WO2015011911A1 - Granulated blast furnace slag for use as cement starting material and screening method for same - Google Patents

Granulated blast furnace slag for use as cement starting material and screening method for same Download PDF

Info

Publication number
WO2015011911A1
WO2015011911A1 PCT/JP2014/003829 JP2014003829W WO2015011911A1 WO 2015011911 A1 WO2015011911 A1 WO 2015011911A1 JP 2014003829 W JP2014003829 W JP 2014003829W WO 2015011911 A1 WO2015011911 A1 WO 2015011911A1
Authority
WO
WIPO (PCT)
Prior art keywords
blast furnace
cement
slag
granulated
mass
Prior art date
Application number
PCT/JP2014/003829
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 當房
渡辺 圭児
桑山 道弘
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2015508915A priority Critical patent/JP5967294B2/en
Priority to KR1020157030353A priority patent/KR20150133272A/en
Priority to CN201480022750.7A priority patent/CN105143137B/en
Publication of WO2015011911A1 publication Critical patent/WO2015011911A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00215Mortar or concrete mixtures defined by their oxide composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a granulated blast furnace slag slag raw slag for a cement raw material for a high temperature region having an annual average temperature of 22 ° C or higher, and a method for selecting the same.
  • Blast furnace granulated slag is a by-product generated in the steel manufacturing process, and is mainly used as a cement raw material mainly composed of CaO, Al 2 O 3 , MgO, and SiO 2 .
  • Ground granulated blast furnace slag obtained by pulverizing blast furnace granulated slag is also used as a blending material for ordinary portland cement, especially blast furnace cement (portland).
  • blast furnace cement is a kind of blended cement obtained by mixing ordinary Portland cement and ground granulated blast furnace slag.
  • the content of ground granulated blast furnace slag is 40% by mass. The degree is common.
  • blast furnace cement ordinary Portland cement and blast furnace granulated slag fine powder, including those having a wide mixing ratio range, such as when the content of ground granulated blast furnace slag is 20% by mass, etc.
  • mixed cement with blast furnace granulated slag fine powder including those having a wide mixing ratio range, such as when the content of ground granulated blast furnace slag is 20% by mass, etc.
  • Cement is hydrated (hydration reaction) and hydrated product (hydration product) is generated to improve the strength, but if the hydration reaction is too fast, cement or other cement hardened (cement hardened body) There is a problem of causing cracks. This is because if the hydration reaction is too fast, the exotherm per unit time due to the hydration reaction increases and the temperature inside the concrete rises. In particular, concrete with a large volume has a small heat dissipation area (heat dissipation area), so the temperature rise inside the concrete becomes too large and cracks in the concrete become prominent.
  • heat dissipation area heat dissipation area
  • blast furnace cement is widely used instead of ordinary Portland cement for large concrete structures.
  • Blast furnace cement is cement produced by mixing finely ground blast furnace granulated slag with Portland cement.
  • Blast furnace cement contains a large amount of ground granulated blast furnace slag having latent hydraulic properties that develop hydraulic properties by alkali stimulation, and therefore has a hydration reaction compared to ordinary Portland cement. Slow and less heat generation. That is, the blast furnace cement is slower in strength than ordinary portland cement, and has a lower strength than ordinary portland cement at the beginning of the 3rd to 7th days of material age. Further, the activity at the age of 7 days is about 60 to 80%, and the calorific value per unit time is small.
  • the strength of the aging of 28 days is almost the same as that of ordinary Portland cement, and the long-term strength of blast furnace cement may exceed that of ordinary Portland. Therefore, cracking of a large concrete structure can be effectively suppressed by using blast furnace cement.
  • the activity of blast furnace cement is an index of the compressive strength of mortar samples using blast furnace cement, based on the compressive strength of mortar samples using ordinary Portland cement with the same mass ratio as blast furnace cement. Is.
  • blast furnace granulated slag used as a cement raw material has been conventionally required to have a certain basicity or higher for cement quality control.
  • Slag basicity [(CaO + Al 2 O 3 + MgO) / SiO 2 ] (hereinafter simply referred to as “basicity” or “JIS basicity”) defined in the industry standard (JIS) is used as an index.
  • CaO, Al 2 O 3 , MgO, and SiO 2 are the contents (mass%) of the respective oxides in the blast furnace granulated slag.
  • Patent Document 1 blast furnace granulated slag being produced at a water granulation equipment is sampled, and CaO, Al 2 O 3 , MgO, and SiO 2 are quantitatively analyzed to obtain basicity. Based on this, a technology for determining the quality rank of granulated blast furnace slag has been proposed.
  • Patent Document 2 discloses a base for blast furnace slag powder (a mixture of granulated blast furnace slag and blast furnace slag as a starting material or a rock wall or a rock wool waste slag) used as a raw material for low heat slag cement. A technique for adjusting the degree to 1.4 to 1.8 has been proposed.
  • the activity index is used as an index for measuring the quality of blast furnace granulated slag as a blast furnace cement raw material, and the hydration characteristics and strength development characteristics of blast furnace granulated slag can be evaluated by the activity index.
  • the activity index is 1: 1 (50%: 50% (mass% ratio)) of ground granulated blast furnace slag and regular Portland cement obtained by pulverizing ground granulated blast furnace slag with a specific surface area.
  • the strength A (N / mm 2 ) of the blast furnace cement blended (mixed) and the strength B (N / mm 2 ) of ordinary Portland cement were measured by a mortar test, and calculated by the following formula based on the measured values. It is what is done.
  • the test in Japan for measuring the activity index is conducted under a temperature condition of 20 ° C. for both cement kneading and curing as specified in JIS A 6206. Also, in the strength test of blast furnace cement and ordinary Portland cement, the bending strength and compressive strength are measured after kneading and curing at 20 ° C. From the viewpoint of suppressing cracks in large concrete structures, the activity of blast furnace cement is usually about 60 to 80% at the age of 3-7 days, and the activity at the age of 28 is about 90 to 110%. It is preferable to do.
  • the activity index is closely related to the basicity of blast furnace granulated slag, and the higher the basicity of blast furnace granulated slag, the higher the activity index. Therefore, conventionally, when selecting blast furnace granulated slag for blast furnace cement raw material using basicity as an index, a correlation between basicity and activity index is obtained in advance, and a numerical range of basicity serving as an index is set.
  • the activity index of granulated blast furnace slag pulverized to a specific surface area was measured for blast furnace granulated slag having various chemical compositions, and the basicity and activity of blast furnace granulated slag were measured. Find the correlation with the index.
  • a numerical range that serves as a standard for basicity of blast furnace granulated slag for obtaining a desired activity index that is, blast furnace granulated slag suitable for a raw material of blast furnace cement, is determined based on the above correlation.
  • the blast furnace granulated slag which satisfies the standard of basicity determined in this way is selected as a blast furnace granulated slag for blast furnace cement.
  • Patent Document 3 proposes a technique for evaluating the quality of blast furnace slag using an index different from the basicity. This technique is based on the knowledge that MnO and TiO 2 in blast furnace slag greatly affect the activity index, and is an index ((CaO + Al 2) considering the contents of MnO and TiO 2 in addition to conventional basicity. O 3 + MgO) / SiO 2 ⁇ 0.13 ⁇ TiO 2 ⁇ 1.0 ⁇ MnO) is used to evaluate the quality of blast furnace slag.
  • blast furnace granulated slag having a low hydration reaction rate and a low hydration exothermic rate in utilizing the low exothermic property that is an advantage of blast furnace cement Is preferably used as a raw material.
  • the conventional technology described above cannot select blast furnace granulated slag suitable for cement raw materials for high-temperature areas where the temperature is higher than that of Japan. Therefore, according to the prior art, although a blast furnace cement exhibiting desired characteristics (strength characteristics, low exothermic property) in Japan can be obtained, a blast furnace cement that necessarily exhibits desired characteristics in a country belonging to a high temperature region where the temperature is higher than Japan. Cannot be obtained.
  • the object of the present invention is to advantageously solve the above-mentioned problems of the prior art, and to provide a granulated blast furnace slag for cement raw material and a method for selecting the same for regions having a temperature higher than that of Japan.
  • blast furnace granulated slag for cement raw material suitable for use in a high temperature area where the annual average temperature is 22 ° C. or more, and the initial strength increase rate is not faster than that of normal Portland cement
  • the inventors of the present invention first examined the reason why conventional blast furnace granulated slag suitable for cement raw materials for high-temperature areas having an average annual temperature of 22 ° C. or higher cannot be selected. As a result, the prior art has found that the main reason is that the temperature at which the test for measuring the activity index is performed is not appropriate.
  • the activity index greatly depends on the temperature at which the mortar sample is kneaded and cured.
  • the hydration reaction of cement is known to be affected by temperature, and the hydration reaction proceeds faster as the temperature increases.
  • the test for measuring the activity index in Japan is carried out under the temperature condition of 20 ° C. for both cement kneading and curing as defined in JIS A 6206. Also, in the strength test of blast furnace cement and ordinary Portland cement, the bending strength and compressive strength are measured after kneading and curing at 20 ° C. In the prior art, the correlation between the chemical composition (or basicity) of the granulated blast furnace slag and the activity index is obtained based on the activity index obtained when the test temperature is 20 ° C. as described above. ing.
  • the inventors first kneaded and cured the sample at a temperature higher than 20 ° C. using a ground granulated blast furnace slag powder having a basicity of 1.86 as a raw material, and mixed cement (blast furnace The strength characteristics of the cement were investigated.
  • ordinary portland cement not mixed with ground granulated blast furnace slag was kneaded and cured at a temperature higher than 20 ° C., and the strength characteristics were investigated.
  • the basicity of 1.86 is a typical value included in the basicity range of ground granulated blast furnace slag widely used as a blast furnace cement raw material in Japan.
  • the strength of the blast furnace cement when the ground granulated blast furnace slag powder with a basicity of 1.86 is kneaded and cured at 20 ° C. is the substitution rate of the granulated blast furnace slag powder (mixing in the mixed cement).
  • it is usually 60 to 80% of normal Portland cement (same as normal Portland cement blended with blended cement, the same shall apply hereinafter) at 3 to 7 days of age, and ordinary Portland cement at 28 days of age. It is about 90 to 110% of the average, and it is about 100 to 120% of ordinary Portland cement when the material age is 91 days (all when the strength test is performed at 20 ° C.).
  • High initial strength means that the hydration reaction is fast and the calorific value is large, and that when used for concrete with a large volume, it means that the advantages of low exothermic property of granulated blast furnace slag cannot be utilized.
  • mixed cement made from high basicity blast furnace granulated slag which is considered suitable as a raw material for blast furnace cement in Japan, is kneaded and cured in areas with higher temperatures than Japan, such as Southeast Asia, Africa, and Latin America.
  • the hydration reaction proceeds rapidly because of the high temperature atmosphere, and the amount of heat generated by the reaction increases. As a result, the temperature inside the concrete becomes high and surface cracks are likely to occur.
  • the present inventors have further studied, when the chemical composition of blast furnace granulated slag and the mixed cement using each blast furnace granulated slag as a raw material is kneaded and cured at a high temperature of 22 ° C or higher The relationship between strength and activity index was investigated and examined. And the search method of the granulated blast furnace slag which can manufacture a low exothermic blast furnace cement in the high temperature area
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the annual average temperature is 22 ° C. or higher, with the chemical composition satisfying the following formula (1) in which the content (mass%) of CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO is satisfied.
  • Blast furnace granulated slag for cement raw materials for high temperature areas 1.17 ⁇ B M ⁇ 1.35 (1)
  • B M (CaO + Al 2 O 3 + MgO) / SiO 2 ⁇ 0.13 ⁇ TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
  • B M (CaO + Al 2 O 3 + MgO) / SiO 2 ⁇ 0.13 ⁇ TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
  • blast furnace granulated slag for a cement raw material of the present invention even in a region where the temperature is higher than that of Japan, it is possible to take advantage of the low hydration reaction rate and hydration exothermic rate of the blast furnace granulated slag. Therefore, according to the present invention, it is possible to obtain blast furnace cement, concrete, and the like having desired characteristics of low heat generation, low initial strength, and high long-term strength.
  • the method for selecting granulated blast furnace slag for cement raw material of the present invention it is used for blast furnace cement, blast furnace granulated slag fine powder, or mixed cement containing fine blast furnace slag fine powder for regions having a higher temperature than Japan. Blast furnace granulated slag can be obtained.
  • FIG. 1 is a diagram showing the strength test results of a mortar sample kneaded and cured at 27 ° C. for blast furnace cement (mixed cement) obtained by mixing granulated blast furnace slag powder (GGBFS) with ordinary Portland cement (OPC).
  • B M (CaO + Al 2 O 3 + MgO) / SiO 2 ⁇ 0.13 ⁇ TiO 2 —MnO).
  • the blast furnace granulated slag for cement raw material of the present invention is a blast furnace granulated slag for cement raw material for a high temperature region having an annual average temperature of 22 ° C. or more, and is CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO. It is essential that the content (mass%) of the material has a chemical composition satisfying the following formula (1).
  • B M (CaO + Al 2 O 3 + MgO) / SiO 2 ⁇ 0.13 ⁇ TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
  • blast furnace granulated slag having an appropriate chemical composition is selected according to the actual situation in a region having a high temperature to obtain a blast furnace granulated slag for a cement raw material for a high temperature region.
  • the strength of the mixed cement (normal blast furnace cement and blast furnace granulated slag fine powder mixed at a mass ratio of 80:20) when kneaded and cured at 27 ° C. is kneaded and cured at 27 ° C.
  • 80 to 100% of ordinary Portland cement at the initial strength of 7 days of age 90 to 105% of ordinary Portland cement at the strength of 28 days of age
  • 91 of age Blast furnace granulated slag is selected so as to obtain a mixed cement that is 100 to 110% of ordinary Portland cement in the long-term strength of the day, and this blast furnace granulated slag is used as a cement raw material granulated blast furnace slag for high temperature areas.
  • blast furnace granulated slag having such characteristics is used as a raw material, it has the desired characteristics of low heat generation, low initial strength, and high long-term strength in a high temperature region where the annual average temperature is 22 ° C. or higher.
  • Blast furnace cement is obtained.
  • the Blaine value of the granulated blast furnace granulated slag to be blended is selected in the range of about 3000 to 4500 cm 2 / g based on the specifications of the cement product manufacturer, as usual.
  • blast furnace cement in which ordinary Portland cement and ground granulated blast furnace slag powder are mixed at a mass ratio of 80:20 is mainly described, but the blast furnace granulated slag for cement raw material of the present invention is an object.
  • the blending of the mixed cement is not limited to this.
  • blast furnace granulated slag fine powder is blended in a mass ratio of 40-50% or more, the hydration reaction rate and hydration exothermic rate of blast furnace granulated slag fine powder are low, and the long-term strength is high. Becomes even more prominent.
  • the blending ratio of ordinary Portland cement and ground granulated blast furnace slag may be changed as appropriate according to the desired strength characteristics, and it does not hinder the use of other cement admixtures such as fly ash. If the blast furnace granulated slag for a cement raw material of the present invention is used, in any of these cases, the hydration reaction of the ground granulated blast furnace slag powder is prevented from excessively proceeding at an early stage due to a high temperature environment.
  • Blast furnace granulated slag contains CaO, Al 2 O 3 , MgO, and SiO 2 as main components.
  • the activity (strength characteristic) of the blast furnace cement is closely related to the basicity of the granulated blast furnace slag calculated by “(CaO + Al 2 O 3 + MgO) / SiO 2 ”.
  • blast furnace granulated slag contains MnO and TiO 2 derived from raw ores and auxiliary materials as inevitable impurities in addition to the above main components, and these impurities also have a great influence on the strength characteristics (activity) of blast furnace cement. give.
  • the contents of the impurities in the granulated blast furnace slag are usually MnO; about 0.2 to 0.6% by mass, TiO 2 ; about 0.5 to 0.8% by mass.
  • the activity (strength characteristics) of the blast furnace cement tends to decrease.
  • the index B M is less than 1.17, it is confirmed that the initial strength and long-term strength of the mixed cement may be significantly reduced even in regions where the annual average temperature is 22 ° C or higher, which is higher than Japan. It was done.
  • blast furnace cement having extremely low long-term strength is used for a concrete structure, there is a concern that the durability of the structure is lowered.
  • granulated blast furnace slag with an index B M of 1.20 or more and 1.30 or less is suitable.
  • the content of MnO is preferably 0.3% by mass or more and 0.8% by mass or less, and the content of TiO 2 is 0. It is preferable that it is 5 mass% or more and 2.0 mass% or less.
  • the granulated blast furnace slag normally contains MnO and TiO 2 derived from raw ores and auxiliary raw materials. These MnO and TiO 2 have a great effect of suppressing the hydration reaction of cement, that is, the effect of delaying the hydration reaction rate. Therefore, if blast furnace granulated slag with a high content of MnO or TiO 2 is used as a raw material for blast furnace cement, the initial strength of the blast furnace cement may be reduced in Japan. Reduced to 0.8 wt% or less; this reason, Japanese cement material for blast furnace slag is generally the content of MnO and TiO 2, respectively, MnO; 0.6 wt% or less, TiO 2 Has been.
  • the contents of MnO and TiO 2 are preferably MnO; 0.3% by mass or more, and TiO 2 ; 0.5% by mass or more, respectively.
  • MnO contents of MnO and TiO 2 in the granulated blast furnace slag
  • MnO contents of MnO and TiO 2 in the granulated blast furnace slag
  • TiO 2 more than 2.0% by mass.
  • the MnO content and the TiO 2 content of the granulated blast furnace slag are MnO: 0.3% by mass or more and 0.8% by mass or less, TiO 2 : 0.5% by mass or more.
  • the content is preferably 0% by mass or less.
  • MnO may be 1.0 mass% or less.
  • MnO: 0.4 mass% or more and 0.6 mass% or less, TiO 2 : 0.5 mass% or more and 1.2 mass% or less is intended to improve the long-term strength within the appropriate range of the initial strength. Is more preferable.
  • blast furnace granulated slag having a chemical composition satisfying the above formula (1) more preferably, in addition to satisfying the above formula (1), the MnO content is 0.3% by mass or more and 0.0.
  • the blast furnace granulated slag having a chemical composition of 8% by mass or less and a TiO 2 content of 0.5% by mass or more and 2.0% by mass or less it exhibits low exothermic property in a region of higher temperature than Japan, A blast furnace cement having a relatively low initial strength and a high long-term strength can be obtained. Therefore, by selecting blast furnace granulated slag having the above chemical composition, it is possible to select blast furnace granulated slag suitable for a cement raw material used in a high temperature area having an annual average temperature of 22 ° C. or higher.
  • ⁇ High temperature areas with an annual average temperature of 22 ° C or higher are in the range of 15 to 35 ° C in terms of the average monthly temperature on the whole of the earth, and concrete using mixed cement may be constructed in this temperature range.
  • the strength characteristics of the mixed cement when kneaded and cured at 27 ° C. have been described.
  • the temperature is 15 to 35 ° C. In the range, it is possible to realize the desired strength characteristics that the initial strength at the age of 7 days or less is equivalent or less, and the long-term strength at the age of 91 days or more is equivalent or better than ordinary Portland cement. Also in the above, good strength characteristics can be obtained in this temperature range.
  • Blast furnace granulated slag generated at every brewing from the blast furnace is collected and quality controlled by chemical components, and blast furnace granulated slag of various chemical components shown in Table 1 is pulverized in a mill of a fine powder manufacturing plant to produce blast furnace water
  • the activated blast furnace slag fine powder was measured as an activity index by mortar.
  • the collected blast furnace granulated slag was obtained under the following blast furnace operating conditions and granulated conditions.
  • Pig iron production 10000-11000ton / day
  • Slag ratio 290-300kg / molten iron-ton
  • Hot metal temperature 1480-1515 ° C
  • Water temperature during granulation treatment 60-80 ° C (Mass of water at the time of water granulation treatment) / (mass of slag); 10 to 25 Blast furnace granulated slag generated from 400 to 500 tons per brewery was managed separately for each brewery and transported to the blast furnace granulated slag fine powder manufacturing plant.
  • a vertical roller mill having a grinding capacity of 50 ton / Hr was used.
  • the target brane value of granulated blast furnace slag powder was 4200 ⁇ 100 cm 2 / g, and no gypsum was added.
  • the blast furnace granulated slag fine powder for activity index measurement was extract
  • FIG. 1 shows the relationship between age and compressive strength in a sample of kneaded and cured at 27 ° C. of mixed cement (test mortar) and ordinary Portland cement (reference mortar).
  • the mixed cement made from the granulated blast furnace slag of the comparative example whose index B M is 1.46 is stronger than ordinary Portland cement (OPC) until the age of 28 days, As a result, the strength is lower than that of ordinary Portland cement (OPC), and long-term strength improvement is not observed.
  • FIG. 2 shows the relationship between the index B M of blast furnace granulated slag and the activity index.
  • the activity index here is a mixture of test mortar prepared using mixed cement (blast furnace cement) obtained by mixing ordinary Portland cement and ground granulated blast furnace slag at a mass ratio of 80:20 at 27 ° C.
  • OPC ordinary Portland cement
  • the example of the present invention that is, the mixed cement made from granulated blast furnace slag having an index B M of 1.17 or more and 1.35 or less, has an activity index of about 100% or less at 7 days of age and 28 days of age. Although it is over 100% at the age of 91 days, it has higher strength than ordinary Portland cement (OPC) in the long term.
  • OPC ordinary Portland cement
  • the activity index at 7 days of age and 28 days of material is over 100%, and kneaded at 27 ° C.
  • the initial strength is excessively high.
  • the activity index is less than 100%, and when kneaded and cured at 27 ° C., the strength is lower than that of ordinary Portland cement (OPC) in the long term.
  • OPC ordinary Portland cement
  • the activity index at age 7 is less than 80%, and the activity index at age 28 is 90%.
  • the activity index of 91 days of age is significantly lower than 100%.
  • blast furnace granulated slag with high basicity JIS basicity; 1.80 to 1.90, index B M ; 1.40 to 1.60
  • JIS basicity 1.80 to 1.90, index B M ; 1.40 to 1.60
  • the initial strength is higher and the initial heat generation rate is larger, so cracking is likely to occur and this causes a decrease in the long-term strength of the cement. Absent.
  • the index B M of the granulated blast furnace slag is too low, there is a problem that the initial strength of the cement becomes insufficient even if it is assumed to be used in a high temperature region. That is, it can be understood that blast furnace granulated slag for cement raw materials for regions with higher temperatures than Japan such as Southeast Asia has an appropriate range for the index B M that varies depending on the chemical composition.
  • each content is MnO; 0.8 mass% or less, TiO 2 ; If it is in the range of 2.0% by mass or less and the index B M is in the proper range, the decrease in the activity index is in the proper range, and the decrease in the initial strength of the cement may not be a problem. Understandable.
  • the long-term strength is improved when the content of MnO and TiO 2 is high and the index B M is in an appropriate range. Therefore, it can be understood that the evaluation by the index B M is also effective in the selection of granulated blast furnace slag for cement raw materials for high-temperature areas.
  • the chemical composition of granulated blast furnace slag was analyzed, the index B M was 1.17 to 1.35, the MnO content was 0.3 mass% to 0.8 mass%, TiO
  • blast furnace granulated slag having a chemical composition in which the content of 2 is 0.5% by mass or more and 2.0% by mass or less, cement for high-temperature regions having an average annual temperature of 22 ° C. or more like Southeast Asia It can be understood that the granulated blast furnace slag optimum for the raw material can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

Provided are a granulated blast furnace slag suitable as cement starting material for use in high-temperature regions where the annual average temperature is 22°C or above, and a screening method for the same. Granulated blast furnace slag having a chemical composition in which the content (mass%) of CaO, Al2O3, MgO, SiO2, TiO2, and MnO satisfies the following formula (1) is screened, obtaining a granulated blast furnace slag for use as cement starting material in high-temperature regions where the annual average temperature is 22°C or above. 1.17 ≤ BM ≤ 1.35 … (1) In formula 1, BM = (CaO + Al2O3 + MgO)/(SiO2 - 0.13 × TiO2 - MnO (CaO, Al2O3, MgO, SiO2, TiO2, and MnO represent content (mass%) of the oxides included in the granulated blast furnace slag.))

Description

セメント原料用高炉水砕スラグおよびその選別方法Blast-furnace granulated slag for raw materials of cement and its sorting method
 本発明は、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグ(granulated blast furnace slag for cement raw material)、および、その選別方法に関する。 The present invention relates to a granulated blast furnace slag slag raw slag for a cement raw material for a high temperature region having an annual average temperature of 22 ° C or higher, and a method for selecting the same.
 高炉水砕スラグは、鉄鋼製造過程で発生する副産物(by-product)であり、CaO、Al23、MgO、SiO2を主成分とし、セメント原料として広く利用されている。高炉水砕スラグを粉砕した高炉水砕スラグ微粉末(ground granulated blast furnace slag)は、普通ポルトランドセメント(ordinary portland cement)の混和材(mixture material)としても利用されているが、特に高炉セメント(portland blast furnace cement)の原料としての需要度が高い。ここで、高炉セメントとは、普通ポルトランドセメントと高炉水砕スラグ微粉末とを混合した混合セメント(blended cement)の一種であり、日本国内では、高炉水砕スラグ微粉末の含有量は40質量%程度が一般的である。本明細書では、高炉水砕スラグ微粉末の含有量が20質量%の場合など、幅広い混合比率の範囲のものも含めて、これらを全て、高炉セメント、普通ポルトランドセメントと高炉水砕スラグ微粉末との混合セメント、或いは、単に高炉水砕スラグ微粉末の混合セメントと称している。 Blast furnace granulated slag is a by-product generated in the steel manufacturing process, and is mainly used as a cement raw material mainly composed of CaO, Al 2 O 3 , MgO, and SiO 2 . Ground granulated blast furnace slag obtained by pulverizing blast furnace granulated slag is also used as a blending material for ordinary portland cement, especially blast furnace cement (portland). The demand for blast furnace cement) is high. Here, blast furnace cement is a kind of blended cement obtained by mixing ordinary Portland cement and ground granulated blast furnace slag. In Japan, the content of ground granulated blast furnace slag is 40% by mass. The degree is common. In the present specification, blast furnace cement, ordinary Portland cement and blast furnace granulated slag fine powder, including those having a wide mixing ratio range, such as when the content of ground granulated blast furnace slag is 20% by mass, etc. Or mixed cement with blast furnace granulated slag fine powder.
 セメントは、水和反応(hydration reaction)により水和生成物(hydration product)が生成して強度が向上していくが、水和反応が速すぎると、コンクリートなどのセメント硬化体(cement hardened body)がひび割れを起こすという問題がある。これは、水和反応が速すぎると、水和反応による単位時間あたりの発熱量(exotherm amount)が大きくなってコンクリート内部の温度が上昇するからである。特に体積の大きいコンクリートでは、体積あたりの放熱面積(heat dissipation area)が小さいので、コンクリート内部の温度上昇が大きくなりすぎ、コンクリートのひび割れが顕著となる。 Cement is hydrated (hydration reaction) and hydrated product (hydration product) is generated to improve the strength, but if the hydration reaction is too fast, cement or other cement hardened (cement hardened body) There is a problem of causing cracks. This is because if the hydration reaction is too fast, the exotherm per unit time due to the hydration reaction increases and the temperature inside the concrete rises. In particular, concrete with a large volume has a small heat dissipation area (heat dissipation area), so the temperature rise inside the concrete becomes too large and cracks in the concrete become prominent.
 そこで、大型コンクリート構造物には、普通ポルトランドセメントではなく、高炉セメントが広く用いられている。高炉セメントは、微粉砕した高炉水砕スラグをポルトランドセメントに混合して製造したセメントである。高炉セメントは、アルカリ刺激(alkaline stimulation)によって水硬性(hydraulicity)を発現する潜在水硬性(latent hydraulicity)を有する高炉水砕スラグ微粉末を多量に含むため、普通ポルトランドセメントに比べて水和反応が遅く、発熱量が少ない。すなわち、高炉セメントは、普通ポルトランドセメントよりも強度の発現が遅く、材齢(material age)が3日から7日の初期では普通ポルトランドセメントよりも強度が低い。また、材齢が7日の活性度が60~80%程度であり、単位時間あたりの発熱量が小さい。更に、材齢が28日の強度は普通ポルトランドセメントとほぼ同等となり、高炉セメントの長期強度は普通ポルトランドをしのぐ場合もある。したがって、高炉セメントを利用することで、大型コンクリート構造物のひび割れを効果的に抑制することができる。ここで、高炉セメントの活性度とは、高炉セメントを用いたモルタル試料の圧縮強度を、高炉セメントの場合と同じ質量比率の普通ポルトランドセメントを用いたモルタル試料の圧縮強度を基準として、指標化したものである。 Therefore, blast furnace cement is widely used instead of ordinary Portland cement for large concrete structures. Blast furnace cement is cement produced by mixing finely ground blast furnace granulated slag with Portland cement. Blast furnace cement contains a large amount of ground granulated blast furnace slag having latent hydraulic properties that develop hydraulic properties by alkali stimulation, and therefore has a hydration reaction compared to ordinary Portland cement. Slow and less heat generation. That is, the blast furnace cement is slower in strength than ordinary portland cement, and has a lower strength than ordinary portland cement at the beginning of the 3rd to 7th days of material age. Further, the activity at the age of 7 days is about 60 to 80%, and the calorific value per unit time is small. Furthermore, the strength of the aging of 28 days is almost the same as that of ordinary Portland cement, and the long-term strength of blast furnace cement may exceed that of ordinary Portland. Therefore, cracking of a large concrete structure can be effectively suppressed by using blast furnace cement. Here, the activity of blast furnace cement is an index of the compressive strength of mortar samples using blast furnace cement, based on the compressive strength of mortar samples using ordinary Portland cement with the same mass ratio as blast furnace cement. Is.
 高炉水砕スラグの水和特性や強度発現特性は、その化学組成に左右される場合が多い。そこで、従来、日本国内では、セメント原料に供する高炉水砕スラグは、セメントの品質管理上その塩基度がある一定以上でなければならないとされており、セメント向け高炉水砕スラグの選別は、日本工業規格(JIS)に定められたスラグの塩基度[(CaO+Al23+MgO)/SiO2](以下、単に「塩基度」または「JIS塩基度」という)を指標として行われている。ここで、CaO、Al23、MgO、SiO2は高炉水砕スラグ中のそれぞれの酸化物の含有量(質量%)である。 The hydration characteristics and strength development characteristics of granulated blast furnace slag often depend on the chemical composition. Therefore, in Japan, blast furnace granulated slag used as a cement raw material has been conventionally required to have a certain basicity or higher for cement quality control. Slag basicity [(CaO + Al 2 O 3 + MgO) / SiO 2 ] (hereinafter simply referred to as “basicity” or “JIS basicity”) defined in the industry standard (JIS) is used as an index. Here, CaO, Al 2 O 3 , MgO, and SiO 2 are the contents (mass%) of the respective oxides in the blast furnace granulated slag.
 例えば、特許文献1には、水砕スラグ製造設備(water granulation equipment)で製造中の高炉水砕スラグをサンプリングし、CaO、Al23、MgO、SiO2を定量分析し、塩基度等に基づき高炉水砕スラグの品質ランクを決定する技術が提案されている。また、特許文献2には、低発熱スラグセメントの原料として使用する高炉スラグ粉末(高炉水砕スラグと、高炉スラグを出発原料とするロックウ-ルもしくはロックウ-ル廃棄滓との混合体)の塩基度を1.4~1.8に調整する技術が提案されている。 For example, in Patent Document 1, blast furnace granulated slag being produced at a water granulation equipment is sampled, and CaO, Al 2 O 3 , MgO, and SiO 2 are quantitatively analyzed to obtain basicity. Based on this, a technology for determining the quality rank of granulated blast furnace slag has been proposed. Patent Document 2 discloses a base for blast furnace slag powder (a mixture of granulated blast furnace slag and blast furnace slag as a starting material or a rock wall or a rock wool waste slag) used as a raw material for low heat slag cement. A technique for adjusting the degree to 1.4 to 1.8 has been proposed.
 一方、高炉セメント原料としての高炉水砕スラグの品質を計る指標としては活性度指数が用いられており、高炉水砕スラグの水和特性や強度発現特性は、活性度指数により評価することができる。活性度指数とは、所定の比表面積(specific surface area)で高炉水砕スラグを粉砕した高炉水砕スラグ微粉末と普通ポルトランドセメントとを1:1(50%:50%(質量%比))で配合(混合)した高炉セメントの強度A(N/mm2)、および、普通ポルトランドセメントの強度B(N/mm2)を、モルタル試験によってそれぞれ測定し、その測定値に基づき下式で算出されるものである。 On the other hand, the activity index is used as an index for measuring the quality of blast furnace granulated slag as a blast furnace cement raw material, and the hydration characteristics and strength development characteristics of blast furnace granulated slag can be evaluated by the activity index. . The activity index is 1: 1 (50%: 50% (mass% ratio)) of ground granulated blast furnace slag and regular Portland cement obtained by pulverizing ground granulated blast furnace slag with a specific surface area. The strength A (N / mm 2 ) of the blast furnace cement blended (mixed) and the strength B (N / mm 2 ) of ordinary Portland cement were measured by a mortar test, and calculated by the following formula based on the measured values. It is what is done.
 活性度指数(%)=(A/B)×100
 ここで、高炉セメントの強度および普通ポルトランドセメントの強度とは、JIS A 6206に規定されているように、それぞれのセメントと細骨材(fine aggregate)と水とを所定の比率(セメント:細骨材:水=450g:1350g:225g)で混練(mix)したモルタルを、所定の形状に成形後、所定の養生(cure)を行った試料における圧縮強度(compressive strength)をいう。以下、「セメントの強度」と言及する場合は同様の意味であり、記載していない試験条件については、JIS A 6206に規定される高炉スラグ微粉末のモルタルによる活性度指数の試験方法に準拠するものとする。
Activity index (%) = (A / B) × 100
Here, the strength of blast furnace cement and the strength of ordinary Portland cement are as specified in JIS A 6206, with each cement, fine aggregate, and water in a predetermined ratio (cement: fine bone). This refers to the compressive strength of a sample obtained by molding a mortar mixed with a material: water = 450 g: 1350 g: 225 g) into a predetermined shape and then performing a predetermined curing. Hereinafter, the term “cement strength” refers to the same meaning, and the test conditions that are not described conform to the activity index test method for blast furnace slag fine powder mortar specified in JIS A 6206. Shall.
 活性度指数を測定するための日本における試験は、JIS A 6206に規定されているように、セメントの混練および養生の双方とも20℃の温度条件で実施されている。また、高炉セメントや普通ポルトランドセメントの強度試験も同じく20℃で混練および養生を行った後、曲げ強度や圧縮強度を測定している。なお、大型コンクリート構造物のひび割れを抑制する観点からは、通常、高炉セメントの材齢3~7日の活性度を60~80%程度、材齢28日の活性度を90~110%程度とすることが好ましいとされている。 The test in Japan for measuring the activity index is conducted under a temperature condition of 20 ° C. for both cement kneading and curing as specified in JIS A 6206. Also, in the strength test of blast furnace cement and ordinary Portland cement, the bending strength and compressive strength are measured after kneading and curing at 20 ° C. From the viewpoint of suppressing cracks in large concrete structures, the activity of blast furnace cement is usually about 60 to 80% at the age of 3-7 days, and the activity at the age of 28 is about 90 to 110%. It is preferable to do.
 ここで、活性度指数は高炉水砕スラグの塩基度と密接な関係にあり、高炉水砕スラグの塩基度が高くなるほど、活性度指数も高くなる。したがって、従来、塩基度を指標として高炉セメント原料用高炉水砕スラグを選別する場合、事前に塩基度と活性度指数との相関関係を求め、指標となる塩基度の数値範囲を設定する。 Here, the activity index is closely related to the basicity of blast furnace granulated slag, and the higher the basicity of blast furnace granulated slag, the higher the activity index. Therefore, conventionally, when selecting blast furnace granulated slag for blast furnace cement raw material using basicity as an index, a correlation between basicity and activity index is obtained in advance, and a numerical range of basicity serving as an index is set.
 具体的には、まず、所定の比表面積に粉砕した高炉水砕スラグ微粉末の活性度指数を、種々の化学組成を有する高炉水砕スラグについて測定し、高炉水砕スラグの塩基度と活性度指数との相関関係を求める。次いで、所望の活性度指数を得るための高炉水砕スラグ、すなわち高炉セメントの原料に適した高炉水砕スラグの塩基度の規格となる数値範囲を、上記相関関係に基づいて決定する。そして、このように決定された塩基度の規格を満足する高炉水砕スラグを、高炉セメント向け高炉水砕スラグとして選別する。 Specifically, first, the activity index of granulated blast furnace slag pulverized to a specific surface area was measured for blast furnace granulated slag having various chemical compositions, and the basicity and activity of blast furnace granulated slag were measured. Find the correlation with the index. Next, a numerical range that serves as a standard for basicity of blast furnace granulated slag for obtaining a desired activity index, that is, blast furnace granulated slag suitable for a raw material of blast furnace cement, is determined based on the above correlation. And the blast furnace granulated slag which satisfies the standard of basicity determined in this way is selected as a blast furnace granulated slag for blast furnace cement.
 一方、特許文献3には、上記塩基度とは異なる指標を用いて高炉スラグの品質を評価する技術が提案されている。この技術は、高炉スラグ中のMnOおよびTiO2が活性度指数に大きく影響するという知見に基づくものであり、従来の塩基度に加えてMnO、TiO2の含有量を考慮した指標((CaO+Al23+MgO)/SiO2-0.13×TiO2-1.0×MnO)を用いて高炉スラグの品質を評価している。 On the other hand, Patent Document 3 proposes a technique for evaluating the quality of blast furnace slag using an index different from the basicity. This technique is based on the knowledge that MnO and TiO 2 in blast furnace slag greatly affect the activity index, and is an index ((CaO + Al 2) considering the contents of MnO and TiO 2 in addition to conventional basicity. O 3 + MgO) / SiO 2 −0.13 × TiO 2 −1.0 × MnO) is used to evaluate the quality of blast furnace slag.
特開平8-81243号公報JP-A-8-81243 特開平10-87352号公報JP-A-10-87352 特開2008-291301号公報JP 2008-291301 A
 ここで、特許文献2にも記載されているように、高炉セメントの利点である低発熱性を活用するうえでは、水和反応速度および水和発熱速度(hydration exothermic rate)の低い高炉水砕スラグを原料として使用することが好ましい。 Here, as described in Patent Document 2, blast furnace granulated slag having a low hydration reaction rate and a low hydration exothermic rate in utilizing the low exothermic property that is an advantage of blast furnace cement. Is preferably used as a raw material.
 しかしながら、上記従来技術では、日本よりも気温の高い高温地域向けのセメント原料に適した高炉水砕スラグを選別することができない。したがって、従来技術によると、日本国内で所望の特性(強度特性、低発熱性)を示す高炉セメントは得られるものの、日本よりも気温の高い高温地域に属する国において必ずしも所望の特性を示す高炉セメントは得られない。 However, the conventional technology described above cannot select blast furnace granulated slag suitable for cement raw materials for high-temperature areas where the temperature is higher than that of Japan. Therefore, according to the prior art, although a blast furnace cement exhibiting desired characteristics (strength characteristics, low exothermic property) in Japan can be obtained, a blast furnace cement that necessarily exhibits desired characteristics in a country belonging to a high temperature region where the temperature is higher than Japan. Cannot be obtained.
 本発明は、上記の従来技術が抱える問題を有利に解決し、日本よりも高温の地域向けのセメント原料用高炉水砕スラグ、およびその選別方法を提供することを目的とする。具体的には、年間平均気温が22℃以上である高温地域での使用に適するセメント原料用高炉水砕スラグであって、初期強度の増加速度が普通ポルトランドセメントよりも速くない高炉セメント、すなわち普通ポルトランドセメントと高炉水砕スラグ微粉末との混合セメントが得られるような、水和反応速度および水和発熱速度の低い高炉水砕スラグおよびその選別方法を提供することを目的とする。 The object of the present invention is to advantageously solve the above-mentioned problems of the prior art, and to provide a granulated blast furnace slag for cement raw material and a method for selecting the same for regions having a temperature higher than that of Japan. Specifically, blast furnace granulated slag for cement raw material suitable for use in a high temperature area where the annual average temperature is 22 ° C. or more, and the initial strength increase rate is not faster than that of normal Portland cement, It is an object of the present invention to provide a granulated blast furnace slag having a low hydration reaction rate and a low hydration exotherm and a method for selecting the same so that a mixed cement of Portland cement and ground granulated blast furnace slag can be obtained.
 本発明者らは、まず、従来技術では年間平均気温が22℃以上である高温地域向けのセメント原料に適した高炉水砕スラグを選別することができない理由について検討した。その結果、従来技術では、活性度指数を測定するための試験を実施する際の温度が適切でないことが、主たる理由であることを突き止めた。 The inventors of the present invention first examined the reason why conventional blast furnace granulated slag suitable for cement raw materials for high-temperature areas having an average annual temperature of 22 ° C. or higher cannot be selected. As a result, the prior art has found that the main reason is that the temperature at which the test for measuring the activity index is performed is not appropriate.
 活性度指数(高炉水砕スラグ微粉末の強度特性)は、モルタル試料を混練および養生する温度に大いに依存する。特に、セメントの水和反応は、温度の影響を受けることが知られており、高温になるほど水和反応が速く進む。 The activity index (strength characteristics of ground granulated blast furnace slag powder) greatly depends on the temperature at which the mortar sample is kneaded and cured. In particular, the hydration reaction of cement is known to be affected by temperature, and the hydration reaction proceeds faster as the temperature increases.
 ここで、日本における活性度指数を測定するための試験は、JIS A 6206に規定されるように、セメントの混練および養生の双方とも20℃の温度条件で実施されている。また、高炉セメントや普通ポルトランドセメントの強度試験も同じく20℃で混練および養生を行った後、曲げ強度や圧縮強度を測定している。そして、従来技術では、以上のように試験温度を20℃とした場合において得られた活性度指数に基づき、高炉水砕スラグの化学組成(或いは塩基度)と活性度指数との相関関係を求めている。 Here, the test for measuring the activity index in Japan is carried out under the temperature condition of 20 ° C. for both cement kneading and curing as defined in JIS A 6206. Also, in the strength test of blast furnace cement and ordinary Portland cement, the bending strength and compressive strength are measured after kneading and curing at 20 ° C. In the prior art, the correlation between the chemical composition (or basicity) of the granulated blast furnace slag and the activity index is obtained based on the activity index obtained when the test temperature is 20 ° C. as described above. ing.
 一方、日本よりも高温の地域に属する国においてセメントを使用する場合には、セメントの混練および養生を、日本での活性度指数を測定するための試験で規定されている温度(20℃)よりも高い温度で実施している。したがって、日本国内で所望の活性度指数(強度特性)を示す高炉水砕スラグであっても、日本よりも高温の地域に属する国においては、必ずしも所望の活性度指数(強度特性)は得られない。それゆえ、活性度指数を測定するための試験を実施する際の温度を20℃とする従来技術では、年間平均気温が22℃以上である高温地域向けのセメント原料に適した高炉水砕スラグを選別することができないのである。つまり、一般の化学反応と同様に高炉水砕スラグ微粉末による水和硬化反応も高温ほど促進されるが、同様に普通ポルトランドセメントによる水和硬化反応も高温ほど促進されるので、両者の相対的関係により決まる活性度指数がどのような温度依存性を有するのかは明らかでなかった。 On the other hand, when cement is used in a country that belongs to an area higher in temperature than Japan, the mixing and curing of the cement is performed at a temperature (20 ° C.) specified in the test for measuring the activity index in Japan. Even at high temperatures. Therefore, even in a blast furnace granulated slag that exhibits a desired activity index (strength characteristic) in Japan, a desired activity index (strength characteristic) is not necessarily obtained in a country belonging to a region of higher temperature than Japan. Absent. Therefore, in the conventional technology in which the temperature when performing the test for measuring the activity index is 20 ° C., granulated blast furnace slag suitable for cement raw materials for high-temperature areas whose annual average temperature is 22 ° C. or higher is provided. It cannot be sorted out. In other words, the hydration hardening reaction with granulated blast furnace slag powder is accelerated at higher temperatures, as is the case with general chemical reactions, but the hydration hardening reaction with ordinary Portland cement is also accelerated at higher temperatures. It was not clear what temperature dependence the activity index determined by the relationship had.
 そこで、本発明者らは、まず、塩基度が1.86である高炉水砕スラグ微粉末を原料とした場合について、20℃よりも高い温度で試料を混練・養生して、混合セメント(高炉セメント)の強度特性を調査した。また、比較のために、高炉水砕スラグ微粉末を混合しない普通ポルトランドセメントについても、20℃よりも高い温度で混練・養生して強度特性を調査した。 In view of this, the inventors first kneaded and cured the sample at a temperature higher than 20 ° C. using a ground granulated blast furnace slag powder having a basicity of 1.86 as a raw material, and mixed cement (blast furnace The strength characteristics of the cement were investigated. For comparison, ordinary portland cement not mixed with ground granulated blast furnace slag was kneaded and cured at a temperature higher than 20 ° C., and the strength characteristics were investigated.
 なお、上記の塩基度1.86は、日本国内において高炉セメント原料として広く用いられている高炉水砕スラグ微粉末の塩基度の範囲に含まれる典型的な値である。そして、塩基度が1.86である高炉水砕スラグ微粉末を原料とし、20℃で混練・養生した場合の高炉セメントの強度は、高炉水砕スラグ微粉末の置換率(混合セメント中の配合の割合)によって異なるが、通常、材齢3~7日で普通ポルトランドセメント(混合セメントに配合した普通ポルトランドセメントと同じもの、以下同様)の60~80%程度、材齢28日で普通ポルトランドセメントの90~110%程度、材齢91日で普通ポルトランドセメントの100~120%程度(いずれも強度試験を20℃で実施した場合)となる。 The basicity of 1.86 is a typical value included in the basicity range of ground granulated blast furnace slag widely used as a blast furnace cement raw material in Japan. The strength of the blast furnace cement when the ground granulated blast furnace slag powder with a basicity of 1.86 is kneaded and cured at 20 ° C. is the substitution rate of the granulated blast furnace slag powder (mixing in the mixed cement). However, it is usually 60 to 80% of normal Portland cement (same as normal Portland cement blended with blended cement, the same shall apply hereinafter) at 3 to 7 days of age, and ordinary Portland cement at 28 days of age. It is about 90 to 110% of the average, and it is about 100 to 120% of ordinary Portland cement when the material age is 91 days (all when the strength test is performed at 20 ° C.).
 調査の結果、混合セメント(高炉セメント)の強度は、養生温度が27℃程度になると、材齢3日で普通ポルトランドセメントとほぼ同等の強度発現を示すことが確認された。 As a result of the investigation, it was confirmed that the strength of the mixed cement (blast furnace cement) showed almost the same strength expression as normal Portland cement at the age of 3 days when the curing temperature reached about 27 ° C.
 また、普通ポルトランドセメントに、塩基度が1.86である高炉水砕スラグ微粉末を20質量%程度配合した混合セメントでは、材齢7日の初期材齢においても、混合しないセメント(普通ポルトランドセメント)よりも強度が高くなることが確認された。 In addition, mixed cement in which about 20% by mass of ground granulated blast furnace slag having a basicity of 1.86 is mixed with ordinary Portland cement, cement that does not mix even at the initial age of 7 days (ordinary Portland cement) It was confirmed that the strength was higher than
 初期強度が高いということは、水和反応が速く、発熱量が大きいということを意味し、体積の大きいコンクリートへ利用した場合、高炉水砕スラグの低発熱性という利点を活かせないことを意味する。すなわち、日本国内で高炉セメント用原料として適切であるとされる高塩基度の高炉水砕スラグを原料とした混合セメントを、東南アジアやアフリカ、中南米などの日本よりも気温が高い地域で混練・養生した場合には、高温雰囲気であることから水和反応が速く進行し、その反応による発熱量が多くなる。その結果、コンクリート内部の温度は高くなり、表面のひび割れが生じ易くなる。 High initial strength means that the hydration reaction is fast and the calorific value is large, and that when used for concrete with a large volume, it means that the advantages of low exothermic property of granulated blast furnace slag cannot be utilized. . In other words, mixed cement made from high basicity blast furnace granulated slag, which is considered suitable as a raw material for blast furnace cement in Japan, is kneaded and cured in areas with higher temperatures than Japan, such as Southeast Asia, Africa, and Latin America. In such a case, the hydration reaction proceeds rapidly because of the high temperature atmosphere, and the amount of heat generated by the reaction increases. As a result, the temperature inside the concrete becomes high and surface cracks are likely to occur.
 これらの調査結果を踏まえ、本発明者らは更に検討を進め、高炉水砕スラグの化学組成と、各高炉水砕スラグを原料に用いた混合セメントを22℃以上の高温で混練・養生した場合における強度および活性度指数との関係を、調査・検討した。そして、日本よりも気温の高い地域、すなわち年間平均気温が22℃以上である高温地域において低発熱性の高炉セメントを製造し得る高炉水砕スラグの選別手段を模索した。 Based on these investigation results, the present inventors have further studied, when the chemical composition of blast furnace granulated slag and the mixed cement using each blast furnace granulated slag as a raw material is kneaded and cured at a high temperature of 22 ° C or higher The relationship between strength and activity index was investigated and examined. And the search method of the granulated blast furnace slag which can manufacture a low exothermic blast furnace cement in the high temperature area | region where temperature is higher than Japan, ie, the high temperature area whose annual average temperature is 22 degreeC or more, was searched.
 その結果、従来の塩基度に加えて、高炉水砕スラグ中のMnO、TiO2の含有量を考慮した指標を用い、「(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(但し、CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))」で算出される値が1.17以上1.35以下である化学組成を有する高炉水砕スラグを選別することにより、年間平均気温が22℃以上である高温地域において低発熱性であり、初期強度は低く長期強度の高い高炉セメント(混合セメント)が得られることを知見した。 As a result, in addition to the conventional basicity, an index considering the contents of MnO and TiO 2 in the granulated blast furnace slag was used, and “(CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 — The value calculated by “MnO (wherein CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 , MnO is the content (mass%) of each oxide contained in the granulated blast furnace slag)” is 1.17. By selecting the granulated blast furnace slag having a chemical composition of 1.35 or less, the blast furnace cement has a low exothermic property in a high temperature region where the annual average temperature is 22 ° C. or more, and has a low initial strength and a high long-term strength ( It was found that mixed cement) was obtained.
 本発明は上記知見に基づき完成されたものであり、その要旨は以下のとおりである。 The present invention has been completed based on the above findings, and the gist thereof is as follows.
 [1]CaO、Al23、MgO、SiO2、TiO2およびMnOの含有量(質量%)が下記の(1)式を満足する化学組成を有する、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグ。
1.17≦BM≦1.35・・・(1)
 但し、(1)式において、BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))である。
[1] The annual average temperature is 22 ° C. or higher, with the chemical composition satisfying the following formula (1) in which the content (mass%) of CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO is satisfied. Blast furnace granulated slag for cement raw materials for high temperature areas.
1.17 ≦ B M ≦ 1.35 (1)
However, in the formula (1), B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
 [2]前記MnOの含有量が0.3質量%以上0.8質量%以下であり、前記TiO2の含有量が0.5質量%以上2.0質量%以下である上記[1]に記載のセメント原料用高炉水砕スラグ。 [2] In the above [1], the content of MnO is 0.3% by mass or more and 0.8% by mass or less, and the content of TiO 2 is 0.5% by mass or more and 2.0% by mass or less. Blast furnace granulated slag for cement raw materials as described.
 [3]高炉水砕スラグの化学組成を分析し、CaO、Al23、MgO、SiO2、TiO2およびMnOの含有量(質量%)が下記の(1)式を満足し、前記MnOの含有量が0.3質量%以上0.8質量%以下であり、前記TiO2の含有量が0.5質量%以上2.0質量%以下である化学組成を有する高炉水砕スラグを、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグとするセメント原料用高炉水砕スラグの選別方法。
1.17≦BM≦1.35・・・(1)
 但し、(1)式において、BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))である。
[3] Analyzing the chemical composition of granulated blast furnace slag, the content (mass%) of CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO satisfies the following formula (1), and the MnO A granulated blast furnace slag having a chemical composition in which the content of TiO 2 is 0.3% by mass to 0.8% by mass and the TiO 2 content is 0.5% by mass to 2.0% by mass, A method for selecting blast furnace granulated slag for cement raw material, which is used as a cement raw material blast furnace granulated slag for high-temperature areas whose annual average temperature is 22 ° C or higher.
1.17 ≦ B M ≦ 1.35 (1)
However, in the formula (1), B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
 本発明のセメント原料用高炉水砕スラグによれば、日本よりも気温が高い地域であっても、高炉水砕スラグの水和反応速度および水和発熱速度が低いという利点を活かすことができる。したがって、本発明によると、低発熱性であり、初期強度が低く、長期強度が高いという所望の特性を備えた高炉セメントやコンクリート等が得られる。また、本発明のセメント原料用高炉水砕スラグの選別方法によれば、日本よりも気温が高い地域向けの高炉セメント、高炉水砕スラグ微粉末、或いは高炉スラグ微粉末を含む混合セメントに使用することのできる高炉水砕スラグが得られる。 According to the blast furnace granulated slag for a cement raw material of the present invention, even in a region where the temperature is higher than that of Japan, it is possible to take advantage of the low hydration reaction rate and hydration exothermic rate of the blast furnace granulated slag. Therefore, according to the present invention, it is possible to obtain blast furnace cement, concrete, and the like having desired characteristics of low heat generation, low initial strength, and high long-term strength. In addition, according to the method for selecting granulated blast furnace slag for cement raw material of the present invention, it is used for blast furnace cement, blast furnace granulated slag fine powder, or mixed cement containing fine blast furnace slag fine powder for regions having a higher temperature than Japan. Blast furnace granulated slag can be obtained.
図1は、普通ポルトランドセメント(OPC)に高炉水砕スラグ微粉末(GGBFS)を混合した高炉セメント(混合セメント)について、27℃で混練・養生したモルタル試料における強度試験結果を示す図である。FIG. 1 is a diagram showing the strength test results of a mortar sample kneaded and cured at 27 ° C. for blast furnace cement (mixed cement) obtained by mixing granulated blast furnace slag powder (GGBFS) with ordinary Portland cement (OPC). 図2は、混練・養生温度27℃における高炉水砕スラグの活性度指数と高炉水砕スラグの化学組成(BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO)との関係を示す図である。FIG. 2 shows the activity index of granulated blast furnace slag at a kneading and curing temperature of 27 ° C. and the chemical composition of granulated blast furnace slag (B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO). FIG.
 以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
 本発明のセメント原料用高炉水砕スラグは、年間平均気温22℃以上の高温地域向けのセメント原料用高炉水砕スラグであって、CaO、Al23、MgO、SiO2、TiO2およびMnOの含有量(質量%)が、下記の(1)式を満足する化学組成を有することを必須とする。 The blast furnace granulated slag for cement raw material of the present invention is a blast furnace granulated slag for cement raw material for a high temperature region having an annual average temperature of 22 ° C. or more, and is CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO. It is essential that the content (mass%) of the material has a chemical composition satisfying the following formula (1).
 1.17≦BM≦1.35・・・(1)
 但し、(1)式において、BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))である。
1.17 ≦ B M ≦ 1.35 (1)
However, in the formula (1), B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
 本発明においては、気温の高い地域の実情に応じて、適正な化学組成を有する高炉水砕スラグを選別して高温地域向けのセメント原料用高炉水砕スラグとする。 In the present invention, blast furnace granulated slag having an appropriate chemical composition is selected according to the actual situation in a region having a high temperature to obtain a blast furnace granulated slag for a cement raw material for a high temperature region.
 具体的には、27℃で混練・養生した場合の混合セメント(普通ポルトランドセメントと高炉水砕スラグ微粉末とを質量比80:20で混合した高炉セメント)の強度が、27℃で混練・養生した場合の普通ポルトランドセメントの強度と比較した場合に、材齢7日の初期強度では普通ポルトランドセメントの80~100%、材齢28日の強度では普通ポルトランドセメントの90~105%、材齢91日の長期強度では普通ポルトランドセメントの100~110%となる混合セメントが得られるような高炉水砕スラグを選別し、この高炉水砕スラグを高温地域向けのセメント原料用高炉水砕スラグとする。このような特性を有する高炉水砕スラグを原料として用いれば、年間平均気温が22℃以上である高温地域において、低発熱性であり、初期強度が低く、長期強度が高いという所望の特性を備えた高炉セメントが得られる。配合する高炉水砕スラグ微粉末のブレーン値(Blaine value)は、通常の場合と同様に、3000~4500cm2/g程度の範囲で、セメント製品の製造者の仕様に基づいて選定される。 Specifically, the strength of the mixed cement (normal blast furnace cement and blast furnace granulated slag fine powder mixed at a mass ratio of 80:20) when kneaded and cured at 27 ° C. is kneaded and cured at 27 ° C. When compared with the strength of ordinary Portland cement, 80 to 100% of ordinary Portland cement at the initial strength of 7 days of age, 90 to 105% of ordinary Portland cement at the strength of 28 days of age, 91 of age Blast furnace granulated slag is selected so as to obtain a mixed cement that is 100 to 110% of ordinary Portland cement in the long-term strength of the day, and this blast furnace granulated slag is used as a cement raw material granulated blast furnace slag for high temperature areas. If blast furnace granulated slag having such characteristics is used as a raw material, it has the desired characteristics of low heat generation, low initial strength, and high long-term strength in a high temperature region where the annual average temperature is 22 ° C. or higher. Blast furnace cement is obtained. The Blaine value of the granulated blast furnace granulated slag to be blended is selected in the range of about 3000 to 4500 cm 2 / g based on the specifications of the cement product manufacturer, as usual.
 本明細書では、普通ポルトランドセメントと高炉水砕スラグ微粉末とを80:20の質量比で混合した高炉セメントの場合を主として説明しているが、本発明のセメント原料用高炉水砕スラグが対象とする混合セメントの配合はこれには限定されない。例えば、高炉水砕スラグ微粉末を質量比で40~50%或いはそれ以上に配合した場合は、高炉水砕スラグ微粉末の水和反応速度および水和発熱速度が低く、長期強度が高いという特徴がより一層顕著となる。したがって、普通ポルトランドセメントと高炉水砕スラグ微粉末との配合比率は、希望する強度特性に応じて適宜変更してもよく、更にフライアッシュなど他のセメント混和材を併用することも妨げない。本発明のセメント原料用高炉水砕スラグを用いれば、これらの何れの場合においても、高炉水砕スラグ微粉末の水和反応が、高温環境によって、初期に過度に進行することが防止される効果を有する。 In this specification, the case of blast furnace cement in which ordinary Portland cement and ground granulated blast furnace slag powder are mixed at a mass ratio of 80:20 is mainly described, but the blast furnace granulated slag for cement raw material of the present invention is an object. The blending of the mixed cement is not limited to this. For example, when blast furnace granulated slag fine powder is blended in a mass ratio of 40-50% or more, the hydration reaction rate and hydration exothermic rate of blast furnace granulated slag fine powder are low, and the long-term strength is high. Becomes even more prominent. Therefore, the blending ratio of ordinary Portland cement and ground granulated blast furnace slag may be changed as appropriate according to the desired strength characteristics, and it does not hinder the use of other cement admixtures such as fly ash. If the blast furnace granulated slag for a cement raw material of the present invention is used, in any of these cases, the hydration reaction of the ground granulated blast furnace slag powder is prevented from excessively proceeding at an early stage due to a high temperature environment. Have
 高炉水砕スラグはCaO、Al23、MgO、SiO2を主成分として含有する。そして、先述のとおり、高炉セメントの活性度(強度特性)は、「(CaO+Al23+MgO)/SiO2」により算出される高炉水砕スラグの塩基度と密接な関係にあり、高炉水砕スラグの塩基度が高い値になるほど、とりわけ初期の活性度が増加する。そのため、塩基度の高い高炉水砕スラグを除外し、塩基度の低い高炉水砕スラグを選別することにより、初期強度が低く長期強度の高い高炉セメントが得られると推測することもできる。 Blast furnace granulated slag contains CaO, Al 2 O 3 , MgO, and SiO 2 as main components. As described above, the activity (strength characteristic) of the blast furnace cement is closely related to the basicity of the granulated blast furnace slag calculated by “(CaO + Al 2 O 3 + MgO) / SiO 2 ”. The higher the slag basicity, the greater the initial activity. Therefore, it can be estimated that blast furnace cement with low initial strength and high long-term strength can be obtained by excluding blast furnace granulated slag with high basicity and selecting blast furnace granulated slag with low basicity.
 しかし、高炉水砕スラグは上記主成分の他に原料鉱石や副原料由来のMnO、TiO2を不可避的不純物として含有し、これらの不純物も高炉セメントの強度特性(活性度)に多大な影響を与える。 However, blast furnace granulated slag contains MnO and TiO 2 derived from raw ores and auxiliary materials as inevitable impurities in addition to the above main components, and these impurities also have a great influence on the strength characteristics (activity) of blast furnace cement. give.
 なお、高炉水砕スラグ中の上記不純物の含有量は、通常、MnO;0.2~0.6質量%程度、TiO2;0.5~0.8質量%程度あり、これらの不純物の含有量が高くなると高炉セメントの活性度(強度特性)が低下する傾向にある。 The contents of the impurities in the granulated blast furnace slag are usually MnO; about 0.2 to 0.6% by mass, TiO 2 ; about 0.5 to 0.8% by mass. When the amount increases, the activity (strength characteristics) of the blast furnace cement tends to decrease.
 そこで、本発明では、「(CaO+Al23+MgO)/SiO2」により算出される塩基度に加えて、MnO、TiO2の含有量を考慮した指標BM(BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO)を用い、高炉水砕スラグを選別することとした。 Therefore, in the present invention, in addition to the basicity calculated by “(CaO + Al 2 O 3 + MgO) / SiO 2 ”, an index B M (B M = (CaO + Al 2 O 3) considering the contents of MnO and TiO 2 is used. + MgO) / SiO 2 −0.13 × TiO 2 —MnO), and blast furnace granulated slag was selected.
 本発明者らが、種々の化学成分を有する高炉水砕スラグを原料に用いた混合セメントについて、27℃の温度で混練・養生した場合の混合セメントの強度特性を調査した結果、指標BM(BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(但し、CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))が1.35を超えると、日本よりも気温の高い年間平均気温22℃以上の地域において、高炉セメントの長期的な強度の向上が望めない場合があることが明らかになった。 The present inventors have, for the mixed cement with blast furnace slag having various chemical components in the raw material, the result of the examination of the strength properties of the blended cement in the case of kneading and curing at a temperature of 27 ° C., the index B M ( B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (However, CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are contained in the granulated blast furnace slag. If the content of each oxide (mass%) exceeds 1.35, it may not be possible to improve the long-term strength of blast furnace cement in areas where the average annual temperature is 22 ° C or higher, which is higher than in Japan. It became clear.
 一方、指標BMが1.17未満になると、日本よりも気温が高い年間平均気温22℃以上の地域といえども、混合セメントの初期強度や長期強度が大幅に低下する場合のあることが確認された。長期強度が極端に低い高炉セメントをコンクリート構造物に使用すると、構造物の耐久性が低下する等の問題が懸念される。 On the other hand, when the index B M is less than 1.17, it is confirmed that the initial strength and long-term strength of the mixed cement may be significantly reduced even in regions where the annual average temperature is 22 ° C or higher, which is higher than Japan. It was done. When blast furnace cement having extremely low long-term strength is used for a concrete structure, there is a concern that the durability of the structure is lowered.
 以上の理由により、本発明では、指標BM(BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(但し、CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))が1.17以上1.35以下となる化学組成を有する高炉水砕スラグを、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグとする。好ましくは、指標BMが1.20以上1.30以下となる高炉水砕スラグが好適である。 For the above reasons, in the present invention, the index B M (B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (where CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace granulated slag having a chemical composition in which the content (mass%) of each oxide contained in the blast furnace granulated slag is 1.17 or more and 1.35 or less. Blast furnace granulated slag for cement raw materials for high temperature regions that are higher than or equal to ° C. Preferably, granulated blast furnace slag with an index B M of 1.20 or more and 1.30 or less is suitable.
 また、本発明の高温地域向けのセメント原料用高炉水砕スラグは、MnOの含有量が0.3質量%以上0.8質量%以下であることが好ましく、且つ、TiO2の含有量が0.5質量%以上2.0質量%以下であることが好ましい。 In the blast furnace granulated slag for cement raw materials for high temperature areas of the present invention, the content of MnO is preferably 0.3% by mass or more and 0.8% by mass or less, and the content of TiO 2 is 0. It is preferable that it is 5 mass% or more and 2.0 mass% or less.
 先述のとおり、高炉水砕スラグには、通常、原料鉱石や副原料由来のMnOやTiO2が不可避的に含まれている。これらのMnOやTiO2は、セメントの水和反応を抑制する効果、すなわち水和反応速度を遅らせる効果が大きい。そのため、MnOやTiO2の含有量が多い高炉水砕スラグを高炉セメントの原料とすると、日本では高炉セメントの初期強度の低下を招く場合がある。このような理由により、日本のセメント原料用高炉水砕スラグは、通常、MnOやTiO2の含有量が、それぞれ、MnO;0.6質量%以下、TiO2;0.8質量%以下に低減されている。 As described above, the granulated blast furnace slag normally contains MnO and TiO 2 derived from raw ores and auxiliary raw materials. These MnO and TiO 2 have a great effect of suppressing the hydration reaction of cement, that is, the effect of delaying the hydration reaction rate. Therefore, if blast furnace granulated slag with a high content of MnO or TiO 2 is used as a raw material for blast furnace cement, the initial strength of the blast furnace cement may be reduced in Japan. Reduced to 0.8 wt% or less; this reason, Japanese cement material for blast furnace slag is generally the content of MnO and TiO 2, respectively, MnO; 0.6 wt% or less, TiO 2 Has been.
 しかしながら、気温の高い地域ではセメントの水和反応が速く進行するので、セメントの初期強度は高くなり易い。したがって、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグの場合、高炉水砕スラグ中のMnOやTiO2は、寧ろ、高炉セメントの材齢初期の水和反応を抑制し、長期強度の向上に寄与する有効な成分である。また、これらの効果は、高炉水砕スラグのMnOやTiO2の含有量が日本のセメントでは利用できないと推察される程度に多くなるほど顕著になる。 However, since the hydration reaction of cement proceeds fast in areas with high temperatures, the initial strength of cement tends to be high. Therefore, in the case of blast furnace granulated slag for cement raw materials for high temperature areas where the annual average temperature is 22 ° C or higher, MnO and TiO 2 in the blast furnace granulated slag, rather than the hydrated reaction of blast furnace cement at the early age of aging. It is an effective ingredient that suppresses and contributes to the improvement of long-term strength. Moreover, these effects become more prominent as the content of MnO and TiO 2 in the blast furnace granulated slag increases to the extent that it is assumed that Japanese cement cannot be used.
 以上の効果を得るためには、MnOおよびTiO2の含有量を、それぞれ、MnO;0.3質量%以上、TiO2;0.5質量%以上とすることが好ましい。但し、高炉水砕スラグのMnOやTiO2の含有量が、それぞれMnO;0.8質量%超、特に、1.0質量%超、TiO2;2.0質量%超と、過剰に多くなると、年間平均気温が22℃以上である高温地域であっても混合セメントの初期強度が著しく低下するおそれがある。 In order to obtain the above effects, the contents of MnO and TiO 2 are preferably MnO; 0.3% by mass or more, and TiO 2 ; 0.5% by mass or more, respectively. However, if the contents of MnO and TiO 2 in the granulated blast furnace slag are excessively large, MnO; more than 0.8% by mass, especially more than 1.0% by mass, TiO 2 ; more than 2.0% by mass. Even in a high temperature area where the annual average temperature is 22 ° C. or more, the initial strength of the mixed cement may be significantly reduced.
 以上の理由により、本発明では、高炉水砕スラグのMnO含有量およびTiO2含有量を、MnO;0.3質量%以上0.8質量%以下、TiO2;0.5質量%以上2.0質量%以下とすることが好ましい。尚、MnOは1.0質量%以下であってもよい。また、MnO;0.4質量%以上0.6質量%以下、TiO2;0.5質量%以上1.2質量%以下とすることが、初期強度を適正な範囲として長期強度を向上するためには、より好ましい。尚、MnOは1.0質量%以下であっても、
 以上のように、上記(1)式を満足する化学組成を有する高炉水砕スラグ、より好ましくは、上記(1)式を満足することに加えてMnO含有量が0.3質量%以上0.8質量%以下であり、TiO2含有量が0.5質量%以上2.0質量%以下である化学組成を有する高炉水砕スラグによると、日本よりも高温の地域において低発熱性を示し、初期強度が比較的低く、長期強度の高い高炉セメントが得られる。したがって、上記の如き化学組成を有する高炉水砕スラグを選別することにより、年間平均気温が22℃以上である高温地域で使用されるセメント原料に適した高炉水砕スラグを選別することができる。
For the above reasons, in the present invention, the MnO content and the TiO 2 content of the granulated blast furnace slag are MnO: 0.3% by mass or more and 0.8% by mass or less, TiO 2 : 0.5% by mass or more. The content is preferably 0% by mass or less. In addition, MnO may be 1.0 mass% or less. Further, MnO: 0.4 mass% or more and 0.6 mass% or less, TiO 2 : 0.5 mass% or more and 1.2 mass% or less is intended to improve the long-term strength within the appropriate range of the initial strength. Is more preferable. In addition, even if MnO is 1.0 mass% or less,
As described above, blast furnace granulated slag having a chemical composition satisfying the above formula (1), more preferably, in addition to satisfying the above formula (1), the MnO content is 0.3% by mass or more and 0.0. According to the blast furnace granulated slag having a chemical composition of 8% by mass or less and a TiO 2 content of 0.5% by mass or more and 2.0% by mass or less, it exhibits low exothermic property in a region of higher temperature than Japan, A blast furnace cement having a relatively low initial strength and a high long-term strength can be obtained. Therefore, by selecting blast furnace granulated slag having the above chemical composition, it is possible to select blast furnace granulated slag suitable for a cement raw material used in a high temperature area having an annual average temperature of 22 ° C. or higher.
 年間平均気温が22℃以上である高温地域は、地球全体では月間平均気温では15~35℃程度の範囲にあり、混合セメントを使用するコンクリートはこの温度範囲において施工される可能性がある。上記説明では、27℃で混練、養生した場合の混合セメントの強度特性について説明したが、本発明の高温地域向けのセメント原料用高炉水砕スラグを用いた混合セメントでは、15~35℃の温度範囲において、普通ポルトランドセメントに対して、材齢7日以下の初期強度は同等以下であり、材齢91日以上の長期強度は同等以上となるという、所望の強度特性が実現可能であり、実用上もこの温度範囲において良好な強度特性が得られる。 ¡High temperature areas with an annual average temperature of 22 ° C or higher are in the range of 15 to 35 ° C in terms of the average monthly temperature on the whole of the earth, and concrete using mixed cement may be constructed in this temperature range. In the above description, the strength characteristics of the mixed cement when kneaded and cured at 27 ° C. have been described. However, in the mixed cement using the blast furnace granulated slag for cement raw materials for high temperature areas according to the present invention, the temperature is 15 to 35 ° C. In the range, it is possible to realize the desired strength characteristics that the initial strength at the age of 7 days or less is equivalent or less, and the long-term strength at the age of 91 days or more is equivalent or better than ordinary Portland cement. Also in the above, good strength characteristics can be obtained in this temperature range.
 微粉末製造工場で製造した高炉水砕スラグ微粉末(GGBFS)を用い、以下の手法にしたがって本発明の効果を確認した。 Using the blast furnace granulated slag fine powder (GBBFS) produced in the fine powder production factory, the effect of the present invention was confirmed according to the following method.
 高炉からの出銑毎に発生する高炉水砕スラグを採取して化学成分によって品質管理し、表1に示す種々の化学成分の高炉水砕スラグを微粉末製造工場のミルで粉砕して高炉水砕スラグ微粉末とし、得られた高炉水砕スラグ微粉末のモルタルによる活性度指数を測定した。 Blast furnace granulated slag generated at every brewing from the blast furnace is collected and quality controlled by chemical components, and blast furnace granulated slag of various chemical components shown in Table 1 is pulverized in a mill of a fine powder manufacturing plant to produce blast furnace water The activated blast furnace slag fine powder was measured as an activity index by mortar.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、採取した高炉水砕スラグは、以下の高炉操業条件および水砕条件により得られたものである。 The collected blast furnace granulated slag was obtained under the following blast furnace operating conditions and granulated conditions.
 銑鉄製造量;10000~11000ton/day
 スラグ比;290~300kg/溶銑-ton
 溶銑温度;1480~1515℃
 水砕処理時の水の温度;60~80℃
 (水砕処理時の水の質量)/(スラグの質量);10~25
 出銑毎に400~500トン発生する高炉水砕スラグを、出銑毎に取り分けて管理し、高炉水砕スラグの微粉末製造工場へ運搬した。微粉末製造工場において、高炉水砕スラグを粉砕して高炉水砕スラグ微粉末を製造するに際しては、粉砕能力50ton/Hrの竪型ローラーミルを用いた。高炉水砕スラグ微粉末の目標ブレーン値は4200±100cm2/gとし、石膏は添加しなかった。なお、高炉水砕スラグ粉砕時の微粉末サンプルを、製品サイロに入る前の配管の途中に設けたサンプリング管から抜き出すことにより、活性度指数測定用の高炉水砕スラグ微粉末を採取した。
Pig iron production: 10000-11000ton / day
Slag ratio: 290-300kg / molten iron-ton
Hot metal temperature: 1480-1515 ° C
Water temperature during granulation treatment: 60-80 ° C
(Mass of water at the time of water granulation treatment) / (mass of slag); 10 to 25
Blast furnace granulated slag generated from 400 to 500 tons per brewery was managed separately for each brewery and transported to the blast furnace granulated slag fine powder manufacturing plant. In producing a fine blast furnace granulated slag powder by pulverizing blast furnace granulated slag at a fine powder manufacturing factory, a vertical roller mill having a grinding capacity of 50 ton / Hr was used. The target brane value of granulated blast furnace slag powder was 4200 ± 100 cm 2 / g, and no gypsum was added. In addition, the blast furnace granulated slag fine powder for activity index measurement was extract | collected by extracting the fine powder sample at the time of blast furnace granulated slag grinding | pulverization from the sampling pipe provided in the middle of piping before entering a product silo.
 活性度指数の評価は、JIS A 6206(2008年)「コンクリート用高炉スラグ微粉末」の付属書に記載されている「高炉スラグ微粉末のモルタルによる活性度指数およびフロー値比の試験方法」に準拠して実施した。但し、JIS A 6206では20℃で混練、養生するが、本試験では27℃で混練、養生した。また、JIS A 6206では、試験モルタルのセメントの配合を質量比で「普通ポルトランドセメント:高炉水砕スラグ微粉末=50:50」とするが、本試験では「普通ポルトランドセメント:高炉水砕スラグ微粉末=80:20」とし、試験モルタルの混合セメント(高炉セメント)の配合量は、基準モルタルの普通ポルトランドセメント配合量と等しくした。その他のモルタルの配合、混練、成形、養生、圧縮強度の測定方法はJIS R 5201の規定に準拠した方法により実施した。なお、参考のために、本試験で使用した普通ポルトランドセメント(OPC)の化学成分を表1に示す。 The evaluation of the activity index is based on the test method of activity index and flow value ratio by mortar of blast furnace slag fine powder described in the appendix of JIS A 6206 (2008) "Blast furnace slag fine powder for concrete". Conducted in compliance. However, JIS A 6206 kneaded and cured at 20 ° C, but in this test it was kneaded and cured at 27 ° C. In addition, in JIS A 6206, the mixing ratio of cement in the test mortar is “ordinary Portland cement: ground granulated blast furnace slag = 50: 50”. In this test, “normal Portland cement: ground granulated blast furnace slag “Powder = 80: 20”, and the blending amount of the mixed cement (blast furnace cement) in the test mortar was equal to the blending amount of normal portland cement in the reference mortar. Other mortar blending, kneading, molding, curing, and compressive strength measurement methods were carried out in accordance with JIS R 5201 regulations. For reference, the chemical components of ordinary Portland cement (OPC) used in this test are shown in Table 1.
 これらの試験結果を、表2、図1および図2に示す。 These test results are shown in Table 2, FIG. 1 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図1に、混合セメント(試験モルタル)および普通ポルトランドセメント(基準モルタル)の、27℃で混練、養生した試料における、材齢と圧縮強度との関係を示す。 FIG. 1 shows the relationship between age and compressive strength in a sample of kneaded and cured at 27 ° C. of mixed cement (test mortar) and ordinary Portland cement (reference mortar).
 指標BM(BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))が1.29である本発明例の高炉水砕スラグを原料とした混合セメントでは、材齢28日までは普通ポルトランドセメント(OPC)よりも強度が低いが、材齢91日になると普通ポルトランドセメント(OPC)よりも強度が高くなり、長期的な強度が向上している。また、指標BMが1.35である本発明例の高炉水砕スラグを原料とした混合セメントでは、材齢28日未満では普通ポルトランドセメント(OPC)よりも強度が低いが、材齢28日になると普通ポルトランドセメント(OPC)と強度が同等、材齢91日になると普通ポルトランドセメント(OPC)よりも強度が高くなり、やはり長期的な強度が向上している。 Index B M (B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 , MnO are contained in granulated blast furnace slag) In the mixed cement made from blast furnace granulated slag of the present invention example having a content (mass%) of each oxide contained of 1.29, the strength is higher than that of ordinary Portland cement (OPC) until the age of 28 days. However, when the age is 91 days, the strength is higher than that of ordinary Portland cement (OPC), and the long-term strength is improved, and the blast furnace water of the example of the present invention whose index B M is 1.35. In mixed cement made from crushed slag, the strength is lower than that of ordinary Portland cement (OPC) at an age of less than 28 days, but the strength is equivalent to that of ordinary Portland cement (OPC) at an age of 28 days. When it comes to the day, the strength is higher than that of ordinary Portland cement (OPC), and the long-term strength is improved.
 一方、指標BMが1.46である比較例の高炉水砕スラグを原料とした混合セメントでは、材齢28日までは普通ポルトランドセメント(OPC)よりも強度が高いが、材齢91日になると、普通ポルトランドセメント(OPC)よりも強度が低下し、長期的な強度の向上が見られなくなる。 On the other hand, the mixed cement made from the granulated blast furnace slag of the comparative example whose index B M is 1.46 is stronger than ordinary Portland cement (OPC) until the age of 28 days, As a result, the strength is lower than that of ordinary Portland cement (OPC), and long-term strength improvement is not observed.
 図2に、高炉水砕スラグの指標BMと活性度指数との関係を示す。なお、ここでの活性度指数は、普通ポルトランドセメントと高炉水砕スラグ微粉末とを、質量比で80:20で混合した混合セメント(高炉セメント)を用いて作製した試験モルタルを27℃で混練、養生した試料の圧縮強度と、普通ポルトランドセメント(OPC)を用いて作製した基準モルタルを27℃で混練、養生した試料の圧縮強度との比の値(百分率)である。 FIG. 2 shows the relationship between the index B M of blast furnace granulated slag and the activity index. The activity index here is a mixture of test mortar prepared using mixed cement (blast furnace cement) obtained by mixing ordinary Portland cement and ground granulated blast furnace slag at a mass ratio of 80:20 at 27 ° C. The value (percentage) of the ratio between the compressive strength of the cured sample and the compressive strength of a sample obtained by kneading and curing a reference mortar prepared using ordinary Portland cement (OPC) at 27 ° C.
 本発明例、すなわち指標BMが1.17以上1.35以下である高炉水砕スラグを原料とした混合セメントは、材齢7日および材齢28日の活性度指数は約100%以下であるが、材齢91日では100%超となり、長期的には普通ポルトランドセメント(OPC)よりも強度が高くなっている。 The example of the present invention, that is, the mixed cement made from granulated blast furnace slag having an index B M of 1.17 or more and 1.35 or less, has an activity index of about 100% or less at 7 days of age and 28 days of age. Although it is over 100% at the age of 91 days, it has higher strength than ordinary Portland cement (OPC) in the long term.
 一方、比較例の指標BMが1.35を超える高炉水砕スラグを原料とした混合セメントでは、材齢7日および材齢28日の活性度指数が100%超であり、27℃で混練、養生した場合には初期強度が過剰に高くなっている。また、材齢91日では活性度指数が100%未満になり、27℃で混練、養生した場合には長期的には普通ポルトランドセメント(OPC)よりも強度が低下している。 On the other hand, in the mixed cement made from blast furnace granulated slag having an index B M of 1.35 as a raw material, the activity index at 7 days of age and 28 days of material is over 100%, and kneaded at 27 ° C. When cured, the initial strength is excessively high. In addition, at an age of 91 days, the activity index is less than 100%, and when kneaded and cured at 27 ° C., the strength is lower than that of ordinary Portland cement (OPC) in the long term.
 更に、比較例の指標BMが1.14である高炉水砕スラグを原料とした混合セメントでは、材齢7日の活性度指数が80%未満、材齢28日の活性度指数が90%未満、材齢91日の活性度指数が100%未満と大幅に低下している。 Furthermore, in the mixed cement made from blast furnace granulated slag having an index B M of 1.14 as a raw material, the activity index at age 7 is less than 80%, and the activity index at age 28 is 90%. The activity index of 91 days of age is significantly lower than 100%.
 上記のように、日本国内で通常セメント原料として使用する塩基度の高い高炉水砕スラグ(JIS塩基度;1.80~1.90、指標BM;1.40~1.60)は、東南アジア等の気温が高い地域での使用を想定すると、普通ポルトランドセメントよりも初期強度が高く、初期の発熱速度が大きくなるために、ひび割れが発生し易く、セメントの長期強度の低下原因となり、適していない。一方、高炉水砕スラグの指標BMが低すぎると、たとえ高温地域での使用を想定する場合であってもセメントの初期強度が不十分となる問題がある。すなわち、東南アジア等の日本よりも気温が高い地域向けのセメント原料用高炉水砕スラグには、化学成分によって変動する指標BMに適正な範囲があることが理解できる。 As mentioned above, blast furnace granulated slag with high basicity (JIS basicity; 1.80 to 1.90, index B M ; 1.40 to 1.60), which is usually used as a raw material for cement in Japan, is found in Southeast Asia. Assuming that it is used in areas where the temperature is high, such as normal Portland cement, the initial strength is higher and the initial heat generation rate is larger, so cracking is likely to occur and this causes a decrease in the long-term strength of the cement. Absent. On the other hand, if the index B M of the granulated blast furnace slag is too low, there is a problem that the initial strength of the cement becomes insufficient even if it is assumed to be used in a high temperature region. That is, it can be understood that blast furnace granulated slag for cement raw materials for regions with higher temperatures than Japan such as Southeast Asia has an appropriate range for the index B M that varies depending on the chemical composition.
 また、高炉水砕スラグに不可避的不純物として含まれるMnOやTiO2の含有量が多くなると、日本国内でセメント原料として使用する場合、セメントの初期強度が大幅に低下し、問題となる。しかし、東南アジア等の高温地域でセメント原料として使用する場合には、前記不可避的不純物を高濃度で含む高炉水砕スラグであっても、それぞれの含有量がMnO;0.8質量%以下、TiO2;2.0質量%以下の範囲であり、且つ、指標BMが適正な範囲にあれば、活性度指数の低下は適正な範囲であり、セメントの初期強度の低下は問題とならないことが理解できる。さらに、JIS塩基度が日本国内向けのセメント原料用高炉水砕スラグと同程度でも、MnOやTiO2の含有量が多くて指標BMが適正な範囲にある場合には長期強度が向上しており、高温地域向けのセメント原料用高炉水砕スラグの選定においても指標BMによる評価が有効であることが理解できる。 Further, if the content of MnO or TiO 2 contained as unavoidable impurities in the blast furnace granulated slag is increased, when used as a cement raw material in Japan, the initial strength of the cement is greatly reduced, which causes a problem. However, when used as a cement raw material in a high temperature region such as Southeast Asia, even if the blast furnace granulated slag contains a high concentration of the inevitable impurities, each content is MnO; 0.8 mass% or less, TiO 2 ; If it is in the range of 2.0% by mass or less and the index B M is in the proper range, the decrease in the activity index is in the proper range, and the decrease in the initial strength of the cement may not be a problem. Understandable. Furthermore, even if the basicity of JIS is about the same as that of blast furnace granulated slag for cement raw materials in Japan, the long-term strength is improved when the content of MnO and TiO 2 is high and the index B M is in an appropriate range. Therefore, it can be understood that the evaluation by the index B M is also effective in the selection of granulated blast furnace slag for cement raw materials for high-temperature areas.
 そして、これらの結果から、高炉水砕スラグの化学組成を分析し、指標BMが1.17以上1.35以下、MnOの含有量が0.3質量%以上0.8質量%以下、TiO2の含有量が0.5質量%以上2.0質量%以下である化学組成を有する高炉水砕スラグを選別することにより、東南アジアのような年間平均気温22℃以上である高温地域向けのセメント原料に最適な高炉水砕スラグが得られることが理解できる。 And from these results, the chemical composition of granulated blast furnace slag was analyzed, the index B M was 1.17 to 1.35, the MnO content was 0.3 mass% to 0.8 mass%, TiO By selecting blast furnace granulated slag having a chemical composition in which the content of 2 is 0.5% by mass or more and 2.0% by mass or less, cement for high-temperature regions having an average annual temperature of 22 ° C. or more like Southeast Asia It can be understood that the granulated blast furnace slag optimum for the raw material can be obtained.

Claims (3)

  1.  CaO、Al23、MgO、SiO2、TiO2およびMnOの含有量(質量%)が下記の(1)式を満足する化学組成を有する、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグ。
     1.17≦BM≦1.35・・・(1)
     但し、(1)式において、BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))である。
    For high-temperature areas where the average annual temperature is 22 ° C or higher, with a chemical composition in which the content (mass%) of CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO satisfies the following formula (1) Blast furnace granulated slag for cement raw materials.
    1.17 ≦ B M ≦ 1.35 (1)
    However, in the formula (1), B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
  2.  前記MnOの含有量が0.3質量%以上0.8質量%以下であり、前記TiO2の含有量が0.5質量%以上2.0質量%以下である請求項1に記載のセメント原料用高炉水砕スラグ。 Or less 0.8 wt% content of more than 0.3 mass% of the MnO, cement material of claim 1 wherein the content of TiO 2 is 2.0 wt% or less than 0.5 wt% Granulated blast furnace slag.
  3.  高炉水砕スラグの化学組成を分析し、CaO、Al23、MgO、SiO2、TiO2およびMnOの含有量(質量%)が下記の(1)式を満足し、前記MnOの含有量が0.3質量%以上0.8質量%以下であり、前記TiO2の含有量が0.5質量%以上2.0質量%以下である化学組成を有する高炉水砕スラグを、年間平均気温が22℃以上である高温地域向けのセメント原料用高炉水砕スラグとするセメント原料用高炉水砕スラグの選別方法。
     1.17≦BM≦1.35・・・(1)
     但し、(1)式において、BM=(CaO+Al23+MgO)/SiO2-0.13×TiO2-MnO(CaO、Al23、MgO、SiO2、TiO2、MnOは高炉水砕スラグ中に含まれる各酸化物の含有量(質量%))である。
    Analyzing the chemical composition of granulated blast furnace slag, the content (mass%) of CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO satisfies the following formula (1), and the content of MnO Blast furnace granulated slag having a chemical composition of 0.3 mass% or more and 0.8 mass% or less and a TiO 2 content of 0.5 mass% or more and 2.0 mass% or less, A method for selecting blast furnace granulated slag for cement raw material, which is used as a blast furnace granulated slag for cement raw material for high-temperature areas having a temperature of 22 ° C or higher.
    1.17 ≦ B M ≦ 1.35 (1)
    However, in the formula (1), B M = (CaO + Al 2 O 3 + MgO) / SiO 2 −0.13 × TiO 2 —MnO (CaO, Al 2 O 3 , MgO, SiO 2 , TiO 2 and MnO are blast furnace water. It is content (mass%) of each oxide contained in crushed slag.
PCT/JP2014/003829 2013-07-25 2014-07-18 Granulated blast furnace slag for use as cement starting material and screening method for same WO2015011911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015508915A JP5967294B2 (en) 2013-07-25 2014-07-18 Blast-furnace granulated slag for raw materials of cement and its sorting method
KR1020157030353A KR20150133272A (en) 2013-07-25 2014-07-18 Granulated blast furnace slag for use as cement starting material and screening method for same
CN201480022750.7A CN105143137B (en) 2013-07-25 2014-07-18 Cement raw material blast furnace water quenching clinker and its screening technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-154373 2013-07-25
JP2013154373 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015011911A1 true WO2015011911A1 (en) 2015-01-29

Family

ID=52392975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003829 WO2015011911A1 (en) 2013-07-25 2014-07-18 Granulated blast furnace slag for use as cement starting material and screening method for same

Country Status (5)

Country Link
JP (1) JP5967294B2 (en)
KR (1) KR20150133272A (en)
CN (1) CN105143137B (en)
TW (1) TWI554615B (en)
WO (1) WO2015011911A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003178A (en) * 2014-06-20 2016-01-12 宇部興産株式会社 Selection method of blast furnace slag, and production method of blast furnace cement
JP2016180748A (en) * 2015-03-23 2016-10-13 宇部興産株式会社 Selection method of blast furnace slag, and manufacturing method of blast furnace cement
JP2016216343A (en) * 2015-05-18 2016-12-22 宇部興産株式会社 Cement composition and manufacturing method therefor
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
CN108516772A (en) * 2018-06-25 2018-09-11 深圳市振惠建混凝土有限公司 A kind of pervious concrete and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520899A (en) * 2000-01-28 2003-07-08 ホルシム リミティド Method of treating slag or slag mixture in iron bath
JP2008247715A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Sorting method of granulated blast furnace slag for cement, and forming process of cement composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003520899A (en) * 2000-01-28 2003-07-08 ホルシム リミティド Method of treating slag or slag mixture in iron bath
JP2008247715A (en) * 2007-03-30 2008-10-16 Jfe Steel Kk Sorting method of granulated blast furnace slag for cement, and forming process of cement composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003178A (en) * 2014-06-20 2016-01-12 宇部興産株式会社 Selection method of blast furnace slag, and production method of blast furnace cement
JP2016180748A (en) * 2015-03-23 2016-10-13 宇部興産株式会社 Selection method of blast furnace slag, and manufacturing method of blast furnace cement
JP2016216343A (en) * 2015-05-18 2016-12-22 宇部興産株式会社 Cement composition and manufacturing method therefor
JP2017141135A (en) * 2016-02-12 2017-08-17 宇部興産株式会社 Cement composition and method for producing the same
CN108516772A (en) * 2018-06-25 2018-09-11 深圳市振惠建混凝土有限公司 A kind of pervious concrete and preparation method thereof
CN108516772B (en) * 2018-06-25 2020-10-30 深圳市振惠建混凝土有限公司 Pervious concrete and preparation method thereof

Also Published As

Publication number Publication date
TW201512408A (en) 2015-04-01
JP5967294B2 (en) 2016-08-10
CN105143137B (en) 2018-05-04
CN105143137A (en) 2015-12-09
KR20150133272A (en) 2015-11-27
JPWO2015011911A1 (en) 2017-03-02
TWI554615B (en) 2016-10-21

Similar Documents

Publication Publication Date Title
JP6080340B2 (en) Steel slag hydrated solidified body
JP5967294B2 (en) Blast-furnace granulated slag for raw materials of cement and its sorting method
JP6543912B2 (en) Cement composition and method for producing the same
JP5946107B2 (en) Method for producing cement composition
JP5006088B2 (en) Method for selecting granulated blast furnace slag for cement and method for producing cement composition
Miyazawa et al. Properties of concrete using high C3S cement with ground granulated blast-furnace slag
JP6543911B2 (en) Cement composition and method for producing the same
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
KR101999010B1 (en) Complexed slag fine aggregate comprising ferronickel furnace slag and granulated blast furnace slag
JP6314683B2 (en) Cement composition and method for producing the same
JP6354373B2 (en) Blast furnace slag sorting method and blast furnace cement production method
JP6855691B2 (en) Cement composition and its manufacturing method
JP2010120787A (en) Method for manufacturing low-heat portland cement
JP7253981B2 (en) Method for producing iron and steel slag hydrated solid
JP2012201520A (en) Cement composition, and method for producing the same
JP6956502B2 (en) Cement admixtures and cement compositions and hydraulic compositions
JP2004340774A (en) Quality control method of blast furnace slow cooling slug
JP2014185042A (en) Cement composition
JP6278478B2 (en) Cement composition and concrete
KR101461581B1 (en) A composition using waste materials of steel making process and manufacturing method of formed body
JP6702238B2 (en) Hydraulic composition
JP5623329B2 (en) Cement clinker with improved fluidity
JP6323484B2 (en) Cement clinker composition and blast furnace cement composition
JP6690273B2 (en) Cement composition and method for producing the same
JP6579977B2 (en) Cement composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480022750.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015508915

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030353

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829935

Country of ref document: EP

Kind code of ref document: A1