JP2016009820A - Cooling device and electronic equipment having the same mounted therein - Google Patents

Cooling device and electronic equipment having the same mounted therein Download PDF

Info

Publication number
JP2016009820A
JP2016009820A JP2014131122A JP2014131122A JP2016009820A JP 2016009820 A JP2016009820 A JP 2016009820A JP 2014131122 A JP2014131122 A JP 2014131122A JP 2014131122 A JP2014131122 A JP 2014131122A JP 2016009820 A JP2016009820 A JP 2016009820A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
gas
cooling device
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014131122A
Other languages
Japanese (ja)
Inventor
辰乙 郁
Shinitsu Iku
辰乙 郁
杉山 誠
Makoto Sugiyama
誠 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014131122A priority Critical patent/JP2016009820A/en
Publication of JP2016009820A publication Critical patent/JP2016009820A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device on which maintenance can be easily performed.SOLUTION: A cooling device has a heat receiving part 3, a heat radiating part 4, a heat radiating route 5 and a feedback route 6. The feedback route 6 is provided with a check valve 8, and the heat radiating part 4 has a refrigerant discharge part 14 at an upper stage, a refrigerant condensing part 15 at an intermediate stage and a refrigerant flow-in part 16 at a lower stage. The refrigerant discharge part 14 has a heat radiating route connection port 10, the refrigerant flow-in portion 16 has a feedback route connection port 11, the heat radiation route 5 is connected to the heat radiation connection port 10, and the feedback route 6 is connected to the feedback route connection port 11. At the refrigerant condensing part 15, plural plate-like fins are provided in parallel to the vertical direction to be spaced from one another, and the heat radiating part 4 has a contact face 20 which is brought into contact with a water cooling heat sink 7.

Description

本発明は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)等の電子部品を搭載した電子機器の冷却装置およびこれを搭載した電子機器に関するものである。   The present invention relates to a cooling device for an electronic device in which electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), and an insulated gate bipolar transistor (IGBT) are mounted, and an electronic device in which the electronic device is mounted. .

従来、この種の冷却装置は、例えば特許文献1のようなループ型ヒートパイプを用いた冷却装置で、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)等の電子部品の冷却を行っていた。   Conventionally, this type of cooling device is a cooling device using a loop heat pipe as in Patent Document 1, for example, a central processing unit (CPU), a large-scale integrated circuit (LSI), and an insulated gate bipolar transistor (IGBT). The electronic parts such as were cooled.

以下、特許文献1に示すループ型ヒートパイプについて、図6を参照しながら説明する。   Hereinafter, the loop heat pipe shown in Patent Document 1 will be described with reference to FIG.

図6に示すようにループ型ヒートパイプは上昇管101と下降管102とを別個に含むループ回路103と、ループ回路103に真空下において封入された冷媒である熱媒体112と、ループ回路103の一部を構成し、かつループ回路103の上方に位置する冷却器105と、上昇管101の下部に位置する加熱部113と、ループ回路103内の下部に介装しループ回路103内の熱媒体112の循環方向を限定する逆止弁107とを備えている。   As shown in FIG. 6, the loop heat pipe includes a loop circuit 103 that includes an ascending pipe 101 and a descending pipe 102 separately, a heat medium 112 that is a refrigerant sealed in the loop circuit 103 under vacuum, A cooler 105 that constitutes a part and is located above the loop circuit 103, a heating unit 113 that is located below the riser 101, and a heat medium in the loop circuit 103 that is interposed in the lower part of the loop circuit 103. 112 is provided with a check valve 107 that limits the circulation direction of 112.

ここで、加熱部113に接触させた半導体スイッチング素子に熱が発生すると、発生した熱は加熱部113へ伝わり、加熱部113を循環する熱媒体112に熱が加えられ気化する。逆止弁107によりその循環方向が制限され、気化した熱媒体112は上昇管101を上昇し冷却器105に導かれて冷却され、ここで、加熱部113で加えられた熱を放出する。冷却器105で熱を放出した熱媒体112は、下降管102を下降し、逆止弁107を介して再び加熱部113へと循環する。   Here, when heat is generated in the semiconductor switching element brought into contact with the heating unit 113, the generated heat is transmitted to the heating unit 113, and the heat is applied to the heat medium 112 circulating through the heating unit 113 and vaporizes. The circulation direction is restricted by the check valve 107, and the vaporized heat medium 112 rises up the ascending pipe 101 and is led to the cooler 105 to be cooled. Here, the heat applied by the heating unit 113 is released. The heat medium 112 that has released heat from the cooler 105 descends the downcomer 102 and circulates again to the heating unit 113 via the check valve 107.

特開昭61−038396号公報JP 61-038396 A

上記従来例における課題は、冷却装置のメンテナンスが煩雑になることであった。   The problem in the conventional example is that maintenance of the cooling device becomes complicated.

すなわち、上記従来例の冷却装置において、冷却の対象である加熱部113は、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)等の電子部品であり、それらの電子部品には頻繁に不具合が生じうる。   That is, in the cooling device of the conventional example, the heating unit 113 to be cooled is an electronic component such as a central processing unit (CPU), a large scale integrated circuit (LSI), an insulated gate bipolar transistor (IGBT), These electronic components can frequently fail.

そして、電子部品に不具合が生じた場合、不具合が生じた電子部品を交換することとなる。電子部品と冷却装置とは、熱を受け渡しするために密着して配置されているため、電子部品を交換する際には、電子部品とともに冷却装置も一旦取り外すこととなる。その際に、冷却用液体管路111が冷却器105の内部に突入しているため、冷却器105の内部から冷却用液体管路111を取り出して、ループ回路103を取り外す必要がある。ループ回路103は、内部圧力を真空に調整しているため、通常は密閉されている。冷却器105の内部から冷却用液体管路111を取り出す際には、この密閉状態を開放しなければならず、ループ回路103の真空状態を維持することができない。また、ループ回路103内には、熱媒体112が封入されているが、ループ回路103の密閉状態を開放する際に、熱媒体112が蒸発したりループ回路103から溢れ出ることにより、熱媒体112の一部または全部が消失することがある。従って、電子部品を交換した後に、冷却器105の内部に冷却用液体管路111を配置し、さらに、蒸発したり溢れ出て消失した熱媒体112を補充し、さらに、ループ回路103の内部圧力を真空状態に戻すことが必要となる。このように、冷却装置のメンテナンスが煩雑になるという課題があった。   When a defect occurs in the electronic component, the defective electronic component is replaced. Since the electronic component and the cooling device are arranged in close contact with each other to exchange heat, when the electronic component is replaced, the cooling device is once removed together with the electronic component. At this time, since the cooling liquid pipeline 111 enters the inside of the cooler 105, it is necessary to take out the cooling liquid pipeline 111 from the inside of the cooler 105 and remove the loop circuit 103. The loop circuit 103 is normally sealed because the internal pressure is adjusted to a vacuum. When the cooling liquid conduit 111 is taken out from the inside of the cooler 105, this sealed state must be opened, and the vacuum state of the loop circuit 103 cannot be maintained. In addition, although the heat medium 112 is enclosed in the loop circuit 103, the heat medium 112 evaporates or overflows from the loop circuit 103 when the hermetic state of the loop circuit 103 is opened. May be partially or completely lost. Therefore, after replacing the electronic components, the cooling liquid conduit 111 is disposed inside the cooler 105, and the heat medium 112 that has evaporated or overflowed and disappeared is replenished, and the internal pressure of the loop circuit 103 is further increased. Must be returned to a vacuum state. As described above, there is a problem that maintenance of the cooling device becomes complicated.

そこで本発明は、容易にメンテナンスすることができる冷却装置を提供することを目的とする。   Then, an object of this invention is to provide the cooling device which can be maintained easily.

そして、この目的を達成するために、本発明は、受熱部と、放熱部と、この受熱部と放熱部とを接続する放熱経路と帰還経路とを備え、前記帰還経路には、凝縮して停留した冷媒の水頭圧と前記帰還経路内の圧力バランスによって開動する逆止弁とを備え、前記放熱部は、箱体であって、上段に冷媒放出部、中段に冷媒凝縮部、下段に冷媒流入部を備え、前記冷媒放出部は、放熱経路接続口を有し、前記冷媒流入部は、帰還経路接続口を有し、前記放熱経路は、前記放熱経路接続口に接続され、前記帰還経路は、前記帰還経路接続口に接続され、前記冷媒凝縮部には、複数の板状のフィンを間隔をあけて垂直方向に平行に設け、前記放熱部は、ヒートシンクに接する接触面を備え、前記フィンは、少なくとも前記接触面の裏面に接触している冷却装置であり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention includes a heat receiving portion, a heat radiating portion, a heat radiating path connecting the heat receiving portion and the heat radiating portion, and a feedback path. And a check valve that opens due to a balance between the water head pressure of the retained refrigerant and the pressure in the return path, and the heat dissipating part is a box, the refrigerant discharge part in the upper stage, the refrigerant condensing part in the middle stage, An inflow part, the refrigerant discharge part has a heat dissipation path connection port, the refrigerant inflow part has a return path connection port, the heat dissipation path is connected to the heat dissipation path connection port, and the return path Is connected to the return path connection port, the refrigerant condensing part is provided with a plurality of plate-like fins in parallel in the vertical direction at intervals, and the heat radiating part has a contact surface in contact with the heat sink, The fin is in contact with at least the back surface of the contact surface. A retirement unit, thereby is to achieve the intended purpose.

以上のように本発明は、受熱部と、放熱部と、この受熱部と放熱部とを接続する放熱経路と帰還経路とを備え、前記帰還経路には、凝縮して停留した冷媒の水頭圧と前記帰還経路内の圧力バランスによって開動する逆止弁とを備え、前記放熱部は、箱体であって、上段に冷媒放出部、中段に冷媒凝縮部、下段に冷媒流入部を備え、前記冷媒放出部は、放熱経路接続口を有し、前記冷媒流入部は、帰還経路接続口を有し、前記放熱経路は、前記放熱経路接続口に接続され、前記帰還経路は、前記帰還経路接続口に接続され、前記冷媒凝縮部には、複数の板状のフィンを間隔をあけて垂直方向に平行に設け、前記放熱部は、ヒートシンクに接する接触面を備え、前記フィンは、少なくとも前記接触面の裏面に接触している冷却装置であり、容易にメンテナンスすることができる冷却装置を提供することができるものである。   As described above, the present invention includes a heat receiving portion, a heat radiating portion, a heat radiating path connecting the heat receiving portion and the heat radiating portion, and a return path, and the return path has a water head pressure of the condensed and retained refrigerant. And a check valve that opens due to pressure balance in the return path, the heat dissipating part is a box, and includes a refrigerant discharge part in the upper stage, a refrigerant condensing part in the middle stage, and a refrigerant inflow part in the lower stage, The refrigerant discharge portion has a heat dissipation path connection port, the refrigerant inflow portion has a return path connection port, the heat dissipation path is connected to the heat dissipation path connection port, and the return path is connected to the feedback path connection port. A plurality of plate-like fins provided in parallel to each other in the vertical direction at intervals, and the heat dissipating part having a contact surface in contact with a heat sink, wherein the fins are at least the contact Cooling device in contact with the back of the surface It is capable of providing a cooling device capable of Maintenance.

すなわち、放熱部は、ヒートシンクに接する接触面を備えているので、冷却対象の電子部品等が故障した場合などメンテナンスを要する場合、冷却装置の放熱部の接触面はヒートシンクと面接触しているにすぎず、冷却装置の接触面とヒートシンクとは、容易に分離することができる。すなわち、従来例のように、メンテナンスをする場合に、放熱部に突入した冷却用液体管路を放熱部から取り外す必要がなく、冷却装置の接触面とヒートシンクとは、容易に分離することができるので、冷却装置を容易にメンテナンスすることができるのである。   In other words, the heat dissipation part has a contact surface in contact with the heat sink, so when the maintenance is required, such as when an electronic component to be cooled breaks down, the contact surface of the heat dissipation part of the cooling device is in surface contact with the heat sink. However, the contact surface of the cooling device and the heat sink can be easily separated. That is, as in the conventional example, when performing maintenance, it is not necessary to remove the cooling liquid conduit that has entered the heat radiating portion from the heat radiating portion, and the contact surface of the cooling device and the heat sink can be easily separated. Therefore, the cooling device can be easily maintained.

本発明の実施の形態1の冷却装置を搭載した電子機器の概略斜視図1 is a schematic perspective view of an electronic device equipped with a cooling device according to Embodiment 1 of the present invention. 同冷却装置の放熱部の外観を示す図The figure which shows the external appearance of the thermal radiation part of the cooling device (a)同冷却装置の放熱部のA−A‘断面を示す図、(b)同冷却装置の放熱部のA−A‘断面を示す図(A) The figure which shows AA 'cross section of the thermal radiation part of the cooling device, (b) The figure which shows AA' cross section of the thermal radiation part of the cooling device 同冷却装置の気液分離部を示す図The figure which shows the gas-liquid separation part of the cooling device (a)同冷却装置の気液分離板を示す側面図、(b)同冷却装置の気液分離板を示す斜視図(A) Side view showing a gas-liquid separation plate of the cooling device, (b) Perspective view showing a gas-liquid separation plate of the cooling device 従来の冷却装置を示す概略図Schematic showing a conventional cooling device

本発明の一実施形態に係る冷却装置は、受熱部と、放熱部と、この受熱部と放熱部とを接続する放熱経路と帰還経路とを備え、前記帰還経路には、凝縮して停留した冷媒の水頭圧と前記帰還経路内の圧力バランスによって開動する逆止弁とを備え、前記放熱部は、箱体であって、上段に冷媒放出部、中段に冷媒凝縮部、下段に冷媒流入部を備え、前記冷媒放出部は、放熱経路接続口を有し、前記冷媒流入部は、帰還経路接続口を有し、前記放熱経路は、前記放熱経路接続口に接続され、前記帰還経路は、前記帰還経路接続口に接続され、前記冷媒凝縮部には、複数の板状のフィンを間隔をあけて垂直方向に平行に設け、前記放熱部は、ヒートシンクに接する接触面を備え、前記フィンは、少なくとも前記接触面の裏面に接触している構成とすることにより、容易にメンテナンスすることができる冷却装置を提供することができるものである。   A cooling device according to an embodiment of the present invention includes a heat receiving portion, a heat radiating portion, a heat radiating path connecting the heat receiving portion and the heat radiating portion, and a return path, and the feedback path is condensed and stopped. And a check valve that opens according to a pressure balance in the return path and a pressure balance in the return path. The refrigerant discharge part has a heat dissipation path connection port, the refrigerant inflow part has a return path connection port, the heat dissipation path is connected to the heat dissipation path connection port, and the return path is Connected to the return path connection port, the refrigerant condensing part is provided with a plurality of plate-like fins in parallel in the vertical direction at intervals, the heat dissipating part has a contact surface in contact with the heat sink, And at least the back surface of the contact surface. By, in which it is possible to provide a cooling apparatus which can be easily maintained.

すなわち、放熱部は、ヒートシンクに接する接触面を備えているので、冷却対象の電子部品等が故障した場合などメンテナンスを要する場合、冷却装置の放熱部の接触面はヒートシンクと面接触しているにすぎず、冷却装置の接触面とヒートシンクとは、容易に分離することができる。すなわち、従来例のように、メンテナンスをする場合に、放熱部に突入した冷却用液体管路を放熱部から取り外す必要がなく、冷却装置の接触面とヒートシンクとは、容易に分離することができるので、冷却装置を容易にメンテナンスすることができるのである。   In other words, the heat dissipation part has a contact surface in contact with the heat sink, so when the maintenance is required, such as when an electronic component to be cooled breaks down, the contact surface of the heat dissipation part of the cooling device is in surface contact with the heat sink. However, the contact surface of the cooling device and the heat sink can be easily separated. That is, as in the conventional example, when performing maintenance, it is not necessary to remove the cooling liquid conduit that has entered the heat radiating portion from the heat radiating portion, and the contact surface of the cooling device and the heat sink can be easily separated. Therefore, the cooling device can be easily maintained.

また、前記冷媒放出部の前記放熱経路接続口の近傍に気液分離部を備えた構成にしてもよい。これにより、放熱経路から放熱経路接続口を通って放熱部の冷媒放出部に流入する気相と液相の混合した二相の冷媒を気相の冷媒と液相の冷媒に分離することにより、分離された液相の冷媒は、重力により下段の冷媒流入部に落下する。これにより、液相の冷媒が、冷媒放出部に拡散して、さらに冷媒放出部の下方の冷媒凝縮部に設けたフィンに付着しない。そのため、フィンに付着した液相の冷媒がフィンの表面を覆い気相の冷媒とフィンの間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、放熱部の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   Moreover, you may make it the structure provided with the gas-liquid separation part in the vicinity of the said thermal radiation path connection port of the said refrigerant | coolant discharge | release part. Thereby, by separating the two-phase refrigerant mixed with the gas phase and the liquid phase flowing into the refrigerant discharge part of the heat dissipation part from the heat dissipation path through the heat dissipation path connection port into the gas phase refrigerant and the liquid phase refrigerant, The separated liquid-phase refrigerant falls to the lower refrigerant inflow portion due to gravity. As a result, the liquid-phase refrigerant diffuses into the refrigerant discharge portion and does not adhere to the fins provided in the refrigerant condensing portion below the refrigerant discharge portion. Therefore, the liquid phase refrigerant attached to the fin covers the surface of the fin and does not hinder heat exchange between the gas phase refrigerant and the fin, and heat is transferred from the gas phase refrigerant to the fin. Condenses efficiently and becomes a liquid phase refrigerant. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section is enhanced, thereby improving the cooling performance of the cooling device.

また、前記気液分離部は、前記放熱経路接続口に対向して設けた1枚または複数枚の板状の気液分離板である構成にしてもよい。これにより、放熱経路から放熱経路接続口を通って放熱部の冷媒放出部に流入する気相と液相の混合した二相の冷媒を、放熱経路接続口に対向して設けた気液分離板に衝突させる。気液分離板に衝突した液相の冷媒は、気液分離板に付着し、重力により、気液分離板の表面を伝い、下段の冷媒流入部に落下する。これにより、液相の冷媒が、冷媒放出部に拡散して、さらに冷媒放出部の下方の冷媒凝縮部に設けたフィンに付着しない。そのため、フィンに付着した液相の冷媒がフィンの表面を覆い気相の冷媒とフィンの間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、放熱部の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   In addition, the gas-liquid separation unit may be configured to be one or a plurality of plate-shaped gas-liquid separation plates provided to face the heat radiation path connection port. Thus, a gas-liquid separation plate provided with a two-phase refrigerant mixed with a gas phase and a liquid phase flowing from the heat radiation path through the heat radiation path connection port to the refrigerant discharge part of the heat radiation unit facing the heat radiation path connection port. Collide with. The liquid-phase refrigerant that collides with the gas-liquid separation plate adheres to the gas-liquid separation plate, travels along the surface of the gas-liquid separation plate by gravity, and falls to the lower refrigerant inflow portion. As a result, the liquid-phase refrigerant diffuses into the refrigerant discharge portion and does not adhere to the fins provided in the refrigerant condensing portion below the refrigerant discharge portion. Therefore, the liquid phase refrigerant attached to the fin covers the surface of the fin and does not hinder heat exchange between the gas phase refrigerant and the fin, and heat is transferred from the gas phase refrigerant to the fin. Condenses efficiently and becomes a liquid phase refrigerant. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section is enhanced, thereby improving the cooling performance of the cooling device.

また、気液分離板17は、表面から裏面に貫通する1つまたは複数の蒸気通過口18を有する構成にしてもよい。これにより、放熱経路から放熱経路接続口を通って放熱部の冷媒放出部に流入する気相と液相の混合した二相の冷媒が、放熱経路接続口に対向して設けた気液分離板に衝突する際に、気液分離板の表面から裏面に貫通する1つまたは複数の蒸気通過口に、気液分離板に衝突した気相の冷媒と気液分離板に付着しなかった液相の冷媒が流入し、気液分離板を通過する。これにより、気液分離板に衝突して、気相の冷媒の流れが、妨げられるのを、抑制することができる。これにより、気相の冷媒が、冷媒放出部に拡散して、冷媒放出部の下方の冷媒凝縮部に設けたフィンに無駄なく接触する。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、放熱部の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   Further, the gas-liquid separation plate 17 may be configured to have one or a plurality of vapor passage ports 18 penetrating from the front surface to the back surface. Thereby, the gas-liquid separation plate in which the two-phase refrigerant mixed with the gas phase and the liquid phase flowing from the heat radiation path through the heat radiation path connection port to the refrigerant discharge portion of the heat radiation unit is opposed to the heat radiation path connection port. The gas-phase refrigerant that collided with the gas-liquid separation plate and the liquid phase that did not adhere to the gas-liquid separation plate at one or more vapor passage ports penetrating from the front surface to the back surface of the gas-liquid separation plate Refrigerant flows in and passes through the gas-liquid separator. Thereby, it can suppress that it collides with a gas-liquid separation plate and the flow of a gaseous-phase refrigerant | coolant is prevented. As a result, the gas-phase refrigerant diffuses into the refrigerant discharge section and comes into contact with the fins provided in the refrigerant condensing section below the refrigerant discharge section without waste. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section is enhanced, thereby improving the cooling performance of the cooling device.

また、前記気液分離板の前記蒸気通過口は、隣に設けた前記気液分離板の前記蒸気通過口の投影面と異なる位置に設けた構成にしてもよい。これにより、放熱経路から放熱経路接続口を通って放熱部の冷媒放出部に流入する気相と液相の混合した二相の冷媒が、放熱経路接続口に対向して設けた気液分離板に衝突する際に、気液分離板の表面から裏面に貫通する1つまたは複数の蒸気通過口に、気液分離板に衝突した気相の冷媒と気液分離板に付着しなかった液相の冷媒が流入し、気液分離板を通過する。気液分離板の蒸気通過口は、隣に設けた気液分離板の蒸気通過口の投影面と異なる位置に設けているので、気液分離板の蒸気通過口を通過した液相の冷媒が、放熱経路接続口から遠い側の隣に設けた気液分離板の蒸気通過口を通過することを抑制することができる。その結果、液相の冷媒が冷媒放出部に拡散して、さらに冷媒放出部の下方の冷媒凝縮部に設けたフィンに付着することを抑制することができる。そのため、フィンに付着した液相の冷媒がフィンの表面を覆い気相の冷媒とフィンの間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、放熱部の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   Further, the vapor passage port of the gas-liquid separation plate may be provided at a position different from the projection plane of the vapor passage port of the gas-liquid separation plate provided next to the gas-liquid separation plate. Thereby, the gas-liquid separation plate in which the two-phase refrigerant mixed with the gas phase and the liquid phase flowing from the heat radiation path through the heat radiation path connection port to the refrigerant discharge portion of the heat radiation unit is opposed to the heat radiation path connection port. The gas-phase refrigerant that collided with the gas-liquid separation plate and the liquid phase that did not adhere to the gas-liquid separation plate at one or more vapor passage ports penetrating from the front surface to the back surface of the gas-liquid separation plate Refrigerant flows in and passes through the gas-liquid separator. Since the vapor passage port of the gas-liquid separation plate is provided at a position different from the projection surface of the vapor passage port of the gas-liquid separation plate provided next, the liquid-phase refrigerant that has passed through the vapor passage port of the gas-liquid separation plate And it can suppress passing the vapor | steam passage port of the gas-liquid separation board provided next to the side far from a heat radiation path | route connection port. As a result, it is possible to suppress the liquid-phase refrigerant from diffusing into the refrigerant discharge part and further adhering to the fins provided in the refrigerant condensing part below the refrigerant discharge part. Therefore, the liquid phase refrigerant attached to the fin covers the surface of the fin and does not hinder heat exchange between the gas phase refrigerant and the fin, and heat is transferred from the gas phase refrigerant to the fin. Condenses efficiently and becomes a liquid phase refrigerant. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section is enhanced, thereby improving the cooling performance of the cooling device.

また、前記気液分離板の直下には、前記フィンを設けない構成にしてもよい。これにより、気液分離板に衝突した液相の冷媒が、気液分離板に付着し、重力により、気液分離板の表面を伝い、下段の冷媒流入部に落下する際に、気液分離板の直下には、フィンが設けられていないので、気液分離板から落下する液相の冷媒が、フィンに接触することなく、下段の冷媒流入部に落下するので、フィンに付着した液相の冷媒がフィンの表面を覆い気相の冷媒とフィンの間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、放熱部の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   Further, the fin may not be provided immediately below the gas-liquid separation plate. As a result, the liquid-phase refrigerant that collides with the gas-liquid separation plate adheres to the gas-liquid separation plate, travels along the surface of the gas-liquid separation plate by gravity, and falls to the lower refrigerant inflow portion. Since fins are not provided directly below the plate, the liquid phase refrigerant falling from the gas-liquid separation plate falls into the lower refrigerant inflow portion without contacting the fins, so the liquid phase adhering to the fins The refrigerant covers the surface of the fin and does not hinder heat exchange between the gas-phase refrigerant and the fin, and heat is transferred from the gas-phase refrigerant to the fin, so that the gas-phase refrigerant is efficiently condensed and liquid-phase refrigerant. It becomes. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section is enhanced, thereby improving the cooling performance of the cooling device.

また、前記蒸気通過口の前記冷媒が流入する側の周縁に、立ち上がり部を設けた構成にしてもよい。これにより、気液分離板に衝突した液相の冷媒が、気液分離板に付着し、重力により、気液分離板の表面を伝い、下段の冷媒流入部に落下する際に、液相の冷媒が、蒸気通過口の周縁に設けた立ち上がり部に沿って、蒸気通過口の周縁を流れて落下するので、液相の冷媒が、蒸気通過口の内側に流れ込み、気相の冷媒と共に蒸気通過口を通過し、冷媒放出部の下方の冷媒凝縮部に設けたフィンに付着するのを抑制することができる。そのため、フィンに付着した液相の冷媒がフィンの表面を覆い気相の冷媒とフィンの間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィンが効率よく受熱することができるので、冷却装置の冷却性能を高める効果を奏する。   Moreover, you may make it the structure which provided the rising part in the periphery of the side into which the said refrigerant | coolant flows in of the said vapor | steam passage opening. As a result, the liquid-phase refrigerant colliding with the gas-liquid separation plate adheres to the gas-liquid separation plate, travels along the surface of the gas-liquid separation plate due to gravity, and falls to the lower refrigerant inflow portion. The refrigerant flows along the periphery of the vapor passage port and falls along the rising portion provided at the periphery of the vapor passage port, so that the liquid phase refrigerant flows into the vapor passage port and passes through the vapor together with the vapor phase refrigerant. It can suppress adhering to the fin which passed the opening | mouth and was provided in the refrigerant | coolant condensing part below the refrigerant | coolant discharge | release part. Therefore, the liquid phase refrigerant attached to the fin covers the surface of the fin and does not hinder heat exchange between the gas phase refrigerant and the fin, and heat is transferred from the gas phase refrigerant to the fin. Condenses efficiently and becomes a liquid phase refrigerant. As a result, since the fins can efficiently receive the latent heat of the gas-phase refrigerant, the cooling performance of the cooling device is improved.

(実施の形態1)
以下、本発明の実施の形態1について、図面を参照しながら説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態1の冷却装置を搭載した電子機器の概略斜視図である。   FIG. 1 is a schematic perspective view of an electronic device equipped with the cooling device according to the first embodiment of the present invention.

図1に示すように、電子機器50は、ケース51内に発熱体2となる電力用半導体素子と冷却装置1とが備えられている。   As shown in FIG. 1, the electronic device 50 includes a power semiconductor element that serves as a heating element 2 and a cooling device 1 in a case 51.

冷却装置1は、発熱体2を冷却するための受熱部3と、放熱部4を備えており、放熱経路5と帰還経路6とにより受熱部3と放熱部4が連結されている。この構成により、冷却装置1は内部が密閉空間となり、図1では図示していないが、冷却装置1内は、減圧した上で、冷媒が封入されている。冷媒としては、純水、エタノール、フロン類、フッ素系溶剤類などが用いられるが、これらに限られない。放熱部4および後述するフィン12の材質は、冷媒が、純水、エタノールの場合は、銅が適しており、冷媒が、フロン類、フッ素系溶剤類の場合は、アルミニウムが適しているが、これらに限られない。   The cooling device 1 includes a heat receiving part 3 for cooling the heating element 2 and a heat radiating part 4, and the heat receiving part 3 and the heat radiating part 4 are connected by a heat radiating path 5 and a return path 6. With this configuration, the inside of the cooling device 1 becomes a sealed space, and although not shown in FIG. 1, the inside of the cooling device 1 is decompressed and filled with a refrigerant. As the refrigerant, pure water, ethanol, chlorofluorocarbons, fluorinated solvents and the like are used, but are not limited thereto. As the material of the heat radiation part 4 and the fins 12 described later, copper is suitable when the refrigerant is pure water or ethanol, and aluminum is suitable when the refrigerant is chlorofluorocarbons or fluorinated solvents. It is not limited to these.

帰還経路6には、凝縮して停留した冷媒の水頭圧と帰還経路6内の圧力バランスによって開動する逆止弁8を備えている。   The return path 6 is provided with a check valve 8 that opens due to the water head pressure of the refrigerant that has condensed and stopped and the pressure balance in the return path 6.

また、冷却装置1は、放熱部4に冷媒により輸送した熱を放熱するためのヒートシンクとしての水冷ヒートシンク7を備えている。本実施の形態では、水冷式のヒートシンクとしたが、冷却可能なヒートシンクであれば、空冷式、その他の方式であってもよい。   The cooling device 1 also includes a water-cooled heat sink 7 as a heat sink for radiating heat transported by the refrigerant to the heat radiating section 4. In the present embodiment, a water-cooled heat sink is used, but an air-cooled type or other system may be used as long as it can be cooled.

そして、放熱部4は、水冷ヒートシンク7に接する接触面20を備えている。   The heat radiating unit 4 includes a contact surface 20 that contacts the water-cooled heat sink 7.

次に、上記構成における冷却装置1の基本的な仕組みについて説明する。   Next, a basic mechanism of the cooling device 1 having the above configuration will be described.

冷却装置1は、内部を減圧した後に冷媒を封入したものであり、冷却装置1内は、冷媒の作用により外部温度に応じた冷媒の飽和圧力となる。発熱体2の熱は受熱部3を介して冷媒に伝わり、冷媒が液相から気相へと変化することで、発熱体2が冷却される。受熱部3内にて気化した冷媒は、未沸騰の液相の冷媒との気液二相の混相流となって、受熱部3から放熱経路5を通り放熱部4へと移動し、水冷ヒートシンク7により冷やされ再び液化し液相の冷媒となり逆止弁8の上流に位置する帰還経路6内部に溜まる。   The cooling device 1 is a device in which the inside is decompressed and then a refrigerant is enclosed, and the inside of the cooling device 1 becomes a saturation pressure of the refrigerant according to the external temperature by the action of the refrigerant. The heat of the heating element 2 is transmitted to the refrigerant through the heat receiving portion 3, and the refrigerant changes from the liquid phase to the gas phase, whereby the heating element 2 is cooled. The refrigerant vaporized in the heat receiving part 3 becomes a gas-liquid two-phase mixed flow with the non-boiling liquid phase refrigerant, moves from the heat receiving part 3 to the heat radiating part 4 through the heat radiating path 5, and is a water-cooled heat sink. 7 is cooled and liquefied again to become a liquid-phase refrigerant, and accumulates in the return path 6 located upstream of the check valve 8.

逆止弁8は、受熱部3の内部圧力が、帰還経路6に溜まった液相の冷媒の水頭圧よりも大きくなった場合に閉まることで、受熱部3内にて気化した冷媒が帰還経路6へ逆流することを防止する。また、逆止弁8は、受熱部3の内部圧力よりも、帰還経路6に溜まった液相の冷媒の水頭圧が大きくなった場合に開くことで、帰還経路6から受熱部3に液相の冷媒が供給される。すなわち、受熱部3の内部圧力と帰還経路6に溜まった液相の冷媒の水頭圧とのバランスにより、自動的に受熱部3内に液相の冷媒が供給される仕組みとなっている。   The check valve 8 is closed when the internal pressure of the heat receiving unit 3 becomes larger than the head pressure of the liquid refrigerant accumulated in the return path 6, so that the refrigerant vaporized in the heat receiving unit 3 is returned to the return path. 6 is prevented from flowing backward. Further, the check valve 8 is opened when the head pressure of the refrigerant in the liquid phase accumulated in the return path 6 becomes larger than the internal pressure of the heat receiving part 3, so that the liquid phase is transferred from the return path 6 to the heat receiving part 3. The refrigerant is supplied. That is, the liquid-phase refrigerant is automatically supplied into the heat-receiving unit 3 by the balance between the internal pressure of the heat-receiving unit 3 and the head pressure of the liquid-phase refrigerant accumulated in the return path 6.

よって、受熱部3内にて冷媒が気化し、気化した冷媒が放熱経路5を通過し放熱部4にて液化し、液化した冷媒が帰還経路6を通過し再び受熱部3内に供給されるサイクルが繰り返されることで、発熱体2を冷却している。   Therefore, the refrigerant is vaporized in the heat receiving part 3, the vaporized refrigerant passes through the heat radiation path 5 and is liquefied in the heat radiation part 4, and the liquefied refrigerant passes through the return path 6 and is supplied again into the heat receiving part 3. The heating element 2 is cooled by repeating the cycle.

次に、本実施の形態における特徴的な構成について説明する。   Next, a characteristic configuration in the present embodiment will be described.

冷却装置1は、放熱部4に冷媒により輸送した熱を放熱するための水冷ヒートシンク7を備え、放熱部4は、水冷ヒートシンク7に接する接触面20を備えている。放熱部4の接触面20と水冷ヒートシンク7とは、放熱グリースを塗布した面で面接触し、熱的に接続されている。放熱部4の接触面20と水冷ヒートシンク7とは、図示しないが、ネジ止めで固定されている。   The cooling device 1 includes a water-cooled heat sink 7 for radiating heat transported by the refrigerant to the heat radiating unit 4, and the heat radiating unit 4 includes a contact surface 20 that contacts the water-cooled heat sink 7. The contact surface 20 of the heat radiating portion 4 and the water-cooled heat sink 7 are in surface contact with each other on the surface coated with heat radiating grease and are thermally connected. Although not shown, the contact surface 20 of the heat radiating unit 4 and the water-cooled heat sink 7 are fixed by screws.

これにより、冷却対象の発熱体2である電力用半導体素子などの電子部品等が故障した場合などメンテナンスを要する場合、冷却装置1の放熱部4の接触面20は水冷ヒートシンク7と面接触しているにすぎず、冷却装置1の接触面20と水冷ヒートシンク7とは、容易に分離することができる。すなわち、従来例のように、メンテナンスをする場合に、放熱部4に突入した冷却用液体管路を放熱部4から取り外す必要がなく、冷却装置1の接触面20と水冷ヒートシンク7とは、ネジ止めで固定されているので、ネジを外せば、容易に分離することができるので、冷却装置1を容易にメンテナンスすることができるのである。   Thus, when maintenance is required, such as when an electronic component such as a power semiconductor element that is the heating element 2 to be cooled fails, the contact surface 20 of the heat radiating unit 4 of the cooling device 1 is in surface contact with the water-cooled heat sink 7. The contact surface 20 of the cooling device 1 and the water-cooled heat sink 7 can be easily separated. That is, unlike the conventional example, when performing maintenance, it is not necessary to remove the cooling liquid conduit that has entered the heat radiating unit 4 from the heat radiating unit 4, and the contact surface 20 of the cooling device 1 and the water-cooled heat sink 7 are screwed. Since it is fixed with a stopper, it can be easily separated by removing the screw, so that the cooling device 1 can be easily maintained.

水冷ヒートシンク7には、冷却水経路9が流入および流出するように接続され、冷却水経路9は、図示しないチラーに接続されている。   A cooling water path 9 is connected to the water cooling heat sink 7 so as to flow in and out, and the cooling water path 9 is connected to a chiller (not shown).

帰還経路6には、凝縮して停留した冷媒の水頭圧と帰還経路6内との圧力バランスによって開動する逆止弁8を設ける。   The return path 6 is provided with a check valve 8 that opens due to a pressure balance between the water head pressure of the refrigerant that has condensed and stopped and the inside of the return path 6.

次に、図2、図3(a)、(b)を用いて説明する。図2は、同冷却装置の放熱部の外観を示す図、図3(a)は、同冷却装置の放熱部のA−A‘断面を示す図、図3(b)は、同冷却装置の放熱部のA−A‘断面を示す図である。   Next, description will be made with reference to FIGS. 2, 3A, and 3B. FIG. 2 is a diagram showing an external appearance of the heat radiating portion of the cooling device, FIG. 3A is a diagram showing an AA ′ cross section of the heat radiating portion of the cooling device, and FIG. It is a figure which shows the AA 'cross section of a thermal radiation part.

図2に示すように、放熱部4は、薄型の箱体を横長に立てた状態で設置する。放熱経路5は、薄い側の側面の上部に設けた放熱経路接続口10に接続する。放熱経路接続口が設けられている放熱部4の同じ側面の下部に、帰還経路接続口11を設ける。帰還経路6は、帰還経路接続口11に接続する。放熱部4の広い側の一方の側面を水冷ヒートシンク7と面接触させて熱交換を行う接触面20とする。   As shown in FIG. 2, the heat radiating part 4 is installed in a state in which a thin box body is set to be horizontally long. The heat radiation path 5 is connected to a heat radiation path connection port 10 provided at the upper part of the thin side surface. The return path connection port 11 is provided at the lower part of the same side surface of the heat radiation part 4 provided with the heat radiation path connection port. The return path 6 is connected to the return path connection port 11. One of the wide side surfaces of the heat dissipating part 4 is brought into surface contact with the water-cooled heat sink 7 to form a contact surface 20 for heat exchange.

図3(a)に示すように、放熱部4の内部は、上段を冷媒放出部14、中段を冷媒凝縮部15、下段を冷媒流入部16と、エリア分けして便宜上呼ぶこととするが、冷媒放出部14、冷媒凝縮部15、冷媒流入部16は、各々が仕切られているわけではなく、放熱部4の内部は連通した1つの空間である。
冷媒放出部14には、放熱経路接続口10が設けられ、冷媒流入部16には、帰還経路接続口11が設けられる。
放熱経路5は、前記放熱経路接続口10に接続され、帰還経路6は、帰還経路接続口11に接続されている。
As shown in FIG. 3 (a), the inside of the heat radiating section 4 is referred to for convenience by dividing the area into an upper section as a refrigerant discharge section 14, an intermediate section as a refrigerant condensing section 15, and a lower section as a refrigerant inflow section 16. The refrigerant discharge part 14, the refrigerant condensing part 15, and the refrigerant inflow part 16 are not partitioned, and the inside of the heat radiating part 4 is a single communicating space.
The refrigerant discharge part 14 is provided with a heat radiation path connection port 10, and the refrigerant inflow part 16 is provided with a return path connection port 11.
The heat dissipation path 5 is connected to the heat dissipation path connection port 10, and the return path 6 is connected to the return path connection port 11.

中段の冷媒凝縮部15には、複数の板状のフィン12を間隔をあけて垂直方向に平行に設ける。フィン12を、上段の冷媒放出部14と下段の冷媒流入部16との間を渡すように設ける。フィン12は、少なくとも放熱部4の接触面20に端部が接触して、フィン12と接触面20とは熱的に接続されている。フィン12は、放熱部4の接触面20と対向する側面など他の側面と接触させてもよい。   A plurality of plate-like fins 12 are provided in the middle refrigerant condensing unit 15 in parallel to each other at intervals. The fins 12 are provided so as to pass between the upper refrigerant discharge part 14 and the lower refrigerant inflow part 16. As for the fin 12, the edge part contacts the contact surface 20 of the thermal radiation part 4 at least, and the fin 12 and the contact surface 20 are thermally connected. The fins 12 may be brought into contact with other side surfaces such as the side surface facing the contact surface 20 of the heat radiating unit 4.

本実施の形態における特徴的な構成による作用と効果を説明する。   The operation and effect of the characteristic configuration in the present embodiment will be described.

受熱部3で受熱した冷媒が、気相と液相の混合した二相の冷媒が、混相流となって、放熱経路5から放熱経路接続口10を通って放熱部4の冷媒放出部14に流入する。流入した液相と気相の冷媒は、受熱部3の上段の冷媒放出部14に拡散し、重力により、下方の冷媒凝縮部15に流入する。液相と気相の冷媒は、冷媒凝縮部15に設けた複数のフィン12と接触することにより、フィン12に放熱する。フィン12に接触して放熱した液相の冷媒は、温度が低下し、気相の冷媒は、フィン12上で凝縮し液化する。にそして、液相の冷媒が、フィン12を伝って、冷媒凝縮部15の下方の冷媒流入部16に流入し、帰還経路接続口11、帰還経路6を通過し再び受熱部3内に供給される。一方、冷媒の熱を受熱したフィン12は、水冷ヒートシンク7との接触面20に接触し、熱的に接続されているので、受熱した熱を接触面20を介して水冷ヒートシンク7に放熱する。   The refrigerant received by the heat receiving unit 3 becomes a mixed-phase flow of a two-phase refrigerant in which a gas phase and a liquid phase are mixed, and passes from the heat radiation path 5 to the refrigerant discharge part 14 of the heat radiation part 4 through the heat radiation path connection port 10. Inflow. The liquid-phase and gas-phase refrigerant that has flowed in diffuses into the upper refrigerant discharge section 14 of the heat receiving section 3 and flows into the lower refrigerant condensing section 15 by gravity. The liquid-phase and gas-phase refrigerants dissipate heat to the fins 12 by coming into contact with the plurality of fins 12 provided in the refrigerant condensing unit 15. The temperature of the liquid phase refrigerant that dissipates heat in contact with the fins 12 decreases, and the gas phase refrigerant condenses and liquefies on the fins 12. Then, the liquid-phase refrigerant flows through the fins 12 and flows into the refrigerant inflow part 16 below the refrigerant condensing part 15, passes through the return path connection port 11 and the return path 6, and is supplied again into the heat receiving part 3. The On the other hand, since the fins 12 that have received the heat of the refrigerant are in contact with and thermally connected to the contact surface 20 with the water-cooled heat sink 7, the received heat is radiated to the water-cooled heat sink 7 via the contact surface 20.

放熱部4は、水冷ヒートシンク7に接する接触面20を備えているので、冷却対象の発熱体2である電子部品等が故障した場合などメンテナンスを要する場合、冷却装置1の放熱部4の接触面20は水冷ヒートシンク7と面接触しているにすぎず、冷却装置1の接触面20と水冷ヒートシンク7とは、容易に分離することができる。すなわち、従来例のように放熱部4に冷却水経路9が突入していないので、冷却水経路9を放熱部4から取り外す必要がなく、冷却装置1の接触面20と水冷ヒートシンク7とは、容易に分離することができるので、冷却装置1を容易にメンテナンスすることができるのである。   Since the heat radiating unit 4 includes the contact surface 20 that contacts the water-cooled heat sink 7, the contact surface of the heat radiating unit 4 of the cooling device 1 is required when maintenance is required, such as when an electronic component that is the heating element 2 to be cooled breaks down. 20 is only in surface contact with the water-cooled heat sink 7, and the contact surface 20 of the cooling device 1 and the water-cooled heat sink 7 can be easily separated. That is, since the cooling water path 9 does not enter the heat radiating part 4 as in the conventional example, there is no need to remove the cooling water path 9 from the heat radiating part 4, and the contact surface 20 of the cooling device 1 and the water cooling heat sink 7 are Since it can isolate | separate easily, the cooling device 1 can be maintained easily.

また、図3(b)に示すように、冷媒放出部14の放熱経路接続口10の近傍に気液分離部13を備えた構成にしてもよい。これにより、放熱経路5から放熱経路接続口10を通って放熱部4の冷媒放出部14に流入する気相と液相の混合した二相の冷媒を気相の冷媒と液相の冷媒に分離することにより、分離された液相の冷媒は、重力により下段の冷媒流入部16に落下する。これにより、液相の冷媒が、冷媒放出部14に拡散して、さらに冷媒放出部14の下方の冷媒凝縮部15に設けたフィン12に付着することを抑制する。そのため、フィン12に付着した液相の冷媒がフィン12の表面を覆い気相の冷媒とフィン12の間の熱交換を妨げることがなく、気相の冷媒からフィン12に熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィン12が効率よく受熱することができるので、放熱部4の放熱性能を高め、これにより、冷却装置の冷却性能を高める効果を奏する。   Moreover, as shown in FIG.3 (b), you may make it the structure provided with the gas-liquid separation part 13 in the vicinity of the thermal radiation path connection port 10 of the refrigerant | coolant discharge | release part 14. FIG. Thereby, the two-phase refrigerant mixed with the gas phase and the liquid phase flowing into the refrigerant discharge portion 14 of the heat radiating section 4 from the heat radiation path 5 through the heat radiation path connection port 10 is separated into the gas phase refrigerant and the liquid phase refrigerant. As a result, the separated liquid-phase refrigerant falls into the lower refrigerant inflow portion 16 due to gravity. Thus, the liquid-phase refrigerant is prevented from diffusing into the refrigerant discharge portion 14 and further adhering to the fins 12 provided in the refrigerant condensing portion 15 below the refrigerant discharge portion 14. Therefore, the liquid-phase refrigerant attached to the fin 12 covers the surface of the fin 12 and does not hinder heat exchange between the gas-phase refrigerant and the fin 12, and heat is transferred from the gas-phase refrigerant to the fins 12. The phase refrigerant efficiently condenses to become a liquid phase refrigerant. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the heat dissipation performance of the heat radiating section 4 is enhanced, thereby improving the cooling performance of the cooling device.

ここで、放熱経路5を通過してきた液相冷媒を気相冷媒から分離することによる冷却性能向上効果について詳しく説明する。   Here, the cooling performance improvement effect by separating the liquid phase refrigerant that has passed through the heat radiation path 5 from the gas phase refrigerant will be described in detail.

冷媒凝縮部15では、放熱経路5を通過し冷媒放出部14を拡散してきた気相冷媒が、フィン12にて凝縮することとなるが、気相冷媒が凝縮することでフィン12の表面は液相冷媒の層が形成されることとなる。フィン12の表面を覆う液相冷媒の層は断熱層となり、フィン12と冷媒の熱伝達率を低下させる原因となる。液相冷媒の層は、その層が厚いほど断熱効果が高くなるため、フィン12の表面を覆う液相冷媒の層は薄い方が冷却性能が高くなる。すなわち、放熱経路5を通過してきた液相冷媒が冷媒凝縮部15に拡散し、大部分のフィン12の表面に付着することで、液相冷媒の層が厚くなり、冷却性能を低下させる原因となる。よって、気液分離部13にて、放熱経路5を通過してきた液相冷媒を気相冷媒から分離し、放熱部4内に拡散することを抑制することで、放熱部4の放熱性能が向上することとなる。   In the refrigerant condensing unit 15, the gas phase refrigerant that has passed through the heat radiation path 5 and diffused through the refrigerant discharging unit 14 is condensed in the fins 12, but the surface of the fins 12 is liquid by condensing the gas phase refrigerant. A layer of phase refrigerant will be formed. The layer of the liquid-phase refrigerant that covers the surface of the fin 12 serves as a heat insulating layer, which causes a decrease in the heat transfer coefficient between the fin 12 and the refrigerant. The thicker the liquid-phase refrigerant layer, the higher the heat insulation effect. Therefore, the thinner the liquid-phase refrigerant layer covering the surfaces of the fins 12, the higher the cooling performance. That is, the liquid phase refrigerant that has passed through the heat dissipation path 5 diffuses into the refrigerant condensing unit 15 and adheres to the surface of most of the fins 12, thereby causing the liquid phase refrigerant layer to be thick and reducing the cooling performance. Become. Therefore, by separating the liquid-phase refrigerant that has passed through the heat radiation path 5 from the gas-phase refrigerant in the gas-liquid separation unit 13 and suppressing the diffusion into the heat radiation unit 4, the heat radiation performance of the heat radiation unit 4 is improved. Will be.

また、図4は、同冷却装置の気液分離部を示す図である。図4に示すように、気液分離部13は、放熱経路接続口10に対向して設けた1枚または複数枚の板状の気液分離板17である構成にしてもよい。気液分離板17の広い面は、放熱経路接続口10と対向するように設ける。気液分離板17の大きさは、放熱経路接続口10の面積より大きくする。気液分離板17を複数枚とする場合は、1枚めの気液分離板17を放熱経路接続口10に対向して設け、2枚めの気液分離板17を1枚めの気液分離板17の広い面と間隔をあけて略平行に並べて設ける。   Moreover, FIG. 4 is a figure which shows the gas-liquid separation part of the cooling device. As shown in FIG. 4, the gas-liquid separator 13 may be configured as one or a plurality of plate-like gas-liquid separators 17 provided to face the heat radiation path connection port 10. A wide surface of the gas-liquid separation plate 17 is provided so as to face the heat radiation path connection port 10. The size of the gas-liquid separation plate 17 is made larger than the area of the heat radiation path connection port 10. When a plurality of gas-liquid separation plates 17 are used, the first gas-liquid separation plate 17 is provided facing the heat radiation path connection port 10, and the second gas-liquid separation plate 17 is provided as the first gas-liquid separation. The separation plate 17 is provided so as to be arranged substantially parallel to the wide surface with a space.

これにより、放熱経路5から放熱経路接続口10を通って放熱部4の冷媒放出部14に流入する気相と液相の混合した二相の冷媒を、放熱経路接続口10に対向して設けた気液分離板17に衝突させる。気液分離板17に衝突した液相の冷媒は、気液分離板17に付着し、重力により、気液分離板17の表面を伝い、下段の冷媒流入部16に落下する。これにより、液相の冷媒が、冷媒放出部14に拡散して、さらに冷媒放出部14の下方の冷媒凝縮部15に設けたフィン12に付着しない。そのため、フィン12に付着した液相の冷媒がフィン12の表面を覆い気相の冷媒とフィン12の間の熱交換を妨げることがなく、気相の冷媒からフィンに熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィン12が効率よく受熱することができるので、放熱部4の放熱性能を高め、これにより、冷却装置1の冷却性能を高める効果を奏する。   Thus, a two-phase refrigerant in which a gas phase and a liquid phase mixed from the heat radiation path 5 through the heat radiation path connection port 10 to the refrigerant discharge portion 14 of the heat radiation unit 4 are mixed is provided facing the heat radiation path connection port 10. The gas-liquid separation plate 17 is caused to collide. The liquid-phase refrigerant that has collided with the gas-liquid separation plate 17 adheres to the gas-liquid separation plate 17, travels along the surface of the gas-liquid separation plate 17 by gravity, and falls to the lower refrigerant inflow portion 16. As a result, the liquid-phase refrigerant diffuses into the refrigerant discharge portion 14 and does not adhere to the fins 12 provided in the refrigerant condensing portion 15 below the refrigerant discharge portion 14. Therefore, the liquid-phase refrigerant attached to the fin 12 covers the surface of the fin 12 and does not hinder heat exchange between the gas-phase refrigerant and the fin 12, and heat is transferred from the gas-phase refrigerant to the fin. This refrigerant is efficiently condensed and becomes a liquid phase refrigerant. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section 4 is enhanced, thereby improving the cooling performance of the cooling device 1.

また、気液分離板17は、表面から裏面に貫通する1つまたは複数の蒸気通過口18を有する構成にしてもよい。本実施例では、図4に示すように、1枚の気液分離板17に、4つの蒸気通過口18を設けている。これにより、放熱経路5から放熱経路接続口10を通って放熱部4の冷媒放出部14に流入する気相と液相の混合した二相の冷媒が、放熱経路接続口10に対向して設けた気液分離板17に衝突する際に、気液分離板17の表面から裏面に貫通する1つまたは複数の蒸気通過口18に、気液分離板17に衝突した気相の冷媒と気液分離板17に付着しなかった液相の冷媒が流入し、気液分離板17を通過する。これにより、気液分離板17に衝突して、気相の冷媒の流れが、妨げられるのを、抑制することができる。これにより、気相の冷媒が、冷媒放出部14に拡散して、冷媒放出部14の下方の冷媒凝縮部15に設けたフィン12に無駄なく接触する。結果として、気相の冷媒の潜熱をフィン12が効率よく受熱することができるので、放熱部4の放熱性能を高め、これにより、冷却装置1の冷却性能を高める効果を奏する。   Further, the gas-liquid separation plate 17 may be configured to have one or a plurality of vapor passage ports 18 penetrating from the front surface to the back surface. In this embodiment, as shown in FIG. 4, four vapor passage openings 18 are provided in one gas-liquid separation plate 17. Thereby, the two-phase refrigerant mixed with the gas phase and the liquid phase flowing from the heat radiation path 5 through the heat radiation path connection port 10 to the refrigerant discharge portion 14 of the heat radiation section 4 is provided facing the heat radiation path connection port 10. When the gas-liquid separation plate 17 collides with the gas-liquid separation plate 17, the vapor-phase refrigerant and the gas-liquid collided with the gas-liquid separation plate 17 enter one or more vapor passage ports 18 penetrating from the front surface to the back surface of the gas-liquid separation plate 17. Liquid phase refrigerant that has not adhered to the separation plate 17 flows in and passes through the gas-liquid separation plate 17. Thereby, it can suppress that it collides with the gas-liquid separation plate 17, and the flow of a gaseous-phase refrigerant | coolant is prevented. As a result, the gas-phase refrigerant diffuses into the refrigerant discharge part 14 and comes into contact with the fins 12 provided in the refrigerant condensing part 15 below the refrigerant discharge part 14 without waste. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section 4 is enhanced, thereby improving the cooling performance of the cooling device 1.

また、気液分離板17の蒸気通過口18は、隣に設けた気液分離板17の蒸気通過口18の投影面と異なる位置に設けた構成にしてもよい。気液分離板17と隣に設ける気液分離板17とを重ねたときに、各々の蒸気通過口18が重ならないように蒸気通過口18を配置する。これにより、放熱経路5から放熱経路接続口10を通って放熱部4の冷媒放出部14に流入する気相と液相の混合した二相の冷媒が、放熱経路接続口10に対向して設けた気液分離板17に衝突する際に、気液分離板17の表面から裏面に貫通する1つまたは複数の蒸気通過口18に、気液分離板17に衝突した気相の冷媒と気液分離板17に付着しなかった液相の冷媒が流入し、気液分離板17を通過する。気液分離板17の蒸気通過口18は、隣に設けた気液分離板17の蒸気通過口18の投影面と異なる位置に設けているので、気液分離板17の蒸気通過口18を通過した液相の冷媒が、放熱経路接続口10から遠い側の隣に設けた気液分離板17の蒸気通過口18を通過することを抑制することができる。その結果、液相の冷媒が冷媒放出部14に拡散して、さらに冷媒放出部14の下方の冷媒凝縮部15に設けたフィン12に付着することを抑制することができる。そのため、フィン12に付着した液相の冷媒がフィン12の表面を覆い気相の冷媒とフィン12の間の熱交換を妨げることがなく、気相の冷媒からフィン12に熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィン12が効率よく受熱することができるので、放熱部4の放熱性能を高め、これにより、冷却装置1の冷却性能を高める効果を奏する。   Further, the vapor passage port 18 of the gas-liquid separation plate 17 may be provided at a position different from the projection plane of the vapor passage port 18 of the gas-liquid separation plate 17 provided adjacently. When the gas-liquid separation plate 17 and the gas-liquid separation plate 17 provided next to each other are overlapped, the vapor passage ports 18 are arranged so that the respective vapor passage ports 18 do not overlap. Thereby, the two-phase refrigerant mixed with the gas phase and the liquid phase flowing from the heat radiation path 5 through the heat radiation path connection port 10 to the refrigerant discharge portion 14 of the heat radiation section 4 is provided facing the heat radiation path connection port 10. When the gas-liquid separation plate 17 collides with the gas-liquid separation plate 17, the vapor-phase refrigerant and the gas-liquid collided with the gas-liquid separation plate 17 enter one or more vapor passage ports 18 penetrating from the front surface to the back surface of the gas-liquid separation plate 17. Liquid phase refrigerant that has not adhered to the separation plate 17 flows in and passes through the gas-liquid separation plate 17. Since the vapor passage port 18 of the gas-liquid separation plate 17 is provided at a position different from the projection plane of the vapor passage port 18 of the gas-liquid separation plate 17 provided next to the vapor-liquid separation plate 17, it passes through the vapor passage port 18 of the gas-liquid separation plate 17. It is possible to suppress the liquid phase refrigerant that has passed through the vapor passage port 18 of the gas-liquid separation plate 17 provided next to the side far from the heat radiation path connection port 10. As a result, it is possible to suppress the liquid-phase refrigerant from diffusing into the refrigerant discharge portion 14 and further adhering to the fins 12 provided in the refrigerant condensing portion 15 below the refrigerant discharge portion 14. Therefore, the liquid-phase refrigerant attached to the fin 12 covers the surface of the fin 12 and does not hinder heat exchange between the gas-phase refrigerant and the fin 12, and heat is transferred from the gas-phase refrigerant to the fins 12. The phase refrigerant efficiently condenses to become a liquid phase refrigerant. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section 4 is enhanced, thereby improving the cooling performance of the cooling device 1.

また、気液分離板17の直下には、フィン12を設けない構成にしてもよい。すなわち、気液分離板17は、その下に設けられているフィン12とその隣のフィン12との隙間に配置して設ける。これにより、気液分離板17に衝突した液相の冷媒が、気液分離板17に付着し、重力により、気液分離板17の表面を伝い、下段の冷媒流入部16に落下する際に、気液分離板17の直下には、フィン12が設けられていないので、気液分離板17から落下する液相の冷媒が、フィン12にほとんど接触することなく、下段の冷媒流入部16に落下するので、フィン12に付着した液相の冷媒がフィン12の表面を覆い気相の冷媒とフィン12の間の熱交換を妨げることがなく、気相の冷媒からフィン12に熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒の潜熱をフィン12が効率よく受熱することができるので、放熱部4の放熱性能を高め、これにより、冷却装置1の冷却性能を高める効果を奏する。   Further, the fins 12 may not be provided immediately below the gas-liquid separation plate 17. That is, the gas-liquid separation plate 17 is disposed and provided in the gap between the fin 12 provided below and the adjacent fin 12. As a result, the liquid-phase refrigerant colliding with the gas-liquid separation plate 17 adheres to the gas-liquid separation plate 17, travels along the surface of the gas-liquid separation plate 17 by gravity, and falls to the lower refrigerant inflow portion 16. Since the fins 12 are not provided immediately below the gas-liquid separation plate 17, the liquid-phase refrigerant falling from the gas-liquid separation plate 17 hardly contacts the fins 12 and enters the lower refrigerant inflow portion 16. The liquid phase refrigerant attached to the fin 12 covers the surface of the fin 12 and does not hinder heat exchange between the gas phase refrigerant and the fin 12, and heat is transferred from the gas phase refrigerant to the fin 12. Thus, the gas-phase refrigerant is efficiently condensed and becomes a liquid-phase refrigerant. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the heat radiation performance of the heat radiating section 4 is enhanced, thereby improving the cooling performance of the cooling device 1.

また、図5に示すように、蒸気通過口18の冷媒が流入する側の周縁に、立ち上がり部19を設けた構成にしてもよい。これにより、気液分離板17に衝突した液相の冷媒が、気液分離板17に付着し、重力により、気液分離板17の表面を伝い、下段の冷媒流入部16に落下する際に、液相の冷媒が、蒸気通過口18の周縁に設けた立ち上がり部19に沿って、蒸気通過口18の周縁を流れて落下するので、液相の冷媒が、蒸気通過口18の内側に流れ込み、気相の冷媒と共に蒸気通過口18を通過し、冷媒放出部14の下方の冷媒凝縮部15に設けたフィン12に付着するのを防ぐことがきる。そのため、フィン12に付着した液相の冷媒がフィン12の表面を覆い気相の冷媒とフィン12の間の熱交換を妨げることがなく、気相の冷媒からフィン12に熱が移動して気相の冷媒は効率よく凝縮して液相冷媒となる。結果として、気相の冷媒が潜熱をフィン12が効率よく受熱することができるので、冷却装置1の冷却性能を高める効果を奏する。   Moreover, as shown in FIG. 5, you may make it the structure which provided the standing | starting part 19 in the periphery of the side into which the refrigerant | coolant flows in the vapor | steam passage port 18. FIG. As a result, the liquid-phase refrigerant colliding with the gas-liquid separation plate 17 adheres to the gas-liquid separation plate 17, travels along the surface of the gas-liquid separation plate 17 by gravity, and falls to the lower refrigerant inflow portion 16. The liquid-phase refrigerant flows along the rising edge 19 provided at the periphery of the vapor passage port 18 and falls along the periphery of the vapor passage port 18, so that the liquid-phase refrigerant flows into the inside of the vapor passage port 18. Thus, it is possible to prevent the gas from passing through the vapor passage port 18 together with the gas phase refrigerant and adhering to the fins 12 provided in the refrigerant condensing unit 15 below the refrigerant discharging unit 14. Therefore, the liquid-phase refrigerant attached to the fin 12 covers the surface of the fin 12 and does not hinder heat exchange between the gas-phase refrigerant and the fin 12, and heat is transferred from the gas-phase refrigerant to the fins 12. The phase refrigerant efficiently condenses to become a liquid phase refrigerant. As a result, since the fins 12 can efficiently receive the latent heat of the gas-phase refrigerant, the cooling performance of the cooling device 1 is improved.

以上のように本発明にかかる冷却装置は、容易にメンテナンスすることができるので、中央演算処理装置(CPU)、大規模集積回路(LSI)、絶縁ゲートバイポーラトランジスタ(IGBT)等の電子部品を搭載した電子機器等の冷却装置として有用である。   As described above, since the cooling device according to the present invention can be easily maintained, electronic components such as a central processing unit (CPU), a large scale integrated circuit (LSI), and an insulated gate bipolar transistor (IGBT) are mounted. It is useful as a cooling device for electronic equipment.

1 冷却装置
2 発熱体
3 受熱部
4 放熱部
5 放熱経路
6 帰還経路
7 水冷ヒートシンク
8 逆止弁
9 冷却水経路
10 放熱経路接続口
11 帰還経路接続口
12 フィン
13 気液分離部
14 冷媒放出部
15 冷媒凝縮部
16 冷媒流入部
17 気液分離板
18 蒸気通過口
19 立ち上がり部
20 接触面
50 電子機器
51 ケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heat generating body 3 Heat receiving part 4 Heat radiation part 5 Heat radiation path 6 Return path 7 Water cooling heat sink 8 Check valve 9 Cooling water path 10 Heat radiation path connection port 11 Return path connection port 12 Fin 13 Gas-liquid separation part 14 Refrigerant discharge part DESCRIPTION OF SYMBOLS 15 Refrigerant condensing part 16 Refrigerant inflow part 17 Gas-liquid separation plate 18 Steam passage 19 Standing part 20 Contact surface 50 Electronic device 51 Case

Claims (8)

受熱部と、放熱部と、この受熱部と放熱部とを接続する放熱経路と帰還経路とを備え、
前記帰還経路には、凝縮して停留した冷媒の水頭圧と前記帰還経路内の圧力バランスによって開動する逆止弁とを備え、
前記放熱部は、箱体であって、上段に冷媒放出部、中段に冷媒凝縮部、下段に冷媒流入部を備え、
前記冷媒放出部は、放熱経路接続口を有し、
前記冷媒流入部は、帰還経路接続口を有し、
前記放熱経路は、前記放熱経路接続口に接続され、
前記帰還経路は、前記帰還経路接続口に接続され、
前記冷媒凝縮部には、複数の板状のフィンを間隔をあけて垂直方向に平行に設け、
前記放熱部は、ヒートシンクに接する接触面を備え、
前記フィンは、少なくとも前記接触面の裏面に接触している冷却装置。
A heat receiving portion, a heat radiating portion, and a heat radiating path and a feedback path connecting the heat receiving portion and the heat radiating portion;
The return path includes a check valve that opens due to a water head pressure of the refrigerant that has condensed and stopped and a pressure balance in the return path,
The heat radiating part is a box, and includes a refrigerant discharge part in the upper part, a refrigerant condensing part in the middle part, and a refrigerant inflow part in the lower part,
The refrigerant discharge part has a heat dissipation path connection port,
The refrigerant inflow portion has a return path connection port,
The heat dissipation path is connected to the heat dissipation path connection port,
The return path is connected to the return path connection port,
In the refrigerant condensing unit, a plurality of plate-like fins are provided in parallel in the vertical direction at intervals,
The heat radiating portion includes a contact surface in contact with the heat sink,
The said fin is the cooling device which is contacting the back surface of the said contact surface at least.
前記冷媒放出部の前記放熱経路接続口の近傍に気液分離部を備えた請求項1に記載の冷却装置。 The cooling device according to claim 1, further comprising a gas-liquid separation unit in the vicinity of the heat radiation path connection port of the refrigerant discharge unit. 前記気液分離部は、前記放熱経路接続口に対向して設けた1枚または複数枚の板状の気液分離板である請求項1または2に記載の冷却装置。 The cooling device according to claim 1 or 2, wherein the gas-liquid separation unit is one or a plurality of plate-shaped gas-liquid separation plates provided to face the heat radiation path connection port. 前記気液分離板は、表面から裏面に貫通する1つまたは複数の蒸気通過口を有する請求項1〜3のいずれか一つに記載の冷却装置。 The said gas-liquid separation board is a cooling device as described in any one of Claims 1-3 which has a 1 or several vapor | steam passage port penetrated from the surface to a back surface. 前記気液分離板の前記蒸気通過口は、隣に設けた前記気液分離板の前記蒸気通過口の投影面と異なる位置に設けた請求項1〜4のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 4, wherein the vapor passage port of the gas-liquid separation plate is provided at a position different from a projection surface of the vapor passage port of the gas-liquid separation plate provided adjacently. . 前記気液分離板の直下には、前記フィンを設けない請求項1〜5のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 5, wherein the fin is not provided immediately below the gas-liquid separation plate. 前記蒸気通過口の前記冷媒が流入する側の周縁に、立ち上がり部を設けた請求項1〜6のいずれか一つに記載の冷却装置。 The cooling device according to any one of claims 1 to 6, wherein a rising portion is provided at a peripheral edge of the vapor passage port on a side where the refrigerant flows. 請求項1〜7のいずれか一つに記載の冷却装置を搭載した電子機器。 The electronic device carrying the cooling device as described in any one of Claims 1-7.
JP2014131122A 2014-06-26 2014-06-26 Cooling device and electronic equipment having the same mounted therein Pending JP2016009820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131122A JP2016009820A (en) 2014-06-26 2014-06-26 Cooling device and electronic equipment having the same mounted therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131122A JP2016009820A (en) 2014-06-26 2014-06-26 Cooling device and electronic equipment having the same mounted therein

Publications (1)

Publication Number Publication Date
JP2016009820A true JP2016009820A (en) 2016-01-18

Family

ID=55227173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131122A Pending JP2016009820A (en) 2014-06-26 2014-06-26 Cooling device and electronic equipment having the same mounted therein

Country Status (1)

Country Link
JP (1) JP2016009820A (en)

Similar Documents

Publication Publication Date Title
US7787248B2 (en) Multi-fluid cooling system, cooled electronics module, and methods of fabrication thereof
US20180246550A1 (en) Cooling system for electronic device
US7597134B2 (en) Heat dissipation device with a heat pipe
TWI650520B (en) Phase change evaporator and phase change heat sink
US20130056178A1 (en) Ebullient cooling device
WO2015115028A1 (en) Cooling device and data center provided with same
US20160330868A1 (en) Cooling module, water-cooled cooling module and cooling system
JP6482954B2 (en) Liquid cooling system
TW201641910A (en) Coolant type heat dissipation device
US20190069444A1 (en) Phase Change Evaporator with Heat-Dissipating Fins and Phase Change Cooling Device Using the Same
JP2015141958A (en) Cooling device and electronic equipment having the same
US10607918B2 (en) Phase-change cooler and phase-change cooling method
JP4899997B2 (en) Thermal siphon boiling cooler
EP3663690A1 (en) Heat dissipation module
US20200064074A1 (en) Condenser and heat dissipation apparatus
JP2016009820A (en) Cooling device and electronic equipment having the same mounted therein
JP2015185708A (en) Cooling device and data center having the same
JP2013145069A (en) Cooling device, and electronic apparatus and electric vehicle equipped with the same
JP6825615B2 (en) Cooling system and cooler and cooling method
JP2017083050A (en) Cooling device and electronic equipment mounting the same
JP2016008800A (en) Cooling device and electronic equipment mounting the same
JP2015140949A (en) Cooling device and data center including the same
JP2017166710A (en) Cooling device and electronic equipment mounted with the same
JP2015060901A (en) Cooling system and electronic apparatus mounted therewith
US20140366572A1 (en) Cooling device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520