JP2015185708A - Cooling device and data center having the same - Google Patents

Cooling device and data center having the same Download PDF

Info

Publication number
JP2015185708A
JP2015185708A JP2014061342A JP2014061342A JP2015185708A JP 2015185708 A JP2015185708 A JP 2015185708A JP 2014061342 A JP2014061342 A JP 2014061342A JP 2014061342 A JP2014061342 A JP 2014061342A JP 2015185708 A JP2015185708 A JP 2015185708A
Authority
JP
Japan
Prior art keywords
heat
cooling
cooling water
partition plate
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014061342A
Other languages
Japanese (ja)
Inventor
郁 佐藤
Iku Sato
郁 佐藤
彩加 鈴木
Ayaka Suzuki
彩加 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014061342A priority Critical patent/JP2015185708A/en
Priority to CN201580006241.XA priority patent/CN105940279A/en
Priority to PCT/JP2015/000109 priority patent/WO2015115028A1/en
Priority to US15/110,875 priority patent/US20160330874A1/en
Publication of JP2015185708A publication Critical patent/JP2015185708A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable reduction of the temperature of condensed working fluid and enhancement of cooling performance in a cooling device for cooling a rack type server.SOLUTION: A heat receiving part 12, a heat radiation passage 13, a heat radiation part 15, a feedback passage 14, and the heat receiving part 12 are successively connected in this order to form an annular circulation passage in which working fluid 17 is accommodated. In a cooling device 4 configured so that a check valve 21 is provided at the upstream of the heat receiving part 12, the heat radiation part 15 has a rectangular parallelepiped heat radiation case 16, a partition plate 33 for partitioning the inside of the heat radiation case 16 into right and left parts, and a liquefaction chamber 34 and a cooling water chamber 35 which are disposed at the right and left sides of the partition plate 33. In the liquefaction chamber 34, plural first heat radiation fins 38 each having plural openings 38a are provided in the up-and-down direction of the partition plate 33, and the first heat radiation fins 38 are configured to be inclined upwards from the partition plate 33 side.

Description

本発明は、冷却装置とこれを備えたデータセンターに関するものである。   The present invention relates to a cooling device and a data center including the same.

大きな消費電力の電子機器や電気自動車の電力変換回路では、CPUや半導体スイッチング素子などの電子部品に、数十アンペアの大電流が流れるので、この部分で大きな発熱が発生することになる。   In a power conversion circuit of a large power consumption electronic device or an electric vehicle, a large current of several tens of amperes flows through an electronic component such as a CPU or a semiconductor switching element, so that a large amount of heat is generated in this portion.

そこで、従来は、例えば特許文献1のようなループ型ヒートパイプを用いた冷却装置で、電子部品の冷却を行っていた。   Therefore, conventionally, electronic components have been cooled by a cooling device using a loop heat pipe as in Patent Document 1, for example.

以下、特許文献1に示すループ型ヒートパイプについて、図8を参照しながら説明する。   Hereinafter, the loop heat pipe shown in Patent Document 1 will be described with reference to FIG.

図8に示すようにループ型ヒートパイプは上昇管101と下降管102とを別個に含むループ回路103と、ループ回路103に真空下において封入された作動流体である熱媒体112と、ループ回路103の一部を構成し、かつループ回路103の上方に位置する冷却器105と、上昇管101の下部に位置する加熱部113と、ループ回路103内の下部に介装しループ回路103内の熱媒体112の循環方向を限定する逆止弁107とを備えている。   As shown in FIG. 8, the loop heat pipe includes a loop circuit 103 that includes a rising pipe 101 and a down pipe 102 separately, a heat medium 112 that is a working fluid sealed in the loop circuit 103 under vacuum, and a loop circuit 103. And a heating unit 113 positioned below the riser pipe 101 and a lower part in the loop circuit 103, and a heat in the loop circuit 103. And a check valve 107 that limits the circulation direction of the medium 112.

ここで、加熱部113に接触させた電子部品に熱が発生すると、発生した熱は加熱部113へ伝わり、加熱部113を循環する熱媒体112に熱が加えられ気化する。   Here, when heat is generated in the electronic component brought into contact with the heating unit 113, the generated heat is transmitted to the heating unit 113, and heat is applied to the heat medium 112 circulating in the heating unit 113 to vaporize.

逆止弁107によりその循環方向が制限され、気化した熱媒体112は、上昇管101を上昇し冷却器105に導かれて冷却され凝縮後、液化する。また、ここで加熱部113で加えられた熱が放出される。   The circulation direction is restricted by the check valve 107, and the vaporized heat medium 112 rises up the ascending pipe 101, is led to the cooler 105, is cooled, condenses, and liquefies. In addition, the heat applied by the heating unit 113 is released here.

冷却器105で熱を放出し、液化した熱媒体112は、下降管102を下降し、逆止弁107を介して再び加熱部113へと循環する。   The heat medium 112, which has released heat by the cooler 105 and liquefied, descends the downcomer 102 and circulates again to the heating unit 113 via the check valve 107.

特開昭61−038396号公報JP 61-038396 A

このような従来の冷却装置においては、冷却器105内に冷却用の熱交換パイプ111が挿入され、この熱交換パイプ111には冷却液として水が供給されるようになっているが、気化した熱媒体112と熱交換パイプ111との接触確率が低く、冷却器105における冷却能力が低いという課題があった。   In such a conventional cooling device, a heat exchange pipe 111 for cooling is inserted into the cooler 105, and water is supplied to the heat exchange pipe 111 as a coolant, but it is vaporized. There is a problem that the contact probability between the heat medium 112 and the heat exchange pipe 111 is low, and the cooling capacity of the cooler 105 is low.

また、電子部品を冷却する目的においては、冷却器105で熱を放出し凝縮した熱媒体112の温度を低くする必要があり、凝縮した熱媒体112の温度を低下させることが要求されていた。   Further, for the purpose of cooling the electronic component, it is necessary to lower the temperature of the heat medium 112 condensed by releasing heat from the cooler 105, and it has been required to lower the temperature of the condensed heat medium 112.

そこで本発明は、凝縮した熱媒体(以下では、作動流体)の温度を低下させ、冷却能力を高めることを目的とするものである。   Therefore, the present invention aims to reduce the temperature of the condensed heat medium (hereinafter referred to as working fluid) and increase the cooling capacity.

そして、この目的を達成するために、本発明は、筐体内に電子部品を有する複数の電子機器を備えたラック型サーバーを冷却する冷却装置で、受熱部、放熱経路、放熱部、帰還経路、前記受熱部を順番に接続して、環状に作動流体が収納された循環経路を形成するとともに、前記受熱部は、その受熱部の上流に逆止弁を設けた構成の冷却装置において、前記放熱部は、放熱ケース内を仕切板で左右に仕切って一方の液化室ともう一方の冷却水室とに分離した構成としている。前記液化室には、前記放熱経路への第1の接続部を上方に、前記帰還経路への第2の接続部を下方に設けるとともに、複数の開口または切欠きを有する第1の放熱フィンを前記仕切板の上下方向に複数設け、前記第1の放熱フィンは前記仕切板側から上向きに傾斜した構成としている。また、前記冷却水室には、冷却水入口と冷却水出口を設けるとともに、前記冷却水室内において、前記冷却水入口側から冷却水出口側への経路を複数の並列経路に分離する複数の第2の放熱フィンを前記仕切板の冷却水室側に前記第1の放熱フィンと直交するように設けることを特徴とする冷却装置であり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention is a cooling device that cools a rack-type server including a plurality of electronic devices having electronic components in a housing, and includes a heat receiving part, a heat radiation path, a heat radiation part, a return path, The heat receiving part is connected in order to form a circulation path in which the working fluid is stored in an annular shape, and the heat receiving part is a cooling device having a check valve upstream of the heat receiving part. The part is configured to be divided into one liquefaction chamber and the other cooling water chamber by dividing the inside of the heat radiating case left and right with a partition plate. The liquefaction chamber is provided with a first radiating fin having a plurality of openings or notches and a first connecting portion to the heat radiating path on the upper side and a second connecting portion to the return path on the lower side. A plurality of the first radiating fins are provided in the vertical direction of the partition plate, and the first radiating fin is inclined upward from the partition plate side. Further, the cooling water chamber is provided with a cooling water inlet and a cooling water outlet, and a plurality of second paths for separating a path from the cooling water inlet side to the cooling water outlet side into a plurality of parallel paths in the cooling water chamber. The cooling device is characterized in that two radiating fins are provided on the cooling water chamber side of the partition plate so as to be orthogonal to the first radiating fins, thereby achieving the intended purpose.

以上のように本発明は、筐体内に電子部品を有する複数の電子機器を備えたラック型サーバーを冷却する冷却装置で、受熱部、放熱経路、放熱部、帰還経路、前記受熱部を順番に接続して、環状で、作動流体が収納された循環経路を形成するとともに、前記受熱部は、その受熱部の上流に逆止弁を設けた構成の冷却装置において、前記放熱部は、放熱ケース内を仕切板で左右に仕切って一方の液化室ともう一方の冷却水室とに分離した構成とし、前記液化室には、前記放熱経路への第1の接続部を上方に、前記帰還経路への第2の接続部を下方に設けるとともに、複数の開口または切欠きを有する第1の放熱フィンを前記仕切板の上下方向に複数設け、前記第1の放熱フィンは前記仕切板側から上向きに傾斜した構成としている。また、前記冷却水室には、冷却水入口と冷却水出口を設けるとともに、前記冷却水室内において、前記冷却水入口側から冷却水出口側への経路を複数の並列経路に分離する複数の第2の放熱フィンを前記仕切板の冷却水室側に前記第1の放熱フィンと直交するように設けるものであるので、凝縮した作動流体の温度を低下させ、冷却能力を高めることができる。   As described above, the present invention is a cooling device that cools a rack-type server including a plurality of electronic devices having electronic components in a housing. The heat receiving portion, the heat radiating path, the heat radiating portion, the return path, and the heat receiving portion are sequentially arranged. The cooling unit is configured to be connected to form a circulation path in which a working fluid is stored, and the heat receiving unit is provided with a check valve upstream of the heat receiving unit. The inside is divided into right and left by a partition plate and separated into one liquefaction chamber and the other cooling water chamber. The liquefaction chamber has a first connection portion to the heat radiation path upward, and the return path. And a plurality of first radiating fins having a plurality of openings or notches are provided in the vertical direction of the partition plate, the first radiating fins facing upward from the partition plate side. The configuration is slanted. Further, the cooling water chamber is provided with a cooling water inlet and a cooling water outlet, and a plurality of second paths for separating a path from the cooling water inlet side to the cooling water outlet side into a plurality of parallel paths in the cooling water chamber. Since the two radiating fins are provided on the cooling water chamber side of the partition plate so as to be orthogonal to the first radiating fins, the temperature of the condensed working fluid can be lowered and the cooling capacity can be increased.

すなわち、放熱器の液化室内において、前記放熱経路への第1の接続部側から前記帰還経路への第2の接続部側へと流れる気化後の作動流体は、この液化室内において、上方から下方へ複数の第1の放熱フィンの開口及び第1の放熱フィンの先端部と放熱ケースの内壁との隙間を通って、前記第1の接続部側から第2の接続部側へと進行することとなる。   That is, the vaporized working fluid flowing from the first connection portion side to the heat dissipation path to the second connection portion side to the return path in the liquefaction chamber of the radiator is downward from above in the liquefaction chamber. Proceeding from the first connecting portion side to the second connecting portion side through the openings of the plurality of first radiating fins and the gap between the tip portion of the first radiating fin and the inner wall of the radiating case. It becomes.

また、放熱器の冷却水室内において、冷却水入口側から冷却水出口側へと流れる冷却水は、この冷却水室内において、複数の第2の放熱フィンによって、前記冷却水入口側から冷却水出口側へと、複数の並列経路に分離された状態で進行することになる。   Further, the cooling water flowing from the cooling water inlet side to the cooling water outlet side in the cooling water chamber of the radiator is cooled from the cooling water inlet side to the cooling water outlet by the plurality of second radiating fins in the cooling water chamber. It progresses to the side in a state separated into a plurality of parallel paths.

したがって、放熱器の液化室内および冷却水室内において、作動流体および冷却水からそれぞれの第1、第2の放熱フィンへの熱移動が効果的に行われることになる。   Therefore, heat transfer from the working fluid and the cooling water to the first and second radiation fins is effectively performed in the liquefaction chamber and the cooling water chamber of the radiator.

そして、仕切板側から上向きに傾斜した第1の放熱フィンの開口または切欠きは仕切板近傍には設けられていないため、第1の放熱フィンに接触し冷却され凝縮した作動流体は、第1の放熱フィンの傾斜に従って仕切板側へ流れ、仕切板近傍に溜まっていく。   And since the opening or notch of the 1st radiation fin inclined upward from the partition plate side is not provided in the partition plate vicinity, the working fluid which contacted the 1st radiation fin and was cooled and condensed is the 1st It flows to the partition plate side according to the inclination of the radiating fin and accumulates in the vicinity of the partition plate.

このとき、仕切板は冷却水室内において、冷却水に冷やされた第2の放熱フィンで冷却されているため、仕切板近傍に停留した作動流体は凝縮温度より低い温度まで冷却される。   At this time, since the partition plate is cooled in the cooling water chamber by the second radiating fin cooled by the cooling water, the working fluid retained in the vicinity of the partition plate is cooled to a temperature lower than the condensation temperature.

その後凝縮した作動流体が更に溜まっていき、水位が第1の放熱フィンの開口または切欠きの下端を越えると、凝縮した作動流体は開口または切欠きからすぐ下の第1の放熱フィン上に落ち、第1の放熱フィンの傾斜に従って仕切板側へ流れ、仕切板近傍に溜まっていく。   After that, the condensed working fluid further accumulates, and when the water level exceeds the lower end of the opening or notch of the first radiating fin, the condensed working fluid falls on the first radiating fin immediately below the opening or notch. Then, it flows toward the partition plate according to the inclination of the first heat radiation fin and accumulates in the vicinity of the partition plate.

この動作を最上段の第1の放熱フィンから最下段の第1の放熱フィンまで繰り返すことにより、最下段の第1の放熱フィンの開口または切欠きから落ち液化室内の底面上に溜まった凝縮した作動流体は凝縮温度より低い温度で帰還経路へ流れることになる。   By repeating this operation from the first radiating fin on the uppermost stage to the first radiating fin on the lowermost stage, the condensation accumulated on the bottom surface of the liquefaction chamber falls from the opening or notch of the first radiating fin on the lowermost stage. The working fluid flows to the return path at a temperature lower than the condensation temperature.

また、第1の放熱フィンと放熱ケースの仕切板と対向する内壁の隙間を設けているので、第1の接続部側から液化室内へ流入した気化した作動流体がこの隙間と第1の放熱フィンの開口または切欠き、両方に流れることができ、圧力損失を低減できる。   Moreover, since the clearance of the inner wall facing the 1st radiation fin and the partition plate of a radiation case is provided, the vaporized working fluid which flowed into the liquefaction chamber from the 1st connection part side is this clearance gap and the 1st radiation fin. It is possible to flow through both the opening and the notch, and the pressure loss can be reduced.

また、本発明では仕切板の外周を放熱器ケースの内面に溶接したものであるので、液化室内の密閉度を高く維持でき、作動流体が収納された循環経路内の負圧も維持できるため、冷媒が半導体スイッチング素子の熱量で連続的に循環することができる。   In the present invention, since the outer periphery of the partition plate is welded to the inner surface of the radiator case, the degree of sealing in the liquefaction chamber can be maintained high, and the negative pressure in the circulation path in which the working fluid is stored can be maintained. The refrigerant can be continuously circulated by the amount of heat of the semiconductor switching element.

本発明の実施の形態1のラック型サーバーを冷却する冷却装置を備えたデータセンターの概略図Schematic diagram of a data center provided with a cooling device for cooling the rack type server according to the first embodiment of the present invention. (a)同ラック型サーバーを冷却する冷却装置の側面図、(b)同ラック型サーバーを冷却する冷却装置の背面図(A) Side view of a cooling device that cools the rack type server, (b) Rear view of the cooling device that cools the rack type server (a)同ラック型サーバーを冷却する冷却装置の内冷却ループの側面図、(b)図3(a)のA−A断面を示す構成図(A) Side view of inner cooling loop of cooling device for cooling same rack type server, (b) Configuration diagram showing AA cross section of FIG. (a)同ラック型サーバーを冷却する冷却装置の放熱部の内部透視平面図、(b)図4(a)のB−B断面を示す構成図(A) Internal perspective plan view of heat radiating part of cooling device for cooling same rack type server, (b) Configuration diagram showing BB cross section of FIG. 4 (a) (a)同ラック型サーバーを冷却する冷却装置の放熱部の内部透視側面詳細図、(b)図5(a)のC−C断面を示す構成図、(c)図5(b)のA部詳細図、(d)図5(b)のD−D断面を示す構成図(A) Inside transparent side view detail view of heat radiating part of cooling device for cooling same rack type server, (b) Configuration diagram showing CC section of FIG. 5 (a), (c) A in FIG. 5 (b) Part detail drawing, (d) The block diagram which shows the DD cross section of FIG.5 (b) (a)同ラック型サーバーを冷却する冷却装置の他の放熱部の内部透視側面詳細図、(b)図6(a)のE−E断面を示す構成図(A) Inside transparent side view detail drawing of the other thermal radiation part of the cooling device which cools the same rack type server, (b) The block diagram which shows the EE cross section of Fig.6 (a) (a)同ラック型サーバーを冷却する冷却装置の放熱部の内部構成図、(b)同ラック型サーバーを冷却する冷却装置の放熱部の放熱フィンの製造方法を示す側面図、(c)同ラック型サーバーを冷却する冷却装置の放熱部の放熱フィンの製造方法を示す背面図、(d)同ラック型サーバーを冷却する冷却装置の放熱部の他の放熱フィンの製造方法を示す側面図(A) The internal block diagram of the heat radiating part of the cooling device for cooling the rack type server, (b) The side view showing the manufacturing method of the heat radiating fin of the heat radiating part of the cooling device for cooling the rack type server, (c) The rear view which shows the manufacturing method of the radiation fin of the thermal radiation part of the cooling device which cools a rack type server, (d) The side view which shows the manufacturing method of the other thermal radiation fin of the thermal radiation part of the cooling device which cools the rack type server 従来の冷却装置を示す概略図Schematic showing a conventional cooling device

(実施の形態1)
図1に示すのは、ラック型ユニットとしてラック型サーバー2を複数台納めたデータセンター1の概略図である。 ラック型サーバー2は、前面側と背面側に開口を設けた筐体22(図2)を有し、その筐体22内部、上下方向の各段のラックに垂直に設けられた複数の電子機器3を、前面側に操作パネルや表示部を向けて備えられている。そして、背面側に電子機器3同士、あるいは、外部機器との接続を行う配線類、電源線類が設けられている。
(Embodiment 1)
FIG. 1 is a schematic diagram of a data center 1 in which a plurality of rack servers 2 are accommodated as rack units. The rack-type server 2 has a housing 22 (FIG. 2) provided with openings on the front side and the back side, and a plurality of electronic devices provided inside the housing 22 and perpendicular to the racks in the vertical direction. 3 is provided with the operation panel and the display unit facing the front side. On the back side, wirings and power lines for connecting the electronic devices 3 to each other or an external device are provided.

なお、全ての電子機器に操作パネルまたは表示部が備わっているとは限らない。このラック型サーバー2は、データセンター1内に複数台設置されて、全体として電子計算機室、サーバールームなどと呼ばれている。   Note that not all electronic devices have an operation panel or a display unit. A plurality of rack-type servers 2 are installed in the data center 1 and are called an electronic computer room, a server room, etc. as a whole.

本実施の形態による冷却装置4は、図2に示すとおり、外冷却ループ5と複数の内冷却ループ6により構成され、外冷却ループ5は、屋外冷却塔7、往路水冷管8、水冷熱交換部9、および復路水冷管10を順次接続して冷媒11を循環させる水冷サイクルである。   As shown in FIG. 2, the cooling device 4 according to the present embodiment includes an outer cooling loop 5 and a plurality of inner cooling loops 6. The outer cooling loop 5 includes an outdoor cooling tower 7, an outward water cooling pipe 8, and water cooling heat exchange. This is a water cooling cycle in which the refrigerant is circulated by sequentially connecting the unit 9 and the return water cooling pipe 10.

すなわち、冷媒11は水であり、ここで往路水冷管8と復路水冷管10とは、水冷熱交換部9と屋外冷却塔7とを接続する。水冷熱交換部9は、筐体22の背面側23に設けられ、2本のヘッダー24a、24bと、内冷却ループ6の放熱部15に接続された冷却水入口管25a、冷却水出口管25b(図3)と、ヘッダー24a、24bと冷却水入口管25a、冷却水出口管25bを接続するフレキ管26a、26bで構成している。   That is, the refrigerant 11 is water, and the forward water cooling pipe 8 and the return water cooling pipe 10 connect the water cooling heat exchange unit 9 and the outdoor cooling tower 7 here. The water-cooling heat exchanging unit 9 is provided on the back side 23 of the housing 22, the two headers 24 a and 24 b, the cooling water inlet pipe 25 a connected to the heat radiating part 15 of the inner cooling loop 6, and the cooling water outlet pipe 25 b. (FIG. 3), and flexible pipes 26a and 26b connecting the headers 24a and 24b, the cooling water inlet pipe 25a, and the cooling water outlet pipe 25b.

図3(a)は、本発明の実施の形態1のラック型サーバー2を冷却する冷却装置4の内冷却ループ6の側面図、図3(b)は、図3(a)のA−A断面図である。図3に示すように、内冷却ループ6の受熱部12、放熱経路13、帰還経路14、放熱部15は電子機器3と一緒にケース3aの中に設けられている。また、放熱部15は冷却水入口管25a、冷却水出口管25bを介して、ケース3a外の外冷却ループ5と接続されている。放熱経路13および帰還経路14は、受熱部12と放熱部15とを接続する。   FIG. 3A is a side view of the inner cooling loop 6 of the cooling device 4 that cools the rack type server 2 according to the first embodiment of the present invention, and FIG. 3B is AA in FIG. It is sectional drawing. As shown in FIG. 3, the heat receiving part 12, the heat radiation path 13, the return path 14, and the heat radiation part 15 of the inner cooling loop 6 are provided in the case 3 a together with the electronic device 3. Further, the heat radiating portion 15 is connected to the outer cooling loop 5 outside the case 3a via a cooling water inlet pipe 25a and a cooling water outlet pipe 25b. The heat radiation path 13 and the return path 14 connect the heat receiving part 12 and the heat radiation part 15.

そして、受熱部12、放熱経路13、放熱部15、および帰還経路14が順に連結されて作動流体17が循環する循環経路が形成され、受熱部12の熱が放熱部15へ移動させられる。また帰還経路14と受熱部12との接続側に、すなわち循環経路のうちの放熱部15から受熱部12の間に逆止弁21が設けられている。   And the heat receiving part 12, the heat radiation path | route 13, the heat radiation part 15, and the return path 14 are connected in order, the circulation path through which the working fluid 17 circulates is formed, and the heat of the heat receiving part 12 is moved to the heat radiation part 15. A check valve 21 is provided on the connection side of the return path 14 and the heat receiving part 12, that is, between the heat radiating part 15 and the heat receiving part 12 in the circulation path.

また循環経路内の気圧は、使用する作動流体17によって決定され、例えば作動流体17が水の場合、大気圧よりも低く設定される場合が多い。   The atmospheric pressure in the circulation path is determined by the working fluid 17 to be used. For example, when the working fluid 17 is water, it is often set lower than the atmospheric pressure.

以下、各部の詳細な構成について説明する。   Hereinafter, a detailed configuration of each unit will be described.

図3に示すように、受熱部12は、箱状で垂直に設けられている。受熱部12の側面には発熱体である電子部品19(例えばCPUなど)が、熱伝導できる状態で取り付けられている。受熱部12は、電子部品19からの熱を作動流体17に伝える。また、受熱部12の側面には、放熱経路13と帰還経路14との一端が連結されている。   As shown in FIG. 3, the heat receiving part 12 is box-shaped and provided vertically. An electronic component 19 (for example, a CPU), which is a heating element, is attached to the side surface of the heat receiving unit 12 in a state where it can conduct heat. The heat receiving unit 12 transmits heat from the electronic component 19 to the working fluid 17. Further, one end of the heat dissipation path 13 and the return path 14 is connected to the side surface of the heat receiving portion 12.

図4(a)は本発明の実施の形態1のラック型サーバーを冷却する冷却装置の放熱部の平面部分を上から見た内部透視図、図4(b)は図4(a)のB−B断面図、図5(a)は同放熱部の内部透視側面詳細図、図5(b)は放熱部の図5(a)のC−C断面図である。   FIG. 4A is an internal perspective view of the planar portion of the heat radiating portion of the cooling device that cools the rack type server according to the first embodiment of the present invention as viewed from above, and FIG. 4B is B in FIG. 4A. -B sectional view, FIG. 5A is a detailed view of an internal see-through side surface of the heat radiating portion, and FIG. 5B is a CC cross sectional view of FIG. 5A of the heat radiating portion.

図4〜図5に示すように作動流体17の熱を放出する放熱部15は、直方体形状の放熱ケース16と、放熱ケース16内を左右に仕切る仕切板33と、仕切板33の左右に液化室34と冷却水室35とを配して構成されている。   As shown in FIGS. 4 to 5, the heat radiating portion 15 that releases the heat of the working fluid 17 is a cuboid-shaped heat radiating case 16, a partition plate 33 that partitions the inside of the heat radiating case 16 left and right, and liquefies to the left and right of the partition plate 33. The chamber 34 and the cooling water chamber 35 are arranged.

液化室34には、放熱経路13への第1の接続部36を上方に、帰還経路14への第2の接続部37を下方に設けるとともに、この液化室34内において、第1の放熱フィン38を仕切板33の上下方向に複数(本実施形態では7枚)設けている。第1の放熱フィン38は複数の開口38a(本実施形態では9個)を有している。   The liquefaction chamber 34 is provided with a first connection part 36 to the heat dissipation path 13 on the upper side and a second connection part 37 to the return path 14 on the lower side. 38 (seven in this embodiment) are provided in the vertical direction of the partition plate 33. The first heat radiating fin 38 has a plurality of openings 38a (9 in the present embodiment).

また、冷却水室35には、冷却水入口39と冷却水出口40を設けるとともに、この冷却水室35内において、冷却水入口39側から冷却水出口40側への経路を複数の並列経路に分離する複数の第2の放熱フィン41を仕切板33の冷却水室35側に設け、仕切板33の外周は放熱ケース16の内面に溶接している。   In addition, the cooling water chamber 35 is provided with a cooling water inlet 39 and a cooling water outlet 40, and in this cooling water chamber 35, the path from the cooling water inlet 39 side to the cooling water outlet 40 side is a plurality of parallel paths. A plurality of second radiating fins 41 to be separated are provided on the cooling water chamber 35 side of the partition plate 33, and the outer periphery of the partition plate 33 is welded to the inner surface of the radiating case 16.

第1の放熱フィン38は、仕切板33の液化室34側の面に溶接により一体化され、第2の放熱フィン41は、仕切板33の冷却水室35側の面に溶接により一体化されている。   The first radiating fins 38 are integrated with the surface of the partition plate 33 on the liquefaction chamber 34 side by welding, and the second radiating fins 41 are integrated with the surface of the partition plate 33 on the cooling water chamber 35 side by welding. ing.

第1の放熱フィン38は、仕切板33側から上向きに傾斜し(図5(c)のθ)、第2の放熱フィン41は、第1の放熱フィン38と配置方向が略垂直となるように配置されている。ここでのθは、5〜45゜が好ましい。   The first radiating fins 38 are inclined upward from the partition plate 33 side (θ in FIG. 5C), and the second radiating fins 41 are arranged substantially perpendicular to the first radiating fins 38. Is arranged. Here, θ is preferably 5 to 45 °.

また図5(b)に示すように、第1の接続部36から第2の接続部37へ、第1の放熱フィン38の複数の開口38a以外にも作動流体17の流路を確保するため、第1の放熱フィン38の傾斜した先端部は、放熱ケース16の内壁から離間して配置されている。   Further, as shown in FIG. 5B, in order to secure a flow path for the working fluid 17 from the first connection portion 36 to the second connection portion 37 in addition to the plurality of openings 38 a of the first radiating fins 38. The inclined tip portion of the first radiating fin 38 is disposed away from the inner wall of the radiating case 16.

第2の放熱フィン41は、冷却水29の出入りを妨げないように、冷却水室35内の冷却水入口39側と冷却水出口40側にチャンバー空間を確保するため、放熱ケース16から離間して配置されている。   The second radiating fins 41 are separated from the radiating case 16 in order to secure a chamber space on the cooling water inlet 39 side and the cooling water outlet 40 side in the cooling water chamber 35 so as not to prevent the cooling water 29 from entering and exiting. Are arranged.

上記構成において、電子部品19の冷却作用を内冷却ループ6から説明する。   In the above configuration, the cooling action of the electronic component 19 will be described from the inner cooling loop 6.

図3に示すように内冷却ループ6は、受熱部12、放熱経路13、放熱部15、および帰還経路14により構成され、作動流体17(例えば水)が流れる。以下では、作動流体17を水として説明する。   As shown in FIG. 3, the inner cooling loop 6 includes a heat receiving part 12, a heat radiation path 13, a heat radiation part 15, and a feedback path 14, and a working fluid 17 (for example, water) flows through the inner cooling loop 6. Below, the working fluid 17 is demonstrated as water.

通常運転時において、図4(b)の放熱部15内の波線にて示す液面20(水位h)までの水が液化室34の底面上に溜まっている。   During normal operation, water up to the liquid level 20 (water level h) indicated by the wavy line in the heat dissipating section 15 in FIG. 4B is accumulated on the bottom surface of the liquefaction chamber 34.

図1に示すラック型サーバー2が起動されると、電子部品19には大電流が流れ、急速に発熱が始まる。すると、その熱を受けて図3に示す受熱部12内の水が急激に沸騰、気化し、勢い良く放熱経路13を介して放熱部15の液化室34内に流れ込む。このとき逆止弁21の存在により、受熱部12内の水は帰還経路14方向には向かわない。   When the rack type server 2 shown in FIG. 1 is started, a large current flows through the electronic component 19 and heat generation starts rapidly. Then, in response to the heat, the water in the heat receiving section 12 shown in FIG. 3 suddenly boils and vaporizes, and vigorously flows into the liquefaction chamber 34 of the heat radiating section 15 through the heat dissipation path 13. At this time, due to the presence of the check valve 21, the water in the heat receiving portion 12 does not go in the direction of the return path 14.

図4〜図5に示すように、第1の接続部36から液化室34の上部に流れ込んだ気化した水、すなわち蒸気は、最上段の第1の放熱フィン38に接触しつつ、第1の放熱フィン38の複数の開口38a、第1の放熱フィン38の傾斜した先端部と放熱ケース16の内壁の間の隙間を通過し、直下の第1の放熱フィン38へ向かう。   As shown in FIGS. 4 to 5, the vaporized water, that is, the steam that has flowed into the upper portion of the liquefaction chamber 34 from the first connection portion 36, is in contact with the first radiating fin 38 at the uppermost stage, The plurality of openings 38 a of the heat radiating fins 38, the gaps between the inclined tips of the first heat radiating fins 38 and the inner wall of the heat radiating case 16 pass through the first radiating fins 38 directly below.

このとき、第1の放熱フィン38に接触した蒸気の一部は凝縮水となり、第1の放熱フィン38の傾斜にしたがって仕切板33側へ流れ、複数の開口38aで落ちなかった凝縮水が、仕切板33と第1の放熱フィン38で形成される雨樋状の貯水部38bに溜まっていく。   At this time, a part of the steam that has contacted the first radiating fins 38 becomes condensed water, which flows toward the partition plate 33 according to the inclination of the first radiating fins 38, and the condensed water that has not dropped at the plurality of openings 38 a It collects in the rain gutter-shaped water storage part 38b formed by the partition plate 33 and the first radiation fins 38.

ここで、図5(b)には、第1の放熱フィン38の複数の開口38aを通過する蒸気の流れ17aを実線矢印、第1の放熱フィン38の傾斜した先端部と放熱ケース16の内壁の間の隙間を通過する蒸気の流れ17bを破線矢印で示している。   Here, in FIG. 5 (b), the steam flow 17 a passing through the plurality of openings 38 a of the first radiating fin 38 is indicated by a solid arrow, the inclined tip end portion of the first radiating fin 38 and the inner wall of the radiating case 16. The steam flow 17b passing through the gap between the two is indicated by a dashed arrow.

最上段の第1の放熱フィン38の複数の開口38a、第1の放熱フィン38の傾斜した先端部と放熱ケース16の内壁の間の隙間を通過した蒸気は、上から2段目の第1の放熱フィン38に接触しつつ、第1の放熱フィン38の複数の開口38a、第1の放熱フィン38の傾斜した先端部と放熱ケース16の内壁の間の隙間を通過し、直下の第1の放熱フィン38へ向かう。   The vapor that has passed through the gaps between the plurality of openings 38a of the first radiating fin 38, the inclined tip of the first radiating fin 38 and the inner wall of the radiating case 16 is the second tier from the top. The first radiation fin 38 passes through the openings 38a of the first radiation fin 38 and the gap between the inclined tip of the first radiation fin 38 and the inner wall of the radiation case 16 while being in contact with the first radiation fin 38. Toward the heat radiation fin 38.

このとき、上から2段目の第1の放熱フィン38に接触した蒸気の一部も凝縮水となり、第1の放熱フィン38の傾斜にしたがって仕切板33側へ流れ、複数の開口38aで落ちなかった凝縮水が、仕切板33と第1の放熱フィン38で形成される雨樋状の貯水部38bに溜まっていく。   At this time, a part of the steam that has contacted the first radiating fin 38 in the second stage from the top also becomes condensed water and flows toward the partition plate 33 according to the inclination of the first radiating fin 38 and falls at the plurality of openings 38a. Condensed water that does not exist accumulates in the rain gutter-shaped water storage portion 38 b formed by the partition plate 33 and the first radiating fins 38.

このように第1の接続部36から液化室34の上部に流れ込んだ蒸気は、最上段から最下段へ向かい各段で第1の放熱フィン38に接触して、一部が凝縮水となって雨樋状の貯水部38bに溜まっていく。   Thus, the steam that has flowed from the first connection portion 36 into the upper portion of the liquefaction chamber 34 contacts the first radiating fins 38 from the uppermost stage toward the lowermost stage, and a part thereof becomes condensed water. It accumulates in the rain gutter-shaped water reservoir 38b.

貯水部38bに溜まった凝縮水の水位が、第1の放熱フィン38の複数の開口38aの最下端より高くなると、オーバーフローした凝縮水が開口38a内から第1の放熱フィン38の下面から仕切板33を伝い、直下の貯水部38bに落ちていく。   When the water level of the condensed water accumulated in the water storage portion 38b becomes higher than the lowermost end of the plurality of openings 38a of the first radiating fins 38, the overflowed condensed water is separated from the lower surfaces of the first radiating fins 38 from the openings 38a. 33, it falls to the water storage section 38b directly below.

このように凝縮水が各段の貯水部38bから順々にオーバーフローしつつ、最終的に、液化室34の底面上に溜まり、液化室34内の図5(a)の水位hを形成し、維持している。   In this way, the condensed water sequentially overflows from the water storage portions 38b of each stage, and finally accumulates on the bottom surface of the liquefaction chamber 34 to form the water level h in FIG. Is maintained.

図5(b)に示すように、最下段の第1の放熱フィン38は通常の水位hより下で水没しているが、この構成により第2の接続部37から帰還経路14へ出て行く水を凝縮温度よりさらに低下させることができる。   As shown in FIG. 5B, the first radiating fin 38 in the lowermost stage is submerged below the normal water level h, but this configuration leads to the return path 14 from the second connecting portion 37. Water can be further reduced below the condensation temperature.

一方、図5(d)に示すように、冷却水入口管25aから冷却水入口39を通り冷却水室35内へ流入した冷却水は、冷却水入口39側のチャンバー空間39aから複数の第2の放熱フィン41間をほぼ均一に流れ、冷却水出口40側のチャンバー空間40aから冷却水出口40を通り、冷却水出口管25bへと流れる。   On the other hand, as shown in FIG. 5 (d), the cooling water that has flowed from the cooling water inlet pipe 25a through the cooling water inlet 39 into the cooling water chamber 35 enters the plurality of second spaces from the chamber space 39a on the cooling water inlet 39 side. The heat radiation fins 41 flow almost uniformly, and flow from the chamber space 40a on the cooling water outlet 40 side through the cooling water outlet 40 to the cooling water outlet pipe 25b.

このとき、冷却水は第2の放熱フィン41を冷却するとともに、溶接により一体化された仕切板33、第1の放熱フィン38をも冷却する。   At this time, the cooling water cools the second radiation fins 41 and also cools the partition plate 33 and the first radiation fins 38 integrated by welding.

液化室34内に流れ込んだ蒸気は、このように冷却された第1の放熱フィン38表面に接触し凝縮することで凝縮水となり、各段の貯水部38bに溜まるとともに、各段順々にオーバーフローしつつ、最終的に、液化室34の底面上に溜まり、通常運転時の水位hを維持している。   The steam that has flowed into the liquefaction chamber 34 contacts the surface of the first radiating fin 38 cooled in this way and condenses to become condensed water, accumulates in the water storage portion 38b of each stage, and overflows in stages. However, the water level finally accumulates on the bottom surface of the liquefaction chamber 34 and maintains the water level h during normal operation.

ここで、図4(b)、図5に示すように、第1の放熱フィン38は各段同じものであり、開口38aは、各段同じ位置に配している。   Here, as shown in FIGS. 4B and 5, the first radiating fins 38 are the same in each step, and the openings 38 a are arranged at the same position in each step.

第1の接続部36から液化室34の上部に流れ込んだ蒸気は、水平方向のベクトルを持っているため、各段同じ位置に配した開口38aを上から下へ連続して通過することはほとんどなく、第1の放熱フィン38に接触し、下から2段目の第1の放熱フィン38の開口38aを通過する際にはほとんど凝縮水になっている。   Since the steam flowing into the upper part of the liquefaction chamber 34 from the first connection part 36 has a horizontal vector, it hardly passes through the openings 38a arranged at the same position in each stage from top to bottom. However, when it passes through the openings 38a of the first radiation fin 38 in the second stage from the bottom, it is almost condensed water.

このように、貯水部38bに停留した凝縮水が、冷却水で冷やされた仕切板33に接触することにより凝縮温度より低い温度まで冷却され、さらに液化室34の底面上に溜まった水位hの凝縮水は、水没した最下段の第1の放熱フィン38によっても冷却され、より低い温度となる。本実施形態では、第1の放熱フィン38に複数の開口38aを設けた場合を説明したが、図6に示すように、開口ではなく切欠きを設けた場合には、第1の接続部36から液化室34の上部に流れ込んだ蒸気が、第1の放熱フィン38の先端近傍、液化室34の内壁近傍を通過することができ、第1の放熱フィン38の先端部と放熱ケース16の内壁の間の隙間を設けなくても、複数の開口38aを設けた場合と同等の圧力損失とすることができる。   In this way, the condensed water retained in the water storage section 38b is cooled to a temperature lower than the condensing temperature by contacting the partition plate 33 cooled by the cooling water, and the water level h accumulated on the bottom surface of the liquefaction chamber 34 is further reduced. The condensed water is also cooled by the lowermost first heat dissipating fin 38 that is submerged, and becomes a lower temperature. In the present embodiment, the case where the plurality of openings 38a are provided in the first radiating fin 38 has been described. However, as shown in FIG. The steam flowing into the upper portion of the liquefaction chamber 34 from the first passage can pass near the tip of the first radiating fin 38 and near the inner wall of the liquefaction chamber 34, and the tip of the first radiating fin 38 and the inner wall of the radiating case 16 can be passed. Even if there is no gap between them, it is possible to achieve a pressure loss equivalent to that when a plurality of openings 38a are provided.

次に図7を用いて、第1の放熱フィン38、第2の放熱フィン41を、仕切板に溶接により一体化する方法を説明する。ここで、第1の放熱フィン38、第2の放熱フィン41の材質として、Cu、Al、SUSなどが使用できるが、作動流体17が水の場合は、Cuが好ましい。図7(a)は、仕切板33の上部に第1の放熱フィン38、下部に第2の放熱フィン41を別々に順番に溶接し、一体化した状態の内部構成図である。   Next, a method of integrating the first radiating fin 38 and the second radiating fin 41 with the partition plate by welding will be described with reference to FIG. Here, Cu, Al, SUS, or the like can be used as the material of the first radiating fins 38 and the second radiating fins 41. However, when the working fluid 17 is water, Cu is preferable. FIG. 7A is an internal configuration diagram showing a state in which the first radiating fin 38 is welded to the upper part of the partition plate 33 and the second radiating fin 41 is separately welded to the lower part in order.

図7(b)は、第1の放熱フィン38として図に示すように複数のL字断面のフィンを並べ、電極としてローラーを用い、ローラーと仕切板33に例えば交流電圧を印加し、L字の短辺の中央部をローラーで連続的に溶接するシーム溶接で一体化する工法を示したものである。   FIG. 7B shows a plurality of L-shaped cross-section fins as shown in the figure as the first heat radiating fins 38, rollers are used as electrodes, and an AC voltage is applied to the rollers and the partition plate 33, for example. It shows a construction method in which the central part of the short side is integrated by seam welding in which welding is continuously performed with a roller.

図7(c)は、フィン形状を角波状に形成した場合で、図7(b)の複数のフィンに比べ、フィンの固定が容易で、溶接作業の工数を低減できる。   FIG. 7C shows a case where the fin shape is formed in a square wave shape, and it is easier to fix the fins and reduce the number of welding operations compared to the plurality of fins shown in FIG.

なお、第1の放熱フィン38、第2の放熱フィン41を、仕切板に溶接により一体化しない場合、ネジ止めによる一体化も可能であるが、接続面の熱抵抗を考慮すると、溶接による一体化が好ましい。   In addition, when the 1st radiation fin 38 and the 2nd radiation fin 41 are not integrated with a partition plate by welding, integration by screwing is also possible, but when the thermal resistance of a connection surface is considered, it is integrated by welding. Is preferable.

続いて図2(b)を用いて、冷却水配管32内を通過して作動流体17と熱交換する冷却水29を冷却する外冷却ループ5の冷却作用を説明する。   Next, the cooling action of the outer cooling loop 5 that cools the cooling water 29 that passes through the cooling water pipe 32 and exchanges heat with the working fluid 17 will be described with reference to FIG.

冷却された往路冷却水28が屋外冷却塔7から送水され、往路水冷管8を経て水冷熱交換部9のヘッダー24aから複数の放熱部15に分かれた後、ヘッダー24bで合流し、復路水冷管10へと循環する。   The cooled forward cooling water 28 is sent from the outdoor cooling tower 7, and is divided into a plurality of heat radiating portions 15 from the header 24 a of the water-cooling heat exchanger 9 through the outgoing water cooling pipe 8, and then merges at the header 24 b to return water cooling pipe Cycle to 10.

このとき、放熱部15内の冷却水配管32を流れる、気化した作動流体17からの熱を受け取った冷却水29は、復路冷却水30となって、復路水冷管10を通って屋外冷却塔7へ運ばれる。そして、放熱部15からの熱を外気31へ放出し、復路冷却水30は外気温レベルまで冷却される。   At this time, the cooling water 29 that has received the heat from the vaporized working fluid 17 flowing through the cooling water pipe 32 in the heat radiating section 15 becomes the return cooling water 30, passes through the return water cooling pipe 10, and the outdoor cooling tower 7. Carried to. Then, the heat from the heat radiating unit 15 is released to the outside air 31, and the return path cooling water 30 is cooled to the outside air temperature level.

屋外冷却塔7により冷却された復路冷却水30は往路冷却水28となり、往路冷却水28が再度、水冷熱交換部9へ送られ、内冷却ループ6の放熱部15から熱を奪う。このような循環により、連続的に電子機器3の冷却が行われる。   The backward cooling water 30 cooled by the outdoor cooling tower 7 becomes the outward cooling water 28, and the outward cooling water 28 is sent again to the water-cooling heat exchange unit 9, and heat is taken from the heat radiating unit 15 of the inner cooling loop 6. By such circulation, the electronic device 3 is continuously cooled.

また、図2(b)に示すように、複数の放熱部15に並列に流入する冷却水29は、おのおののヘッダー24a〜放熱部15〜ヘッダー24bまでの経路の流路圧力損失が等しくなるようにして、各々の放熱部15に均一な流量の冷却水29が流入する。その結果、水冷熱交換部9のどの放熱部15も同じ冷却性能となる。   Further, as shown in FIG. 2B, the cooling water 29 flowing in parallel to the plurality of heat radiating portions 15 has the same flow path pressure loss in the path from the header 24a to the heat radiating portion 15 to the header 24b. Thus, the cooling water 29 having a uniform flow rate flows into each heat radiating portion 15. As a result, any heat radiating portion 15 of the water-cooled heat exchanging portion 9 has the same cooling performance.

このように、本発明の実施の形態のラック型サーバーを冷却する冷却装置4を備えたデータセンターにおいて、図3に示す内冷却ループ6の放熱部15から奪った熱は、図1、2に示すように、屋外冷却塔7から外気31へ放出される。そのため、冷却装置4の排熱による室内温度上昇が防止でき、空調を含めたデータセンター1全体として消費電力の増加が抑制される。   As described above, in the data center including the cooling device 4 for cooling the rack type server according to the embodiment of the present invention, the heat taken from the heat radiation part 15 of the inner cooling loop 6 shown in FIG. As shown, it is discharged from the outdoor cooling tower 7 to the outside air 31. Therefore, the indoor temperature rise due to the exhaust heat of the cooling device 4 can be prevented, and an increase in power consumption is suppressed as the entire data center 1 including air conditioning.

以上のように、放熱ケース16内を左右に仕切る仕切板33と、仕切板33の左右に液化室34と冷却水室35とで構成し、第1の放熱フィン38と仕切板33で形成した貯留部に凝縮水を所定の時間、停留させるとともに、最下段の第1の放熱フィン38を凝縮水の通常の水位hより下で水没させることにより、液化室34の底面上停留した凝縮水は凝縮温度より低い温度まで冷却した後、帰還経路へ流れることになる。この帰還経路の凝縮水の温度の低下は、液化室34や受熱部12内の飽和蒸気圧(飽和蒸気温度)を自動的に下げる効果があり、結果的に受熱部12の冷却能力を高めることが可能となる。   As described above, the partition plate 33 that partitions the inside of the heat radiating case 16 to the left and right, the liquefaction chamber 34 and the cooling water chamber 35 on the left and right of the partition plate 33, and the first radiating fins 38 and the partition plate 33 are formed. Condensed water is retained in the reservoir for a predetermined time, and the first radiating fin 38 in the lowermost stage is submerged below the normal water level h of the condensed water, so that the condensed water retained on the bottom surface of the liquefaction chamber 34 is After cooling to a temperature lower than the condensation temperature, it will flow to the return path. This decrease in the temperature of the condensed water in the return path has the effect of automatically lowering the saturated vapor pressure (saturated vapor temperature) in the liquefaction chamber 34 and the heat receiving unit 12, and consequently increases the cooling capacity of the heat receiving unit 12. Is possible.

本発明にかかる冷却装置は、筐体内に電子部品を有する複数の電子機器を備えたラック型サーバーを冷却する冷却装置で、受熱部、放熱経路、放熱部、帰還経路、前記受熱部を順番に接続して、環状で、作動流体が収納された循環経路を形成するとともに、前記受熱部は、その受熱部の上流に逆止弁を設けた構成の冷却装置において、前記放熱部は、放熱ケース内を仕切板で左右に仕切って一方の液化室ともう一方の冷却水室とに分離した構成とし、前記液化室には、前記放熱経路への第1の接続部を上方に、前記帰還経路への第2の接続部を下方に設けるとともに、複数の開口または切欠きを有する第1の放熱フィンを前記仕切板の上下方向に複数設け、前記第1の放熱フィンは前記仕切板側から上向きに傾斜しており、前記冷却水室には、冷却水入口と冷却水出口を設けるとともに、前記冷却水室内において、前記冷却水入口側から冷却水出口側への経路を複数の並列経路に分離する複数の第2の放熱フィンを前記仕切板の冷却水室側に前記第1の放熱フィンと直交するように設ける構成としたものであり、データセンターの電子機器および電気自動車のインバータ回路内の半導体スイッチング素子などの冷却に有用である。   The cooling device according to the present invention is a cooling device that cools a rack-type server including a plurality of electronic devices having electronic components in a housing. The heat receiving unit, the heat radiation path, the heat radiation unit, the return path, and the heat reception unit are sequentially arranged. The cooling unit is configured to be connected to form a circulation path in which a working fluid is stored, and the heat receiving unit is provided with a check valve upstream of the heat receiving unit. The inside is divided into right and left by a partition plate and separated into one liquefaction chamber and the other cooling water chamber. The liquefaction chamber has a first connection portion to the heat radiation path upward, and the return path. And a plurality of first radiating fins having a plurality of openings or notches are provided in the vertical direction of the partition plate, the first radiating fins facing upward from the partition plate side. In the cooling water chamber A cooling water inlet and a cooling water outlet are provided, and in the cooling water chamber, a plurality of second radiating fins for separating a path from the cooling water inlet side to the cooling water outlet side into a plurality of parallel paths are provided on the partition plate. The cooling water chamber is provided so as to be orthogonal to the first heat dissipating fins, and is useful for cooling electronic devices in a data center and semiconductor switching elements in an inverter circuit of an electric vehicle.

1 データセンター
2 ラック型サーバー
3 電子機器
3a ケース
4 冷却装置
5 外冷却ループ
6 内冷却ループ
7 屋外冷却塔
8 往路水冷管
9 水冷熱交換部
10 復路水冷管
11 冷媒
12 受熱部
13 放熱経路
14 帰還経路
15 放熱部
16 放熱ケース
17 作動流体
17a 蒸気の流れ
17b 蒸気の流れ
19 電子部品
20 液面
21 逆止弁
22 筐体
23 背面側
24a ヘッダー
24b ヘッダー
25a 冷却水入口管
25b 冷却水出口管
26a フレキ管
26b フレキ管
28 往路冷却水
29 冷却水
30 復路冷却水
31 外気
32 冷却水配管
33 仕切板
34 液化室
35 冷却水室
36 第1の接続部
37 第2の接続部
38 第1の放熱フィン
39 冷却水入口
40 冷却水出口
41 第2の放熱フィン
DESCRIPTION OF SYMBOLS 1 Data center 2 Rack type server 3 Electronic equipment 3a Case 4 Cooling device 5 Outer cooling loop 6 Inner cooling loop 7 Outdoor cooling tower 8 Outward water cooling pipe 9 Water cooling heat exchange part 10 Return water cooling pipe 11 Refrigerant 12 Heat receiving part 13 Heat radiation path 14 Return Path 15 Heat radiation part 16 Heat radiation case 17 Working fluid 17a Steam flow 17b Steam flow 19 Electronic component 20 Liquid level 21 Check valve 22 Housing 23 Back side 24a Header 24b Header 25a Cooling water inlet pipe 25b Cooling water outlet pipe 26a Flexible Pipe 26b Flexible pipe 28 Outbound cooling water 29 Cooling water 30 Return path cooling water 31 Outside air 32 Cooling water piping 33 Partition plate 34 Liquefaction chamber 35 Cooling water chamber 36 First connection portion 37 Second connection portion 38 First radiation fin 39 Cooling water inlet 40 Cooling water outlet 41 Second radiating fin

Claims (4)

筐体内に電子部品を有する複数の電子機器を備えたラック型サーバーを冷却する冷却装置で、受熱部、放熱経路、放熱部、帰還経路、前記受熱部を順番に接続して、環状で、作動流体が収納された循環経路を形成するとともに、前記受熱部は、その受熱部の上流に逆止弁を設けた構成の冷却装置において、
前記放熱部は、
放熱ケース内を仕切板で左右に仕切って一方の液化室ともう一方の冷却水室とに分離した構成とし、
前記液化室には、
前記放熱経路への第1の接続部を上方に、前記帰還経路への第2の接続部を下方に設けるとともに、複数の開口または切欠きを有する第1の放熱フィンを前記仕切板の上下方向に複数設け、
前記第1の放熱フィンは前記仕切板側から上向きに傾斜しており、
前記冷却水室には、
冷却水入口と冷却水出口を設けるとともに、前記冷却水室内において、前記冷却水入口側から冷却水出口側への経路を複数の並列経路に分離する複数の第2の放熱フィンを前記仕切板の冷却水室側に前記第1の放熱フィンと直交するように設けることを特徴とする冷却装置。
A cooling device that cools a rack-type server equipped with a plurality of electronic devices having electronic components in a housing. It operates in a ring by connecting a heat receiving part, a heat radiating path, a heat radiating part, a return path, and the heat receiving part in order. In the cooling device having a configuration in which a circulation path in which a fluid is stored is formed, and the heat receiving unit is provided with a check valve upstream of the heat receiving unit,
The heat dissipation part is
The heat dissipation case is divided into left and right with a partition plate and separated into one liquefaction chamber and the other cooling water chamber.
In the liquefaction chamber,
A first connection portion to the heat dissipation path is provided above, a second connection portion to the return path is provided below, and a first heat dissipation fin having a plurality of openings or notches is provided in the vertical direction of the partition plate. Multiple in
The first heat radiating fin is inclined upward from the partition plate side,
In the cooling water chamber,
A cooling water inlet and a cooling water outlet are provided, and in the cooling water chamber, a plurality of second radiating fins for separating a path from the cooling water inlet side to the cooling water outlet side into a plurality of parallel paths are provided on the partition plate. A cooling device provided on the cooling water chamber side so as to be orthogonal to the first radiation fin.
第1の放熱フィンは複数の開口を有し、前記第1の放熱フィンの先端部と、放熱ケースの仕切板と対向する内壁の間に、隙間を設けたことを特徴とする請求項1に記載の冷却装置。 The first heat dissipating fin has a plurality of openings, and a gap is provided between a tip portion of the first heat dissipating fin and an inner wall facing the partition plate of the heat dissipating case. The cooling device described. 第1の放熱フィンを、仕切板の液化室面に溶接により一体化し、第2の放熱フィンを、前記仕切板の冷却水室面に溶接により一体化したことを特徴とする請求項1または2に記載の冷却装置。 The first heat dissipating fin is integrated with the liquefaction chamber surface of the partition plate by welding, and the second heat dissipating fin is integrated with the cooling water chamber surface of the partition plate by welding. The cooling device according to 1. ラック型サーバーを複数台配置し、請求項1から3のいずれかに記載の冷却装置を備えたことを特徴とするデータセンター。 A data center comprising a plurality of rack-type servers and comprising the cooling device according to any one of claims 1 to 3.
JP2014061342A 2014-01-28 2014-03-25 Cooling device and data center having the same Pending JP2015185708A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014061342A JP2015185708A (en) 2014-03-25 2014-03-25 Cooling device and data center having the same
CN201580006241.XA CN105940279A (en) 2014-01-28 2015-01-13 Cooling device and data center provided with same
PCT/JP2015/000109 WO2015115028A1 (en) 2014-01-28 2015-01-13 Cooling device and data center provided with same
US15/110,875 US20160330874A1 (en) 2014-01-28 2015-01-13 Cooling device and data center provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061342A JP2015185708A (en) 2014-03-25 2014-03-25 Cooling device and data center having the same

Publications (1)

Publication Number Publication Date
JP2015185708A true JP2015185708A (en) 2015-10-22

Family

ID=54351914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061342A Pending JP2015185708A (en) 2014-01-28 2014-03-25 Cooling device and data center having the same

Country Status (1)

Country Link
JP (1) JP2015185708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003044A1 (en) * 2018-06-29 2020-01-02 Ers Gx Holding Pte Ltd System of heated air staging chamber for server cluster
CN114364238A (en) * 2022-03-18 2022-04-15 苏州浪潮智能科技有限公司 Stable switching negative pressure liquid cooling system and stable switching negative pressure liquid cooling control method
WO2023206666A1 (en) * 2022-04-29 2023-11-02 北京市鑫全盛科技有限公司 Distributed water-cooling heat dissipation apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003044A1 (en) * 2018-06-29 2020-01-02 Ers Gx Holding Pte Ltd System of heated air staging chamber for server cluster
CN114364238A (en) * 2022-03-18 2022-04-15 苏州浪潮智能科技有限公司 Stable switching negative pressure liquid cooling system and stable switching negative pressure liquid cooling control method
WO2023206666A1 (en) * 2022-04-29 2023-11-02 北京市鑫全盛科技有限公司 Distributed water-cooling heat dissipation apparatus

Similar Documents

Publication Publication Date Title
WO2015115028A1 (en) Cooling device and data center provided with same
US8179677B2 (en) Immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US9261308B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US8345423B2 (en) Interleaved, immersion-cooling apparatuses and methods for cooling electronic subsystems
US9560794B2 (en) Cooling device for cooling rack-type server, and data center provided with same
US9313920B2 (en) Direct coolant contact vapor condensing
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US9303926B2 (en) Condenser fin structures facilitating vapor condensation cooling of coolant
US8739406B2 (en) Vapor condenser with three-dimensional folded structure
US8018720B2 (en) Condenser structures with fin cavities facilitating vapor condensation cooling of coolant
US8059405B2 (en) Condenser block structures with cavities facilitating vapor condensation cooling of coolant
US8194406B2 (en) Apparatus and method with forced coolant vapor movement for facilitating two-phase cooling of an electronic device
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US20180246550A1 (en) Cooling system for electronic device
US20150351281A1 (en) Pump-enhanced, immersion-cooling of electronic component(s)
JP6137167B2 (en) Cooling device and cooling system
US20110317367A1 (en) Liquid-cooled electronics rack with immersion-cooled electronic subsystems
JP6358872B2 (en) Boiling cooler for heating element
JP2015185708A (en) Cooling device and data center having the same
US11754344B2 (en) Boiling cooler
JP2015140949A (en) Cooling device and data center including the same
JP5860728B2 (en) Electronic equipment cooling system
JP2015088172A (en) Cooling apparatus and data center including the same
JP2023545434A (en) Novel heat pipe configuration
JPWO2013073696A1 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519