パス毎に、算出した前記クラス毎の予測トラヒック量に応じて、当該物理パスの物理帯域に対する、当該物理パスに割り当てる各クラスの帯域の割当比率を算出する第2の算出部と、
    前記物理パス毎に、前記第2の算出部で算出した前記各クラスの帯域の割当比率を設定する設定部と、
    前記物理パス毎に設定した前記各クラスの帯域の割当比率に応じて、当該物理パスに流す各クラスのトラヒックの流量を制御する制御部と
    を有することを特徴とする通信システム。
JP2014131739A 2014-06-26 2014-06-26 通信装置、通信システム及び通信方法 Pending JP2016010138A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014131739A JP2016010138A (ja) 2014-06-26 2014-06-26 通信装置、通信システム及び通信方法
US14/696,697 US9667482B2 (en) 2014-06-26 2015-04-27 Communication apparatus and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131739A JP2016010138A (ja) 2014-06-26 2014-06-26 通信装置、通信システム及び通信方法

Publications (1)

Publication Number Publication Date
JP2016010138A true JP2016010138A (ja) 2016-01-18

Family

ID=54931763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131739A Pending JP2016010138A (ja) 2014-06-26 2014-06-26 通信装置、通信システム及び通信方法

Country Status (2)

Country Link
US (1) US9667482B2 (ja)
JP (1) JP2016010138A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192096A (ja) * 2016-04-15 2017-10-19 日本電信電話株式会社 ネットワーク制御装置
JP2022006165A (ja) * 2020-12-15 2022-01-12 バイドゥ オンライン ネットワーク テクノロジー(ペキン) カンパニー リミテッド トラフィック調整方法、装置、電子機器、コンピュータ可読記録媒体及びコンピュータプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170093698A1 (en) * 2015-09-30 2017-03-30 Huawei Technologies Co., Ltd. Method and apparatus for supporting service function chaining in a communication network
US10855591B2 (en) * 2015-10-21 2020-12-01 Level 3 Communications, Llc System and method for determining capacity of a telecommunications network
CN109062838A (zh) * 2018-06-25 2018-12-21 航天物联网技术有限公司 一种基于pcie接口的一体化集成装置
US10630554B1 (en) * 2018-10-29 2020-04-21 International Business Machines Corporation Input/output (I/O) performance of hosts through bi-directional bandwidth feedback optimization

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056726A (ja) * 2002-07-24 2004-02-19 Matsushita Electric Ind Co Ltd トラヒック量制御装置およびトラヒック量制御方法
JP2007116284A (ja) * 2005-10-18 2007-05-10 Fujitsu Ltd 伝送装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6032266A (en) * 1996-04-05 2000-02-29 Hitachi, Ltd. Network system having function of changing route upon failure
US6324165B1 (en) 1997-09-05 2001-11-27 Nec Usa, Inc. Large capacity, multiclass core ATM switch architecture
US6122254A (en) * 1997-11-25 2000-09-19 International Business Machines Corporation Method and apparatus for network flow control with perceptive parameters
US6744767B1 (en) * 1999-12-30 2004-06-01 At&T Corp. Method and apparatus for provisioning and monitoring internet protocol quality of service
JP2002044147A (ja) 2000-07-31 2002-02-08 Toshiba Corp データ交換システムおよびその制御方法
JP3925393B2 (ja) 2002-11-05 2007-06-06 日本電信電話株式会社 伝送容量可変装置
JP2006268625A (ja) * 2005-03-25 2006-10-05 Hitachi Ltd アクセスパス管理方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056726A (ja) * 2002-07-24 2004-02-19 Matsushita Electric Ind Co Ltd トラヒック量制御装置およびトラヒック量制御方法
JP2007116284A (ja) * 2005-10-18 2007-05-10 Fujitsu Ltd 伝送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192096A (ja) * 2016-04-15 2017-10-19 日本電信電話株式会社 ネットワーク制御装置
JP2022006165A (ja) * 2020-12-15 2022-01-12 バイドゥ オンライン ネットワーク テクノロジー(ペキン) カンパニー リミテッド トラフィック調整方法、装置、電子機器、コンピュータ可読記録媒体及びコンピュータプログラム
JP7307766B2 (ja) 2020-12-15 2023-07-12 バイドゥ オンライン ネットワーク テクノロジー(ペキン) カンパニー リミテッド トラフィック調整方法、装置、電子機器、コンピュータ可読記録媒体及びコンピュータプログラム

Also Published As

Publication number Publication date
US9667482B2 (en) 2017-05-30
US20150381496A1 (en) 2015-12-31

Similar Documents

Publication Publication Date Title
US11916782B2 (en) System and method for facilitating global fairness in a network
JP7417825B2 (ja) スライスベースルーティング
US9794185B2 (en) Bandwidth guarantee and work conservation
JP2016010138A (ja) 通信装置、通信システム及び通信方法
JP4796668B2 (ja) バス制御装置
WO2017157274A1 (zh) 网络流量控制的方法及其网络设备
EP2641361B1 (en) Dynamic queuing and pinning to improve quality of service on uplinks in a virtualized environment
US8284654B2 (en) Bandwidth admission control on link aggregation groups
US9667570B2 (en) Fabric extra traffic
JP5771832B2 (ja) 伝送システム、管理計算機、及び論理パス構築方法
US9917780B2 (en) Traffic control across a layer 2 layer 3 boundary in a software defined network
US9654401B2 (en) Systems and methods for multipath load balancing
JP7288980B2 (ja) 仮想サービスネットワークにおけるサービス品質
JP2009524356A (ja) 通信ネットワークを通じたトラフィック分配を向上させる方法およびシステム
KR20160041631A (ko) 서비스 품질 인지 라우팅 제어 장치 및 라우팅 제어 방법
US10715437B2 (en) Deadline driven packet prioritization for IP networks
US11477122B2 (en) Technologies for selecting non-minimal paths and throttling port speeds to increase throughput in a network
CN114172849A (zh) 一种基于博弈论的确定性流量整形方法
US10257031B1 (en) Dynamic network capacity augmentation for server rack connectivity
CN113542152A (zh) 网络设备中处理报文的方法和相关设备
JP6357883B2 (ja) 通信装置、通信システム及び通信方法
JP2015149537A (ja) 経路制御装置及びシステム及び方法
CN114501544A (zh) 一种数据传输方法、装置和存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724