JP2016009543A - Positive electrode for lithium ion secondary battery and lithium ion secondary battery - Google Patents

Positive electrode for lithium ion secondary battery and lithium ion secondary battery Download PDF

Info

Publication number
JP2016009543A
JP2016009543A JP2014128274A JP2014128274A JP2016009543A JP 2016009543 A JP2016009543 A JP 2016009543A JP 2014128274 A JP2014128274 A JP 2014128274A JP 2014128274 A JP2014128274 A JP 2014128274A JP 2016009543 A JP2016009543 A JP 2016009543A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014128274A
Other languages
Japanese (ja)
Other versions
JP6300021B2 (en
Inventor
阿部 徹
Toru Abe
徹 阿部
祐樹 杉本
Yuki Sugimoto
祐樹 杉本
英明 篠田
Hideaki Shinoda
英明 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014128274A priority Critical patent/JP6300021B2/en
Publication of JP2016009543A publication Critical patent/JP2016009543A/en
Application granted granted Critical
Publication of JP6300021B2 publication Critical patent/JP6300021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a positive electrode for a lithium ion secondary battery, which is high in capacity and low in resistance; and a lithium ion secondary battery.SOLUTION: A positive electrode for a lithium ion secondary battery comprises: a collector; and a positive electrode active material layer bonded to the collector. The positive electrode active material layer includes: a positive electrode active material; a conductive assistant; and a binding agent. The conductive assistant includes: scale-like graphite and amorphous carbon. The content of the amorphous carbon is 1 to 5 times that of the scale-like graphite. The positive electrode active material layer has a porosity of 24-28%.

Description

本発明は、リチウムイオン二次電池用正極及びリチウムイオン二次電池に関するものである。   The present invention relates to a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery.

リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。   A lithium ion secondary battery is a secondary battery having a high charge / discharge capacity and capable of high output. Currently, it is mainly used as a power source for portable electronic devices, and further expected as a power source for electric vehicles that are expected to be widely used in the future.

リチウムイオン二次電池は、リチウム(Li)を挿入及び脱離することができる活物質を正極及び負極にそれぞれ有する。そして、両極間に設けられた電解液内をリチウムイオンが移動することによって動作する。リチウムイオン二次電池において、正極の活物質としてリチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が主に用いられ、負極の活物質としては多層構造を有する炭素材料が主に用いられている。   A lithium ion secondary battery has an active material capable of inserting and extracting lithium (Li) in a positive electrode and a negative electrode, respectively. And it operates by moving lithium ions in the electrolyte provided between the two electrodes. In lithium ion secondary batteries, lithium-containing metal composite oxides such as lithium cobalt composite oxide are mainly used as the active material for the positive electrode, and carbon materials having a multilayer structure are mainly used as the active material for the negative electrode. .

リチウムイオン二次電池はさらなる高容量化が求められ、例えば負極活物質として炭素材料よりも高容量な珪素や珪素酸化物などの珪素系材料が検討されている。珪素系材料の理論容量は炭素材料の理論容量の約5倍〜6倍である。負極活物質に珪素系材料を用いてリチウムイオン二次電池を高容量化するには、負極の理論容量にあわせて正極の容量も上げなければならない。   Lithium ion secondary batteries are required to have higher capacities. For example, silicon-based materials such as silicon and silicon oxide having higher capacities than carbon materials have been studied as negative electrode active materials. The theoretical capacity of the silicon-based material is about 5 to 6 times the theoretical capacity of the carbon material. In order to increase the capacity of a lithium ion secondary battery using a silicon-based material as the negative electrode active material, the capacity of the positive electrode must be increased in accordance with the theoretical capacity of the negative electrode.

正極の容量は、活物質の種類、活物質の配合比だけでなく正極の正極活物質層の目付け(g/cm)によってもコントロール可能である。正極の正極活物質層の目付けとは、正極の集電体の正極活物質層の形成される面の単位面積当たりの正極活物質層の質量を意味する。一般的に正極の容量を大幅に増やしたい場合は、正極の正極活物質層の目付けを増やし、それにより正極中の正極活物質の含有量を増やす手法がとられる。また正極の正極活物質層の目付けを増やすことに伴って正極の厚みが増えることもある。 The capacity of the positive electrode can be controlled not only by the type of active material and the mixing ratio of the active materials, but also by the basis weight (g / cm 2 ) of the positive electrode active material layer of the positive electrode. The basis weight of the positive electrode active material layer of the positive electrode means the mass of the positive electrode active material layer per unit area of the surface on which the positive electrode active material layer of the positive electrode current collector is formed. In general, when it is desired to greatly increase the capacity of the positive electrode, a method of increasing the weight of the positive electrode active material layer of the positive electrode and thereby increasing the content of the positive electrode active material in the positive electrode is taken. Moreover, the thickness of a positive electrode may increase with the increase in the fabric weight of the positive electrode active material layer of a positive electrode.

正極活物質は一般的に導電性が低い。正極中の正極活物質の含有量を多くすると、正極の抵抗が増大する。一般的に電極の抵抗を下げるには導電助剤を加えて電極内に良好な導電パスを形成してやればよい。導電パスは電子が流れる道を意味する。   The positive electrode active material generally has low conductivity. Increasing the content of the positive electrode active material in the positive electrode increases the resistance of the positive electrode. In general, in order to reduce the resistance of the electrode, a conductive assistant may be added to form a good conductive path in the electrode. A conductive path means a path through which electrons flow.

従来から電極内に良好な導電パスを形成するために様々な検討が行われている。例えば、導電助剤の種類や配合量の検討が行われている。   Conventionally, various studies have been made to form a good conductive path in an electrode. For example, the types and blending amounts of conductive assistants are being studied.

特許文献1には、平均粒径が100nm以下の炭素質物A及び平均粒径が1μm以上の炭素質物Bを含む導電剤を用いたリチウム二次電池が開示されている。特許文献1には平均粒径が異なる2種類の炭素質物を用いることで二次電池の大電流放電特性及びサイクル特性が向上すると記載されている。また特許文献1には、平均粒径が100nm以下の炭素質物Aの含有量は、炭素質物A及び炭素質物Bの含有量の和に対して25重量%以上かつ50重量%以下にするのが好ましいと記載されている。   Patent Document 1 discloses a lithium secondary battery using a conductive agent including a carbonaceous material A having an average particle size of 100 nm or less and a carbonaceous material B having an average particle size of 1 μm or more. Patent Document 1 describes that the use of two types of carbonaceous materials having different average particle diameters improves the high-current discharge characteristics and cycle characteristics of the secondary battery. In Patent Document 1, the content of the carbonaceous material A having an average particle size of 100 nm or less is 25% by weight or more and 50% by weight or less with respect to the sum of the contents of the carbonaceous material A and the carbonaceous material B. Preferred is described.

特許文献2には、導電剤として鱗片状黒鉛と無定形炭素とを含有するリチウムイオン二次電池用正極が開示され、鱗片状黒鉛の正極における含有量を3質量%以上7質量%以下とし、鱗片状黒鉛と無定形炭素との質量比を鱗片状黒鉛:無定形炭素=6:4〜7:2とすることにより、正極の導電性が向上し、電池の容量が向上すると記載されている。   Patent Document 2 discloses a positive electrode for a lithium ion secondary battery containing scaly graphite and amorphous carbon as a conductive agent, and the content of scaly graphite in the positive electrode is 3% by mass or more and 7% by mass or less. It is described that the electrical conductivity of the positive electrode is improved and the capacity of the battery is improved by setting the mass ratio of flaky graphite to amorphous carbon to flaky graphite: amorphous carbon = 6: 4 to 7: 2. .

また特許文献3には、グラファイト粉末と無定形炭素粉末とからなる導電剤と、リチウム遷移金属複合酸化物からなる正極活物質と、結着剤とからなる正極合剤層を有し、正極合剤層の空孔率が26%以上39%以下であり、無定形炭素粉末が導電剤中に10質量%〜30質量%含有されている非水電解質二次電池が記載されている。特許文献3には、この非水電解質二次電池は電極抵抗を低くでき、電池の負荷特性に優れていることが記載されている。導電剤中における無定形炭素粉末の含有量が30質量%を超えると正極合剤層の圧縮を行っても、正極合剤層を十分に薄くすることができず、電極充填密度が小さくなって電池容量が不足するため好ましくないと記載されている。また空孔率が小さいと非水電解液に対する接触面積が十分に確保されないので好ましくないと記載されている。   Patent Document 3 includes a positive electrode mixture layer including a conductive agent composed of graphite powder and amorphous carbon powder, a positive electrode active material composed of a lithium transition metal composite oxide, and a binder. A nonaqueous electrolyte secondary battery is described in which the porosity of the agent layer is 26% or more and 39% or less, and amorphous carbon powder is contained in an amount of 10% by mass to 30% by mass in the conductive agent. Patent Document 3 describes that this nonaqueous electrolyte secondary battery can reduce electrode resistance and is excellent in load characteristics of the battery. If the content of the amorphous carbon powder in the conductive agent exceeds 30% by mass, even if the positive electrode mixture layer is compressed, the positive electrode mixture layer cannot be made sufficiently thin, and the electrode packing density becomes small. It is described that it is not preferable because the battery capacity is insufficient. Moreover, since the contact area with respect to a non-aqueous electrolyte is not fully ensured that a porosity is small, it describes that it is not preferable.

ただし上記特許文献1〜3に記載の発明では、正極中の正極活物質の含有量が多い場合でも正極の抵抗の増加を抑制できるか否かは不明である。   However, in the inventions described in Patent Documents 1 to 3, it is unclear whether or not the increase in resistance of the positive electrode can be suppressed even when the content of the positive electrode active material in the positive electrode is large.

特開2000−21407号公報JP 2000-21407 特開2003−331922号公報JP 2003-331922 A 特許第3435731号公報Japanese Patent No. 3435731

本発明は、このような事情に鑑みて為されたものであり、リチウムイオン二次電池の高容量化を狙って仮に正極活物質の含有量を増やしたとしても、正極での抵抗の増加を抑制できるリチウムイオン二次電池用正極及びそれを有するリチウムイオン二次電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and even if the content of the positive electrode active material is increased to increase the capacity of the lithium ion secondary battery, the resistance at the positive electrode is increased. It aims at providing the positive electrode for lithium ion secondary batteries which can be suppressed, and a lithium ion secondary battery having the same.

上記課題を解決する本発明のリチウムイオン二次電池用正極は、集電体と、集電体に結着された正極活物質層とからなり、正極活物質層は正極活物質と、導電助剤と、結着剤とを有し、導電助剤は、鱗片状黒鉛と非晶質炭素とからなり、非晶質炭素の含有量は、鱗片状黒鉛の含有量の1倍以上5倍以下であり、正極活物質層の空隙率は24%以上28%以下であることを特徴とする。   The positive electrode for a lithium ion secondary battery of the present invention that solves the above problems comprises a current collector and a positive electrode active material layer bound to the current collector. The positive electrode active material layer comprises a positive electrode active material, a conductive assistant. The conductive auxiliary agent is composed of scaly graphite and amorphous carbon, and the content of amorphous carbon is 1 to 5 times the content of scaly graphite. The porosity of the positive electrode active material layer is 24% or more and 28% or less.

ここで空隙率は以下の式で算出する。
空隙率(%)=(正極活物質層の見かけの体積−正極活物質層の材料の体積)÷正極活物質層の見かけの体積×100
正極活物質層の見かけの体積=正極活物質層の実測厚み×集電体の正極活物質層の形成された面の面積
正極活物質層の材料の体積=正極活物質の質量÷正極活物質の真密度+鱗片状黒鉛の質量÷鱗片状黒鉛の真密度+非晶質炭素の質量÷非晶質炭素の真密度+結着剤の質量÷結着剤の真密度
Here, the porosity is calculated by the following formula.
Porosity (%) = (apparent volume of positive electrode active material layer−volume of material of positive electrode active material layer) ÷ apparent volume of positive electrode active material layer × 100
Apparent volume of positive electrode active material layer = actual thickness of positive electrode active material layer × area of current collector surface on which positive electrode active material layer is formed Volume of positive electrode active material layer material = mass of positive electrode active material ÷ positive electrode active material True density of graphite + mass of flake graphite ÷ true density of flake graphite + mass of amorphous carbon ÷ true density of amorphous carbon + mass of binder ÷ true density of binder

正極活物質の平均粒径D50は5μm〜15μmであり、鱗片状黒鉛の平均粒径D50は1μm以上、かつ正極活物質の平均粒径D50以下であり、非晶質炭素の平均粒径D50は10nm以上100nm以下であることが好ましい。 The average particle diameter D 50 of the positive electrode active material is 5 μm to 15 μm, the average particle diameter D 50 of the scaly graphite is 1 μm or more, and the average particle diameter D 50 of the positive electrode active material is an average particle of amorphous carbon it is preferable that the diameter D 50 is 10nm or more 100nm or less.

なお、平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径を意味する。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 Note that the average particle diameter D 50 refers to the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.

導電助剤の含有量は正極活物質層全体を100質量%としたときに2質量%より多く7質量%未満であることが好ましい。   The content of the conductive additive is preferably more than 2% by mass and less than 7% by mass when the entire positive electrode active material layer is 100% by mass.

正極活物質層の目付けは17mg/cm以上30mg/cm以下であることが好ましい。 The basis weight of the positive electrode active material layer is preferably 17 mg / cm 2 or more and 30 mg / cm 2 or less.

正極活物質層の密度は2.9g/cm以上3.3g/cm以下であることが好ましい。正極活物質層の密度とは、正極活物質層の見かけの体積当たりの正極活物質層の質量を意味する。 The density of the positive electrode active material layer is preferably 2.9 g / cm 3 or more and 3.3 g / cm 3 or less. The density of the positive electrode active material layer means the mass of the positive electrode active material layer per apparent volume of the positive electrode active material layer.

本発明のリチウムイオン二次電池は上記リチウムイオン二次電池用正極を有することを特徴とする。   The lithium ion secondary battery of this invention has the said positive electrode for lithium ion secondary batteries, It is characterized by the above-mentioned.

本発明のリチウムイオン二次電池用正極とすれば、正極活物質同士の間及び正極活物質と集電体との間に鱗片状黒鉛と非晶質炭素とによる良好な導電パスを形成できる。このため、仮に正極中の正極活物質の含有量を増やしても正極の抵抗の増加を抑制できる。また正極活物質層の空隙率が適切な量であるため、仮に正極中の正極活物質の含有量が増えて正極活物質層の厚さが厚くなってもリチウムイオンの移動は円滑に行われ、容量特性が低下するのを抑制できる。   If it is set as the positive electrode for lithium ion secondary batteries of this invention, the favorable electroconductive path by scaly graphite and amorphous carbon can be formed between positive electrode active materials and between a positive electrode active material and a collector. For this reason, even if it increases content of the positive electrode active material in a positive electrode, the increase in the resistance of a positive electrode can be suppressed. In addition, since the porosity of the positive electrode active material layer is an appropriate amount, even if the content of the positive electrode active material in the positive electrode is increased and the thickness of the positive electrode active material layer is increased, lithium ions can move smoothly. Therefore, it is possible to suppress the deterioration of the capacity characteristics.

本発明のリチウムイオン二次電池用正極の好ましい一態様を模式的に表す断面図である。It is sectional drawing which represents typically the preferable one aspect | mode of the positive electrode for lithium ion secondary batteries of this invention. 実施例1〜4、比較例1〜3のラミネート型リチウムイオン二次電池のセル抵抗の値を比較するグラフである。It is a graph which compares the value of the cell resistance of the laminate-type lithium ion secondary battery of Examples 1-4 and Comparative Examples 1-3. 実施例2、実施例5、比較例4及び比較例5のラミネート型リチウムイオン二次電池のセル抵抗と空隙率を比較するグラフである。4 is a graph comparing cell resistance and porosity of laminated lithium ion secondary batteries of Example 2, Example 5, Comparative Example 4 and Comparative Example 5. FIG.

<リチウムイオン二次電池用正極>
本発明のリチウムイオン二次電池用正極は、集電体と、集電体に結着された正極活物質層とからなる。
<Positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery of the present invention comprises a current collector and a positive electrode active material layer bound to the current collector.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。   The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. As the current collector, at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel, etc. Metal materials can be exemplified. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

正極活物質層は正極活物質と、導電助剤と、結着剤とを含む。正極活物質層は更に空隙を含む。   The positive electrode active material layer includes a positive electrode active material, a conductive additive, and a binder. The positive electrode active material layer further includes voids.

正極活物質としては、例えば、層状化合物のLiNiCoMn(0.2≦a≦1.2、b+c+d+e=1、0≦e<1、DはLi、Fe、Cr、Cu、Zn、Ca、Mg、S、Si、Na、K、Al、Zr、Ti、P、Ga、Ge、V、Mo、Nb、W、Laから選ばれる少なくとも1の元素、1.7≦f≦2.1)、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル、スピネルと層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、充放電に寄与するリチウムイオンを含まない正極活物質材料、たとえば、硫黄単体(S)、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウムを含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予めリチウムイオンを添加させておく必要がある。ここで、リチウムイオンを添加するためには、リチウムイオンを含む化合物又はリチウム金属を用いればよい。 As the positive electrode active material, for example, of a layered compound Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 1.2, b + c + d + e = 1,0 ≦ e <1, D is Li, Fe, At least one element selected from Cr, Cu, Zn, Ca, Mg, S, Si, Na, K, Al, Zr, Ti, P, Ga, Ge, V, Mo, Nb, W, La, 1.7 ≦ f ≦ 2.1) and Li 2 MnO 3 . Further, as the positive electrode active material, spinel such as LiMn 2 O 4 , solid solution composed of a mixture of spinel and layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is Co, Ni, Mn, Fe And a polyanionic compound selected from at least one of them. Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element. Further, as the positive electrode active material, a positive electrode active material that does not contain lithium ions contributing to charge / discharge, for example, sulfur alone (S), a compound in which sulfur and carbon are combined, a metal sulfide such as TiS 2 , V 2 O, etc. 5 , oxides such as MnO 2 , polyaniline and anthraquinone, compounds containing these aromatics in the chemical structure, conjugated materials such as conjugated diacetic acid organic materials, and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain lithium, it is necessary to add lithium ions to the positive electrode and / or the negative electrode in advance by a known method. Here, in order to add lithium ions, a compound containing lithium ions or lithium metal may be used.

正極活物質の平均粒径D50は、2μm〜20μmであることが好ましい。正極活物質の平均粒径D50が小さすぎると、正極活物質と非晶質炭素との粒径の差が小さくなって、非晶質炭素による導電パスが形成されにくくなる。正極活物質の平均粒径D50が大きすぎると正極の抵抗が大きくなる。正極活物質の平均粒径D50は5μm〜15μmであることが特に好ましい。 The average particle diameter D 50 of the positive electrode active material is preferably 2 .mu.m to 20 .mu.m. When the average particle diameter D 50 of the positive electrode active material is too small, the difference in particle size between the positive electrode active material and the amorphous carbon is decreased, hardly conductive path by amorphous carbon formed. When the average particle diameter D 50 of the positive electrode active material is too large resistance of the positive electrode increases. The average particle diameter D50 of the positive electrode active material is particularly preferably 5 μm to 15 μm.

結着剤は、正極活物質及び導電助剤を集電体に繋ぎ止める機能を有する。結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、ポリ(メタ)アクリル酸などのアクリル系樹脂、アルコキシシリル基含有樹脂、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)を例示することができる。これらの結着剤は単独で又は2種以上組み合わせて使用することができる。   The binder has a function of connecting the positive electrode active material and the conductive additive to the current collector. Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorine-containing resins such as fluorine rubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, poly ( Examples thereof include acrylic resins such as (meth) acrylic acid, alkoxysilyl group-containing resins, styrene / butadiene rubber (SBR), and carboxymethylcellulose (CMC). These binders can be used alone or in combination of two or more.

正極活物質層中の結着剤の配合割合は、質量比で、正極活物質:結着剤=1:0.001〜1:0.3であるのが好ましい。正極活物質:結着剤=1:0.005〜1:0.2であるのがより好ましく、1:0.01〜1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下するおそれがあり、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The blending ratio of the binder in the positive electrode active material layer is preferably a mass ratio of positive electrode active material: binder = 1: 0.001 to 1: 0.3. The positive electrode active material: binder is more preferably 1: 0.005 to 1: 0.2, and further preferably 1: 0.01 to 1: 0.15. This is because if the amount of the binder is too small, the moldability of the electrode may be lowered, and if the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は、鱗片状黒鉛と非晶質炭素とからなる。   A conductive support agent consists of flaky graphite and amorphous carbon.

鱗片状黒鉛は薄片状の黒鉛であり、天然のもの及び人造のもののどちらも使用できる。鱗片状黒鉛の電気抵抗率は0.0014Ω・cm程度と非常に低い。鱗片状黒鉛の平均粒径D50は非晶質炭素の平均粒径D50よりも大きいことが好ましい。電気抵抗率が非常に低く、大きい平均粒径D50を有する薄片の鱗片状黒鉛が正極活物質同士の間及び正極活物質と集電体との間に配置されることによって、一個の鱗片状黒鉛によってでも正極活物質層内に容易に長距離の導電パスを形成できる。 Scale-like graphite is flaky graphite, and both natural and artificial ones can be used. The electrical resistivity of scaly graphite is very low, about 0.0014 Ω · cm. The average particle diameter D 50 of the flake graphite is preferably greater than the average particle diameter D 50 of the amorphous carbon. A piece of flake graphite having a very low electrical resistivity and a large average particle diameter D 50 is disposed between the positive electrode active materials and between the positive electrode active material and the current collector, thereby forming one piece of flake shape. Even with graphite, a long-distance conductive path can be easily formed in the positive electrode active material layer.

鱗片状黒鉛の平均粒径D50は1μm以上20μm以下であることが好ましい。特に鱗片状黒鉛の平均粒径D50は1μm以上でかつ正極活物質の平均粒径D50以下であることが好ましい。鱗片状黒鉛の平均粒径D50が小さすぎると、長距離の導電パスが形成されにくくなる。鱗片状黒鉛の平均粒径D50が正極活物質の平均粒径D50より大きいと鱗片状黒鉛と正極活物質とが混合されにくい。 It is preferable that the average particle diameter D 50 of the flake graphite is 1μm or more 20μm or less. In particular, the average particle diameter D 50 of the flake graphite is preferably 1 μm or more and the average particle diameter D 50 of the positive electrode active material. When the average particle diameter D 50 of the flake graphite is too small, long-distance conductive path is hard to be formed. Scaly average particle diameter D 50 of the graphite is not easily mixed with the larger average particle diameter D 50 of the positive electrode active material and flaky graphite and the positive electrode active material.

また正極活物質層における鱗片状黒鉛の含有量が同じであれば、鱗片状黒鉛の平均粒径D50が小さいほど正極活物質層に含まれる鱗片状黒鉛の個数が増える。単位質量当たりの鱗片状黒鉛の個数が増えれば、良好な導電パスを形成するのに有利となり好ましい。鱗片状黒鉛の平均粒径D50が大きすぎると、単位質量当たりの鱗片状黒鉛の個数が少なくなって、正極活物質層内に良好な導電パスを形成しにくくなる。 Also, if the same amount of flake graphite in the positive electrode active material layer, the number of flake graphite contained as the positive electrode active material layer Average particle diameter D 50 of the flake graphite is small increases. An increase in the number of flake graphite per unit mass is advantageous because it is advantageous for forming a good conductive path. When the average particle diameter D 50 of the scaly graphite too large, becomes small number of scale-like graphite per unit mass, it is difficult to form good electrically conductive paths in the positive electrode active material layer.

非晶質炭素は鱗片状黒鉛に比べて小さい平均粒径D50を有する。非晶質炭素は鱗片状黒鉛、正極活物質及び集電体が形成する隙間に入り込み、鱗片状黒鉛と協働して導電パスを形成する。 Amorphous carbon has an average particle diameter D 50 smaller than the flake graphite. Amorphous carbon enters the gap formed by the scaly graphite, the positive electrode active material, and the current collector, and forms a conductive path in cooperation with the scaly graphite.

非晶質炭素としては、ファーネスブラック、ケッチェンブラック(登録商標)(KB)、チャンネルブラック、アセチレンブラック(AB)などを用いることができる。場合によってはサーマルブラックを用いてもよい。   As the amorphous carbon, furnace black, ketjen black (registered trademark) (KB), channel black, acetylene black (AB), or the like can be used. In some cases, thermal black may be used.

この非晶質炭素は、1nm以上かつ1μm未満のナノオーダーの平均粒径D50をもつことが好ましい。しかしながら平均粒径D50が1nm〜10nmの非晶質炭素は凝集しやすく、粗大化しやすい。そのため、非晶質炭素の平均粒径D50は10nm〜100nmであることが好ましい。 The amorphous carbon may preferably have an average particle size D 50 of the nano-order of less than 1nm and not more than 1 [mu] m. However amorphous carbon of an average particle diameter D 50 1 nm to 10 nm is likely to aggregate easily coarsened. Therefore, the average particle diameter D 50 of the amorphous carbon is preferably 10 nm to 100 nm.

また非晶質炭素の平均粒径D50が大きすぎると、非晶質炭素による導電パスが形成されにくくなる。非晶質炭素は、正極内にある正極活物質、鱗片状黒鉛及び集電体が形成する隙間に入り込んで導電パスを形成する。そのため非晶質炭素の平均粒径D50が大きすぎると、正極活物質や鱗片状黒鉛との粒径の差が小さくなって正極内の微細な隙間に非晶質炭素が入り込みにくくなるため非晶質炭素による導電パスが形成されにくくなる。 The average particle diameter D 50 of the amorphous carbon is too large, difficult conductive path by amorphous carbon formed. Amorphous carbon enters the gap formed by the positive electrode active material, the scaly graphite, and the current collector in the positive electrode to form a conductive path. For that reason the average particle diameter D 50 of the amorphous carbon is too large, the difference in particle size between the positive electrode active material and flaky graphite is hardly becomes to amorphous carbon fine gaps in the positive electrode penetrates small non It becomes difficult to form a conductive path by crystalline carbon.

非晶質炭素の含有量は、鱗片状黒鉛の含有量の1倍以上5倍以下である。非晶質炭素の含有量は、鱗片状黒鉛の含有量の1倍以上3倍以下であることがより好ましい。   The content of amorphous carbon is 1 to 5 times the content of scaly graphite. The content of amorphous carbon is more preferably 1 to 3 times the content of scaly graphite.

鱗片状黒鉛と非晶質炭素とはお互いに組み合わさって良好な導電パスを形成する。本発明において非晶質炭素の含有量は鱗片状黒鉛の含有量と同等かそれよりも多い。非晶質炭素の含有量が鱗片状黒鉛の含有量よりも少ないと良好な導電パスが形成されにくく、正極の抵抗の増加を効果的に抑制することができない。   Scalable graphite and amorphous carbon combine with each other to form a good conductive path. In the present invention, the amorphous carbon content is equal to or higher than the scaly graphite content. If the amorphous carbon content is less than the scaly graphite content, it is difficult to form a good conductive path, and the increase in resistance of the positive electrode cannot be effectively suppressed.

リチウムイオン二次電池を高容量とするには、正極活物質層における導電助剤全体の含有量は少ない方が、その分正極活物質層における正極活物質の含有量を多くできるため、好ましい。   In order to increase the capacity of the lithium ion secondary battery, it is preferable that the content of the entire conductive additive in the positive electrode active material layer is small because the amount of the positive electrode active material in the positive electrode active material layer can be increased accordingly.

ここで鱗片状黒鉛は薄片であるため、同一質量の粒状の黒鉛と比較して、電気を伝導する距離が長い。つまり、鱗片状黒鉛は粒状の黒鉛よりも少ない質量で長距離の導電パスを形成することができる。そのため正極活物質層内に長距離の導電パスを形成するのに鱗片状黒鉛は有利である。   Here, since scaly graphite is a flake, the distance for conducting electricity is longer than that of granular graphite having the same mass. That is, scaly graphite can form a long-distance conductive path with less mass than granular graphite. Therefore, scaly graphite is advantageous for forming a long-distance conductive path in the positive electrode active material layer.

鱗片状黒鉛と非晶質炭素とを合計した導電助剤全体の含有量は正極活物質層全体を100質量%としたときに2質量%より多く7質量%未満であることが好ましい。導電助剤の含有量を上記範囲とすることで、導電性を確保できかつ相対的に正極活物質層における正極活物質の含有量を多くでき、高容量の正極とすることができる。   It is preferable that the content of the entire conductive additive including the scaly graphite and the amorphous carbon is more than 2% by mass and less than 7% by mass when the entire positive electrode active material layer is 100% by mass. By making content of a conductive support agent into the said range, electroconductivity can be ensured, content of the positive electrode active material in a positive electrode active material layer can be increased relatively, and it can be set as a high capacity | capacitance positive electrode.

さらに高容量の正極とするために導電助剤の含有量は正極活物質層全体を100質量%としたときに5質量%以下であることが好ましい。   Furthermore, in order to obtain a high-capacity positive electrode, the content of the conductive additive is preferably 5% by mass or less when the entire positive electrode active material layer is 100% by mass.

正極活物質層は更に空隙を含む。空隙は、正極活物質同士の間、正極活物質と鱗片状黒鉛との間、正極活物質と非晶質炭素との間、正極活物質と結着剤との間、正極活物質と集電体との間、鱗片状黒鉛同士の間、鱗片状黒鉛と非晶質炭素の間、鱗片状黒鉛と結着剤との間、鱗片状黒鉛と集電体との間、非晶質炭素同士の間、非晶質炭素と結着剤との間、非晶質炭素と集電体との間、結着剤同士の間、結着剤と集電体との間に形成される。これらの空隙を通して電解液が正極活物質層内を良好に移動できる。正極活物質層の空隙率は24%以上28%以下である。正極活物質層の空隙率が低すぎると、リチウムイオンの移動が円滑に行われにくくなり、リチウムイオン二次電池の抵抗が高くなるおそれがある。正極活物質層の空隙率が高すぎると、導電助剤同士が接触しにくくなり、導電パスが形成しにくくなって、抵抗が高くなるおそれがある。   The positive electrode active material layer further includes voids. The gap is between the positive electrode active materials, between the positive electrode active material and scaly graphite, between the positive electrode active material and amorphous carbon, between the positive electrode active material and the binder, and between the positive electrode active material and the current collector. Between flaky graphite, between flaky graphite, between flaky graphite and amorphous carbon, between flaky graphite and binder, between flaky graphite and current collector, between amorphous carbon And between the amorphous carbon and the binder, between the amorphous carbon and the current collector, between the binders, and between the binder and the current collector. Through these voids, the electrolyte can move favorably in the positive electrode active material layer. The porosity of the positive electrode active material layer is 24% or more and 28% or less. If the porosity of the positive electrode active material layer is too low, lithium ions will not move smoothly and the resistance of the lithium ion secondary battery may be increased. When the porosity of the positive electrode active material layer is too high, it becomes difficult for the conductive assistants to come into contact with each other, and it becomes difficult to form a conductive path, which may increase the resistance.

正極活物質層の目付けは17mg/cm以上30mg/cm以下であることが好ましい。正極活物質層の目付けは17mg/cm以上20mg/cm以下であることがより好ましい。正極活物質層の目付けは、正極活物質層全体の質量を集電体の正極活物質層の形成された面の面積で割ることによって求められる。目付けが低すぎると、電池容量が低いおそれがある。目付けが高すぎると、所望の出力特性が出ないことがある。 The basis weight of the positive electrode active material layer is preferably 17 mg / cm 2 or more and 30 mg / cm 2 or less. The basis weight of the positive electrode active material layer is more preferably 17 mg / cm 2 or more and 20 mg / cm 2 or less. The basis weight of the positive electrode active material layer is determined by dividing the mass of the entire positive electrode active material layer by the area of the surface of the current collector on which the positive electrode active material layer is formed. If the basis weight is too low, the battery capacity may be low. If the basis weight is too high, desired output characteristics may not be obtained.

正極活物質層の密度は2.7g/cm以上3.5g/cm以下であることが好ましい。正極活物質層の密度は2.9g/cm以上3.3g/cm以下であることがより好ましい。正極活物質層の密度は、正極活物質層全体の質量を正極活物質層の見かけの体積で割ることによって求められる。正極活物質層の密度が低すぎると、電池容量が低くなるおそれがある。正極活物質層の密度が高すぎると、所望の出力特性が出ないことがある。 The density of the positive electrode active material layer is preferably 2.7 g / cm 3 or more and 3.5 g / cm 3 or less. The density of the positive electrode active material layer is more preferably 2.9 g / cm 3 or more and 3.3 g / cm 3 or less. The density of the positive electrode active material layer is determined by dividing the mass of the entire positive electrode active material layer by the apparent volume of the positive electrode active material layer. If the density of the positive electrode active material layer is too low, the battery capacity may be reduced. If the density of the positive electrode active material layer is too high, desired output characteristics may not be obtained.

正極活物質層の厚みは50μm以上100μm以下であることが好ましい。正極活物質層の厚みは、正極の厚みを測定し、その測定値から使用した集電体の厚みを引くことで計算できる。正極の高容量化の観点より、正極活物質層の厚みは50μm以上であることが好ましい。正極活物質層が薄すぎると、正極中の集電体が占める割合が増加するので、リチウムイオン二次電池が巻回型でも積層型でも、電池のエネルギー密度が減少する。正極活物質層の厚みが厚すぎると、正極活物質層においてリチウムイオンの正極活物質への吸蔵及び放出が深さ方向において均一に行われにくくなる。   The thickness of the positive electrode active material layer is preferably 50 μm or more and 100 μm or less. The thickness of the positive electrode active material layer can be calculated by measuring the thickness of the positive electrode and subtracting the thickness of the current collector used from the measured value. From the viewpoint of increasing the capacity of the positive electrode, the thickness of the positive electrode active material layer is preferably 50 μm or more. When the positive electrode active material layer is too thin, the ratio of the current collector in the positive electrode increases, so that the energy density of the battery is reduced regardless of whether the lithium ion secondary battery is a wound type or a stacked type. If the thickness of the positive electrode active material layer is too thick, it becomes difficult for the positive electrode active material layer to uniformly absorb and release lithium ions into the positive electrode active material in the depth direction.

ここで図1に本発明のリチウムイオン二次電池用正極の好ましい一態様を模式的に表す断面図を示す。図1に示すように、このリチウムイオン二次電池用正極は、集電体1と、集電体1の表面に形成された正極活物質層2とからなる。正極活物質層2は、正極活物質3と、鱗片状黒鉛41と非晶質炭素42と結着剤5とからなる。正極活物質層2には、空隙6が多数存在する。空隙6は、正極活物質3同士の間、正極活物質3と鱗片状黒鉛41との間、正極活物質3と非晶質炭素42との間、正極活物質3と結着剤5との間、正極活物質3と集電体1との間、鱗片状黒鉛41同士の間、鱗片状黒鉛41と非晶質炭素42の間、鱗片状黒鉛41と結着剤5との間、鱗片状黒鉛41と集電体1との間、非晶質炭素42同士の間、非晶質炭素42と結着剤5との間、非晶質炭素42と集電体1との間、結着剤5同士の間、結着剤5と集電体1との間に形成される。これらの空隙6を通して電解液が正極活物質層2内を良好に移動できる。   Here, FIG. 1 is a sectional view schematically showing a preferred embodiment of the positive electrode for a lithium ion secondary battery of the present invention. As shown in FIG. 1, the positive electrode for a lithium ion secondary battery includes a current collector 1 and a positive electrode active material layer 2 formed on the surface of the current collector 1. The positive electrode active material layer 2 includes a positive electrode active material 3, scaly graphite 41, amorphous carbon 42, and a binder 5. A large number of voids 6 exist in the positive electrode active material layer 2. The gap 6 is formed between the positive electrode active materials 3, between the positive electrode active material 3 and the flaky graphite 41, between the positive electrode active material 3 and the amorphous carbon 42, and between the positive electrode active material 3 and the binder 5. Between the positive electrode active material 3 and the current collector 1, between the flaky graphites 41, between the flaky graphite 41 and the amorphous carbon 42, between the flaky graphite 41 and the binder 5, and between the flaky graphite Between the graphite graphite 41 and the current collector 1, between the amorphous carbons 42, between the amorphous carbon 42 and the binder 5, between the amorphous carbon 42 and the current collector 1, It is formed between the adhesives 5 and between the binder 5 and the current collector 1. Through these voids 6, the electrolytic solution can move well in the positive electrode active material layer 2.

好ましい一態様において、正極活物質3は粉末形状であり、鱗片状黒鉛41は正極活物質3の平均粒径D50と同等かそれよりも小さい平均粒径D50を有する薄片である。鱗片状黒鉛41は集電体1と各正極活物質3の形成する隙間に配置され、一個の鱗片状黒鉛41によってでも正極活物質層2内で長距離の導電パスを形成することができる。好ましい一態様において非晶質炭素42は粉末形状であり、非晶質炭素42の平均粒径D50は、正極活物質3の平均粒径D50及び鱗片状黒鉛41の平均粒径D50に比べて小さい。そのため、非晶質炭素42は、集電体1、各正極活物質3及び各鱗片状黒鉛41の作る隙間に入り込む。非晶質炭素42は、各隙間に入り込むことによって、各鱗片状黒鉛41同士を電気的につなぐことができる。このようにして非晶質炭素42は鱗片状黒鉛41と協働して正極活物質層内に良好な導電パスを形成する。 In a preferred embodiment, the positive electrode active material 3 is in a powder form, and the flaky graphite 41 is a flake having an average particle diameter D 50 that is equal to or smaller than the average particle diameter D 50 of the positive electrode active material 3. The scaly graphite 41 is disposed in a gap formed between the current collector 1 and each positive electrode active material 3, and a long-distance conductive path can be formed in the positive electrode active material layer 2 even with one scaly graphite 41. Preferred amorphous carbon 42 in one embodiment is a powder form, the average particle diameter D 50 of amorphous carbon 42, the average particle diameter D 50 and the average particle diameter D 50 of the flake graphite 41 of the positive electrode active material 3 Smaller than that. Therefore, the amorphous carbon 42 enters a gap formed by the current collector 1, each positive electrode active material 3, and each scaly graphite 41. The amorphous carbon 42 can electrically connect the flaky graphites 41 by entering the gaps. In this way, the amorphous carbon 42 cooperates with the flaky graphite 41 to form a good conductive path in the positive electrode active material layer.

非晶質炭素42の含有量は、鱗片状黒鉛41の含有量の1倍以上5倍以下である。正極活物質層2内では正極活物質3と集電体1との間に鱗片状黒鉛41と非晶質炭素42とにより導電パスが形成され、良好な導電性が確保される。そのため本発明のリチウムイオン二次電池用正極における抵抗の増加が抑制される。   The content of the amorphous carbon 42 is 1 to 5 times the content of the scaly graphite 41. In the positive electrode active material layer 2, a conductive path is formed by the flaky graphite 41 and the amorphous carbon 42 between the positive electrode active material 3 and the current collector 1, and good conductivity is ensured. Therefore, an increase in resistance in the positive electrode for a lithium ion secondary battery of the present invention is suppressed.

正極は、上記正極活物質と導電助剤と結着剤とを含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶媒を加えてペースト状にしてから、集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。   A positive electrode is prepared by preparing a composition for forming a positive electrode active material layer containing the positive electrode active material, a conductive additive, and a binder, and further adding a suitable solvent to the composition to form a paste. After coating on the surface of the film, it can be dried and, if necessary, compressed to increase the electrode density.

正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。   As a method for applying the composition for forming a positive electrode active material layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method may be used.

粘度調整のための溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)、水などが使用可能である。   As the solvent for adjusting the viscosity, for example, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK), water and the like can be used.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、本発明の正極を備えている。本発明のリチウムイオン二次電池において、負極、セパレータ及び電解液は公知のものを用いることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention includes the positive electrode of the present invention. In the lithium ion secondary battery of the present invention, known materials can be used for the negative electrode, the separator and the electrolytic solution.

負極は、集電体と、集電体の表面に結着させた負極活物質層とを有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて負極用導電助剤を含む。集電体、結着剤は正極で説明したものと同様である。   The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. The negative electrode active material layer includes a negative electrode active material and a binder, and optionally includes a negative electrode conductive additive. The current collector and the binder are the same as those described for the positive electrode.

負極活物質としては、リチウムイオンを吸蔵及び放出し得る材料が使用可能である。従って、負極活物質としては、リチウムイオンを吸蔵及び放出可能である単体、合金または化合物であれば特に限定はない。負極活物質として、例えば、Liや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。ケイ素などを負極活物質に採用すると、ケイ素1原子が複数のリチウムと反応するため、高容量の活物質となるが、リチウムの吸蔵及び放出に伴う体積の膨張及び収縮が顕著となるとの問題が生じる恐れがある。当該恐れの軽減のために、ケイ素などの単体に遷移金属などの他の元素を組み合わせた合金又は化合物を負極活物質として採用するのも好適である。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.5≦x≦1.5)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。 As the negative electrode active material, a material capable of inserting and extracting lithium ions can be used. Accordingly, the negative electrode active material is not particularly limited as long as it is a simple substance, an alloy, or a compound that can occlude and release lithium ions. Examples of the negative electrode active material include Li, group 14 elements such as carbon, silicon, germanium, and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, group 15 elements such as antimony and bismuth, An alkaline earth metal such as magnesium or calcium, or a group 11 element such as silver or gold may be used alone. When silicon or the like is used for the negative electrode active material, a silicon atom reacts with a plurality of lithiums, so that it becomes a high-capacity active material. However, there is a problem that volume expansion and contraction due to insertion and extraction of lithium becomes significant. May occur. In order to reduce the fear, it is also preferable to employ an alloy or compound in which another element such as a transition metal is combined with a simple substance such as silicon as the negative electrode active material. Specific examples of the alloy or compound include tin-based materials such as Ag-Sn alloy, Cu-Sn alloy, Co-Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated to silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.5 ≦ x ≦ 1.5), silicon alone, or a composite of a silicon-based material and a carbon-based material.

炭素系材料としては、例えば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。   Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, natural graphite, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon, and carbon blacks. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.

また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 In addition, as the negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material.

負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.1μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。負極活物質の平均粒径D50が小さすぎると、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、サイクル特性が悪くなるおそれがある。また、負極活物質の平均粒径D50が大きすぎると、導電性が低い負極活物質を用いた場合、電極全体の導電性が不均一になり、充放電特性が低下するおそれがある。 The negative electrode active material is preferably in powder form. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.1μm or more 30μm or less, and more preferably 1μm or more 20μm or less. When the average particle diameter D 50 of the negative electrode active material is too small, the specific surface area of the powder of the negative electrode active material is increased, it increases the contact area of the powder of the anode active material and the electrolyte solution, proceed decomposition of the electrolyte solution As a result, the cycle characteristics may be deteriorated. If the average particle diameter D 50 of the negative electrode active material is too large, if the conductivity using a low negative electrode active material, conductive entire electrode becomes uneven, charging and discharging characteristics may deteriorate.

特に負極活物質として高容量の理論容量を有するSiO(0.5≦x≦1.5)を用いることが好ましい。 In particular, SiO x (0.5 ≦ x ≦ 1.5) having a high capacity theoretical capacity is preferably used as the negative electrode active material.

負極用導電助剤としては、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VGCF)等が例示される。これらの負極用導電助剤は、単独で又は二種以上組み合わせて用いることができる。負極用導電助剤の使用量については、特に限定的ではないが、例えば、負極に含有される活物質100質量部に対して、負極用導電助剤を1質量部〜30質量部程度とすることができる。   Examples of the conductive aid for the negative electrode include carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), and vapor grown carbon fiber (VGCF), which are carbonaceous fine particles. These conductive additives for negative electrodes can be used alone or in combination of two or more. The amount of the conductive additive for the negative electrode is not particularly limited. For example, the conductive additive for the negative electrode is about 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the active material contained in the negative electrode. be able to.

セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、例えば、ポリテトラフルオロエチレン、ポリプロピレン、あるいはポリエチレンなどの合成樹脂製の多孔質膜、又はセラミックス製の多孔質膜が使用できる。   The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. As the separator, for example, a porous film made of a synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.

電解液は溶媒とこの溶媒に溶解された電解質とを含んでいる。   The electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.

溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、1、4−ジオキサン、1、2−ジメトキシエタン、1、2−ジエトキシエタン、1、2−ジブトキシエタンが使用できる。   As the solvent, for example, cyclic esters, chain esters, and ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. As ethers, for example, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane can be used.

また上記電解液に溶解させる電解質として、例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 Moreover, as an electrolyte dissolved in the electrolytic solution, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.

電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As an electrolytic solution, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added to a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate, and the like from 0.5 mol / l to 1.7 mol / l. A solution dissolved at a certain concentration can be used.

上記リチウムイオン二次電池は車両に搭載することができる。上記リチウムイオン二次電池は、高容量でかつ抵抗を低くできるため、そのリチウムイオン二次電池を搭載した車両は、出力及び寿命の面で高性能となる。   The lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery has a high capacity and a low resistance, a vehicle equipped with the lithium ion secondary battery has high performance in terms of output and life.

車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。   The vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or a part of its power source, such as an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, and an electric forklift. , Electric wheelchairs, electric assist bicycles, electric motorcycles. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles.

以上、本発明のリチウムイオン二次電池用正極及びリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the positive electrode for lithium ion secondary batteries and lithium ion secondary battery of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下、実施例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<ラミネート型リチウムイオン二次電池作製>
[正極の作製]
正極活物質として平均粒径D50が10μmのLiNi0.5Co0.2Mn0.3と、鱗片状黒鉛として、平均粒径D50が5μmの鱗片状黒鉛及び平均粒径D50が10μmの鱗片状黒鉛と、非晶質炭素として平均粒径D50が50nmのアセチレンブラック(AB)と、結着剤としてポリフッ化ビニリデン(PVDF)とを準備した。ここで鱗片状黒鉛の電気抵抗率は0.0014Ω・cmであり、ABの電気抵抗率は0.14Ω・cmであった。LiNi0.5Co0.2Mn0.3の真密度は4.69g/cmであり、平均粒径D50が5μmの鱗片状黒鉛の真密度は2.23g/cmであり、平均粒径D50が10μmの鱗片状黒鉛の真密度は2.23g/cmであり、ABの真密度は1.31g/cmであり、PVDFの真密度は1.71g/cmであった。
<Production of laminated lithium-ion secondary battery>
[Production of positive electrode]
LiNi 0.5 Co 0.2 Mn 0.3 O 2 having an average particle diameter D 50 of 10 μm as a positive electrode active material, and flaky graphite having an average particle diameter D 50 of 5 μm and an average particle diameter D 50 as flaky graphite. Of 10-μm scale graphite, acetylene black (AB) having an average particle diameter D 50 of 50 nm as amorphous carbon, and polyvinylidene fluoride (PVDF) as a binder were prepared. Here, the electrical resistivity of the flake graphite was 0.0014 Ω · cm, and the electrical resistivity of AB was 0.14 Ω · cm. True density of LiNi 0.5 Co 0.2 Mn 0.3 O 2 is 4.69 g / cm 3, the true density of the average particle diameter D 50 of 5μm flake graphite is at 2.23 g / cm 3 , true density of the average particle diameter D 50 of 10μm flake graphite is 2.23 g / cm 3, the true density of the AB is 1.31 g / cm 3, the true density of PVDF is 1.71 g / cm 3 Met.

(実施例1)
94質量%のLiNi0.5Co0.2Mn0.3と0.5質量%の平均粒径D50が5μmの鱗片状黒鉛と2.5質量%のABと3質量%のPVDFとを、混合し、正極活物質層形成用組成物を作成した。この正極活物質層形成用組成物を適量のN−メチル−2−ピロリドン(NMP)に分散させて、スラリーを作製した。
Example 1
94% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , 0.5% by mass of the average particle diameter D 50 of scaly graphite having 5 μm, 2.5% by mass of AB and 3% by mass of PVDF Were mixed to prepare a composition for forming a positive electrode active material layer. This positive electrode active material layer forming composition was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.

集電体として厚み20μmのアルミニウム箔を準備した。ドクターブレードを用いて膜状になるように集電体にスラリーを塗布した。スラリーを塗布したアルミニウム箔を80℃で20分間乾燥してNMPを揮発により除去することによって、アルミニウム箔の表面に正極活物質層を形成した。その後、ロ−ルプレス機により、アルミニウム箔とアルミニウム箔上の正極活物質層を強固に密着接合させた。ここで、正極活物質層の目付けは18.4mg/cmとした。接合物を120℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、実施例1の正極とした。実施例1の正極の正極活物質層の厚さは59μm程度であった。 An aluminum foil having a thickness of 20 μm was prepared as a current collector. The slurry was applied to the current collector so as to form a film using a doctor blade. The aluminum foil coated with the slurry was dried at 80 ° C. for 20 minutes, and NMP was removed by volatilization to form a positive electrode active material layer on the surface of the aluminum foil. Thereafter, the aluminum foil and the positive electrode active material layer on the aluminum foil were firmly bonded to each other by a roll press. Here, the basis weight of the positive electrode active material layer was 18.4 mg / cm 2 . The joined product was heated with a vacuum dryer at 120 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and used as the positive electrode of Example 1. The thickness of the positive electrode active material layer of the positive electrode of Example 1 was about 59 μm.

実施例1の正極の密度及び空隙率を算出した。実施例1の正極活物質層の密度は3.1g/cmであり、実施例1の正極活物質層の空隙率は27.0%であった。 The density and porosity of the positive electrode of Example 1 were calculated. The density of the positive electrode active material layer of Example 1 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Example 1 was 27.0%.

[負極の作製]
負極は以下のように作製した。
[Production of negative electrode]
The negative electrode was produced as follows.

98質量%の平均粒径D50が20μmの黒鉛粉末と、結着剤として、1質量%のスチレン−ブタジエンゴム(SBR)及び0.7質量%のカルボキシメチルセルロース(CMC)とを混合し、この混合物を適量の蒸留水に分散させてスラリーを作製した。ドクターブレードを用いて負極用集電体である厚み10μmの銅箔にこのスラリーを膜状になるように塗布し、スラリーを塗布した集電体を乾燥後プレスした。負極の負極活物質層の目付けは11.1mg/cmとした。接合物を80℃で6時間、真空乾燥機で加熱し、所定の形状(25mm×30mmの矩形状)に切り取り、負極とした。この負極の負極活物質層の厚さは84μm程度であった。 98 weight% of the average particle diameter D 50 of the graphite powder of 20 [mu] m, as a binder, 1 wt% styrene - mixing a butadiene rubber (SBR) and 0.7 wt% carboxymethyl cellulose (CMC), the The mixture was dispersed in an appropriate amount of distilled water to prepare a slurry. This slurry was applied to a copper foil having a thickness of 10 μm, which is a negative electrode current collector, using a doctor blade so as to form a film, and the current collector coated with the slurry was dried and pressed. The basis weight of the negative electrode active material layer of the negative electrode was 11.1 mg / cm 2 . The joined product was heated with a vacuum dryer at 80 ° C. for 6 hours, cut into a predetermined shape (rectangular shape of 25 mm × 30 mm), and used as a negative electrode. The thickness of the negative electrode active material layer of this negative electrode was about 84 μm.

[ラミネート型リチウムイオン二次電池の作製]
上記の実施例1の正極及び上記負極を用いて、ラミネート型リチウムイオン二次電池を作製した。詳しくは、正極及び負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液として、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、フルオロエチレンカーボネート(FEC)をEC:EMC:DMC:FEC=26:30:40:4(体積比)で混合した溶媒にLiPFを1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群及び電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極及び負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。
[Production of laminated lithium-ion secondary battery]
Using the positive electrode and the negative electrode in Example 1, a laminate type lithium ion secondary battery was produced. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. As an electrolytic solution, ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and fluoroethylene carbonate (FEC) are EC: EMC: DMC: FEC = 26: 30: 40: 4 (volume ratio). A solution obtained by dissolving LiPF 6 in a mixed solvent so as to be 1 mol / l was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode each have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. The laminated lithium ion secondary battery of Example 1 was produced through the above steps.

(実施例2)
導電助剤として平均粒径D50が5μmの鱗片状黒鉛1.0質量%とAB2.0質量%を混合して用いたこと以外は、実施例1と同様にして実施例2のラミネート型リチウムイオン二次電池を作製した。実施例2の正極の正極活物質層の目付けは18.4mg/cmであり、実施例2の正極の正極活物質層の厚さは59μm程度であった。実施例2の正極活物質層の密度は3.1g/cmであり、実施例2の正極活物質層の空隙率は27.2%であった。
(Example 2)
As except that the average particle diameter D 50 was used a mixture of 1.0 wt% and AB2.0 wt% flake graphite 5μm conductive additive, laminated lithium of Example 2 in the same manner as in Example 1 An ion secondary battery was produced. The basis weight of the positive electrode active material layer of the positive electrode of Example 2 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Example 2 was about 59 μm. The density of the positive electrode active material layer of Example 2 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Example 2 was 27.2%.

(実施例3)
導電助剤として平均粒径D50が5μmの鱗片状黒鉛1.5質量%とAB1.5質量%を混合して用いたこと以外は、実施例1と同様にして実施例3のラミネート型リチウムイオン二次電池を作製した。実施例3の正極の正極活物質層の目付けは18.4mg/cmであり、実施例3の正極の正極活物質層の厚さは59μm程度であった。実施例3の正極活物質層の密度は3.1g/cmであり、実施例3の正極活物質層の空隙率は27.4%であった。
(Example 3)
As except that the average particle diameter D 50 was used a mixture of 1.5 wt% and AB1.5 wt% flake graphite 5μm conductive additive, laminated lithium of Example 3 in the same manner as in Example 1 An ion secondary battery was produced. The basis weight of the positive electrode active material layer of the positive electrode of Example 3 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Example 3 was about 59 μm. The density of the positive electrode active material layer of Example 3 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Example 3 was 27.4%.

(実施例4)
平均粒径D50が5μmの鱗片状黒鉛に代えて平均粒径D50が10μmの鱗片状黒鉛を用いたこと以外は実施例2と同様にして実施例4のラミネート型リチウムイオン二次電池を作製した。実施例4の正極の正極活物質層の目付けは18.4mg/cmであり、実施例4の正極の正極活物質層の厚さは59μm程度であった。実施例4の正極活物質層の密度は3.1g/cmであり、実施例4の正極活物質層の空隙率は27.2%であった。
Example 4
A laminated lithium ion secondary battery of Example 4 was obtained in the same manner as in Example 2 except that flaky graphite having an average particle diameter D 50 of 10 μm was used instead of the flaky graphite having an average particle diameter D 50 of 5 μm. Produced. The basis weight of the positive electrode active material layer of the positive electrode of Example 4 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Example 4 was about 59 μm. The density of the positive electrode active material layer of Example 4 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Example 4 was 27.2%.

(実施例5)
92質量%のLiNi0.5Co0.2Mn0.3と1.7質量%の平均粒径D50が5μmの鱗片状黒鉛と3.3質量%のABと3質量%のPVDFとを混合して用いたこと以外は、実施例1と同様にして実施例5のラミネート型リチウムイオン二次電池を作製した。実施例5の正極の正極活物質層の目付けは18.4mg/cmであり、実施例5の正極の正極活物質層の厚さは59μm程度であった。実施例5の正極活物質層の密度は3.1g/cmであり、実施例5の正極活物質層の空隙率は25.3%であった。
(Example 5)
92% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , 1.7% by mass of an average particle diameter D 50 of 5 μm of flaky graphite, 3.3% by mass of AB and 3% by mass of PVDF A laminate type lithium ion secondary battery of Example 5 was produced in the same manner as in Example 1 except that was used as a mixture. The basis weight of the positive electrode active material layer of the positive electrode of Example 5 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Example 5 was about 59 μm. The density of the positive electrode active material layer of Example 5 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Example 5 was 25.3%.

(比較例1)
導電助剤としてAB3.0質量%を用いたこと以外は、実施例1と同様にして比較例1のラミネート型リチウムイオン二次電池を作製した。比較例1の正極の正極活物質層の目付けは18.4mg/cmであり、比較例1の正極の正極活物質層の厚さは59μm程度であった。比較例1の正極活物質層の密度は3.1g/cmであり、比較例1の正極活物質層の空隙率は26.9%であった。
(Comparative Example 1)
A laminated lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that AB 3.0% by mass was used as the conductive additive. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 1 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 1 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 1 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 1 was 26.9%.

(比較例2)
導電助剤として平均粒径D50が5μmの鱗片状黒鉛2.0質量%とAB1.0質量%を混合して用いたこと以外は、実施例1と同様にして比較例2のラミネート型リチウムイオン二次電池を作製した。比較例2の正極の正極活物質層の目付けは18.4mg/cmであり、比較例2の正極の正極活物質層の厚さは59μm程度であった。比較例2の正極活物質層の密度は3.1g/cmであり、比較例2の正極活物質層の空隙率は27.5%であった。
(Comparative Example 2)
As except that the average particle diameter D 50 was used a mixture of 2.0 wt% and AB1.0 wt% flake graphite 5μm conductive additive, laminated lithium in Comparative Example 2 in the same manner as in Example 1 An ion secondary battery was produced. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 2 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 2 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 2 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 2 was 27.5%.

(比較例3)
導電助剤として平均粒径D50が5μmの鱗片状黒鉛に代えて平均粒径D50が10μmの鱗片状黒鉛を用いたこと以外は比較例2と同様にして比較例3のラミネート型リチウムイオン二次電池を作製した。比較例3の正極の正極活物質層の目付けは18.4mg/cmであり、比較例3の正極の正極活物質層の厚さは59μm程度であった。比較例3の正極活物質層の密度は3.1g/cmであり、比較例3の正極活物質層の空隙率は27.5%であった。
(Comparative Example 3)
Laminated lithium ion with an average particle diameter D 50 except that flaky graphite average particle size D 50 in place of 5μm was used flake graphite of 10μm Comparative Example 2 in analogy to comparative example 3 as a conductive additive A secondary battery was produced. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 3 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 3 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 3 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 3 was 27.5%.

(比較例4)
95質量%のLiNi0.5Co0.2Mn0.3と0.7質量%の平均粒径D50が5μmの鱗片状黒鉛と1.3質量%のABと3質量%のPVDFとを混合して用いたこと以外は、実施例1と同様にして比較例4のラミネート型リチウムイオン二次電池を作製した。比較例4の正極の正極活物質層の目付けは18.4mg/cmであり、比較例4の正極の正極活物質層の厚さは59μm程度であった。比較例4の正極活物質層の密度は3.1g/cmであり、比較例4の正極活物質層の空隙率は28.2%であった。
(Comparative Example 4)
95% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , 0.7% by mass of an average particle diameter D 50 of 5 μm of flaky graphite, 1.3% by mass of AB and 3% by mass of PVDF A laminate type lithium ion secondary battery of Comparative Example 4 was produced in the same manner as in Example 1 except that was used as a mixture. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 4 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 4 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 4 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 4 was 28.2%.

(比較例5)
90質量%のLiNi0.5Co0.2Mn0.3と2.4質量%の平均粒径D50が5μmの鱗片状黒鉛と4.6質量%のABと3質量%のPVDFとを混合して用いたこと以外は、実施例1と同様にして比較例5のラミネート型リチウムイオン二次電池を作製した。比較例5の正極の正極活物質層の目付けは18.4mg/cmであり、比較例5の正極の正極活物質層の厚さは59μm程度であった。比較例5の正極活物質層の密度は3.1g/cmであり、比較例5の正極活物質層の空隙率は23.4%であった。
(Comparative Example 5)
90% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , 2.4% by mass of average particle diameter D 50 of scaly graphite having 5 μm, 4.6% by mass of AB and 3% by mass of PVDF A laminate type lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 1 except that was used as a mixture. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 5 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 5 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 5 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 5 was 23.4%.

(比較例6)
93質量%のLiNi0.5Co0.2Mn0.3と3.0質量%の平均粒径D50が10μmの鱗片状黒鉛と1.0質量%のABと3質量%のPVDFとを混合して用いたこと以外は、実施例1と同様にして比較例6のラミネート型リチウムイオン二次電池を作製した。比較例6の正極の正極活物質層の目付けは18.4mg/cmであり、比較例6の正極の正極活物質層の厚さは59μm程度であった。比較例6の正極活物質層の密度は3.1g/cmであり、比較例6の正極活物質層の空隙率は26.8%であった。
(Comparative Example 6)
93% by mass of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , 3.0% by mass of an average particle diameter D 50 of 10 μm of flaky graphite, 1.0% by mass of AB and 3% by mass of PVDF A laminate type lithium ion secondary battery of Comparative Example 6 was produced in the same manner as in Example 1 except that was used as a mixture. The basis weight of the positive electrode active material layer of the positive electrode of Comparative Example 6 was 18.4 mg / cm 2 , and the thickness of the positive electrode active material layer of the positive electrode of Comparative Example 6 was about 59 μm. The density of the positive electrode active material layer of Comparative Example 6 was 3.1 g / cm 3 , and the porosity of the positive electrode active material layer of Comparative Example 6 was 26.8%.

<セル抵抗評価>
実施例1〜4、比較例1〜3のラミネート型リチウムイオン二次電池のセル抵抗を測定した。セル抵抗(Ω)は、SOC(State of charge)20%時の電圧にて2.5Cレート、10秒放電にて測定した。さらに、実施例2、実施例5、比較例4、比較例5及び比較例6のラミネート型リチウムイオン二次電池のセル抵抗を、SOC(State of charge)10%時の電圧にて2.5Cレート、10秒放電にて測定した。
<Cell resistance evaluation>
The cell resistances of the laminated lithium ion secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were measured. The cell resistance (Ω) was measured at a voltage of 20% SOC (State of charge) at 2.5 C rate and 10 seconds discharge. Furthermore, the cell resistance of the laminated lithium ion secondary batteries of Example 2, Example 5, Comparative Example 4, Comparative Example 5 and Comparative Example 6 is 2.5 C at a voltage of 10% SOC (State of charge). The rate was measured at 10 seconds discharge.

セル抵抗の値が小さい方が正極の抵抗が低いことを示す。またセル抵抗は2.5Cレートで測定されているので、このセル抵抗の測定値は高レート特性を示す指標ともなる。各実施例及び各比較例は同じ構成の電池を各6個ずつ作成し、各電池の抵抗を測定し、その平均値を計算した。   A smaller cell resistance value indicates a lower positive electrode resistance. Further, since the cell resistance is measured at a 2.5 C rate, the measured value of the cell resistance is also an index indicating high rate characteristics. In each example and each comparative example, six batteries each having the same configuration were prepared, the resistance of each battery was measured, and the average value was calculated.

実施例1〜4、比較例1〜3のセル抵抗の平均値の結果を図2に示す。図3に実施例2、実施例5、比較例4及び比較例5のセル抵抗と空隙率とを比較するグラフを示す。   The result of the average value of the cell resistance of Examples 1-4 and Comparative Examples 1-3 is shown in FIG. FIG. 3 shows a graph comparing the cell resistance and the porosity of Example 2, Example 5, Comparative Example 4 and Comparative Example 5.

各実施例及び比較例の正極活物質層成分の配合比、空隙率及びセル抵抗の平均値を表1にまとめて示す。   Table 1 summarizes the compounding ratio, porosity, and cell resistance of the positive electrode active material layer components of each example and comparative example.

Figure 2016009543
Figure 2016009543

図2及び表1に見られるように実施例1〜実施例4のラミネート型リチウムイオン二次電池のSOC20%時のセル抵抗の平均値はどれも5Ωより低かった。比較例1〜3のラミネート型リチウムイオン二次電池のSOC20%時のセル抵抗は5Ωよりも高かった。ここで比較例1のラミネート型リチウムイオン二次電池では正極の導電助剤として鱗片状黒鉛が添加されていない。したがって正極活物質層に鱗片状黒鉛が添加されていないとセル抵抗の増加を抑制しにくいことが確認できた。また比較例2のラミネート型リチウムイオン二次電池には鱗片状黒鉛が2.0質量%、ABが1.0質量%添加されている。ここで鱗片状黒鉛が添加されている比較例2のラミネート型リチウムイオン二次電池のセル抵抗は、鱗片状黒鉛が添加されていないがABが3.0質量%添加された比較例1のラミネート型リチウムイオン二次電池のセル抵抗よりも高かった。このことから鱗片状黒鉛が添加されていても非晶質炭素の割合が低いとセル抵抗の増加を抑制しにくいことがわかった。比較例2のラミネート型リチウムイオン二次電池のセル抵抗が比較例1のラミネート型リチウムイオン二次電池のセル抵抗よりも高い理由は、鱗片状黒鉛の含有量に対して非晶質炭素の含有量が少ないために導電パスがうまく形成できなかったためと推測される。比較例6のラミネート型リチウムイオン二次電池においても同様にSOC10%時のセル抵抗が実施例2、実施例5、比較例4及び比較例5のラミネート型リチウムイオン二次電池のSOC10%時のセル抵抗よりも高くなった。   As can be seen in FIG. 2 and Table 1, all of the average cell resistance values at 20% SOC of the laminated lithium ion secondary batteries of Examples 1 to 4 were lower than 5Ω. The cell resistance at 20% SOC of the laminated lithium ion secondary batteries of Comparative Examples 1 to 3 was higher than 5Ω. Here, in the laminate type lithium ion secondary battery of Comparative Example 1, scaly graphite is not added as a conductive additive for the positive electrode. Therefore, it was confirmed that it was difficult to suppress an increase in cell resistance unless flaky graphite was added to the positive electrode active material layer. Further, the laminated lithium ion secondary battery of Comparative Example 2 is added with 2.0% by mass of flake graphite and 1.0% by mass of AB. Here, the cell resistance of the laminate-type lithium ion secondary battery of Comparative Example 2 to which flaky graphite is added is the laminate of Comparative Example 1 to which 3.0% by mass of AB is added although flaky graphite is not added. Higher than the cell resistance of the lithium ion secondary battery. This indicates that even if scaly graphite is added, an increase in cell resistance is difficult to suppress if the proportion of amorphous carbon is low. The reason why the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 2 is higher than the cell resistance of the laminate type lithium ion secondary battery of Comparative Example 1 is that the content of amorphous carbon is contained with respect to the content of flake graphite. It is presumed that the conductive path could not be formed well due to the small amount. Similarly, in the laminated lithium ion secondary battery of Comparative Example 6, the cell resistance at 10% SOC was 10% when the SOC of the laminated lithium ion secondary battery of Example 2, Example 5, Comparative Example 4 and Comparative Example 5 was 10%. It became higher than the cell resistance.

また平均粒径D50が10μmの鱗片状黒鉛を使用した実施例4のラミネート型リチウムイオン二次電池も、実施例4と同じ質量%の平均粒径D50が5μmの鱗片状黒鉛を使用した実施例2のラミネート型リチウムイオン二次電池と同様に、比較例1〜3のラミネート型リチウムイオン二次電池よりもSOC20%時のセル抵抗の平均値が低かった。実施例4のラミネート型リチウムイオン二次電池も実施例2のラミネート型リチウムイオン二次電池もどちらも正極活物質の平均粒径D50は10μmであった。従って正極活物質の平均粒径D50と同等の平均粒径D50を有する鱗片状黒鉛を使用してもラミネート型リチウムイオン二次電池のセル抵抗の増加を抑制できることが確認できた。 In addition, the laminated lithium ion secondary battery of Example 4 using flaky graphite having an average particle diameter D 50 of 10 μm also used flaky graphite having an average particle diameter D 50 of 5 μm of the same mass% as in Example 4. Similar to the laminate type lithium ion secondary battery of Example 2, the average value of the cell resistance at 20% SOC was lower than that of the laminate type lithium ion secondary batteries of Comparative Examples 1 to 3. The average particle diameter D 50 of the laminated lithium ion secondary battery is also laminated lithium ion secondary Both cell also positive electrode active material of Example 2 of Example 4 was 10 [mu] m. Thus it was confirmed that it was possible to suppress an increase in the cell resistance of the laminated lithium-ion secondary batteries be used scaly graphite having an average particle diameter D 50 and equivalent mean particle diameter D 50 of the positive electrode active material.

ここで、実施例1〜4のラミネート型リチウムイオン二次電池はいずれもセル抵抗が比較例1〜3のラミネート型リチウムイオン二次電池のセル抵抗よりも低かった。実施例1〜4のラミネート型リチウムイオン二次電池における正極の正極活物質層の目付けはいずれも18.4mg/cmであり、高目付けである。したがって正極の正極活物質層を高目付けにしても正極のセル抵抗の増加を抑制できることが確認できた。 Here, all of the laminated lithium ion secondary batteries of Examples 1 to 4 had a cell resistance lower than that of the laminated lithium ion secondary batteries of Comparative Examples 1 to 3. In each of the laminated lithium ion secondary batteries of Examples 1 to 4, the weight of the positive electrode active material layer of the positive electrode is 18.4 mg / cm 2, which is a high weight. Therefore, it was confirmed that the increase in cell resistance of the positive electrode can be suppressed even if the positive electrode active material layer of the positive electrode is high in weight.

また実施例1〜4のラミネート型リチウムイオン二次電池の正極活物質層の厚みはいずれも59μmであり、正極活物質層の厚みが59μmと厚くても正極のセル抵抗の増加を抑制できることが確認できた。   Moreover, the thickness of the positive electrode active material layer of each of the laminated lithium ion secondary batteries of Examples 1 to 4 is 59 μm, and even if the thickness of the positive electrode active material layer is as thick as 59 μm, an increase in cell resistance of the positive electrode can be suppressed. It could be confirmed.

また図3及び表1に見られるように、鱗片状黒鉛の含有量に対して非晶質炭素の含有量が多くなるようにした実施例2、実施例5、比較例4及び比較例5のラミネート型リチウムイオン二次電池において、正極活物質層の空隙率が24%以上28%以下である実施例2及び実施例5のラミネート型リチウムイオン二次電池のSOC10%時のセル抵抗の平均値はどれも2.5Ωより低かった。正極活物質層の空隙率が28.2%の比較例4及び正極活物質層の空隙率が23.4%の比較例5のラミネート型リチウムイオン二次電池のSOC10%時のセル抵抗は2.5Ωよりも高かった。正極活物質層の空隙率が24%以上28%以下であると、正極中の正極活物質の含有量を増大させて正極活物質層の厚さを厚くしてもリチウムイオンの移動は円滑に行われ、かつ導電パスが良好に形成されるため、セル抵抗の増加が抑制されることがわかった。   Moreover, as seen in FIG. 3 and Table 1, the contents of Example 2, Example 5, Comparative Example 4 and Comparative Example 5 in which the content of amorphous carbon was increased relative to the content of scaly graphite. In the laminated lithium ion secondary battery, the average value of the cell resistance when the SOC of the laminated lithium ion secondary battery of Example 2 and Example 5 in which the porosity of the positive electrode active material layer is 24% or more and 28% or less is 10%. All were lower than 2.5Ω. The cell resistance at 10% SOC of the laminate type lithium ion secondary battery of Comparative Example 4 in which the porosity of the positive electrode active material layer was 28.2% and Comparative Example 5 in which the porosity of the positive electrode active material layer was 23.4% was 2 It was higher than 5Ω. When the porosity of the positive electrode active material layer is 24% or more and 28% or less, the movement of lithium ions is smooth even when the content of the positive electrode active material in the positive electrode is increased and the thickness of the positive electrode active material layer is increased. It was found that an increase in cell resistance was suppressed because the conductive path was formed satisfactorily.

1:集電体、2:正極活物質層、3:正極活物質、41:鱗片状黒鉛、42:非晶質炭素、5:結着剤、6:空隙。   1: current collector, 2: positive electrode active material layer, 3: positive electrode active material, 41: flaky graphite, 42: amorphous carbon, 5: binder, 6: void.

Claims (6)

集電体と、
該集電体に結着された正極活物質層とからなり、
該正極活物質層は正極活物質と、導電助剤と、結着剤とを有し、
該導電助剤は、鱗片状黒鉛と非晶質炭素とからなり、
該非晶質炭素の含有量は、該鱗片状黒鉛の含有量の1倍以上5倍以下であり、
該正極活物質層の空隙率は24%以上28%以下であることを特徴とするリチウムイオン二次電池用正極。
A current collector,
A positive electrode active material layer bound to the current collector,
The positive electrode active material layer has a positive electrode active material, a conductive auxiliary agent, and a binder,
The conductive auxiliary agent consists of scaly graphite and amorphous carbon,
The content of the amorphous carbon is 1 to 5 times the content of the scaly graphite,
A positive electrode for a lithium ion secondary battery, wherein the positive electrode active material layer has a porosity of 24% to 28%.
該正極活物質の平均粒径D50は5μm〜15μmであり、
該鱗片状黒鉛の平均粒径D50は1μm以上、かつ該正極活物質の平均粒径D50以下であり、
該非晶質炭素の平均粒径D50は10nm以上100nm以下である請求項1に記載のリチウムイオン二次電池用正極。
The average particle diameter D 50 of the positive electrode active material is 5Myuemu~15myuemu,
The average particle diameter D 50 of該鱗flake graphite 1μm or more and not more than the average particle diameter D 50 of the positive electrode active material,
2. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the average particle diameter D 50 of the amorphous carbon is 10 nm or more and 100 nm or less.
該導電助剤の含有量は該正極活物質層全体を100質量%としたときに2質量%より多く7質量%未満である請求項1又は2に記載のリチウムイオン二次電池用正極。   3. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the content of the conductive auxiliary is more than 2% by mass and less than 7% by mass when the entire positive electrode active material layer is 100% by mass. 該正極活物質層の目付けは17mg/cm以上30mg/cm以下である請求項1〜3のいずれか一項に記載のリチウムイオン二次電池用正極。 4. The positive electrode for a lithium ion secondary battery according to claim 1, wherein the weight of the positive electrode active material layer is 17 mg / cm 2 or more and 30 mg / cm 2 or less. 該正極活物質層の密度は2.9g/cm以上3.3g/cm以下である請求項1〜4のいずれか一項に記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the density of the positive electrode active material layer is 2.9 g / cm 3 or more and 3.3 g / cm 3 or less. 請求項1〜5のいずれか一項に記載のリチウムイオン二次電池用正極を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a positive electrode for lithium ion secondary batteries as described in any one of Claims 1-5.
JP2014128274A 2014-06-23 2014-06-23 Positive electrode for lithium ion secondary battery and lithium ion secondary battery Expired - Fee Related JP6300021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014128274A JP6300021B2 (en) 2014-06-23 2014-06-23 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014128274A JP6300021B2 (en) 2014-06-23 2014-06-23 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016009543A true JP2016009543A (en) 2016-01-18
JP6300021B2 JP6300021B2 (en) 2018-03-28

Family

ID=55226980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014128274A Expired - Fee Related JP6300021B2 (en) 2014-06-23 2014-06-23 Positive electrode for lithium ion secondary battery and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6300021B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640842B (en) * 2016-12-28 2018-11-11 日商松下知識產權經營股份有限公司 Photoresist stripper
CN110366793A (en) * 2017-03-23 2019-10-22 株式会社东芝 Nonaqueous electrolyte battery, battery pack and battery system
WO2022102692A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN114530585A (en) * 2022-02-21 2022-05-24 远景动力技术(江苏)有限公司 Positive electrode, electrochemical device, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218895A (en) * 2012-04-09 2013-10-24 Toyota Motor Corp Electrode and manufacturing method therefor and nonaqueous electrolyte battery having the electrode
JP2015170550A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of positive electrode for lithium secondary battery, positive electrode for lithium secondary battery, and agglomerated material
JP2015220121A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218895A (en) * 2012-04-09 2013-10-24 Toyota Motor Corp Electrode and manufacturing method therefor and nonaqueous electrolyte battery having the electrode
JP2015170550A (en) * 2014-03-10 2015-09-28 トヨタ自動車株式会社 Manufacturing method of positive electrode for lithium secondary battery, positive electrode for lithium secondary battery, and agglomerated material
JP2015220121A (en) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TIMCAL TIMREXR KS4 PRIMARY SYNTHETIC GRAPHITE, JPN6017047887, 6 December 2017 (2017-12-06), ISSN: 0003701599 *
デンカ ブラックR, JPN6017047886, 6 December 2017 (2017-12-06), ISSN: 0003701598 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640842B (en) * 2016-12-28 2018-11-11 日商松下知識產權經營股份有限公司 Photoresist stripper
CN110366793A (en) * 2017-03-23 2019-10-22 株式会社东芝 Nonaqueous electrolyte battery, battery pack and battery system
CN110366793B (en) * 2017-03-23 2022-08-02 株式会社东芝 Nonaqueous electrolyte battery, battery pack, and battery system
WO2022102692A1 (en) * 2020-11-13 2022-05-19 積水化学工業株式会社 Positive electrode material for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN114530585A (en) * 2022-02-21 2022-05-24 远景动力技术(江苏)有限公司 Positive electrode, electrochemical device, and electronic device

Also Published As

Publication number Publication date
JP6300021B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR102044438B1 (en) Lithium secondary battery
JP6327011B2 (en) Electrode for power storage device, power storage device, and method for manufacturing electrode for power storage device
JP6044427B2 (en) Current collector for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6135219B2 (en) Electrolytic solution and lithium ion secondary battery provided with the same
JP6300021B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP5656093B2 (en) Batteries having an electrolyte solution holding layer
JP2015002008A (en) Electrode including protective layer formed on active material layer
JP5482858B2 (en) Lithium ion secondary battery
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
JP6357863B2 (en) Positive electrode, power storage device, and method of manufacturing positive electrode
JP2014082084A (en) Lithium ion secondary battery
JP2014149989A (en) Active material for lithium ion secondary battery, electrode for lithium ion secondary battery including the same, and lithium ion secondary battery
JP2016115403A (en) Lithium ion secondary battery and method for manufacturing the same
JP6048751B2 (en) Current collector for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6011634B2 (en) Nonaqueous electrolyte secondary battery
JP6016029B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5862490B2 (en) Lithium ion secondary battery
JP2015053288A (en) Battery provided with electrolyte holding layer
JP2015103301A (en) Charge/discharge control method for lithium-ion secondary battery
JP6048312B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6922373B2 (en) Negative electrode active material for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180214

R151 Written notification of patent or utility model registration

Ref document number: 6300021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees