JP2011169602A - Method for evaluating quality of aggregate, and method for sorting aggregate - Google Patents

Method for evaluating quality of aggregate, and method for sorting aggregate Download PDF

Info

Publication number
JP2011169602A
JP2011169602A JP2010030913A JP2010030913A JP2011169602A JP 2011169602 A JP2011169602 A JP 2011169602A JP 2010030913 A JP2010030913 A JP 2010030913A JP 2010030913 A JP2010030913 A JP 2010030913A JP 2011169602 A JP2011169602 A JP 2011169602A
Authority
JP
Japan
Prior art keywords
aggregate
physical properties
correlation
concrete
aggregates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030913A
Other languages
Japanese (ja)
Other versions
JP5484115B2 (en
Inventor
Masashi Sakashita
雅司 坂下
Minoru Yoshimoto
稔 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010030913A priority Critical patent/JP5484115B2/en
Publication of JP2011169602A publication Critical patent/JP2011169602A/en
Application granted granted Critical
Publication of JP5484115B2 publication Critical patent/JP5484115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply evaluating the quality of aggregate in a short time without performing the test kneading of concrete or a test for confirming the physical properties of concrete, and a method for sorting the aggregate on the basis of the quality evaluation result of the aggregate. <P>SOLUTION: On the basis of the correlation between the physical properties of respective hydraulic compositions obtained using multiple kinds of respective aggregates other than quality evaluation target aggregate and the physical properties of at least two kinds of aggregates in multiple kinds of respective aggregates, the quality of the quality evaluation target aggregate is evaluated from the physical properties of at least two kinds of the aggregates in the quality evaluation target aggregate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、骨材の品質を評価する方法、及び骨材を選別する方法に関するものである。   The present invention relates to a method for evaluating the quality of aggregates and a method for selecting aggregates.

コンクリート等の水硬性組成物の原料として使用される粗骨材、細骨材等の骨材を出荷するに際しては、当該骨材が所定の品質を備えているか否か、すなわち当該骨材を使用して得られる水硬性組成物が所望とする物性(例えば、スランプ、乾燥収縮ひずみ等)を発揮し得るか否かを事前に評価する必要がある。   When shipping aggregates such as coarse aggregates and fine aggregates used as raw materials for hydraulic compositions such as concrete, whether or not the aggregates have a predetermined quality, that is, use the aggregates It is necessary to evaluate in advance whether the hydraulic composition obtained in this way can exhibit the desired physical properties (for example, slump, drying shrinkage strain, etc.).

従来、骨材の品質は、品質評価対象としての骨材を使用してコンクリート等の試験練りを実際に行い、当該コンクリートの物性を確認する方法により評価されていた。   Conventionally, the quality of aggregates has been evaluated by a method in which concrete as a quality evaluation object is actually subjected to test kneading of concrete and the physical properties of the concrete are confirmed.

なお、従来、粗骨材の物性からコンクリート物性を推定する方法が提案されており、例えば、モルタル圧縮強度とコンクリート圧縮強度との比が被説明変数であり、骨材静弾性係数とモルタル静弾性係数との比が説明変数であるコンクリート圧縮強度推定用回帰曲線に、算出対象のコンクリートの骨材静弾性係数とモルタル静弾性係数との比を代入し、算出対象のコンクリートのモルタル圧縮強度とコンクリート圧縮強度の比を求めることによりコンクリート強度を推定する方法等が提案されている(特許文献1)。   Conventionally, methods for estimating concrete physical properties from physical properties of coarse aggregates have been proposed.For example, the ratio of mortar compressive strength to concrete compressive strength is an explained variable, and the aggregate static elastic modulus and mortar static elastic modulus Substituting the ratio of the aggregate static elastic modulus and the mortar static elastic modulus of the concrete to be calculated into the regression curve for estimating the concrete compressive strength whose ratio to the coefficient is an explanatory variable, and calculating the mortar compressive strength of the concrete to be calculated and the concrete There has been proposed a method of estimating concrete strength by obtaining a ratio of compressive strength (Patent Document 1).

また、所望の圧縮強度を有するコンクリート用の粗骨材を選定する方法としては、所定の粗骨材を用いて作製されたコンクリートの圧縮強度を、当該粗骨材を用いることなく作製されたベースモルタルの圧縮強度で除した値を評価指標とし、これと粗骨材のヤング率との関係から、所望とする圧縮強度に応じた粗骨材を選定する方法が提案されている(特許文献2)。   In addition, as a method for selecting a coarse aggregate for concrete having a desired compressive strength, a compressive strength of concrete produced using a predetermined coarse aggregate is used as a base produced without using the coarse aggregate. A method has been proposed in which a value obtained by dividing the mortar compressive strength is used as an evaluation index, and a coarse aggregate corresponding to a desired compressive strength is selected from the relationship between this and the Young's modulus of the coarse aggregate (Patent Document 2). ).

特開2005−221467号公報Japanese Patent Laying-Open No. 2005-221467 特開2006−212933号公報JP 2006-221933 A

しかしながら、従来の方法では、品質評価対象骨材ごとにコンクリートの試験練りを行い、かつ当該コンクリートの物性を確認しなければならないため、骨材の品質を評価するのに相当の時間がかかってしまうとともに、作業が煩雑になるという問題がある。   However, in the conventional method, since it is necessary to test and test concrete for each aggregate to be evaluated for quality and to check the physical properties of the concrete, it takes a considerable time to evaluate the quality of the aggregate. In addition, there is a problem that the work becomes complicated.

また、上記特許文献1に記載の方法においては、コンクリート強度を推定するために骨材の静弾性係数を測定する必要があるが、骨材の静弾性係数は、当該骨材の原石からコア抜きした供試体を用いて測定する必要があるため、当該供試体を得るのに手間がかかり、結果として作業が煩雑となってしまうという問題がある。   In addition, in the method described in Patent Document 1, it is necessary to measure the static elastic modulus of the aggregate in order to estimate the concrete strength. Therefore, there is a problem that it takes time to obtain the specimen, and as a result, the operation becomes complicated.

さらに、上記特許文献2に記載の方法では、所望とする圧縮強度を発現し得るコンクリート用粗骨材の選定をすることが可能であったとしても、他のコンクリート物性との関係において骨材の品質を評価することができないという問題がある。   Furthermore, in the method described in Patent Document 2, even if it is possible to select a coarse aggregate for concrete that can express a desired compressive strength, the aggregate of the aggregate in relation to other concrete properties. There is a problem that quality cannot be evaluated.

一方で、後述する実施例において明らかなように、重量コンクリート、軽量コンクリート等の特殊コンクリート以外の一般的な用途の普通コンクリートの物性と、各骨材物性との相関関係が低いことから、骨材物性に基づいてコンクリート物性を予測することは極めて困難である。   On the other hand, as will be apparent in the examples described later, since the correlation between the properties of ordinary concrete for general uses other than special concrete such as heavy concrete and lightweight concrete and the properties of each aggregate is low, aggregate It is extremely difficult to predict concrete physical properties based on physical properties.

このような問題点に鑑みて、本発明は、コンクリートの試験練りやコンクリート物性の確認試験等を行うことなく、簡単にかつ短時間に骨材の品質を評価し得る方法、及びこの方法による評価結果に基づいて骨材を選別する方法を提供することを目的とする。   In view of such problems, the present invention provides a method for evaluating the quality of aggregates easily and in a short time without performing concrete test mixing, concrete physical property confirmation test, and the like. An object is to provide a method for selecting aggregates based on the results.

上記課題を解決するために、本発明者らによる鋭意研究の結果、骨材の各種物性と水硬性組成物の物性との間の相関は低く、個々の骨材物性から水硬性組成物の物性を予測するのは極めて困難であるものの、各種骨材物性の中から選択した2種以上の骨材物性と水硬性組成物の物性との間には、高い相関関係があることを見出した。   In order to solve the above problems, as a result of intensive studies by the present inventors, the correlation between the various physical properties of the aggregate and the physical properties of the hydraulic composition is low, and the physical properties of the hydraulic composition from the individual aggregate physical properties. However, it has been found that there is a high correlation between two or more aggregate physical properties selected from various aggregate physical properties and the physical properties of the hydraulic composition.

すなわち、本発明は、品質評価対象骨材以外の複数種類の骨材のそれぞれを使用して得られる各水硬性組成物の物性と、前記複数種類の骨材のそれぞれにおける2種以上の骨材物性との相関関係に基づいて、前記品質評価対象骨材における前記2種以上の骨材物性から、当該品質評価対象骨材の品質を評価することを特徴とする骨材の品質評価方法を提供する(発明1)。   That is, the present invention relates to the physical properties of each hydraulic composition obtained by using each of a plurality of types of aggregates other than the quality evaluation target aggregate, and two or more types of aggregates in each of the plurality of types of aggregates. Provided is an aggregate quality evaluation method characterized in that, based on the correlation with physical properties, the quality of the quality evaluation target aggregate is evaluated from the two or more types of aggregate physical properties in the quality evaluation target aggregate. (Invention 1)

上記発明(発明1)によれば、水硬性組成物の物性と2種以上の骨材物性との相関関係に基づいて、品質評価対象骨材の当該2種以上の骨材物性から、当該品質評価対象骨材を使用して得られる水硬性組成物の物性の相対的な評価をすることができるため、短時間にかつ簡便に品質評価対象骨材の品質を評価することができる。   According to the above invention (Invention 1), based on the correlation between the physical properties of the hydraulic composition and the two or more types of aggregate physical properties, the quality of the aggregate from the two or more types of aggregate physical properties of the quality evaluation target aggregate Since the relative physical properties of the hydraulic composition obtained using the evaluation target aggregate can be evaluated, the quality of the quality evaluation target aggregate can be evaluated in a short time and simply.

なお、本発明において「骨材の品質」とは、当該骨材を使用して得られる一般的な用途の水硬性組成物において許容し得る物性が得られる品質のことを意味する。また、「骨材」とは、粗骨材及び/又は細骨材を意味し、「複数種類の骨材」には、岩種の異なる複数の骨材、同一の岩種であるが産地又はロットの異なる複数の骨材等が含まれるものとする。さらに、「水硬性組成物」には、少なくともセメント等の水硬性粉状物、水及び骨材を含むフレッシュコンクリート及びフレッシュモルタル、並びにそれらを硬化させてなる硬化体等が含まれるものとする。   In the present invention, the term “aggregate quality” means a quality that provides acceptable physical properties in a hydraulic composition for general use obtained by using the aggregate. “Aggregate” means coarse aggregate and / or fine aggregate, and “multiple types of aggregate” includes a plurality of aggregates of different rock types and the same rock type, A plurality of aggregates with different lots are included. Furthermore, the “hydraulic composition” includes at least a hydraulic powder such as cement, fresh concrete and fresh mortar containing water and aggregate, and a cured body obtained by curing them.

上記発明(発明1)においては、前記品質評価対象骨材における前記2種以上の骨材物性を測定し、前記測定された2種以上の骨材物性から、前記相関関係に基づいて前記品質評価対象骨材の品質を評価することができる。   In the said invention (invention 1), the said 2 or more types of aggregate physical property in the said quality evaluation object aggregate is measured, and the said quality evaluation is based on the said correlation from the measured 2 or more types of aggregate physical property. The quality of the target aggregate can be evaluated.

上記発明(発明1)においては、前記水硬性組成物の物性と前記2種以上の骨材物性との相関関係を、重回帰分析により求めることができる(発明2)。   In the said invention (invention 1), the correlation of the physical property of the said hydraulic composition and the said 2 or more types of aggregate physical property can be calculated | required by multiple regression analysis (invention 2).

また、本発明は、選別対象骨材群に含まれる骨材以外の複数種類の骨材のそれぞれを使用して得られる水硬性組成物の物性と、前記複数種類の骨材のそれぞれにおける2種以上の骨材物性との相関関係に基づいて、前記選別対象骨材群に含まれる各骨材における前記2種以上の骨材物性から、前記選別対象骨材群のうち、水硬性組成物の原料として適当な骨材を選別することを特徴とする骨材選別方法を提供する(発明3)。   Further, the present invention relates to the physical properties of a hydraulic composition obtained by using each of a plurality of types of aggregates other than the aggregates included in the aggregate group to be selected, and two types of the plurality of types of aggregates. Based on the correlation with the above-described aggregate physical properties, from the two or more types of aggregate physical properties in each aggregate included in the selection target aggregate group, of the hydraulic composition of the selection target aggregate group, There is provided an aggregate selection method characterized by selecting an appropriate aggregate as a raw material (Invention 3).

上記発明(発明3)によれば、コンクリート等の試験練りを行うことなく、水硬性組成物の原料として使用するのが適当な骨材と不適当な骨材とを簡単に選別することができるため、結果として複数種類の骨材の品質管理を容易に行うことができる。   According to the above invention (Invention 3), it is possible to easily select an aggregate suitable for use as a raw material of a hydraulic composition and an inappropriate aggregate without performing test kneading of concrete or the like. Therefore, as a result, quality control of multiple types of aggregates can be easily performed.

上記発明(発明3)においては、前記選別対象骨材群に含まれる各骨材における前記2種以上の骨材物性を測定し、前記測定された2種以上の骨材物性から、前記相関関係に基づいて、前記選別対象骨材群のうち、水硬性組成物の原料として適当な骨材を選別することができる。   In the said invention (invention 3), the said 2 or more types of aggregate physical property in each aggregate contained in the said selection object aggregate group is measured, The said correlation is obtained from the measured 2 or more types of aggregate physical property. Based on the above, it is possible to select an appropriate aggregate as a raw material for the hydraulic composition from among the aggregate group to be selected.

上記発明(発明3)においては、前記水硬性組成物の物性と前記2種以上の骨材物性との相関関係を、重回帰分析により求めることができる(発明4)。   In the said invention (invention 3), the correlation of the physical property of the said hydraulic composition and the said 2 or more types of aggregate physical property can be calculated | required by multiple regression analysis (invention 4).

本発明によれば、コンクリートの試験練りやコンクリート物性の確認試験等を行うことなく、簡単にかつ短時間に骨材の品質を評価し得る方法、及びこの方法による評価結果に基づいて骨材を選別する方法を提供することができる。   According to the present invention, it is possible to easily evaluate the quality of the aggregate in a short time without performing concrete test mixing, concrete physical property confirmation test, and the like, and the aggregate based on the evaluation result by this method. A method of sorting can be provided.

各種骨材を用いて得られたフレッシュコンクリートのスランプ実測値と各種骨材における骨材物性((a)粗粒率、(b)実積率、(c)吸水率)との相関関係を示すグラフである。Shows the correlation between the measured slump value of fresh concrete obtained using various aggregates and the aggregate physical properties ((a) coarse grain ratio, (b) actual volume fraction, (c) water absorption rate) in various aggregates It is a graph. 各種骨材を用いて得られたフレッシュコンクリートのスランプ実測値と各種骨材における骨材物性((a)微粒分量、(b)絶乾密度、(c)細孔容積)との相関関係を示すグラフである。The correlation between the measured slump value of fresh concrete obtained using various aggregates and the aggregate physical properties ((a) fine particle amount, (b) absolute dry density, (c) pore volume) in various aggregates is shown. It is a graph. スランプ実測値と、3種の骨材物性(粗粒率、実積率及び吸水率)を説明変数として用いた重回帰分析により算出されたスランプ計算値との相関関係を示すグラフである。It is a graph which shows the correlation with the slump calculation value calculated by the multiple regression analysis using three types of aggregate physical properties (coarse grain ratio, actual volume ratio, and water absorption) as explanatory variables. 各種骨材を用いて得られたコンクリートの乾燥収縮ひずみ実測値と各種骨材における骨材物性((a)吸水率、(b)絶乾密度、(c)点載荷強度)との相関関係を示すグラフである。Correlation between measured dry shrinkage strain of concrete obtained using various aggregates and aggregate physical properties ((a) water absorption, (b) absolute dry density, (c) point loading strength) of various aggregates It is a graph to show. 各種骨材を用いて得られたコンクリートの乾燥収縮ひずみ実測値と各種骨材における骨材物性((a)細孔容積、(b)実積率、(c)粗粒率)との相関関係を示すグラフである。Correlation between dry shrinkage measured values of concrete obtained using various aggregates and aggregate physical properties ((a) pore volume, (b) actual volume fraction, (c) coarse particle ratio) in various aggregates It is a graph which shows. 乾燥収縮ひずみ実測値と、3種の骨材物性(吸水率、絶乾密度及び点載荷強度)を説明変数として用いた重回帰分析により算出された乾燥収縮ひずみ計算値との相関関係を示すグラフである。Graph showing the correlation between measured dry shrinkage strain and dry shrinkage strain calculated by multiple regression analysis using three types of aggregate properties (water absorption rate, absolute dry density, and point load strength) as explanatory variables It is. 乾燥収縮ひずみ実測値と、2種の骨材物性(吸水率及び点載荷強度)を説明変数として用いた重回帰分析により算出された乾燥収縮ひずみ計算値との相関関係を示すグラフである。It is a graph which shows the correlation with the dry shrinkage distortion calculation value calculated by the multiple regression analysis which used 2 types of aggregate physical properties (water absorption rate and point load strength) as explanatory variables.

以下、本発明の実施の形態について詳細に説明する。
本実施形態に係る骨材の品質評価方法においては、品質評価の対象となる骨材以外の複数種類の骨材のそれぞれを使用して得られる水硬性組成物の物性と、当該複数種類の骨材のそれぞれにおける2種以上の骨材物性との相関関係を予め求める。
Hereinafter, embodiments of the present invention will be described in detail.
In the aggregate quality evaluation method according to the present embodiment, the physical properties of the hydraulic composition obtained by using each of a plurality of types of aggregates other than the aggregate to be subjected to quality evaluation, and the plurality of types of bones A correlation between two or more kinds of aggregate physical properties in each material is obtained in advance.

上記相関関係を求めるに際しては、まず、上記複数種類の骨材のそれぞれと、特定の種類のセメントと、水とを一定の配合で混練して、骨材の種類ごとに水硬性組成物を調製し、各水硬性組成物の物性を測定する。   In determining the correlation, first, each of the above-mentioned multiple types of aggregates, a specific type of cement, and water are kneaded in a fixed composition to prepare a hydraulic composition for each type of aggregate. Then, the physical properties of each hydraulic composition are measured.

上記複数種類の骨材としては、特殊用途の水硬性組成物(例えば、重量コンクリート、軽量コンクリート等)以外の一般的な用途の水硬性組成物(例えば、普通コンクリート等)の原料として既に使用されたことのある骨材(例えば、普通骨材)であれば、異なる岩種の骨材であってもよいし、同一の岩種であって産地やロットの異なる骨材であってもよいが、骨材の品質評価方法の汎用性を高める観点からすれば、異なる岩種の骨材と、同一の岩種であって産地の異なる骨材及びロットの異なる骨材とを使用するのが好ましい。   As the above-mentioned multiple types of aggregates, they are already used as raw materials for general-purpose hydraulic compositions (for example, ordinary concrete) other than special-purpose hydraulic compositions (for example, heavy concrete, lightweight concrete, etc.). As long as the aggregate has been used (for example, ordinary aggregate), it may be aggregates of different rock types, or may be aggregates of the same rock type and with different origins and lots. From the viewpoint of enhancing the versatility of the aggregate quality evaluation method, it is preferable to use aggregates of different rock types, aggregates of the same rock type and different origin, and aggregates of different lots. .

上記セメントの種類としては、例えば、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント等の各種ポルトランドセメント;高炉セメント、フライアッシュセメント等の混合セメント;都市ゴミ焼却灰及び/又は下水汚泥焼却灰を原料として製造した焼成物の粉砕物と石膏とからなるセメント(エコセメント)等が挙げられるが、これらに限定されるものではない。   Examples of the cement include various portland cements such as ordinary portland cement, early-strength portland cement, moderately hot portland cement, and low heat portland cement; mixed cements such as blast furnace cement and fly ash cement; municipal waste incineration ash and / or A cement (eco-cement) composed of a pulverized product and gypsum produced using sewage sludge incineration ash as a raw material is exemplified, but it is not limited thereto.

上記水硬性組成物の物性としては、一般のコンクリートに要求されるような物性であれば特に限定されるものではなく、例えば、スランプ、スランプフロー、フロー、乾燥収縮ひずみ、自己収縮ひずみ、圧縮強度、静弾性係数等が挙げられる。   The physical property of the hydraulic composition is not particularly limited as long as it is a physical property required for general concrete. For example, slump, slump flow, flow, drying shrinkage strain, self-shrinkage strain, compressive strength , Static elastic modulus and the like.

上記水硬性組成物の物性は、JIS、コンクリート標準示方書等に記載されている方法により測定することができる。例えば、フレッシュコンクリートのスランプは、JIS−A1101に準拠して測定することができ、コンクリートの乾燥収縮ひずみは、JIS−A1129に準拠して測定することができる。   The physical properties of the hydraulic composition can be measured by methods described in JIS, concrete standard specifications, and the like. For example, slump of fresh concrete can be measured according to JIS-A1101, and dry shrinkage strain of concrete can be measured according to JIS-A1129.

次に、各骨材における複数種の骨材物性のそれぞれと、上記水硬性組成物の物性のそれぞれとの相関関係(相関係数)を求める。後述する実施例からも明らかなように、骨材における個々の骨材物性と水硬性組成物の物性とは、相関関係が低いと考えられるが、上記相関関係(相関係数)を求めておくことで、後述する重回帰分析において、説明変数としての骨材物性を選択する際の指標として当該相関係数を使用することができる。   Next, a correlation (correlation coefficient) between each of a plurality of types of aggregate physical properties in each aggregate and each of the physical properties of the hydraulic composition is obtained. As is clear from the examples described later, the individual physical properties of the aggregate and the physical properties of the hydraulic composition are considered to have a low correlation, but the above correlation (correlation coefficient) is obtained. Thus, in the multiple regression analysis described later, the correlation coefficient can be used as an index when selecting aggregate physical properties as explanatory variables.

骨材における骨材物性は、骨材自体を試料として使用して測定可能な物性であれば特に限定されるものではないが、例えば、粗粒率、実積率、吸水率、絶乾密度、点載荷強度、細孔容積、微粒分量、比表面積等が挙げられる。   Aggregate physical properties in the aggregate are not particularly limited as long as the physical properties can be measured using the aggregate itself as a sample, for example, coarse grain ratio, actual volume ratio, water absorption, absolute dry density, Examples include point loading strength, pore volume, fine particle amount, specific surface area, and the like.

上記相関関係を求めるに際し、各骨材における複数種の骨材物性が不明である場合には、その不明な骨材物性を測定することができる。かかる骨材物性は、骨材物性の種類に応じて、JIS等の基準に規定されている方法により測定すればよい。   When obtaining the above correlation, if a plurality of types of aggregate physical properties in each aggregate are unknown, the unknown aggregate physical properties can be measured. Such aggregate physical properties may be measured by a method defined in a standard such as JIS according to the type of aggregate physical properties.

上記相関関係を求めた後に、各骨材における複数種の骨材物性のうちから2種以上の骨材物性を説明変数として選択し、水硬性組成物の物性と、当該選択された2種以上の骨材物性との重相関関係を、水硬性組成物の物性を目的変数とし、骨材物性を説明変数として重回帰分析により求める。   After obtaining the correlation, two or more aggregate physical properties are selected as explanatory variables from a plurality of types of aggregate physical properties in each aggregate, and the physical properties of the hydraulic composition and the two or more selected physical properties are selected. The multiple correlation with the aggregate physical properties is obtained by multiple regression analysis with the physical properties of the hydraulic composition as the objective variable and the aggregate physical properties as the explanatory variables.

重相関関係を求める際に説明変数として選択される2種以上の骨材物性は、上述のようにして求められた各骨材物性と水硬性組成物の物性との相関関係に基づいて選択することができ、水硬性組成物の物性との相関の高いものから順に2種以上の骨材物性を選択するのが好ましい。   Two or more types of aggregate physical properties that are selected as explanatory variables when obtaining a multiple correlation are selected based on the correlation between the respective physical properties of the aggregate obtained as described above and the physical properties of the hydraulic composition. It is preferable to select two or more aggregate physical properties in descending order of correlation with the physical properties of the hydraulic composition.

なお、相互に相関の高い骨材物性を説明変数として選択して重回帰分析を行うと、目的変数としての水硬性組成物の物性の推定精度が低下する場合も考えられるため、2種以上の骨材物性を選択するに際しては、各骨材物性間における相関の高さを考慮に入れるようにしてもよい。例えば、吸水率、絶乾密度及び細孔容積は、相互に極めて相関の高い骨材物性であることが知られているため、水硬性組成物の物性との相関が最も高い骨材物性を説明変数として選択するようにしてもよい。   In addition, if aggregate physical properties with high correlation are selected as explanatory variables and a multiple regression analysis is performed, it may be possible that the estimation accuracy of the physical properties of the hydraulic composition as the objective variable may decrease. When selecting the aggregate physical properties, the high correlation between the aggregate physical properties may be taken into consideration. For example, it is known that water absorption, absolute dry density, and pore volume are extremely highly correlated with each other, so that the physical properties of the aggregate having the highest correlation with the properties of the hydraulic composition are explained. You may make it select as a variable.

説明変数として選択される骨材物性の数は、2種以上であればよいが、水硬性組成物の物性と複数種の骨材物性との重相関関係の高さを示す重相関係数(R)の絶対値が0.7以上となるように決定されるのが好ましい。   The number of aggregate physical properties selected as explanatory variables may be two or more, but a multiple correlation coefficient (high correlation coefficient indicating the high correlation between the physical properties of the hydraulic composition and the multiple types of aggregate physical properties ( It is preferable that the absolute value of R) is determined to be 0.7 or more.

具体的には、当該骨材物性の数が、2〜4種であるのが好ましく、3又は4種であるのがより好ましく、3種程度であるのが特に好ましい。説明変数として5種以上の骨材物性を選択したとしても、重相関係数の絶対値がほとんど変わらず、また、説明変数としての骨材物性の種類が多すぎて、品質評価対象骨材における骨材物性のうちのいずれの骨材物性が当該骨材の品質に影響を与えているのかの判断が困難となるおそれがある。   Specifically, the number of the physical properties of the aggregate is preferably 2 to 4, more preferably 3 or 4, and particularly preferably about 3. Even if five or more types of aggregate physical properties are selected as explanatory variables, the absolute value of the multiple correlation coefficient is hardly changed, and there are too many types of aggregate physical properties as explanatory variables. It may be difficult to determine which of the aggregate physical properties affects the quality of the aggregate.

このようにして、下記重回帰式にて表される、水硬性組成物の物性と2種以上の骨材物性との相関関係を予め求めておく。
S=ΣA×X+B
式中、Sは「水硬性組成物の物性」を、Xは「骨材物性」を、Aは「回帰係数」を、Bは「定数項」を表し、nは説明変数(骨材物性)の数に応じて変動し得る2以上の整数である。
In this way, the correlation between the physical properties of the hydraulic composition and the physical properties of two or more aggregates represented by the following multiple regression equation is obtained in advance.
S = ΣA n × X n + B
In the formula, S represents “physical property of hydraulic composition”, X represents “aggregate physical property”, A represents “regression coefficient”, B represents “constant term”, and n represents an explanatory variable (aggregate physical property). It is an integer of 2 or more that can vary depending on the number of.

次に、品質評価対象骨材における各骨材物性を測定する。この測定値に基づいて上記回帰式から算出される水硬性組成物の物性の計算値により、品質評価対象骨材の品質を相対的に評価することができる。なお、品質評価対象骨材における各骨材物性が既知である場合には、各骨材物性を測定しなくてもよい。   Next, the physical properties of each aggregate in the quality evaluation target aggregate are measured. Based on the calculated value of the physical property of the hydraulic composition calculated from the regression equation based on the measured value, the quality of the aggregate subject to quality evaluation can be relatively evaluated. In addition, when each aggregate physical property in a quality evaluation object aggregate is known, it is not necessary to measure each aggregate physical property.

そして、品質対象骨材の各種骨材物性に基づいて、上記重回帰式から水硬性組成物の物性を算出し、算出された水硬性組成物の物性が、品質対象骨材を使用して得られる一般的な用途の水硬性組成物として許容し得るものであるか否かを相対的に評価する。   Then, based on the various aggregate physical properties of the quality target aggregate, the physical properties of the hydraulic composition are calculated from the multiple regression equation, and the calculated physical properties of the hydraulic composition are obtained using the quality target aggregate. It is relatively evaluated whether it is acceptable as a hydraulic composition for general use.

このようにして、品質対象骨材を一般的な用途の水硬性組成物の原料として使用した際に許容し得る物性が得られるか否か、すなわち当該骨材の品質を評価することができる。本実施形態に係る品質評価方法によれば、品質評価対象骨材の骨材物性のみが必要であって、評価のために、実際に水硬性組成物を調製する必要がないため、簡単にかつ短時間に骨材の品質を評価することができる。   In this way, it is possible to evaluate whether or not acceptable physical properties can be obtained when the target aggregate is used as a raw material for a hydraulic composition for general purposes, that is, the quality of the aggregate. According to the quality evaluation method according to the present embodiment, only the aggregate physical properties of the aggregate to be evaluated for quality are necessary, and it is not necessary to actually prepare a hydraulic composition for evaluation. Aggregate quality can be evaluated in a short time.

本実施形態においては、上述した品質評価方法により評価された品質評価対象骨材(選別対象骨材)について、当該品質評価に基づいて、一般的な用途の水硬性組成物の原料として使用するのが適当な骨材であるか否かを判断し、選別対象骨材の中から当該適当な骨材を選別することができる。   In the present embodiment, the quality evaluation target aggregate (selection target aggregate) evaluated by the above-described quality evaluation method is used as a raw material for a hydraulic composition for general use based on the quality evaluation. Can be selected from the aggregates to be selected.

具体的には、品質評価方法により品質対象骨材を使用して得られる水硬性組成物の物性(計算値)が、一般的な用途の水硬性組成物として許容し得る範囲内のものを、水硬性組成物の原料として使用するのが適当な骨材として選別することができる。   Specifically, the physical properties (calculated values) of the hydraulic composition obtained by using the quality target aggregate by the quality evaluation method are within the range acceptable as a hydraulic composition for general use. It can be selected as an aggregate suitable for use as a raw material for the hydraulic composition.

また、本実施形態においては、上述した品質評価方法により品質対象骨材を使用して得られる水硬性組成物の物性(計算値)を、その骨材の品質を改善するための指標とすることができる。   In the present embodiment, the physical property (calculated value) of the hydraulic composition obtained by using the quality target aggregate by the quality evaluation method described above is used as an index for improving the quality of the aggregate. Can do.

具体的には、品質評価対象骨材の骨材物性から算出した水硬性組成物の物性(計算値)が、一般的な用途の水硬性組成物として許容し得る範囲外である場合に、当該水硬性組成物の物性との重相関関係を示す説明変数としての骨材物性のうち、改善し得る骨材物性を特定する。そして、特定された骨材物性を改善することにより、一般的な用途の水硬性組成物として許容し得る範囲内の物性を奏し得る骨材とすることができる。   Specifically, when the physical properties (calculated values) of the hydraulic composition calculated from the aggregate physical properties of the aggregate subject to quality evaluation are outside the acceptable range for a hydraulic composition for general use, Among the aggregate physical properties as explanatory variables indicating the multiple correlation with the physical properties of the hydraulic composition, the aggregate physical properties that can be improved are specified. And it can be set as the aggregate which can show | play the physical property within the range which can be accept | permitted as a hydraulic composition of a general use by improving the specified aggregate physical property.

例えば、各種骨材物性のうち、粗粒率、実積率、微粒分量等の骨材の製造工程の改善により変動可能な骨材物性を変動させることで、水硬性組成物の物性を一般的な用途の水硬性組成物として許容し得る範囲内にすることができると判断できる場合には、当該判断に基づいて骨材の製造工程を改善することができる。   For example, among various aggregate physical properties, the physical properties of hydraulic compositions are generally changed by changing the aggregate physical properties that can be changed by improving the manufacturing process of the aggregate such as the coarse particle ratio, actual volume ratio, and fine particle amount. When it can be determined that the hydraulic composition can be within an acceptable range as a hydraulic composition for various uses, the aggregate manufacturing process can be improved based on the determination.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the following Example at all.

〔コンクリートの作製〕
普通ポルトランドセメント(太平洋セメント社製)、水道水、骨材物性がそれぞれ異なる複数種類の粗骨材、細骨材(砕砂及び海砂の混合砂)、AE減水剤(BASFポゾリス社製,製品名:ポゾリスNo.70)をコンクリート原料として用い、それらのコンクリート原料を常法により混練し、表1に示す配合でフレッシュコンクリートを作製した(試料1〜23)。
[Production of concrete]
Ordinary Portland cement (manufactured by Taiheiyo Cement), tap water, multiple types of coarse aggregates with different aggregate properties, fine aggregate (mixed sand of crushed sand and sea sand), AE water reducing agent (manufactured by BASF Pozzolith, product name) : Pozzolith No. 70) was used as a concrete raw material, and these concrete raw materials were kneaded by a conventional method, and fresh concrete was prepared with the composition shown in Table 1 (Samples 1 to 23).

Figure 2011169602
Figure 2011169602

〔実施例1〕
〔スランプの測定〕
上述のようにして作製されたフレッシュコンクリート(試料1〜23)について、JIS−A1101に準拠してスランプ(cm)を測定した。スランプの測定結果及び各骨材の骨材物性(粗粒率、実積率、吸水率、微粒分量、絶乾密度及び細孔容積)を表2に示す。
[Example 1]
[Measurement of slump]
About the fresh concrete (samples 1-23) produced as mentioned above, the slump (cm) was measured based on JIS-A1101. Table 2 shows the measurement results of the slump and the aggregate physical properties (coarse particle ratio, actual volume ratio, water absorption ratio, fine particle content, absolute dry density, and pore volume) of each aggregate.

Figure 2011169602
Figure 2011169602

〔各骨材物性とスランプとの相関関係の算出〕
上述のようにして測定された各フレッシュコンクリート(試料1〜23)のスランプと、各骨材物性との相関関係を、回帰分析により求めた。結果を図1及び2に示す。
[Calculation of correlation between aggregate properties and slump]
The correlation between the slump of each fresh concrete (samples 1 to 23) measured as described above and the physical properties of each aggregate was determined by regression analysis. The results are shown in FIGS.

図1及び図2に示すように、フレッシュコンクリートのスランプと、各骨材物性との相関は低かったが、その相関の高さは、粗粒率、実積率、吸水率、微粒分量、絶乾密度、細孔容積の順であった。   As shown in Fig. 1 and Fig. 2, the correlation between the slump of fresh concrete and the physical properties of each aggregate was low, but the correlation was high in terms of coarse grain ratio, actual volume fraction, water absorption, fine particle amount, The order was dry density and pore volume.

〔重回帰分析〕
<説明変数の数の最適化>
各骨材物性のうち、フレッシュコンクリートのスランプとの相関の高いものから順に2〜6種の骨材物性を選択してそれぞれ重回帰分析を行い、説明変数の数に応じた重相関係数をそれぞれ求めた。各重回帰分析において選択した骨材物性の種類及び結果を表3に示す。
(Multiple regression analysis)
<Optimization of the number of explanatory variables>
Among the aggregate physical properties, 2 to 6 types of aggregate physical properties are selected in descending order of correlation with fresh concrete slump, and multiple regression analysis is performed for each, and multiple correlation coefficients corresponding to the number of explanatory variables are obtained. I asked for each. Table 3 shows the types and results of aggregate physical properties selected in each multiple regression analysis.

Figure 2011169602
Figure 2011169602

表3に示すように、説明変数として2種の骨材物性を選択すると、重相関係数が0.7未満であり、十分に高い重相関関係を有するとはいえない結果となった。また、説明変数として3種以上の骨材物性を選択することで重相関係数が0.7以上となり、十分に高い重相関関係を有する結果となったが、説明変数の数をそれ以上増加させたとしてもほとんど重相関係数にほとんど変化がなかった。この結果から、フレッシュコンクリートのスランプとの関係における骨材の品質を評価する場合には、粗粒率、実積率及び吸水率の3種の骨材物性を説明変数として用いた重回帰分析を行うのが望ましいことが判明した。   As shown in Table 3, when two types of aggregate physical properties were selected as explanatory variables, the multiple correlation coefficient was less than 0.7, and it could not be said that it had a sufficiently high multiple correlation. In addition, by selecting three or more aggregate physical properties as explanatory variables, the multiple correlation coefficient became 0.7 or more, which resulted in a sufficiently high multiple correlation, but the number of explanatory variables increased further. Even if it was made, there was almost no change in the multiple correlation coefficient. From this result, when evaluating the quality of the aggregate in relation to the slump of fresh concrete, multiple regression analysis using the three types of aggregate physical properties of coarse grain rate, actual volume fraction and water absorption rate as explanatory variables was conducted. It turns out to be desirable.

<スランプ予測値の算出>
各骨材物性のうち、フレッシュコンクリートのスランプとの間で相関の高いものから順に3つの骨材物性(粗粒率、実積率及び吸水率)を選択し、それらの骨材物性と、フレッシュコンクリート(試料1〜23)のスランプとの重相関関係を、重回帰分析により求め、当該重相関関係に基づいて、各フレッシュコンクリート(試料1〜23)に用いられている骨材の物性(粗粒率、実積率及び吸水率)から、スランプの予測値を算出した。スランプの実測値と計算値との相関関係を示すグラフを図3に、スランプの算出結果をスランプの実測値とともに表4に示す。
<Calculation of slump prediction value>
Three aggregate properties (coarse grain ratio, actual volume ratio, and water absorption rate) are selected in order from the one with the highest correlation with the slump of fresh concrete, and the aggregate physical properties and freshness are selected. The multiple correlation with the slump of the concrete (samples 1 to 23) is obtained by multiple regression analysis, and based on the multiple correlation, the physical properties (coarse) of the aggregate used in each fresh concrete (samples 1 to 23) The predicted value of slump was calculated from the grain ratio, actual volume ratio, and water absorption. A graph showing the correlation between the measured value of the slump and the calculated value is shown in FIG.

Figure 2011169602
Figure 2011169602

図3及び表4に示すように、コンクリート物性のうちのスランプに関しては、骨材物性のうちの粗粒率、実積率及び吸水率との間で、高い相関関係を有することが確認された。このことから、品質評価対象骨材の各種骨材物性のうち、粗粒率、実積率及び吸水率が分かれば、当該骨材を用いて得られるコンクリートのスランプに関する相対的評価が可能であることが判明した。   As shown in FIG. 3 and Table 4, regarding the slump of the concrete properties, it was confirmed that there is a high correlation among the coarse particle ratio, the actual volume ratio, and the water absorption rate of the aggregate physical properties. . From this, among the various aggregate physical properties of the aggregate to be evaluated for quality, if the coarse particle ratio, the actual volume ratio, and the water absorption rate are known, it is possible to make a relative evaluation regarding the concrete slump obtained using the aggregate. It has been found.

〔実施例2〕
〔乾燥収縮ひずみの測定〕
上述のようにして作製された各フレッシュコンクリートからコンクリート供試体を作製し(試料1〜23)、それらのコンクリート供試体について、JIS−A1129に準拠して乾燥収縮ひずみを測定した。乾燥収縮ひずみの測定結果及び各骨材の骨材物性(吸水率、絶乾密度、点載荷強度、細孔容積、実積率及び粗粒率)を表5に示す。
[Example 2]
[Measurement of drying shrinkage strain]
Concrete specimens were prepared from each of the fresh concretes produced as described above (Samples 1 to 23), and the dry shrinkage strains of these concrete specimens were measured according to JIS-A1129. Table 5 shows the measurement results of the drying shrinkage strain and the aggregate physical properties (water absorption rate, absolute dry density, point load strength, pore volume, actual volume fraction, and coarse particle rate) of each aggregate.

Figure 2011169602
Figure 2011169602

〔各骨材物性と乾燥収縮ひずみとの相関関係の算出〕
上述のようにして測定された各コンクリート供試体(試料1〜23)の乾燥収縮ひずみと、各骨材物性との相関関係を、回帰分析により求めた。結果を図4及び5に示す。
[Calculation of correlation between aggregate properties and drying shrinkage strain]
The correlation between the drying shrinkage strain of each concrete specimen (samples 1 to 23) measured as described above and the physical properties of each aggregate was determined by regression analysis. The results are shown in FIGS.

図4及び図5に示すように、各コンクリート供試体(試料1〜23)の乾燥収縮ひずみと、各骨材物性との相関は低かったが、その相関の高さは、吸水率、絶乾密度、点載荷強度、細孔容積、実積率及び粗粒率の順であった。   As shown in FIGS. 4 and 5, the correlation between the drying shrinkage strain of each concrete specimen (samples 1 to 23) and the physical properties of each aggregate was low. The order was density, point load strength, pore volume, actual volume ratio, and coarse grain ratio.

〔重回帰分析〕
<説明変数の数の最適化>
各骨材物性のうち、コンクリートの乾燥収縮ひずみとの相関の高いものから順に2〜6種の骨材物性を選択してそれぞれ重回帰分析を行い、説明変数の数に応じた重相関係数をそれぞれ求めた。各重回帰分析において選択した骨材物性の種類及び結果を表6に示す。
(Multiple regression analysis)
<Optimization of the number of explanatory variables>
Among the aggregate properties, 2 to 6 types of aggregate properties are selected in descending order of the correlation with the dry shrinkage strain of the concrete, and multiple regression analysis is performed for each. The multiple correlation coefficient according to the number of explanatory variables I asked for each. Table 6 shows the types and results of aggregate physical properties selected in each multiple regression analysis.

Figure 2011169602
Figure 2011169602

表6に示すように、説明変数として2種以上の骨材物性を選択することで重相関係数が0.8以上となり、十分に高い重相関関係を有する結果となった。また、説明変数として3種以上の骨材物性を選択することで重相関係数が0.87以上となるが、説明変数の数を増加させてもほとんど重相関係数が大きくなることはなかった。この結果から、吸水率、絶乾密度及び点載荷強度の3種の骨材物性を説明変数として用いた重回帰分析を行うことで、コンクリートの乾燥収縮ひずみを良好な精度で推定可能であることが判明した。   As shown in Table 6, when two or more kinds of aggregate physical properties were selected as explanatory variables, the multiple correlation coefficient became 0.8 or more, which resulted in a sufficiently high multiple correlation. In addition, by selecting three or more aggregate physical properties as explanatory variables, the multiple correlation coefficient becomes 0.87 or more, but even if the number of explanatory variables is increased, the multiple correlation coefficient is hardly increased. It was. From this result, it is possible to estimate the drying shrinkage strain of concrete with good accuracy by conducting multiple regression analysis using three types of aggregate physical properties, water absorption, absolute dry density, and point load strength, as explanatory variables. There was found.

<乾燥収縮ひずみ予測値の算出>
各骨材物性のうち、コンクリートの乾燥収縮ひずみとの間で相関の高いものから順に3つの骨材物性(吸水率、絶乾密度及び点載荷強度)を選択し、それらの骨材物性と、コンクリート供試体(試料1〜23)の乾燥収縮ひずみとの重相関関係を、重回帰分析により求め、当該重相関関係に基づいて、各コンクリート供試体(試料1〜23)に用いられている骨材の物性(吸水率、絶乾密度及び点載荷強度)から、乾燥収縮ひずみの予測値を算出した。乾燥収縮ひずみの実測値と計算値との相関関係を示すグラフを図6に、乾燥収縮ひずみの算出結果を乾燥収縮ひずみの実測値とともに表7に示す。
<Calculation of predicted drying shrinkage strain>
Among the aggregate physical properties, three aggregate physical properties (water absorption rate, absolute dry density and spot load strength) are selected in order from the one highly correlated with the drying shrinkage strain of the concrete, and the aggregate physical properties, The multiple correlation with the drying shrinkage strain of the concrete specimens (samples 1 to 23) is obtained by multiple regression analysis, and the bone used for each concrete specimen (samples 1 to 23) based on the multiple correlation. A predicted value of drying shrinkage strain was calculated from the physical properties of the material (water absorption rate, absolute dry density, and point load strength). FIG. 6 is a graph showing the correlation between the actually measured value and the calculated value of the drying shrinkage strain, and Table 7 shows the calculation result of the drying shrinkage strain together with the actually measured value of the drying shrinkage strain.

Figure 2011169602
Figure 2011169602

図6及び表7に示すように、コンクリート物性のうちの乾燥収縮ひずみに関しては、骨材物性のうちの吸水率、絶乾密度及び点載荷強度との間で、高い相関関係を有することが確認された。このことから、品質評価対象骨材の各種骨材物性のうち、吸水率、絶乾密度及び点載荷強度が分かれば、当該骨材を用いて得られるコンクリートの乾燥収縮ひずみに関する相対的評価が可能であることが判明した。   As shown in FIG. 6 and Table 7, regarding the dry shrinkage strain among the concrete properties, it is confirmed that there is a high correlation among the water absorption rate, the absolute dry density and the point load strength among the aggregate properties. It was done. From this, it is possible to make a relative evaluation on the dry shrinkage strain of concrete obtained using the aggregate if the water absorption, absolute dry density, and spot load strength are known among the various aggregate properties of the aggregate subject to quality evaluation. It turned out to be.

〔実施例3〕
〔重回帰分析〕
<説明変数の数の最適化>
各骨材物性のうち、コンクリートの乾燥収縮ひずみとの間で相関の最も高い骨材物性(吸水率)と極めて相関の高い骨材物性(絶乾密度及び細孔容積)を除き、当該乾燥収縮ひずみとの相関の高いものから順に2〜4種の骨材物性を選択してそれぞれ重回帰分析を行い、説明変数の数に応じた重相関係数をそれぞれ求めた。各重回帰分析において選択した骨材物性の種類及び結果を表8に示す。
Example 3
(Multiple regression analysis)
<Optimization of the number of explanatory variables>
Except for the aggregate physical properties (absorbing density and pore volume) that are most highly correlated with the aggregate physical properties (water absorption) among the aggregate physical properties, the dry shrinkage concerned Two to four kinds of aggregate physical properties were selected in descending order of correlation with strain, and multiple regression analysis was performed, respectively, to determine multiple correlation coefficients corresponding to the number of explanatory variables. Table 8 shows the types and results of aggregate physical properties selected in each multiple regression analysis.

Figure 2011169602
Figure 2011169602

表8に示すように、コンクリートの乾燥収縮ひずみとの間で最も相関の高い吸水率と極めて相関の高い骨材物性である絶乾密度及び細孔容積を説明変数として選択しない場合であっても、実施例2と同様に十分に高い重相関関係を有する結果となった。なお、実積率及び粗粒率は、コンクリートの乾燥収縮ひずみとの間における相関が低いことから、説明変数として用いても重相関関係をほとんど向上させることがなかった。この結果から、コンクリートの乾燥収縮ひずみとの間で最も相関の高い吸水率を説明変数として用いるとともに、当該吸水率と極めて相関の高い絶乾密度及び細孔容積を説明変数として用いることなく、点載荷強度を説明変数として用いた重回帰分析を行うことで、コンクリートの乾燥収縮ひずみを良好な精度で推定可能であることが判明した。   As shown in Table 8, even when the absolute dryness and pore volume, which are the aggregate physical properties having the highest correlation with the water absorption rate having the highest correlation with the drying shrinkage strain of concrete, are not selected as explanatory variables. As in Example 2, the results showed a sufficiently high multiple correlation. In addition, since the actual volume ratio and the coarse grain ratio have a low correlation with the drying shrinkage strain of the concrete, even when used as an explanatory variable, the multiple correlation was hardly improved. From this result, the water absorption rate having the highest correlation with the drying shrinkage strain of the concrete is used as an explanatory variable, and the absolute dry density and pore volume that are highly correlated with the water absorption rate are not used as explanatory variables. It was found that the drying shrinkage strain of concrete can be estimated with good accuracy by performing multiple regression analysis using loading strength as an explanatory variable.

<乾燥収縮ひずみ予測値の算出>
各骨材物性のうち、コンクリートの乾燥収縮ひずみとの間で最も相関の高い骨材物性(吸水率)と極めて相関の高い骨材物性(絶乾密度及び細孔容積)を説明変数から除外し、コンクリートの乾燥収縮ひずみとの間で相関の高いものから順に2つの骨材物性(吸水率及び点載荷強度)を説明変数として選択し、それらの骨材物性とコンクリート供試体(試料1〜23)の乾燥収縮ひずみとの重相関関係を、重回帰分析により求め、当該重相関関係に基づいて、各コンクリート供試体(試料1〜23)に用いられている骨材の物性(吸水率及び点載荷強度)から、乾燥収縮ひずみの予測値を算出した。乾燥収縮ひずみの実測値と計算値との相関関係を示すグラフを図7に、乾燥収縮ひずみの算出結果(計算値)を乾燥収縮ひずみの実測値とともに表9に示す。
<Calculation of predicted drying shrinkage strain>
Among the aggregate physical properties, the aggregate physical properties (absorbing density and pore volume) that are most highly correlated with the dry shrinkage strain of concrete are excluded from the explanatory variables. Two aggregate properties (water absorption rate and spot load strength) are selected as explanatory variables in descending order of correlation with the drying shrinkage strain of concrete, and these aggregate properties and concrete specimens (Samples 1 to 23) are selected. ) By dry regression analysis, and based on the multiple correlation, the physical properties (water absorption and points) of the aggregates used in each concrete specimen (samples 1 to 23) The predicted value of drying shrinkage strain was calculated from (load strength). FIG. 7 is a graph showing the correlation between the actually measured value and the calculated value of the drying shrinkage strain, and Table 9 shows the calculation result (calculated value) of the drying shrinkage strain together with the actually measured value of the drying shrinkage strain.

Figure 2011169602
Figure 2011169602

図7及び表9に示すように、コンクリート物性のうちの乾燥収縮ひずみに関し、骨材物性のうちの吸水率及び点載荷強度との間で、高い相関関係を有することが確認された。このことから、品質評価対象骨材の各種骨材物性のうち、吸水率及び点載荷強度が分かれば、当該骨材を用いて得られるコンクリートの乾燥収縮ひずみに関する相対的評価が可能であることが判明した。   As shown in FIG. 7 and Table 9, it was confirmed that there is a high correlation between the water absorption rate and the point load strength among the aggregate physical properties with respect to the drying shrinkage strain among the concrete physical properties. From this, among the various aggregate physical properties of the aggregate to be evaluated for quality, if the water absorption rate and the point load strength are known, it is possible to make a relative evaluation regarding the drying shrinkage strain of the concrete obtained using the aggregate. found.

また、実施例2及び3の結果から、コンクリート物性との間での相関の高い骨材物性を、その相関の高さの順に選択したときに、選択された骨材物性の中に相関の高いものが含まれている場合、それらのうちからコンクリート物性との間で最も相関の高い骨材物性のみを用いるとともに、当該骨材物性とは相関の低い少なくとも1種の骨材物性を用いて重回帰分析を行うことで、精度よくコンクリート物性を予測(推定)することができ、結果として、精度よく骨材の品質を評価し得ることが明らかとなった。   Moreover, from the results of Examples 2 and 3, when the aggregate physical properties having a high correlation with the concrete physical properties are selected in the order of the high correlation, the selected aggregate physical properties have a high correlation. If any of these is included, only the aggregate physical property having the highest correlation with the concrete physical property is used, and at least one kind of aggregate physical property having a low correlation with the aggregate physical property is used. By performing regression analysis, it was revealed that the physical properties of the concrete can be predicted (estimated) with high accuracy, and as a result, the quality of the aggregate can be evaluated with high accuracy.

本発明の骨材の品質評価方法は、骨材の出荷元において骨材の品質を管理する手法として有用である。   The aggregate quality evaluation method of the present invention is useful as a technique for managing the quality of aggregates at an aggregate shipping source.

Claims (4)

品質評価対象骨材以外の複数種類の骨材のそれぞれを使用して得られる各水硬性組成物の物性と、前記複数種類の骨材のそれぞれにおける2種以上の骨材物性との相関関係に基づいて、前記品質評価対象骨材における前記2種以上の骨材物性から、当該品質評価対象骨材の品質を評価することを特徴とする骨材の品質評価方法。   Correlation between the physical properties of each hydraulic composition obtained by using each of a plurality of types of aggregates other than the quality evaluation target aggregate and the physical properties of two or more types of aggregates in each of the plurality of types of aggregates Based on the two or more kinds of aggregate physical properties of the quality evaluation target aggregate, the quality evaluation method of the aggregate is characterized by evaluating the quality of the quality evaluation target aggregate. 前記水硬性組成物の物性と前記2種以上の骨材物性との相関関係を、重回帰分析により求めることを特徴とする請求項1に記載の骨材の品質評価方法。   The aggregate quality evaluation method according to claim 1, wherein a correlation between the physical properties of the hydraulic composition and the two or more aggregate physical properties is obtained by multiple regression analysis. 選別対象骨材群に含まれる骨材以外の複数種類の骨材のそれぞれを使用して得られる水硬性組成物の物性と、前記複数種類の骨材のそれぞれにおける2種以上の骨材物性との相関関係に基づいて、前記選別対象骨材群に含まれる各骨材における前記2種以上の骨材物性から、前記選別対象骨材群のうち、水硬性組成物の原料として適当な骨材を選別することを特徴とする骨材選別方法。   Physical properties of a hydraulic composition obtained by using each of a plurality of types of aggregates other than aggregates included in the selection target aggregate group, and two or more types of aggregate physical properties in each of the plurality of types of aggregates From the two or more kinds of aggregate physical properties in each aggregate included in the selection target aggregate group, the aggregate suitable as a raw material for the hydraulic composition in the selection target aggregate group The aggregate selection method characterized by selecting. 前記水硬性組成物の物性と前記2種以上の骨材物性との相関関係を、重回帰分析により求めることを特徴とする請求項3に記載の骨材選別方法。   The aggregate selection method according to claim 3, wherein a correlation between the physical properties of the hydraulic composition and the two or more types of aggregate physical properties is obtained by multiple regression analysis.
JP2010030913A 2010-02-16 2010-02-16 Aggregate quality evaluation method and sorting method Expired - Fee Related JP5484115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010030913A JP5484115B2 (en) 2010-02-16 2010-02-16 Aggregate quality evaluation method and sorting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010030913A JP5484115B2 (en) 2010-02-16 2010-02-16 Aggregate quality evaluation method and sorting method

Publications (2)

Publication Number Publication Date
JP2011169602A true JP2011169602A (en) 2011-09-01
JP5484115B2 JP5484115B2 (en) 2014-05-07

Family

ID=44683895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010030913A Expired - Fee Related JP5484115B2 (en) 2010-02-16 2010-02-16 Aggregate quality evaluation method and sorting method

Country Status (1)

Country Link
JP (1) JP5484115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107934A (en) * 2010-11-16 2012-06-07 Taiheiyo Cement Corp Method for estimating strain caused in concrete through drying shrinkage
JP2013051990A (en) * 2011-08-31 2013-03-21 Daiichi Shokai Co Ltd Game machine
JP2016200555A (en) * 2015-04-14 2016-12-01 前田建設工業株式会社 Particle size distribution analysis method and quality control method for construction material
JP2017066026A (en) * 2015-09-29 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of cement
JP7411162B2 (en) 2020-09-30 2024-01-11 住友大阪セメント株式会社 Concrete mix derivation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921737A (en) * 1995-03-31 1997-01-21 Yasuro Ito Method for determining characteristics of mixture of liquid, powder and granular material and method for conditioning the mixture
JPH09145348A (en) * 1995-11-24 1997-06-06 Norio Yamamoto Automatic inspection apparatus for quality of aggregate
JP2005221467A (en) * 2004-02-09 2005-08-18 Taisei Corp Method of estimating concrete strength
JP2006212933A (en) * 2005-02-03 2006-08-17 Taisei Corp Method for selecting crude aggregate
JP2010025639A (en) * 2008-07-16 2010-02-04 Shimizu Corp Selection method of good-quality aggregate for concrete

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921737A (en) * 1995-03-31 1997-01-21 Yasuro Ito Method for determining characteristics of mixture of liquid, powder and granular material and method for conditioning the mixture
JPH09145348A (en) * 1995-11-24 1997-06-06 Norio Yamamoto Automatic inspection apparatus for quality of aggregate
JP2005221467A (en) * 2004-02-09 2005-08-18 Taisei Corp Method of estimating concrete strength
JP2006212933A (en) * 2005-02-03 2006-08-17 Taisei Corp Method for selecting crude aggregate
JP2010025639A (en) * 2008-07-16 2010-02-04 Shimizu Corp Selection method of good-quality aggregate for concrete

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107934A (en) * 2010-11-16 2012-06-07 Taiheiyo Cement Corp Method for estimating strain caused in concrete through drying shrinkage
JP2013051990A (en) * 2011-08-31 2013-03-21 Daiichi Shokai Co Ltd Game machine
JP2016200555A (en) * 2015-04-14 2016-12-01 前田建設工業株式会社 Particle size distribution analysis method and quality control method for construction material
JP2017066026A (en) * 2015-09-29 2017-04-06 太平洋セメント株式会社 Method for predicting quality or manufacturing condition of cement
JP7411162B2 (en) 2020-09-30 2024-01-11 住友大阪セメント株式会社 Concrete mix derivation system

Also Published As

Publication number Publication date
JP5484115B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
Soares et al. Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance
González-Taboada et al. Analysis of rheological behaviour of self-compacting concrete made with recycled aggregates
Rodrigues et al. Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge
Pereira-de-Oliveira et al. Permeability properties of self-compacting concrete with coarse recycled aggregates
Da Silva et al. Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler
Al-Amoudi et al. Correlation between compressive strength and certain durability indices of plain and blended cement concretes
Bhanja et al. Influence of silica fume on the tensile strength of concrete
Yousuf et al. The use of particle packing models (PPMs) to design structural low cement concrete as an alternative for construction industry
Velay-Lizancos et al. Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials
JP5484115B2 (en) Aggregate quality evaluation method and sorting method
JP2018069487A (en) Prediction method of mixing conditions for concrete
JP2017087716A (en) Prediction method for concrete quality or concrete blending condition
Keleştemur et al. Analysis of some engineering properties of mortars containing steel scale using Taguchi based grey method
Ahmad et al. Water permeability characteristics of normal strength concrete made from crushed clay bricks as coarse aggregate
Buari et al. Short term durability study of groundnut shell ash blended self consolidating high performance concrete in sulphate and acid environments
Kangwa et al. Influence of rice husk ash density on the workability and strength of structural concrete
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP2006212933A (en) Method for selecting crude aggregate
Hodhod et al. Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling
JP6308773B2 (en) Concrete production method
Jithendra et al. Parametric effects on slump and compressive strength properties of geopolymer concrete using taguchi method
Kubissa et al. Surface blast-cleaning waste as a replacement of fine aggregate in concrete
Ogheneochuko et al. Optimization of superplasticized concrete using Taguchi approach: A case study of hydroplast 200
Hodhod et al. Simulating USBR4908 by ANN modeling to analyse the effect of mineral admixture with ordinary and pozzolanic cements on the sulfate resistance of concrete
JP6177534B2 (en) Method for producing concrete having desired characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees