JP2016003178A - Selection method of blast furnace slag, and production method of blast furnace cement - Google Patents

Selection method of blast furnace slag, and production method of blast furnace cement Download PDF

Info

Publication number
JP2016003178A
JP2016003178A JP2014126763A JP2014126763A JP2016003178A JP 2016003178 A JP2016003178 A JP 2016003178A JP 2014126763 A JP2014126763 A JP 2014126763A JP 2014126763 A JP2014126763 A JP 2014126763A JP 2016003178 A JP2016003178 A JP 2016003178A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
index
basicity
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014126763A
Other languages
Japanese (ja)
Other versions
JP6354373B2 (en
Inventor
英俊 三隅
Hidetoshi Misumi
英俊 三隅
貴康 伊藤
Takayasu Ito
貴康 伊藤
高橋 俊之
Toshiyuki Takahashi
俊之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2014126763A priority Critical patent/JP6354373B2/en
Publication of JP2016003178A publication Critical patent/JP2016003178A/en
Application granted granted Critical
Publication of JP6354373B2 publication Critical patent/JP6354373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of selecting excellent blast furnace slag by predicting accurately an activity index, even if the quality of the blast furnace slag is dispersed.SOLUTION: A selection method of blast furnace slag includes a basicity calculation step for determining a basicity from chemical components in the blast furnace slag, a bulk density calculation step for determining a bulk density of the blast furnace slag, an index calculation step for determining an index A of an activity index of the blast furnace slag from the basicity and the bulk density, and a selection step for selecting the blast furnace slag based on the index A.

Description

本発明は、高炉水砕スラグの塩基度およびその粉砕前の嵩密度を測定することにより活性度指数を予測し高炉スラグを選別する高炉スラグの選別方法、及び選別した高炉スラグとセメントを混合する高炉セメントの製造方法に関する。   The present invention predicts the activity index by measuring the basicity of blast furnace granulated slag and the bulk density before pulverization, and sorts the blast furnace slag, and mixes the selected blast furnace slag and cement. The present invention relates to a method for producing blast furnace cement.

製鉄所から生産される高炉水砕スラグは、2012年度でおよそ2千万tであり、そのうちのおよそ90%はセメント原料に利用されている。中でも、高炉セメントに利用されるスラグの品質はその高炉セメントの品質に大きく影響を及ぼし、JIS(JIS A 6206「コンクリート用高炉スラグ微粉末」)に定められている塩基度((CaO+MgO+Al)/SiO)が高炉スラグの品質管理指標値として扱われている。 Blast furnace granulated slag produced from steelworks is approximately 20 million tons in 2012, of which approximately 90% is used as cement raw material. Among them, the quality of the slag used for the blast furnace cement greatly affects the quality of the blast furnace cement, and the basicity ((CaO + MgO + Al 2 O 3 ) defined in JIS (JIS A 6206 “Blast furnace slag fine powder for concrete”). ) / SiO 2 ) is treated as a quality control index value of blast furnace slag.

JIS(JIS A 6206「コンクリート用高炉スラグ微粉末」)に定められている高炉スラグの活性度指数は、普通ポルトランドセメント:高炉スラグ微粉末=1:1となるように作製したセメントのモルタル圧縮強さと普通ポルトランドセメント単独のモルタル圧縮強さとの比(材齢7日および28日)で表され、活性度指数が高いほど品質が良好な高炉スラグであると考えられる。一般的に、先述した塩基度は活性度指数の指標として用いられており、塩基度が高いほど活性度指数は高まる傾向にある。
しかしながら、塩基度のみで活性度指数を予測しても、実測値と比べてばらつきを持つ場合が多い。このため、実際の製造現場において、高炉スラグの塩基度が高いため、活性度指数が高いと判断し、品質を確保するための製造時のアクションをとらず、製造した高炉セメントの品質が目標のレベルに達しない場合がある。
The activity index of blast furnace slag specified in JIS (JIS A 6206 “Blast furnace slag fine powder for concrete”) is normal Portland cement: blast furnace slag fine powder = 1: 1 mortar compression strength of cement And the ratio of normal Portland cement alone to mortar compressive strength (age 7 days and 28 days), the higher the activity index, the better the quality of the blast furnace slag. In general, the basicity described above is used as an index of the activity index, and the activity index tends to increase as the basicity increases.
However, even if the activity index is predicted based on the basicity alone, there are many cases where there is variation compared to the actual measurement value. For this reason, at the actual manufacturing site, the basicity of blast furnace slag is high, so it is judged that the activity index is high, and no action is taken during production to ensure quality, and the quality of the manufactured blast furnace cement is the target. You may not reach the level.

一方で、既往の検討では、JISの塩基度を改良し、TiOおよびMnO量を考慮した指標とすることで、精度よく活性度指数を予測する方法が提案されている(特許文献1)。また、高炉スラグ製造時の溶銑温度などの条件が異なれば、高炉スラグの嵩密度が異なることが報告されている(非特許文献1)。 On the other hand, in past studies, a method for accurately predicting an activity index has been proposed by improving the basicity of JIS and using it as an index considering the amount of TiO 2 and MnO (Patent Document 1). In addition, it has been reported that the bulk density of blast furnace slag differs if conditions such as hot metal temperature during blast furnace slag production differ (Non-patent Document 1).

特開2008−247715号公報JP 2008-247715 A

花田光雄、宮入英彦、河内廸、高炉セメントに関する研究、セメント技術年報、No. pp.171-175(1966)Mitsuo Hanada, Hidehiko Miyairi, Satoshi Kawauchi, Research on Blast Furnace Cement, Annual Report on Cement Technology, No. pp.171-175 (1966)

しかしながら、特許文献1や非特許文献1の指標よりも更に精度よく活性度指数を予測する指標が産業界から望まれていた。
そこで、本発明は、精度よく活性度指数を予測する指標を提供することを目的とする。
However, there has been a demand from the industry for an index that predicts the activity index more accurately than the indexes of Patent Document 1 and Non-Patent Document 1.
Therefore, an object of the present invention is to provide an index for accurately predicting an activity index.

本発明者らは上記目的を達成すべく鋭意検討した結果、TiO量およびMnO量を考慮した高炉スラグの塩基度と高炉スラグの嵩密度を組み合わせることが活性度指数を予測する指標として有効であることを見出し本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention are effective as an index for predicting the activity index by combining the basicity of blast furnace slag and the bulk density of blast furnace slag in consideration of the TiO 2 content and the MnO content. As a result, the present invention has been completed.

すなわち、本発明は、高炉スラグの化学成分から塩基度を求める塩基度算出工程と、前記高炉スラグの嵩密度を求める嵩密度算出工程と、前記塩基度および前記嵩密度から前記高炉スラグの活性度指数の指標Aを求める指標算出工程と、前記指標Aに基づいて前記高炉スラグを選別する選別工程とを含む、高炉スラグの選別方法に関する。
本発明の選別方法によれば、精度よく活性度指数を予測出来る指標により、品質の良い高炉スラグを選別する方法を提供出来る。
That is, the present invention includes a basicity calculation step for obtaining basicity from a chemical component of blast furnace slag, a bulk density calculation step for obtaining bulk density of the blast furnace slag, and an activity of the blast furnace slag from the basicity and the bulk density. The present invention relates to a method for sorting blast furnace slag, which includes an index calculation step for obtaining an index A and a sorting step for sorting the blast furnace slag based on the index A.
According to the sorting method of the present invention, it is possible to provide a method for sorting high-quality blast furnace slag by using an index that can accurately predict an activity index.

また、本発明は、高炉スラグの化学成分から塩基度を求める塩基度算出工程と、前記高炉スラグの嵩密度を求める嵩密度算出工程と、前記塩基度および前記嵩密度から前記高炉スラグの活性度指数の指標Aを求める指標算出工程と、前記指標Aに基づいて前記高炉スラグを選別する選別工程と、選別された前記高炉スラグとセメントとを混合し高炉セメントを製造する製造工程とを含む、高炉セメントの製造方法に関する。
本発明の製造方法によれば、精度よく活性度指数を予測出来る指標により、品質の良い高炉スラグを選別することで、品質の良い高炉スラグを提供出来る。
The present invention also includes a basicity calculation step for obtaining basicity from a chemical component of blast furnace slag, a bulk density calculation step for obtaining bulk density of the blast furnace slag, and an activity of the blast furnace slag from the basicity and the bulk density. An index calculation step for obtaining an index A, a selection step for selecting the blast furnace slag based on the index A, and a manufacturing step for manufacturing the blast furnace cement by mixing the selected blast furnace slag and cement. The present invention relates to a method for producing blast furnace cement.
According to the production method of the present invention, high-quality blast furnace slag can be provided by selecting high-quality blast furnace slag based on an index that can predict the activity index with high accuracy.

本発明に関わる高炉スラグの選別方法によれば、高炉スラグの品質がばらついても、活性度指数を精度よく予測し、良好な高炉スラグを選別する方法を提供することが出来る。また、本発明に関わる高炉セメントの製造方法によれば、良好な高炉スラグを選別し、高品質の高炉セメントを製造する製造方法を提供することが出来る。   According to the method for sorting blast furnace slag according to the present invention, even if the quality of blast furnace slag varies, it is possible to provide a method for accurately predicting the activity index and sorting good blast furnace slag. Moreover, according to the manufacturing method of the blast furnace cement concerning this invention, the manufacturing method which sorts out favorable blast furnace slag and manufactures high quality blast furnace cement can be provided.

嵩密度と高炉スラグの活性度指数(材齢7日)との関係を示すグラフである。It is a graph which shows the relationship between the bulk density and the activity index (age age 7 days) of blast furnace slag. 嵩密度と高炉スラグの活性度指数(材齢28日)との関係を示すグラフである。It is a graph which shows the relationship between the bulk density and the activity index (age age 28 days) of blast furnace slag. 塩基度(JIS)と高炉スラグの活性度指数(材齢7日)との関係を示すグラフである。It is a graph which shows the relationship between basicity (JIS) and the activity index (age age of 7 days) of blast furnace slag. 塩基度(JIS)と高炉スラグの活性度指数(材齢28日)との関係を示すグラフである。It is a graph which shows the relationship between basicity (JIS) and the activity index of blast furnace slag (age 28 days). 高炉スラグの塩基度(TiO量およびMnO量を考慮)および嵩密度から求めた指標Aと活性度指数(材齢7日)との関係を示すグラフである。It is a graph showing the relationship between the basicity of the blast furnace slag (TiO 2 amount and considering amount of MnO) and index A and activity index calculated from bulk density (age of 7 days). 高炉スラグの塩基度(TiO量およびMnO量を考慮)および嵩密度から求めた指標Aと活性度指数(材齢28日)との関係を示すグラフである。It is a graph showing the relationship between the basicity of the blast furnace slag (TiO 2 amount and considering MnO amount) and a bulk density from the determined index A and the active index (age of 28 days).

以下、本発明の好適な実施形態について詳細に説明する。
<高炉スラグの選別方法>
Hereinafter, preferred embodiments of the present invention will be described in detail.
<Blast furnace slag sorting method>

本実施形態の高炉スラグの選別方法は、高炉スラグの化学成分から塩基度を求める塩基度算出工程と、前記高炉スラグの嵩密度を求める嵩密度算出工程と、前記塩基度および前記嵩密度から前記高炉スラグの活性度指数の指標Aを求める指標算出工程と、前記指標Aに基づいて高炉スラグを選別する選別工程とを含む。   According to the blast furnace slag sorting method of the present embodiment, the basicity calculation step for obtaining basicity from the chemical components of the blast furnace slag, the bulk density calculation step for obtaining the bulk density of the blast furnace slag, the basicity and the bulk density An index calculation step for obtaining an index A of the activity index of the blast furnace slag, and a selection step for selecting the blast furnace slag based on the index A.

前記選別工程は、前記指標A以上である場合を高活性度高炉スラグ、前記指標A未満である場合を低活性度高炉スラグとして前記高炉スラグを選別する工程を含むとより好ましい。
前記指標Aが−2.0〜2.0の何れかの値であることが好ましく、−1.0〜1.5の何れかの値であるとより好ましく、−0.5〜1.1の何れかの値であるとさらに好ましく、0.1〜0.8の値であると特に好ましい。この指標値を採用することで、品質が良く、均質な高炉スラグを選別することが可能となる。
More preferably, the sorting step includes a step of sorting the blast furnace slag as a high activity blast furnace slag when the index A is equal to or greater than the index A, and a low activity blast furnace slag when the index is less than the index A.
The index A is preferably any value of -2.0 to 2.0, more preferably any value of -1.0 to 1.5, and -0.5 to 1.1. It is more preferable that the value is any of the above, and it is particularly preferable that the value is 0.1 to 0.8. By adopting this index value, it becomes possible to sort out blast furnace slag with good quality and homogeneity.

活性度指数の指標としては、JIS A 6206「コンクリート用高炉スラグ微粉末」の塩基度が代表的な指標として知られている。
上記JISの塩基度は、高炉スラグ中のCaO含有量、SiO含有量及びAl含有量から求まり、下記式(J)で表される。
JIS塩基度=(CaO+Al+MgO)/SiO・・・(J)
このJIS塩基度の精度を向上させたものが、本発明に関わる指標Aである。この指標Aは、JISの塩基度にTiO量とMnO量を考慮した高炉スラグの塩基度(以下、Bmと称す)と高炉スラグの嵩密度から求めたものであり、スラグの嵩密度が小さいほど、高炉スラグの活性度指数が大きくなる。
As an index of the activity index, basicity of JIS A 6206 “Blast furnace slag fine powder for concrete” is known as a representative index.
The basicity of the JIS is obtained from the CaO content, the SiO 2 content, and the Al 2 O 3 content in the blast furnace slag, and is represented by the following formula (J).
JIS basicity = (CaO + Al 2 O 3 + MgO) / SiO 2 (J)
The index A according to the present invention is obtained by improving the accuracy of the JIS basicity. This index A is obtained from the basicity of blast furnace slag (hereinafter referred to as Bm) and the bulk density of blast furnace slag considering the TiO 2 amount and MnO amount in JIS basicity, and the bulk density of slag is small. The activity index of the blast furnace slag becomes larger.

前記化学成分は、CaO含有量、SiO含有量、Al含有量、MgO含有量、TiO含有量及びMnO含有量であると、より好ましい。
ここで、高炉スラグのCaO含有量等の化学成分は、JIS R 5202「セメントの化学分析方法」またはJIS R5204「セメントの蛍光X線分析方法」に準じて測定することができる。
また、上記嵩密度の測定に使用するスラグは、乾燥機などによって乾燥したもので、1〜5mmに篩分けすることが好ましい。嵩密度の測定には、容量が既知である容器を使用することが好ましい。
The chemical component is more preferably CaO content, SiO 2 content, Al 2 O 3 content, MgO content, TiO 2 content and MnO content.
Here, chemical components such as CaO content of blast furnace slag can be measured according to JIS R 5202 “Cement chemical analysis method” or JIS R 5204 “Cement fluorescent X-ray analysis method”.
Moreover, the slag used for the measurement of the said bulk density is what dried with the dryer etc., and it is preferable to sieve to 1-5 mm. For measuring the bulk density, it is preferable to use a container having a known capacity.

前記指標算出工程は、下記式(1)及び式(2)から指標Aを算出する工程を含むとより好ましい。
A=Bm−γ×(高炉スラグの嵩密度)・・・(1)
Bm=(CaO+Al+MgO)/SiO−α×TiO−β×MnO・・・(2)
但し、CaO、Al、MgO、SiO、TiO及びMnOは高炉スラグ中の各化学成分の含有量である。また、α=0.03〜0.5、好ましくは0.05〜0.45、より好ましくは0.07〜0.40、β=0.7〜1.3、好ましくは0.75〜1.25、より好ましくは0.8〜1.20、γ=0.5〜2.0、好ましくは0.55〜1.95、より好ましくは0.6〜1.90である。
上述した指標Aに基づいて高炉スラグを選別することにより、品質が良く、均質な高炉スラグを選別することが可能となる。選別する方法としては、任意の高炉スラグをサンプリングし、指標Aを求めた後、良好な指標Aを示した高炉スラグと同一のロットを選別する等の方法が挙げられる。
More preferably, the index calculation step includes a step of calculating the index A from the following formulas (1) and (2).
A = Bm−γ × (bulk density of blast furnace slag) (1)
Bm = (CaO + Al 2 O 3 + MgO) / SiO 2 −α × TiO 2 −β × MnO (2)
However, CaO, Al 2 O 3 , MgO, SiO 2 , TiO and MnO are the contents of each chemical component in the blast furnace slag. Further, α = 0.03 to 0.5, preferably 0.05 to 0.45, more preferably 0.07 to 0.40, β = 0.7 to 1.3, preferably 0.75 to 1. .25, more preferably 0.8 to 1.20, γ = 0.5 to 2.0, preferably 0.55 to 1.95, more preferably 0.6 to 1.90.
By selecting the blast furnace slag based on the above-described index A, it is possible to select the blast furnace slag having good quality and homogeneity. Examples of the sorting method include sampling a desired blast furnace slag, obtaining the index A, and then sorting the same lot as the blast furnace slag showing a good index A.

<高炉セメントの製造方法>
次に、本発明の高炉セメントの製造方法について説明する。
高炉セメントの製造方法は、選別工程までは、上述した高炉スラグの選別方法と同じ工程を経れば良い。
次いで、製造工程では、選別した高炉スラグを粉砕した後、セメントを混合する方法や、選別された高炉スラグとセメントの混合と粉砕を同時に行う方法が挙げられる。
また、指標Aの測定結果が低活性度高炉スラグである場合は、高活性度高炉スラグと混合し指標Aを調整すれば良い。あるいは、高炉セメント中の高炉スラグ添加量を減らしたり、高炉セメントを十分粉砕し比表面積を高めることで強度を確保すれば良い。
<Manufacturing method of blast furnace cement>
Next, the manufacturing method of the blast furnace cement of this invention is demonstrated.
The manufacturing method of the blast furnace cement should just go through the same process as the screening method of the blast furnace slag mentioned above until the selection process.
Next, in the manufacturing process, there are a method in which the selected blast furnace slag is pulverized and then cement is mixed, and a method in which the selected blast furnace slag and cement are mixed and pulverized at the same time.
Moreover, when the measurement result of the index A is low activity blast furnace slag, the index A may be adjusted by mixing with the high activity blast furnace slag. Alternatively, the strength may be ensured by reducing the amount of blast furnace slag added in the blast furnace cement or by sufficiently grinding the blast furnace cement to increase the specific surface area.

本発明の高炉セメントの製造方法は、石灰石、硅石、石炭灰、粘土、高炉スラグ、建設発生土、下水汚泥、銅からみ及び焼却灰からなる群より選ばれる原料を混合し、焼成してセメントクリンカーを製造する工程と、セメントクリンカーと石膏と高炉スラグとを混合する工程とを含めても良い。   The method for producing a blast furnace cement according to the present invention comprises mixing a raw material selected from the group consisting of limestone, meteorite, coal ash, clay, blast furnace slag, construction generated soil, sewage sludge, copper squeeze and incinerated ash, followed by firing and cement clinker. And a step of mixing cement clinker, gypsum, and blast furnace slag.

セメントクリンカーは、SP方式(多段サイクロン予熱方式)又はNSP方式(仮焼炉を併設した多段サイクロン予熱方式)等の既存のセメント製造設備を用いて、製造することができる。   The cement clinker can be manufactured using an existing cement manufacturing facility such as an SP system (multistage cyclone preheating system) or an NSP system (multistage cyclone preheating system provided with a calcining furnace).

本発明の高炉セメントの製造方法として、セメントクリンカーと石膏と高炉スラグを混合する工程において、さらに少量の混合材を添加してもよい。混合材は、JIS R 5211「高炉セメント」に規定される高炉スラグ、JIS R 5212「シリカセメント」に規定されるシリカ質混合材、JIS A 6201「コンクリート用フライアッシュ」に規定されるフライアッシュ、JIS R 5210「ポルトランドセメント」に規定される石灰石を利用することができる。   As a method for producing a blast furnace cement of the present invention, a small amount of a mixture may be added in the step of mixing cement clinker, gypsum and blast furnace slag. The mixed material is a blast furnace slag defined in JIS R 5211 “Blast Furnace Cement”, a siliceous mixed material defined in JIS R 5212 “Silica Cement”, fly ash defined in JIS A 6201 “Fly Ash for Concrete”, Limestone as defined in JIS R 5210 “Portland cement” can be used.

本発明のセメントクリンカーと石膏と高炉スラグと少量混合物などを混合する方法としては、特に制限されるものではなく、セメントクリンカーと石膏と高炉スラグとを混合粉砕する方法や、セメントクリンカーと石膏とを混合粉砕後、別粉砕したスラグとを混合する方法等があげられる。   The method of mixing the cement clinker, gypsum, blast furnace slag and a small amount of the mixture of the present invention is not particularly limited, and a method of mixing and pulverizing cement clinker, gypsum and blast furnace slag, cement clinker and gypsum Examples of the method include mixing with pulverized slag after mixing and pulverization.

以下に、実施例及び比較例を挙げて本発明の内容を詳細に説明する。なお、本発明はこれらの例によって限定されるものではない。   The contents of the present invention will be described in detail below with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

1.供試試料
様々なキャラクターをもつ高炉水砕スラグを集め、実験に供した。
得られた高炉水砕スラグは、ボールミルを用いて、粉末度が4300±100cm/gとなるように粉砕した。
それらの高炉水砕スラグ(No.1〜25)の化学組成を表1に示す。化学成分は、JIS R 5202「セメントの化学分析方法」による分析結果から得られた蛍光X線の検量線を用いて測定した。
1. Test samples Blast furnace granulated slags with various characters were collected and used for experiments.
The obtained blast furnace granulated slag was pulverized using a ball mill so that the fineness was 4300 ± 100 cm 2 / g.
The chemical composition of those granulated blast furnace slags (Nos. 1 to 25) is shown in Table 1. The chemical component was measured using a fluorescent X-ray calibration curve obtained from an analysis result according to JIS R 5202 “Cement Chemical Analysis Method”.

また、各高炉スラグの塩基度および活性度指数(28日)を表2に示す。
塩基度は、JIS A 6206「コンクリート用高炉スラグ微粉末」に準拠して求めたものと、特開2008−247715号公報のTi・Mn量を考慮したもの(Bm)を求めた。なお、前者の塩基度は式(J)に従い、後者の塩基度は式(2’)に従い算出した。
Table 2 shows the basicity and activity index (28 days) of each blast furnace slag.
The basicity was determined in accordance with JIS A 6206 “Blast Furnace Slag Fine Powder for Concrete” and in consideration of the Ti / Mn amount (Bm) of Japanese Patent Application Laid-Open No. 2008-247715. The basicity of the former was calculated according to the formula (J), and the basicity of the latter was calculated according to the formula (2 ′).

JIS塩基度=(CaO+Al+MgO)/SiO・・・(J)
Bm=(CaO+Al+MgO)/SiO−0.13×TiO−MnO・・・(2’)
また、活性度指数の評価は、JIS A 6206:2013「コンクリート用高炉スラグ微粉末」の付属書に記載されている「高炉スラグ微粉末のモルタルによる活性度指数およびフロー値比の試験方法」に準拠して行った。即ち、高炉スラグにセメントを混合して高炉セメントを製造し、更に砂、水を加え混合してモルタルを製造し、評価を行った。
JIS basicity = (CaO + Al 2 O 3 + MgO) / SiO 2 (J)
Bm = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (2 ′)
In addition, the evaluation of the activity index is described in “Test method for activity index and flow value ratio by mortar of blast furnace slag fine powder” described in the appendix of JIS A 6206: 2013 “Blast furnace slag fine powder for concrete”. Performed in compliance. That is, cement was mixed with blast furnace slag to produce blast furnace cement, and further, sand and water were added and mixed to produce mortar for evaluation.

Figure 2016003178
Figure 2016003178

Figure 2016003178
Figure 2016003178

表3に、粉砕前のスラグの嵩密度を示す。
測定方法は、粒径が約10mm以下の水砕後のスラグを105℃で24時間乾燥した後、篩分けして1〜5mmのものを得て、内径20mm、高さ30mmの容重マス(容積20cm3)に投入し、上面を平滑にして、容重マスに入っている高炉スラグの質量を求めた。その質量を容重マスの容積で除した値を高炉スラグの嵩密度とした。
Table 3 shows the bulk density of the slag before pulverization.
The measurement method is to dry granulated slag having a particle size of about 10 mm or less for 24 hours at 105 ° C., and then sieve to obtain 1 to 5 mm, and a mass of 20 mm in inner diameter and 30 mm in height (volume) 20 cm 3 ), the upper surface was smoothed, and the mass of the blast furnace slag contained in the heavy mass was determined. The value obtained by dividing the mass by the volume of the mass was taken as the bulk density of the blast furnace slag.

Figure 2016003178
Figure 2016003178

3.評価(嵩密度)
塩基度(Bm)が同等の範囲で嵩密度と活性度指数との関係を調べた。材齢7日を図1に、材齢28日を図2に示す。塩基度(Bm)が同等の範囲では、嵩密度と活性度指数の間にある程度の相関が認められることがわかった。具体的には、図1及び図2では、Bm=1.26〜1.43、あるいはBm=1.51〜1.65の範囲で、嵩密度と活性度指数の間にある程度の相関が認められることがわかった。
3. Evaluation (bulk density)
The relationship between the bulk density and the activity index was examined in the basicity (Bm) range. FIG. 1 shows the age of 7 days, and FIG. 2 shows the age of 28 days. It was found that a certain degree of correlation was observed between the bulk density and the activity index when the basicity (Bm) was in the same range. Specifically, in FIGS. 1 and 2, there is a certain degree of correlation between the bulk density and the activity index in the range of Bm = 1.26 to 1.43 or Bm = 1.51 to 1.65. I found out that

4.評価(指標A)
上述した結果から、スラグの塩基度(Bm)および嵩密度を独立変数とし、活性度指数(材齢7日)を従属変数として重回帰分析を行い、式(3)を求めた。さらに、式(3)の両辺を塩基度(Bm)の係数で割り、切片を引いた式(4)を求め、その式から算出した活性度指数を予測するための指標Aを表4に示す。
活性度指数(7日)= 49.99×(塩基度(Bm))−55.80×(高炉スラグの嵩密度)+65.82・・・(3)
A=(塩基度(Bm))−1.12×(高炉スラグの嵩密度)・・・(4)
4). Evaluation (Indicator A)
From the above results, multiple regression analysis was performed using the basicity (Bm) and bulk density of slag as independent variables and the activity index (material age 7 days) as a dependent variable, to obtain equation (3). Furthermore, Table 4 shows an index A for predicting the activity index calculated from the equation (4) obtained by dividing both sides of the equation (3) by the coefficient of basicity (Bm) and subtracting the intercept. .
Activity index (7 days) = 49.99 × (basicity (Bm)) − 55.80 × (bulk density of blast furnace slag) +65.82 (3)
A = (basicity (Bm)) − 1.12 × (bulk density of blast furnace slag) (4)

Figure 2016003178
Figure 2016003178

5.評価(指標Aと活性度指数との関係)
図3および図4にJISの塩基度と活性度指数との関係(比較例)を、図5および図6に式(4)から求めた指標Aと実測した活性度指数との関係(実施例)を示す。
この結果から、塩基度(Bm)と高炉スラグの嵩密度を組み合わせることで、材齢7日、28日ともに塩基度(JIS)の場合よりも活性度のバラツキの幅が小さくなっており(7日:20%→15%、28日:18%→15%)、精度よく活性度指数を予測できることがわかった。特に、黒塗りのプロットの活性度指数の予測精度が高くなった。塩基度(Bm)は、高炉スラグの化学成分の影響を表しているが、嵩密度は、高炉スラグの製造条件を反映しているものと考えられ、両者を考慮することで、精度よく活性度指数を予測できたものと推測される。
従って、本発明の選別方法を用いることで、特定の活性度指数を示す高炉スラグを得ることが出来ると言え、品質が安定したものが製造できる。また、選別した高炉スラグを用いて、特定の活性度指数を示す高炉セメントを得ることが出来ると言える。
5. Evaluation (relation between index A and activity index)
3 and FIG. 4 show the relationship between JIS basicity and activity index (comparative example), and FIG. 5 and FIG. 6 show the relationship between the index A obtained from equation (4) and the measured activity index (Example). ).
From this result, by combining the basicity (Bm) and the bulk density of the blast furnace slag, the range of activity variation is smaller than the case of basicity (JIS) on both the 7th and 28th ages (7 (Day: 20% → 15%, day 28: 18% → 15%), it was found that the activity index can be predicted with high accuracy. In particular, the prediction accuracy of the activity index of the black plot has increased. Basicity (Bm) represents the influence of the chemical composition of blast furnace slag, but the bulk density is considered to reflect the production conditions of blast furnace slag. It is presumed that the index could be predicted.
Therefore, it can be said that by using the screening method of the present invention, a blast furnace slag having a specific activity index can be obtained, and a product with stable quality can be manufactured. Moreover, it can be said that the blast furnace cement which shows a specific activity index can be obtained using the selected blast furnace slag.

Claims (10)

高炉スラグの化学成分から塩基度を求める塩基度算出工程と、
前記高炉スラグの嵩密度を求める嵩密度算出工程と、
前記塩基度および前記嵩密度から前記高炉スラグの活性度指数の指標Aを求める指標算出工程と、
前記指標Aに基づいて前記高炉スラグを選別する選別工程とを含むことを特徴とする高炉スラグの選別方法。
A basicity calculation step for obtaining basicity from chemical components of blast furnace slag;
A bulk density calculating step for obtaining a bulk density of the blast furnace slag;
An index calculating step for obtaining an index A of an activity index of the blast furnace slag from the basicity and the bulk density;
And a sorting step for sorting the blast furnace slag based on the index A.
前記選別工程は、前記指標A以上である場合を高活性度高炉スラグ、前記指標A未満である場合を低活性度高炉スラグとして前記高炉スラグを選別する工程を含む、請求項1記載の高炉スラグの選別方法。   2. The blast furnace slag according to claim 1, wherein the sorting step includes a step of sorting the blast furnace slag as a high activity blast furnace slag when the index A is equal to or higher than the index A and a low activity blast furnace slag when the index A is less than the index A. Sorting method. 前記指標Aが−5〜5の何れかの値である、請求項1又は2記載の高炉スラグの選別方法。   The method for selecting blast furnace slag according to claim 1 or 2, wherein the index A is any value of -5 to 5. 前記化学成分は、CaO含有量、SiO含有量、Al含有量、MgO含有量、TiO含有量及びMnO含有量である、請求項1〜3の何れか1項記載の高炉スラグの選別方法。 The blast furnace slag according to claim 1, wherein the chemical components are CaO content, SiO 2 content, Al 2 O 3 content, MgO content, TiO 2 content, and MnO content. Sorting method. 前記指標算出工程は、下記式(1)及び(2)から指標Aを算出する工程を含む、請求項1〜4の何れか1項記載の高炉スラグの選別方法。
A=Bm−γ×(高炉スラグの嵩密度)・・・(1)
Bm=(CaO+Al+MgO)/SiO−α×TiO−β×MnO・・・(2)
但し、CaO、Al、MgO、SiO、TiO及びMnOは高炉スラグ中の各化学成分の含有量であり、α=0.03〜0.50、β=0.7〜1.3、γ=0.5〜2.0である。
The blast furnace slag sorting method according to any one of claims 1 to 4, wherein the index calculation step includes a step of calculating an index A from the following formulas (1) and (2).
A = Bm−γ × (bulk density of blast furnace slag) (1)
Bm = (CaO + Al 2 O 3 + MgO) / SiO 2 −α × TiO 2 −β × MnO (2)
However, CaO, Al 2 O 3 , MgO, SiO 2 , TiO and MnO are the contents of each chemical component in the blast furnace slag, and α = 0.03 to 0.50, β = 0.7 to 1.3. Γ = 0.5 to 2.0.
高炉スラグの化学成分から塩基度を求める塩基度算出工程と、
前記高炉スラグの嵩密度を求める嵩密度算出工程と、
前記塩基度および前記嵩密度から前記高炉スラグの活性度指数の指標Aを求める指標算出工程と、
前記指標Aに基づいて前記高炉スラグを選別する選別工程と、
選別された前記高炉スラグとセメントとを混合し高炉セメントを製造する製造工程とを含むことを特徴とする高炉セメントの製造方法。
A basicity calculation step for obtaining basicity from chemical components of blast furnace slag;
A bulk density calculating step for obtaining a bulk density of the blast furnace slag;
An index calculating step for obtaining an index A of an activity index of the blast furnace slag from the basicity and the bulk density;
A sorting step of sorting the blast furnace slag based on the index A;
A method for producing a blast furnace cement, comprising: producing a blast furnace cement by mixing the selected blast furnace slag and cement.
前記選別工程は、前記指標A以上である場合を高活性度高炉スラグ、前記指標A未満である場合を低活性度高炉スラグとして前記高炉スラグを選別する工程とを含む、請求項6記載の高炉スラグの製造方法。   The blast furnace according to claim 6, wherein the sorting step includes a step of sorting the blast furnace slag as a high activity blast furnace slag when the index A is equal to or higher than the index A and a low activity blast furnace slag when the index A is less than the index A. A method for producing slag. 前記指標Aが−5〜5の何れかの値である、請求項6又は7記載の高炉セメントの製造方法。   The method for producing a blast furnace cement according to claim 6 or 7, wherein the index A is any value of -5 to 5. 前記化学成分は、CaO含有量、SiO含有量、Al含有量、MgO含有量、TiO含有量及びMnO含有量である、請求項6〜8の何れか1項記載の高炉スラグの製造方法。 The chemical components, CaO content SiO 2 content, Al 2 O 3 content, MgO content is the content of TiO 2 and MnO content, blast furnace slag according to any one of claims 6-8 Manufacturing method. 前記指標算出工程は、下記式(1)及び(2)から指標Aを算出する工程を含む、請求項6〜9の何れか1項記載の高炉スラグの製造方法。
A=Bm−γ×(高炉スラグの嵩密度)・・・(1)
Bm=(CaO+Al+MgO)/SiO−α×TiO−β×MnO・・・(2)
但し、CaO、Al、MgO、SiO、TiO及びMnOは高炉スラグ中の各化学成分の含有量であり、α=0.03〜0.50、β=0.7〜1.3、γ=0.5〜2.0である。
The said index calculation process is a manufacturing method of the blast furnace slag in any one of Claims 6-9 including the process of calculating the parameter | index A from following formula (1) and (2).
A = Bm−γ × (bulk density of blast furnace slag) (1)
Bm = (CaO + Al 2 O 3 + MgO) / SiO 2 −α × TiO 2 −β × MnO (2)
However, CaO, Al 2 O 3 , MgO, SiO 2 , TiO and MnO are the contents of each chemical component in the blast furnace slag, and α = 0.03 to 0.50, β = 0.7 to 1.3. Γ = 0.5 to 2.0.
JP2014126763A 2014-06-20 2014-06-20 Blast furnace slag sorting method and blast furnace cement production method Active JP6354373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126763A JP6354373B2 (en) 2014-06-20 2014-06-20 Blast furnace slag sorting method and blast furnace cement production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126763A JP6354373B2 (en) 2014-06-20 2014-06-20 Blast furnace slag sorting method and blast furnace cement production method

Publications (2)

Publication Number Publication Date
JP2016003178A true JP2016003178A (en) 2016-01-12
JP6354373B2 JP6354373B2 (en) 2018-07-11

Family

ID=55222730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126763A Active JP6354373B2 (en) 2014-06-20 2014-06-20 Blast furnace slag sorting method and blast furnace cement production method

Country Status (1)

Country Link
JP (1) JP6354373B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2017141134A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2017179248A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Soil improver and improved ground
JP2020050586A (en) * 2016-02-12 2020-04-02 宇部興産株式会社 Cement composition and method for producing the same
JP2022154348A (en) * 2021-03-30 2022-10-13 Ube三菱セメント株式会社 Mixed cement composition and production method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136151A (en) * 1979-04-05 1980-10-23 Nakayama Steel Works Ltd Manufacture of hard blast furnace water granulated slag
JPS55136152A (en) * 1979-04-05 1980-10-23 Nakayama Steel Works Ltd Manufacture of hard blast furnace water granulated slag
JP2008291301A (en) * 2007-05-23 2008-12-04 Jfe Steel Kk Method for operating blast furnace
JP5006088B2 (en) * 2007-03-30 2012-08-22 Jfeスチール株式会社 Method for selecting granulated blast furnace slag for cement and method for producing cement composition
WO2015011911A1 (en) * 2013-07-25 2015-01-29 Jfeスチール株式会社 Granulated blast furnace slag for use as cement starting material and screening method for same
JP2015205803A (en) * 2014-04-23 2015-11-19 宇部興産株式会社 Blast furnace slag selection method and blast furnace cement production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136151A (en) * 1979-04-05 1980-10-23 Nakayama Steel Works Ltd Manufacture of hard blast furnace water granulated slag
JPS55136152A (en) * 1979-04-05 1980-10-23 Nakayama Steel Works Ltd Manufacture of hard blast furnace water granulated slag
JP5006088B2 (en) * 2007-03-30 2012-08-22 Jfeスチール株式会社 Method for selecting granulated blast furnace slag for cement and method for producing cement composition
JP2008291301A (en) * 2007-05-23 2008-12-04 Jfe Steel Kk Method for operating blast furnace
WO2015011911A1 (en) * 2013-07-25 2015-01-29 Jfeスチール株式会社 Granulated blast furnace slag for use as cement starting material and screening method for same
JP2015205803A (en) * 2014-04-23 2015-11-19 宇部興産株式会社 Blast furnace slag selection method and blast furnace cement production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2017141134A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
JP2020050586A (en) * 2016-02-12 2020-04-02 宇部興産株式会社 Cement composition and method for producing the same
JP2017179248A (en) * 2016-03-31 2017-10-05 住友大阪セメント株式会社 Soil improver and improved ground
JP2022154348A (en) * 2021-03-30 2022-10-13 Ube三菱セメント株式会社 Mixed cement composition and production method thereof
JP7219785B2 (en) 2021-03-30 2023-02-08 Ube三菱セメント株式会社 Mixed cement composition and manufacturing method thereof

Also Published As

Publication number Publication date
JP6354373B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP5006088B2 (en) Method for selecting granulated blast furnace slag for cement and method for producing cement composition
JP6311485B2 (en) Method for producing fine blast furnace slag powder and method for producing blast furnace cement
JP6543912B2 (en) Cement composition and method for producing the same
JP6753067B2 (en) Blast furnace slag sorting method and blast furnace cement manufacturing method
KR101828120B1 (en) Cement compositions and process for producing same
JP2017066020A (en) Method for predicting quality or manufacturing condition of fly ash cement
JP5967294B2 (en) Blast-furnace granulated slag for raw materials of cement and its sorting method
JP2007137722A (en) Cement composition
JP2006219312A (en) Solidifying material composition
JP4568549B2 (en) Cement composition and method for producing the same
Tokyay Effect of chemical composition of clinker on grinding energy requirement
JP4478531B2 (en) Cement composition
JP6364918B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP2011169602A (en) Method for evaluating quality of aggregate, and method for sorting aggregate
JP6305875B2 (en) Method for producing Portland cement clinker
JP6981481B2 (en) Cement composition and its manufacturing method
JP2012201520A (en) Cement composition, and method for producing the same
JP2009236773A (en) Quality evaluation method of blast furnace slag
JP2008156231A (en) Cement composition
JP6676999B2 (en) Cement composition and method for producing the same
JP6055367B2 (en) Fluidity improved clinker
WO2018061239A1 (en) Prediction method for cement quality or manufacturing conditions
JP2018131361A (en) Method for producing cement composition, and method for evaluating the cement composition
JP6690273B2 (en) Cement composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250