JP2016003585A - 内燃機関の冷却装置 - Google Patents

内燃機関の冷却装置 Download PDF

Info

Publication number
JP2016003585A
JP2016003585A JP2014122983A JP2014122983A JP2016003585A JP 2016003585 A JP2016003585 A JP 2016003585A JP 2014122983 A JP2014122983 A JP 2014122983A JP 2014122983 A JP2014122983 A JP 2014122983A JP 2016003585 A JP2016003585 A JP 2016003585A
Authority
JP
Japan
Prior art keywords
passage
exhaust
egr
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014122983A
Other languages
English (en)
Inventor
渉 荒井
Wataru Arai
渉 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2014122983A priority Critical patent/JP2016003585A/ja
Publication of JP2016003585A publication Critical patent/JP2016003585A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】低負荷時にはEGRガスの流量を十分に確保しつつ、高負荷時には燃料増量等を用いることなく触媒を含む排気系部品の過度な昇温を抑制する。【解決手段】触媒23の下流側の排気通路11から触媒23の上流側の排気通路へ排気を戻す排気リターン通路28と、触媒23の下流側の排気通路11から吸気通路13へ排気を還流するEGR通路26と、を有する。排気リターン通路28とEGR通路26とは、途中の分岐位置30よりも上流側に位置する共用通路31を共用しつつ、分岐位置で分岐する。共用通路31に、下流側へ加圧した排気を送り込む電動圧縮機32と、排気を冷却するEGRクーラー33と、を設ける。分岐位置に、EGR通路26と排気リターン通路28とを切り換える流路切換弁30を設ける。【選択図】図1

Description

本発明は、内燃機関の冷却装置に関する。
特許文献1に記載されているように、内燃機関の低負荷時には、燃費向上を図るために、EGR通路を通して排気通路から吸気通路へ排気の一部を還流させている。このEGR通路には、このEGR通路内を通る排気(EGRガス)を冷却するEGRクーラーが設けられる。
特開2012−82724号公報
一方、内燃機関の高負荷時には、触媒や排気系部品を保護するために、排気の温度を下げる必要がある。しかしながら、例えば燃料噴射量を増量することにより排気の温度を低下させると、燃費の悪化や排気エミッションの悪化を招くといった問題があり、更なる改善が望まれていた。
本発明は、低負荷時にはEGRガスの流量を十分に確保しつつ、高負荷時には触媒を含む排気系部品の過度な昇温を抑制することができる新規な内燃機関の冷却装置を提供することを目的としている。
排気通路に設けられた触媒と、上記触媒の下流側の排気通路から上記触媒の上流側の排気通路へ排気を戻す排気リターン通路と、上記触媒の下流側の排気通路から吸気通路へ排気を還流するEGR通路と、を有する。上記排気リターン通路とEGR通路とは、途中の分岐位置よりも上流側に位置する共用通路を共用しつつ、上記分岐位置で分岐して、上記排気リターン通路が上記タービンの上流側の排気通路に接続する一方、上記EGR通路が吸気通路へ接続している。
そして、上記共用通路に設けられ、この共用通路の下流側へ加圧した排気を送り込む電動圧縮機と、同じく上記共用通路に設けられ、この共用通路内を通流する排気を冷却するEGRクーラーと、上記分岐位置に設けられ、上記EGR通路と排気リターン通路とを切り換える流路切換弁と、を有している。
このような構成により、例えば高負荷時には、上記流路切換弁により排気リターン通路に切り換えて、電導圧縮機により多くの排気を触媒の下流側の排気通路から上記触媒の上流側の排気通路へ戻すことにより、排気温度の低下を促進することができる。
一方、例えば低負荷時には、上記流路切換弁によりEGR通路に切り換えて、電動圧縮機により多くの排気を触媒の下流側の排気通路から吸気通路へ還流することで、EGRガスの流量を増加して、燃費向上を図ることができる。
本発明によれば、低負荷時にはEGRガスの流量を十分に確保しつつ、高負荷時には燃料増量等を用いることなく触媒を含む排気系部品の過度な昇温を抑制することが可能となる。
本発明の一実施例に係る内燃機関の冷却装置を示す構成図。 暖機運転時における排気の流れを示す構成図。 低回転トルク立ち上がり時における排気の流れを示す構成図。 部分負荷時における排気の流れを示す構成図。 高負荷時における排気の流れを示す構成図。 排気損失回生時における排気の流れを示す構成図。
以下、図示実施例により本発明を説明する。図1は、本発明の一実施例に係るターボ過給機を備えたガソリンエンジンである内燃機関の冷却装置を簡略的に示す構成図である。
ターボ過給機10は、排気通路11に設けられたタービン12と、吸気通路13に設けられたコンプレッサ14と、が同じ回転軸15に背中合わせに取り付けられており、排気の熱エネルギーにより回転するタービン12によりコンプレッサ14が回転駆動されて、吸気を加圧して過給を行なう。タービン12をバイパスするバイパス通路16には過給圧を調整する電制のウェイストゲートバルブ17が設けられている。
吸気通路13には、コンプレッサ14の下流側に、過給された高温の吸気を冷却するインタークーラ18が設けられるとともに、吸気コレクタ19の上流側に、吸気流量を調整する電制のスロットルバルブ20が設けられている。吸気コレクタ19には、スロットル下流の吸気圧力、すなわち過給圧を検出する過給圧センサ21と、吸気温を検出する吸気温センサ22と、等が設けられている。
排気通路11には、タービン12の下流側に、排気を浄化する三元触媒23が設けられている。この触媒23の上流側には、空燃比を検出する空燃比センサ24が設けられている。また、タービン12の上流側の排気通路11には、排気圧力を検出する排気圧力センサ25が設けられている。
排気を吸気に還流するEGR通路26は、タービン12及び触媒23の下流側の排気通路11から取り出した排気をコンプレッサ14の上流側の吸気通路13に導くもので、このEGR通路26には、EGR通路26内を流れる排気の流量であるEGR量(EGR率)を調整するEGRバルブ27が設けられている。
そして本実施例では、タービン12の下流側の排気通路11からタービン12の上流側の排気通路11へ排気を戻す排気リターン通路28が設けられている。排気リターン通路28とEGR通路26とは、途中の分岐位置(30)までは共用通路31を共用しており、分岐位置30で分岐して、排気リターン通路28がタービン12の上流側の排気通路11に接続する一方、EGR通路26が吸気通路13に接続している。上記の分岐位置(30)には、EGR通路26と排気リターン通路28とを切り換える流路切換弁30が設けられている。
そして、EGR通路26と排気リターン通路28とを兼用する共用通路31には、下流側の排気リターン通路28あるいはEGR通路26へ加圧した排気を送り込む電動圧縮機32が設けられるとともに、この電動圧縮機32の上流側にはEGRクーラー33が設けられている。EGRクーラー33は、共用通路31内を流れる排気と、冷媒である冷却水と、の間で熱交換を行なうことによって、この共用通路31内を流れる排気を冷却する機能を有している。
また、共用通路31には、電動圧縮機32を迂回するように電動圧縮機32の上流側と下流側とを接続する圧縮機用バイパス通路34が設けられるとともに、この圧縮機用バイパス通路34と電動圧縮機32が設けられた共有通路31とを切り換える圧縮機用切換弁35が設けられている。同様に、共用通路31には、EGRクーラー33を迂回するようにEGRクーラー33の上流側と下流側とを接続するクーラー用バイパス通路36が設けられるとともに、このクーラー用バイパス通路36とEGRクーラー33が設けられた共有通路31とを切り換えるクーラー用切換弁37が設けられている。
更に、上記の分岐位置(30)から排気通路11へ排気を流す補助通路38が設けられている。この補助通路38が排気通路11へ接続する出口部分は、タービン12及び触媒23よりも下流側で、かつ上述した共用通路31が排気通路に接続する入口部分39よりも下流側に位置している。この出口部分には、排気通路11(及び補助通路38)の流量を調整する調整弁40が設けられている。
制御部41は、機関運転状態を表す上述した各種センサ21,22,24,25の信号を検出し、これらの信号等に基づいて、流路切換弁30、流量調整弁、EGRバルブ27、ウェイストゲートバルブ17、スロットルバルブ20及び電動圧縮機32等へ制御信号を出力して、その動作を制御する。例えば、所定の運転条件では空燃比を理論空燃比の近傍に維持するように、空燃比センサ24により検出される触媒上流の空燃比に基づくフィードバック制御が行なわれる。また、過給圧が過度に上昇することのないように過給圧センサ21により検出される過給圧に基づいてウェイストゲートバルブ17の開度制御が行なわれる。
そして、図2〜図6に示すように、機関運転状態に応じて電動圧縮機32の動作を制御するとともに、ウェイストゲートバルブ17,EGRバルブ27,切換弁30,35,36及び調整弁40の動作を制御して、排気の流れを制御している。
図2は、内燃機関1の機関温度が所定温度以下の暖機運転時における排気の流れを示している。暖機運転時には、触媒23の早期昇温を図るために、排気の多くを排気リターン通路28を経由して排気通路11を含む閉ループ内を循環させるようにしている。具体的には、ウェイストゲートバルブ17を開き、調整弁40により排気通路11の流量を大幅に制限し、クーラー用切換弁37によりクーラー用バイパス通路36を開き、圧縮機用切換弁35により圧縮機用バイパス通路34を閉じ、流路切換弁30により排気リターン通路28に切り換えて、この排気リターン通路28を開いている。これによって、内燃機関1の燃焼室から排出された排気(ガス)は、図2の矢印に示すように、その大部分がバイパス通路16を通過し、触媒23を通過した後、排気リターン通路28を兼用する共用通路31へと流れ、クーラー用バイパス通路36を経由して、電動圧縮機32により加圧されて下流側へ送り出され、分岐位置(30)で排気リターン通路28側に流れて、タービン12の上流側の排気通路11へと戻される。そして、内燃機関1側から排出される排気と合流して、排気通路11の下流側、つまり触媒23の上流側へと送り込まれる。
このように暖機運転時には、電動圧縮機32を用いて排気の多くを排気リターン通路28及び排気通路11内で循環させることにより、触媒23の暖機を促進するとともに、触媒23が活性化する前の十分に酸化還元反応が行なわれていない初期の排気の再反応を促進して、初期の排気の浄化性能を向上することができる。好ましくは、触媒23で未反応のHC、NOxが反応して浄化されるまで、排気リターン通路28内で排気を循環させる。
しかも、排気に空気や燃料を追加することなく単に排気を循環させているために、触媒23での目標空燃比(理論空燃比)がずれることはなく、触媒23での酸化還元反応を阻害することもない。
なお、調整弁40により排気通路11を閉じた場合にも、排気圧力が過度に上がり過ぎることのないように、ある程度の排気ガスが大気側へ排出されるようになっている。
図3は、ターボ過給機10の過給遅れを生じ易い低回転でのトルク立ち上がり時(加速時)における排気の流れを示している。この場合、上述した暖機運転時に対し、ウェイストゲートバルブ17を閉じ、タービン12に排気を通流させる点で異なっている。従って、この低回転トルク立ち上がり時には、内燃機関1の燃焼室から排出された排気(ガス)は、図3の矢印に示すように、タービン12及び触媒23を通過した後、共用通路31へと流れ、クーラー用バイパス通路36を経由して、電動圧縮機32により加圧されて下流側へ送り出され、分岐位置(30)で排気リターン通路28側に流れて、タービン12の上流側の排気通路11へと戻されて、内燃機関1側から排出される排気と合流して、排気通路11の下流側、つまりタービン12の上流側へと送り込まれる。
このように低回転トルク立ち上がり時には、電動圧縮機32の加圧により排気の多くをタービン12よりも上流側の排気通路11に戻すことで、タービン12を流れる排気の流量を増加して、過給圧の立ち上がりを早めて、加速の応答性(レスポンス)を向上することができる。また、電動圧縮機32はタービン12とは離れた位置に配置されているために、耐熱性や精度等が過度に要求されることがない。
図4は、部分負荷時(低負荷時)における排気の流れを示している。部分負荷時には、燃費向上を図るために積極的にEGRガスの流量を増加させている。具体的には、ウェイストゲートバルブ17を開き、クーラー用切換弁37によりクーラー用バイパス通路36を開き、圧縮機用切換弁35により圧縮機用バイパス通路34を閉じ、流路切換弁30によりEGR通路26に切り換えてこのEGR通路26を開き、EGRバルブ27を開いている。これによって、内燃機関1の燃焼室から排出された排気(ガス)は、図4の矢印に示すように、その大部分がバイパス通路16を通過し、触媒23を通過した後、EGR通路26を兼用する共用通路31へと流れ、クーラー用バイパス通路36を経由して、電動圧縮機32により加圧されて下流側へ送り出され、分岐位置(30)でEGR通路26側へ流れて、吸気通路13へと戻される。
このように部分負荷時には電動圧縮機32によりEGRガスの流量を増加し、燃費向上を図ることができる。特に、本実施例のようにターボ過給機を備える場合、吸気側が高圧となってEGRガスが供給され難いものの、本実施例では電動圧縮機32により加圧したEGRガスを送り込むために、ターボ過給機を備える場合であっても十分な量のEGRガスを吸気側へ供給することができる。
図5は、高負荷時における排気の流れを示している。高負荷時には、触媒23や排気系部品の過度な昇温を抑制するために、触媒23を含む排気系部品の冷却を促進する。具体的には、過給圧に応じてウェイストゲートバルブ17を開閉制御し、調整弁40により排気通路11を開き、クーラー用切換弁37によりクーラー用バイパス通路36を閉じ、圧縮機用切換弁35により圧縮機用バイパス通路34を閉じ、流路切換弁30により排気リターン通路28を開いている。これによって、内燃機関1の燃焼室から排出された排気(ガス)は、図5の矢印に示すように、タービン12を流れつつ一部がバイパス通路16を流れた後、触媒23を通過し、一部が排気リターン通路28側へと流れ、EGRクーラー33を経由して、電動圧縮機32により加圧されて下流側へ送り出され、分岐位置(30)で排気リターン通路28側に流れて、触媒23よりも上流側の排気通路11へと戻される。そして、内燃機関1側から排出される排気と合流して、冷却対象である触媒28へと送り込まれる。
このように高負荷時には、一旦触媒23を通過した排気を排気リターン通路28に設けられたEGRクーラー33により冷却して、再び触媒23の上流側の排気通路11に循環させることで、触媒23を含む排気系部品の冷却を促進することができる。この際、上述したように排気に空気や燃料を追加することなく単に排気を循環させていることから、このような排気の循環に伴う空燃比の変動を招くことがない。従って、例えば理論空燃比へ向けた空燃比フィードバック制御を実施することで、高負荷時であっても燃費向上と排気清浄化とを図ることができる。
図6は、排気エネルギーを回収する排気損失回生時の排気の流れを示している。この例では、EGRクーラー33を排熱回収機として利用する場合について説明する。このような排気損失回生を行なう運転域は、例えば高負荷時ほど温度条件は厳しくないものの、比較的負荷が高いためにEGRガスで運転性を阻害することのないようにEGRを行なわない運転領域である。
具体的には、過給圧に応じてウェイストゲートバルブ17を開閉制御し、調整弁40により排気通路11を閉じ、排気の大部分を排気リターン通路28側へ供給する。また、クーラー用切換弁37によりクーラー用バイパス通路36を閉じ、圧縮機用切換弁35により圧縮機用バイパス通路34を閉じ、流路切換弁30により補助通路38を開く。これによって、内燃機関1の燃焼室から排出された排気(ガス)は、図6の矢印に示すように、タービン12を流れつつ一部がバイパス通路16を流れた後、触媒23を通過し、その大部分が排気リターン通路28側へと流れ、EGRクーラー33により熱交換を行なう。そして、電動圧縮機32により加圧されて下流側へ送り出され、分岐位置(30)で補助通路38側に流れて、そのまま排気ガスとして車外に排出される。
このように、排気損失回収時には、EGRクーラー33を排熱回収機として利用することも可能であり、これによりエネルギー効率を高めて燃費向上を図ることができる。
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明は上記実施例に限定されるものではなく、種々の変形・変更を含むものである。例えば、排熱回収を行なわない場合には、補助通路38を省略した構造とすることもできる。また、上記実施例ではターボ過給機を備えた構成について説明してきたが、ターボ過給機を備えない自然吸気の内燃機関に本発明を同様に適用することも可能である。
1…内燃機関
10…ターボ過給機
11…排気通路
12…タービン
13…吸気通路
14…コンプレッサ
15…回転軸
26…EGR通路
28…排気リターン通路
30…切換弁
32…電動圧縮機

Claims (3)

  1. 排気通路に設けられた触媒と、
    上記触媒の下流側の排気通路から上記触媒の上流側の排気通路へ排気を戻す排気リターン通路と、
    上記触媒の下流側の排気通路から吸気通路へ排気を還流するEGR通路と、を有し、
    上記排気リターン通路とEGR通路とは、途中の分岐位置よりも上流側に位置する共用通路を共用しつつ、上記分岐位置で分岐して、上記排気リターン通路が上記タービンの上流側の排気通路に接続する一方、上記EGR通路が吸気通路へ接続しており、
    かつ、上記共用通路に設けられ、この共用通路の下流側へ加圧した排気を送り込む電動圧縮機と、
    上記共用通路に設けられ、この共用通路内を通流する排気を冷却するEGRクーラーと、
    上記分岐位置に設けられ、上記EGR通路と排気リターン通路とを切り換える流路切換弁と、を有することを特徴とする内燃機関の冷却装置。
  2. 高負荷時には、上記流路切換弁により排気リターン通路に切り換えて、上記触媒の下流側の排気通路から上記触媒の上流側の排気通路へ排気を戻すことを特徴とする請求項1に記載の内燃機関の冷却装置。
  3. 低負荷時には、上記流路切換弁によりEGR通路に切り換えて、上記触媒の下流側の排気通路から上記吸気通路へ排気を還流することを特徴とする請求項1又は2に記載の内燃機関の冷却装置。
JP2014122983A 2014-06-16 2014-06-16 内燃機関の冷却装置 Pending JP2016003585A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122983A JP2016003585A (ja) 2014-06-16 2014-06-16 内燃機関の冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122983A JP2016003585A (ja) 2014-06-16 2014-06-16 内燃機関の冷却装置

Publications (1)

Publication Number Publication Date
JP2016003585A true JP2016003585A (ja) 2016-01-12

Family

ID=55223060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122983A Pending JP2016003585A (ja) 2014-06-16 2014-06-16 内燃機関の冷却装置

Country Status (1)

Country Link
JP (1) JP2016003585A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002571A1 (en) * 2018-06-29 2020-01-02 Volvo Truck Corporation An internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020002571A1 (en) * 2018-06-29 2020-01-02 Volvo Truck Corporation An internal combustion engine
WO2020001780A1 (en) * 2018-06-29 2020-01-02 Volvo Truck Corporation An internal combustion engine
CN112334645A (zh) * 2018-06-29 2021-02-05 沃尔沃卡车集团 内燃机
CN112384690A (zh) * 2018-06-29 2021-02-19 沃尔沃卡车集团 内燃机
US11421611B2 (en) 2018-06-29 2022-08-23 Volvo Truck Corporation Internal combustion engine
US11754005B2 (en) 2018-06-29 2023-09-12 Volvo Truck Corporation Internal combustion engine

Similar Documents

Publication Publication Date Title
JP5860923B2 (ja) 排ガス浄化システムを備える大型2サイクルディーゼルエンジン
US10330033B2 (en) Method and system for exhaust heat recovery
US9115639B2 (en) Supercharged internal combustion engine having exhaust-gas recirculation arrangement and method for operating an internal combustion engine
JP5993759B2 (ja) エンジンの吸気冷却装置
JP4654973B2 (ja) 内燃機関の排気装置
KR101601088B1 (ko) 엔진 냉각 시스템
WO2009145002A1 (ja) 排気ガス浄化触媒の暖機方法及びシステム
JP4858278B2 (ja) 内燃機関の排気再循環装置
US10458369B2 (en) Supercharged internal combustion engine with cooled exhaust-gas recirculation arrangement
JP2010144731A (ja) 排気ターボチャージャを備えた内燃機関
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
JP2016000971A (ja) 過給機付き内燃機関システム
JP2008138638A (ja) 内燃機関の排気還流装置
US10655529B2 (en) Engine system
EP2749757B1 (en) Method and apparatus for controlling a twin scroll turbocharger with variable geometry depending on the exhaust gas recirculation
JP2010185374A (ja) 過給機付内燃機関の制御装置
JP2016061156A (ja) 内燃機関用吸排気装置
JP6357902B2 (ja) エンジンの排気再循環方法及び排気再循環装置
JP2016003585A (ja) 内燃機関の冷却装置
JP2012082723A (ja) 内燃機関の冷却装置
CN114245842B (zh) 操作内燃机系统的方法
JP2018193899A (ja) 圧縮天然ガス機関の吸排気構造
EP3800336B1 (en) Internal combustion engine arrangement and operation thereof
JP2016003586A (ja) ターボ過給機を備えた内燃機関の冷却装置
JP2010190046A (ja) 内燃機関の排気熱回収制御装置