JP2016002372A - 被検体情報取得装置 - Google Patents

被検体情報取得装置 Download PDF

Info

Publication number
JP2016002372A
JP2016002372A JP2014125527A JP2014125527A JP2016002372A JP 2016002372 A JP2016002372 A JP 2016002372A JP 2014125527 A JP2014125527 A JP 2014125527A JP 2014125527 A JP2014125527 A JP 2014125527A JP 2016002372 A JP2016002372 A JP 2016002372A
Authority
JP
Japan
Prior art keywords
laser
subject
unit
laser beam
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014125527A
Other languages
English (en)
Inventor
大古場 稔
Minoru Okoba
稔 大古場
滋 市原
Shigeru Ichihara
滋 市原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014125527A priority Critical patent/JP2016002372A/ja
Priority to US14/736,381 priority patent/US20150366459A1/en
Publication of JP2016002372A publication Critical patent/JP2016002372A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/0805Transverse or lateral modes by apertures, e.g. pin-holes or knife-edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1317Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/115Q-switching using intracavity electro-optic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1623Solid materials characterised by an active (lasing) ion transition metal chromium, e.g. Alexandrite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1633BeAl2O4, i.e. Chrysoberyl
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1636Al2O3 (Sapphire)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Psychiatry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lasers (AREA)

Abstract

【課題】プレレージングによる影響を低減した被検体情報取得装置を提供する。【解決手段】二つの反射体と、二つの反射体の間に設けられるQスイッチとを含むレーザー共振器と、レーザー媒質を光励起する励起部とを備える。さらに、一方の反射体から出力するレーザー光の進行方向に垂直な面におけるレーザー光の強度が分布する範囲よりも狭い範囲で前記レーザー光の強度を検出する検出部と、検出部の検出結果に基づいてレーザー光にプレレージング光が含まれているか否かを判定する判定部とを備える。さらに、レーザー光を被検体に照射する照射部と、レーザー光の照射に基づいて被検体から伝播する音響波を受信する受信部とを備える。さらに、受信部の受信結果に基づいて被検体についての情報を取得する取得部と、検出部の前段に設けられ、判定部の判定結果に基づいてレーザー光の出力を制御する制御部とを備える。【選択図】図1A

Description

本発明は被検体情報取得装置に関する。
短パルス発振レーザーを用いた医療用の光音響トモグラフィー装置(光音響測定システム)の開発が進められている(非特許文献1)。光音響トモグラフィー(Photoacoustic Tomography:PAT)とは、数十〜数百ナノ秒程度のパルスレーザーを測定部位に照射し、そこで発生する光音響波を探触子で受信し、得られた受信信号の処理により画像形成を行う手法である。PATにより、生体組織の吸収係数に基づくスペクトル測定から生体機能解析を行うことが可能となる。
また、音響波の測定に用いる短パルス光を作成するために、Qスイッチを用いたレーザーが利用される。Qスイッチ発振とは、発振パルスの半値幅の関数である共振器性能指数であるQ値を制御し、高出力且つ短パルスのレーザー光を発振する技術である。その際のレーザー発振をジャイアントパルス発振と呼ぶ。このようなQスイッチを用いたレーザー発振でレーザー光を当てることにより被検体情報を取得する装置が提案されている(特許文献1)。
特開2013−89680号公報
S. Manohar et al, Proc. of SPIE vol. 6437 643702−1
しかしながら、Qスイッチを用いたレーザー装置では装置の特性が不安定な状態のときにプレレージングという異常発光が起こる。また、このプレレージングは、本来必要とする短パルスのジャイアントパルスの発振タイミングより前のタイミングで発生する。このプレレージングを検知し、減少させることが課題として挙げられている。被検体情報取得装置においてプレレージングが発生すると、ジャイアントパルス発振のタイミングより前に生体組織へ光が伝搬する。それにより生体組織から音響波信号が発生する。そのため、音響波信号を解析する際にノイズとなり、正確な生体情報(被検体情報)を得るための障害となる。また、1パルスのジャイアントパルスの幅自体もばらつくため所望の音響波信号が得られない。更に、プレレージングの発生とレーザー装置の周囲温度とに強い相関がある。しかし、プレレージングの発生をレーザー装置の温度を制御することにより抑制する場合、被検体情報取得装置の大型化、製造コストの増大等の影響をもたらす。
本発明は上記に鑑み、プレレージングによる影響を低減した被検体情報取得装置を提供することを目的とする。
上記課題を達成するため、本発明の被検体情報取得装置は、二つの反射体と、前記二つの反射体の間に設けられるQスイッチとを含むレーザー共振器と、レーザー媒質を光励起する励起部と、前記一方の反射体から出力するレーザー光の進行方向に垂直な面における前記レーザー光の強度が分布する範囲よりも狭い範囲で前記レーザー光の強度を検出する
検出部と、前記検出部の検出結果に基づいて前記レーザー光にプレレージング光が含まれているか否かを判定する判定部と、前記レーザー光を被検体に照射する照射部と、前記レーザー光の照射に基づいて前記被検体から伝播する音響波を受信する受信部と、前記受信部の受信結果に基づいて前記被検体についての情報を取得する取得部と、前記検出部の前段に設けられ、前記判定部の判定結果に基づいて前記レーザー光の出力を制御する制御部とを備える。
上記のように、本発明によれば、プレレージングによる影響を低減した被検体情報取得装置を提供できる。
本発明の被検体情報取得装置の実施例1を示す図 本発明の実施例1に係るレーザー光源を示す図 ノーマル発振とジャイアントパルス発振とプレレージングの関係を示す図 実施例1におけるレーザー光センサーの素子との位置関係を示す図 実施例1における代表的な照射量取得結果を示す図 本発明の実施例2に係る被検体情報取得装置のレーザー光センサーを示す図 本発明の実施例3に係る被検体情報取得装置のレーザー光センサーを示す図 本発明の実施例4に係るレーザー光センサー部を示す図 本発明に対する比較技術を示す図
以下に図面を参照しつつ、本発明の実施の形態を詳しく説明する。なお、同一の構成要素には原則として同一の参照番号を付して、説明を省略する。ただし、以下に記載されている詳細な計算式、計算手順などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明の被検体情報取得装置には、被検体に近赤外線等の光(電磁波)を照射することにより被検体内で発生した音響波を受信して、被検体情報を画像データとして取得する光音響効果を利用した装置を含む。光音響効果を利用した装置の場合、取得される被検体情報とは、光照射によって生じた音響波の発生源分布、被検体内の初期音圧分布、あるいは初期音圧分布から導かれる光エネルギー吸収密度分布や吸収係数分布、組織を構成する物質の濃度分布を示す。物質の濃度分布とは、例えば、酸素飽和度分布、トータルヘモグロビン濃度分布、酸化・還元ヘモグロビン濃度分布などである。
また、複数位置の被検体情報である特性情報を、2次元または3次元の特性分布として取得してもよい。特性分布は被検体内の特性情報を示す画像データとして生成され得る。本発明でいう音響波とは、典型的には超音波であり、音波、超音波と呼ばれるものを含む。光音響効果により発生した音響波のことを、光音響波または光超音波と呼ぶ。音響検出器(例えば探触子)は、被検体内で発生または反射した音響波を受信する。
まず、実際のプレレージング発光はジャイアントパルス発光に比べて総出力が小さい。そのため、プレレージングのみを時間的に分解して検知することは非常に感度と時間分解能が高いセンサーを用いなくてはならず、センサーが高価になるという課題がある。更に、プレレージング発振からジャイアントパルス発振のためのQスイッチOFF信号を出すまでの期間は数ナノ秒から数十ナノ秒と短い。そのため、現実的にその間にジャイアントパルス発振を行わないように制御するには時間が短すぎて実現が困難である。
<実施例1>
図1Aは、本発明の被検体情報取得装置の実施例1を示す図である。被検体情報取得装
置101はレーザー光源102を備える。また、光伝送光学系103と、照射部である光照射光学系104と、音響波受信部105と、音響波信号処理部106とをさらに備える。また、検出部であるレーザー光センサー107と、分岐ミラー108と、被検体111と、照射光116も図1Aに示している。さらに、強度検出信号122と、音響波信号117と、電気信号118と、プレレージング判定信号すなわち判定結果119とを図1Aに示している。
被検体情報取得装置101は、被検体111内部の情報を光音響信号により取得する装置である。被検体111内部を伝搬した光のエネルギーの一部は血液などの吸収体(音源)に吸収される。すると、その光吸収体の熱膨張により音響波信号117が発生し、被検体内部をその音響波信号117が伝播する。そして、伝播する音響波信号117は音響波受信部105にある探触子で電気信号118へ変換され取得部である音響波信号処理部106へ転送される。電気信号118は音響波信号処理部106で被検体内の光学特性値分布情報などへ変換されて被検体情報となる。生成される被検体情報には、光学特性値分布や吸収係数分布の他、それに基づく初期音圧分布、物質濃度や酸素飽和度を含めることができる。さらにこれらの情報に基づいて、画像を形成(画像再構成)し表示するための画像データも含め得る。
レーザー光源102は被検体111である生体を透過して、測定対象である血管等により光音響信号を好適に発信するための光を提供する。光音響信号すなわち音響波信号117の信号精度を高くするために、高出力の光を被検体111まで伝搬する必要がある。そのためレーザー光が用いられている。また被検体111での吸収が少なく測定対象の血管等に到達させる必要があるため、被検体111での伝搬が容易な光として、その波長に限定があり500nmから1200nm程度の波長特性を持つ光が特に用いられる。そのため、その範囲の波長の光を放出するアレキサンドライトレーザーや、チタンサファイアレーザーが好適に用いられる。また音響波信号117の信号精度を向上するために、レーザー光115としてパルス幅が数10から数100ナノメートルの短パルス幅のパルス光を用いる。そのような、高出力であり、短パルス幅のレーザー光を作成するために、Qスイッチによるジャイアントパルス発振をするレーザーが好適に用いられている。レーザー光源102は被検体情報取得装置101に一体的に組み込まれる場合もあれば、外に取り付ける場合もある。
光伝送光学系103は、レーザー光源102から光照射光学系104まで光を伝搬する機能を有する。レーザー光源102と光照射光学系104は、配置の都合上、距離があり、レーザー光115が広がってしまうため、広がりを抑制するために、レーザーの光路上にレンズ等を有する。また、レーザー光源102と光照射光学系104の配置の都合上、直線上に並ばない場合は反射ミラー等を配置してレーザー光115の進行方向を調整し、レーザー光を所望の場所まで導く。必要に応じて、音響波信号処理部106にて必要となる光発信タイミングを測定するタイミングトリガーや本発明にあるレーザー光センサー107などの測定装置へレーザー光を導く。そのために分岐ミラー108を光路上に配置し、その分岐光をこれら測定装置に誘導する。また、光伝送光学系103内の光伝送には、部分的に光ファイバーを用いる場合もある。
光照射光学系104は、光伝送光学系103により伝搬されてきたレーザー光115から照射光116を形成して被検体111の測定対象部位に照射する。そのために、レーザー光115を主に広げるなど、被検体111に好適な光量分布にレーザー光115の光量分布を変形させる役割を担う。音響波信号117を好適に得るとともに生体である被検体111への照射量が規定値を超えないようにレーザー光115に対して好適な拡大、拡散を行うことで照射光116を形成するためにレンズや拡散板を配置している。
音響波受信部105は、音響波信号117を受信する探触子を持つ。照射光116であるパルス光により生体表面及び生体内部等で発生する音響波信号117を受信する探触子は、音響波をアナログの電気信号118に変換する。探触子は圧電現象を用いた探触子、光の共振を用いた探触子、静電容量の変化を用いた探触子等、音響波信号を受信できるものであれば、どのような探触子を用いてもよい。本実施形態の探触子は、典型的には複数の受信素子(例えばピエゾ素子)が1次元、あるいは2次元に配置されたもの、お椀型の固定部品の底部にらせん状に配置された探触子がよい。このような多次元配列素子を用いることで、同時に複数の場所で音響波信号117を受信することができ、測定時間を短縮できる。探触子が測定対象よりも小さい場合には、探触子を走査させて複数の位置で受信しても良い。探触子で受信された音響波信号117は、電気信号118に変換されたのち、音響波信号処理部106での特性情報の生成に使用される。
音響波信号処理部106は、コンピュータ等の情報処理装置や回路により構成され、電気信号118の処理や演算を行う。音響波信号処理部106は、探触子より得られた電気信号をアナログ信号からデジタル信号に変換するA/Dコンバータ等の変換部を有する。変換部は、同時に複数の信号を処理できることが望ましい。それにより画像を形成する(画像再構成)までの時間を短縮できる。変換されたデジタル信号はメモリに格納される。音響波信号処理部106は、メモリに格納されたデータ等を用いて、例えばタイムドメインでの逆投影などにより、光学特性値分布などの被検体情報を生成する。
図1Bは、本発明の実施例1のレーザー光源102を示す図である。本発明のレーザー光源102は図1Bに示すように、二つの反射体である出力鏡201と反射鏡202からなるレーザー共振器203と制御部であるレーザーコントローラー211とレーザー電源212から構成される。なお、レーザーコントローラー211およびレーザー電源212の配線等は省略している。ここではレーザーコントローラー211は光源102内に設けられる。すなわちレーザーコントローラー211は光伝送光学系103内に設けられる検出部107の前段に設けられる。
共振器内には、励起部204とレーザー媒質205とQスイッチ206を配置する。レーザーコントローラー211により励起部204及びQスイッチ206に印加する電圧を制御する。励起部204はフラッシュランプや半導体レーザーを用い、ロッド状のレーザー媒質205を利用する場合は、レーザー媒質205の側面から光励起する。Qスイッチ206にはリン酸二水素カリウム(KDP)やリン酸重水素カリウム(DKDP)等の光学結晶であるポッケルスセルを用いる。ポッケルスセルは、電場の強さに比例して屈折率が変化し、透過する光の偏光方向が回転する素子であり、発振パルス幅が狭く出力強度の強いレーザー光を得るために広く用いられる。レーザー媒質の種類、共振器長、光共振状態によりパルス幅は異なるが100ns以下のパルス幅が得られる。レーザー媒質に、Nd:YAG結晶やアレキサンドライト結晶を用いる場合は図1Bの構成となる。一方、チタンサファイアレーザーの場合は、Nd:YAGレーザーの第二高調波をチタンサファイア結晶の励起源とする。チタンサファイアレーザーでは励起源となるNd:YAGレーザー部分に本発明を適用する。以降、本明細ではフラッシュランプでレーザー媒質を励起するアレキサンドライトレーザーを参考にして概説する。アレキサンドライトレーザーは700nm−800nmの範囲で利得を有し、共振器内部のレーザー媒質205とポッケルスセルすなわちQスイッチ206の間に複屈折フィルターからなる波長選択機構を設置することで、波長可変レーザーとなる。
図2は、ノーマル発振とジャイアントパルス発振とプレレージングの関係を示す概念図である。ここでは図2を用いてプレレージングについて説明する。プレレージングとはQスイッチ発振を行う際に、起こる現象である。プレレージングを説明するに際し、まず一般のQスイッチを用いないノーマル発振とQスイッチを用いたジャイアントパルス発振に
ついて説明する。
図2(a)にノーマル発振の時間推移を示す。ノーマル発振では、励起光により結晶内に一定の反転分布エネルギーが蓄えられ、閾値エネルギーに達したところで、共振器からレーザー光を発振する。ノーマル発振では後述するジャイアントパルス発振よりパルス幅が広い発振となる。
図2(b)に、QスイッチのON、OFF駆動の時間推移を示す。図2(c)にQスイッチ発振の時間推移を示す。Qスイッチ発振を行うレーザーの場合、共振器の内部にQスイッチが配置されており、Qスイッチにより発振を数10usから数100usの一定期間抑制する。その間に励起光により結晶内に反転分布エネルギーを蓄え、閾値エネルギーよりも高いエネルギーを強制的に蓄える。一定期間経過後Qスイッチによる共振の抑制を解除する(共振器のQ値を高くする)ことにより、出力が高くパルス幅の短いレーザー光が発振する。これをジャイアントパルス発振と呼ぶ。
図2(d)にプレレージングが発生する場合の、全体の発振の時間推移を示す。プレレージング発振とはQスイッチ発振を行うレーザーにおいてジャイアントパルス発振前に蓄積したエネルギーの一部が漏洩する現象である。この原因はQスイッチを構成する部材の機構、その他の共振器内の構成部材の光学特性など多岐にわたる。また、本来Qスイッチレーザーはプレレージングを抑制して正確にジャイアントパルスを発生する機構を目標として作られているため、その目標から外れたプレレージング発振の発振エネルギーやパルス幅は不安定な場合が多い。プレレージングが発生する場合、1パルスの発振においてプレレージングはQスイッチがON状態で発生する。さらにその後QスイッチがOFFとなりジャイアントパルス発振も起こる。そのため、ジャイアントパルスが正確に発振した場合に対してパルス幅が異なるレーザー光が発生してしまう。
特に、ロッド状レーザー媒質を利用する固体レーザーでは、励起効率の高いロッド中心部でプレレージング発振が発生すると、その発振を種光として、引き続き発生するジャイアントパルス発振が中央に集中する。その結果、後述する特殊な強度分布で強い発振となる。なお、Qスイッチとして、ポッケルスセルなどの屈折率異方性を電界で誘起させるデバイスを用いて往復光の偏光方向を変える。そのようなQスイッチの特性により共振を抑制する。このような共振を抑制させる光学シャッターを用いた場合には、ジャイアントパルス光の偏光状態とプレレージングの偏光状態とが異なる。このQスイッチの特徴は後述の実施例で利用される。
本発明に記載するレーザー光センサー107はQスイッチON(共振抑制期間)の微弱発光を検知するのではなく、そのプレレージングである微弱発光とQスイッチOFF後のジャイアントパルス発振とを時間軸において両方を含むように発振強度を取得する。検出結果であるその取得した強度に応じた信号を判定部123に出力する。この出力された信号からプレレージングによる発光を識別するべく判定部123を設ける。そうすることにより時間分解能があまり高くないレーザー光センサー107であっても、プレレージング発生の検知を実現している。なお、ここでいう「時間分解能があまり高くないレーザー光センサー」とは例えば図2(d)において、プレレージングが発生した時刻からジャイアントパルス発振が終わる時刻までの時間幅でしか光の強度を検知できないセンサーである。さらにいうと「時間分解能が高いレーザー光センサー」とは図2(d)でいうプレレージングの始まりからその終わりまでの時間幅でレーザー光の強度を検知できるセンサーである。
プレレージングが発生した場合の被検体情報取得装置またはそれに含まれるレーザー装置の制御方法について説明する。プレレージングが発生する原因が想定される場合には想定される原因を低減するような制御方法を導入する場合もあれば、被検体情報取得装置ま
たはそれに含まれるレーザー装置自体を停止する場合もある。原因が想定され可逆的な場合、たとえば、Qスイッチを構成する部材がポッケルスセルのように、電圧を印加することで屈折率異方性を変えるような部材の場合を考える。そのとき、レーザー装置の温度影響等により、ポッケルスセルの最適印加電圧からずれることにより、プレレージングが発生することが想定される。このような場合には、レーザー装置の制御としてポッケルスセルの印加電圧を変更することにより、プレレージングの発生を抑制することができる。このような制御機構を設けることにより、安定な被検体情報取得装置を提供することができる。また、プレレージングがQスイッチの不安定動作などで偶発的に発生する場合にはプレレージングを含む発光であるか、プレレージングを含まない発光であるかの識別情報を光音響信号に併記して出力する。そして、例えばプレレージングを含まない発光で得られた音響波信号のみを画像再構成に使用することで再構成画像のノイズ除去に利用できる。または、プレレージングが発生したレーザー光に基づいて再構成された画像であるという情報を再構成画像とともに出力することも可能である。
ここで、図1Aを改めて参照する。レーザー光源102として、波長750nmパルス幅100nsec、繰り返し周波数20Hzのパルス光を発生させるべく、共振器の内側にモードセレクターとしてアパーチャーを配置した。また、ビームプロファイルφ5mmのマルチモードのパルス光を発生するランプ励起型、Qスイッチ発振型のアレキサンドライトレーザー光源を用いた。出力は1パルス300mJで発光させた。光伝送光学系103として、レーザー光115をほぼ並行光として伝搬するためのf=1000mmの凸レンズを光路上に配置した。音響波受信部105はとして、探触子をアレイ上に配置した。被検体111は、女性の乳房などの生体とした。分岐ミラー108は、45°反射で反射率1%となるように光源102の後段に配置してレーザー光115を分岐した。分岐したのちの1%のレーザー光を本発明におけるレーザー光センサー107aへ導光した。また本実施例のレーザーシステムは、装置の安定上、空調システムを有している。
図3は、実施例1におけるレーザー光センサーの素子との位置関係を示す図である。本実施例に用いたレーザー光センサー107aについて図3を用いて説明する。図3には、レーザー光センサー107a、受光素子部109a、レーザー光115、レーザー光の分布の幅120、およびレーザーの進行方向121が示されている。本実施例において用いたレーザー光センサー107aは、ビームプロファイラーで10mm×10mmのサイズの受光素子部109aを有するビームプロファイラーを用いた。さらに、10mmの間隔の中に素子が100素子あり、レーザーの進行方向121をz軸方向とし、受光素子部109aが、そのz軸方向に垂直な面であるxy平面方向となるように配置されている。すなわち、受光素子部109aは例えばxy平面でのレーザー光の強度の分布を測定することができるエリアセンサーである。且つ、受光素子部109の中央にレーザー光115の分布の中央が来るように配置した。このような配置によって、100×100素子の素子ごとのプレレージングとジャイアントパルスを含む1パルスごとの総照射エネルギー(強度)を取得した。そして、レーザー光センサー107aは図1Aの判定部123に上記取得結果を送出する。この送出方法は無線通信でも良いし、配線を設けて電圧または電流信号として送出しても良い。
図4は、実施例1における代表的な照射量取得結果を示す図である。図4(a)および図4(b)は、横軸が図3におけるx方向のアドレス(座標)を示すとともに縦軸が1素子に入射されたレーザー光115のエネルギーを示す。また座標x=0の位置が図3におけるレーザー光の分布の幅120の中心と一致する。また、図4(a)および図4(b)は、どちらもy方向のアドレスが中央のものでありビームプロファイルの中央を通る断面プロファイルとなる。図4(a)は、代表的なジャイアントパルス発光エネルギーを示す図である。図4(b)は、1パルスにおける、プレレージングが発生している時間とジャイアントパルスが発生している時間の両方を含む時間で、プレレージングとジャイアント
パルスをまとめてその発光エネルギーを取得したときの発光エネルギーを示す図である。ジャイアントパルスが発生する範囲φ5mmの素子数は約2000素子に相当し、1素子当たり、約0.15mJのエネルギーがレーザー光センサー107aにより測定される。
ここで、プレレージングとジャイアントパルスをまとめてその発光エネルギーを取得したときの発光エネルギーの範囲にはばらつきがある。しかし、ジャイアントパルスが発生する範囲φ5mmよりも狭い範囲である約φ2mmに相当する範囲にそのエネルギーが集中して観測される。プレレージングが発生した際、各素子で観測される発光エネルギーの総和は300mJのままである。すなわち図4(a)の代表的なジャイアントパルスの各素子での発光エネルギーの総和と同じである。しかし、プレレージングが集中する範囲である約φ2mmに関しては、1素子当たり0.3mJの出力をレーザー光センサー107aにより観測した。すなわちこの範囲である約φ2mmに関しては図4(a)で示す各素子で観測される発光エネルギーよりも図4(b)で示すプレレージングが発生するときに各素子で観測される発光エネルギーのほうが大きい。また図4(b)から明らかなように素子アドレスが0の近傍で1素子の出力のピークが存在する。
判定部123では、このような発光エネルギー分布特性を示すレーザーにおいて、プレレージングが発生しているか否かの判定基準を設定した。すなわち、範囲φ2mmに入るエネルギーの平均値が0.25mJ以上の場合プレレージングと判定する判定閾値を設定した。これにより、プレレージングを良好に検知することができた。すなわち、判定部123が所定の値である上記判定閾値とレーザー光センサー107aによる検出結果に基づく上記平均値とを比較する。そうすることにより、その比較結果が、上記平均値が上記判定閾値を超えるという結果であるときはプレレージングが発生していると判定し、その判定結果119を出力する。一方、その比較結果が、上記平均値が上記判定閾値を超えないという結果であるときはプレレージングが発生していないと判定し、その判定結果119を出力する。出力先は音響波信号処理部106やレーザー光源102が考えられる。
このような発光エネルギー分布特性を示すレーザーにおいて、プレレージングが発生しているか否かをφ2mmに入るエネルギーをモニタリングすることにより判断して、プレレージングを良好に検知することができた。また、検知することにより、プレレージングが発生した場合、このプレレージングの発生原因が、レーザーシステムの温度上昇が原因であるという情報を得ていた。そのため、レーザーシステムの空調を0.1℃、低下させることにより、プレレージングが発生することを抑制する制御機能を設けた。そうすることによりジャイアントパルスの不安定化を抑制した被検体情報取得装置を作成することができた。また、上記のようなセンサー構成をとることで、プレレージングの発生を時間分解能がそれほど高くないレーザー光センサー107でも検出することが簡便に行えた。
<実施例2>
図5は、本発明の実施例2に係る被検体情報取得装置のレーザー光センサーを示す図である。実施例1と同一の構成については同一の番号を付し、必要のない限り説明を省略する。すなわち実施例1のレーザー光センサーはエリアセンサーであり、xy平面すなわち2次元でのレーザー光の強度分布をセンシングした。しかし、受光素子部109bとして本図に示すような一次元のラインセンサー109bを用いても良い。すなわち、このライン上であって、レーザー幅120の周縁に近い側からレーザー幅120の中心に近い側にかけてレーザー光の強度が大きくなる。すなわちこれによってもプレレージングとジャイアントパルスとを含むレーザー光の強度分布が取得できる。特にそのラインセンサー109bがレーザー幅120の中心を通るように配置されるとき、そのラインセンサー109bによって取得される強度分布の形状は図4(b)に近いものになる。よって、このセンサー107b以外の構成は実施例1と同様に構成でき、プレレージングによる影響を低減した被検体情報取得装置を提供できるとともに上記実施例1のエリアセンサーよりも受光
素子の数が少なくて済むので低コスト化が期待できる。
<実施例3>
図6は、本発明の実施例3に係る被検体情報取得装置のレーザー光センサーを示す図である。実施例1と同一の構成については同一の番号を付し、必要のない限り説明を省略する。このレーザー光センサー107cは図4に示すレーザー光の強度分布幅より小さい範囲のレーザー光のみを検出する。すなわち、図4の素子アドレスがφ2mmの範囲のレーザー光の強度を検出する。本実施例のレーザー光センサー109cの形状は実施例1の受光素子部109aであるレーザー光センサーと異なる。図6の素子部109cはレーザー光115の強度分布の中央に位置し、素子部109cは分割されていない。φ2mmの範囲は、実施例1の素子約310個に相当する。そのため、測定値は、約310倍となり、ジャイアントパルスが発生した場合のエネルギーが47mJ、プレレージングが発生した場合のエネルギーが93mJとなった。このセンサー107cの平均値を光音響信号データに併記して出力する機構をフィードフォワード制御として設ける。なお、このレーザー光センサー107cは、プレレージングが発生したときに発生する1パルスのレーザー発振が、レーザー光の分布の幅120の中央に集中することを利用して中央のみを測定する素子部109cを持つパワーメーターなどである。中央のみを測定するために受光素子部109cはアパーチャーを有する。このアパーチャーはレーザー光115のうち、その幅120の中心近傍すなわちここではφ2mmの範囲のみを通すものである。すなわちこの範囲が上記の集中する範囲である。
以上の構成により、異常発光を含むデータを画像化する際に間引いて利用することができるようになり、良好なデータ取得が可能な被検体情報取得装置を作製することができる。
<実施例4>
図7は、本発明の実施例4に係るレーザー光センサー部を示す図である。ここで上述の実施例と同一の構成については同一の番号を付し特に必要でない限り説明を省略する。本実施例に係るレーザー光センサー部126は、実施例2のレーザー光センサー107bと、その前面に設けられる偏光素子である偏光板110とを備え、偏光された光を検出するものである。すなわち、この素子部109は分割されていない単素子センサーである。偏光板110はS偏光の光が強く透過される向きに配置されている。そしてここではジャイアントパルスはP偏光の発光である。一方、本構成により発生したプレレージング光は、QスイッチがONのときに発振を許される光なのでS偏光として発振される。偏光板110を透過してきたプレレージング発光をこのセンサー107bで受信して、その受信結果として出力するプレレージング発光のエネルギー値を、1パルスごとに光音響信号データに併記して出力する機構をフィードフォワード制御として設けた。すなわち、Qスイッチなどに、ポッケルスセルのような電気的な屈折率異方性を利用した素子を用いた場合のプレレージングの偏光特性を利用する。すなわち、図7に示すように、パワーメーターの前に偏光板110を用いて、プレレージングを識別するようなレーザー光センサー部126である。
これにより、異常発振すなわちプレレージングによる発光を含むデータを画像化する際にその異常発振に基づいたデータを間引いて利用することができるようになる。そして、安価なレーザー光センサー107bを用いた、良好なデータ取得が可能なレーザー光センサー部126を備える被検体情報取得装置を作成することができる。
<実施例5>
実施例5は実施例1に用いた被検体情報取得装置と同じ構成部材で作成をおこない、プレレージングの判定後の制御として、フィードバック制御をおこなった。具体的には、こ
のレーザーにおけるプレレージングが発生する特徴として、Qスイッチの温度がレーザーを連続利用することにより上昇し、Qスイッチに印加する電圧が、プレレージングが発生する閾値の下限電圧を下回ることが傾向として把握できていた。Qスイッチに印加する電圧として設定値が2kVで利用していた。このため制御機能としてプレレージングを検知した際にQスイッチに印加する電圧を100V上昇させるというフィードバック回路を設けた。この制御機能を持たせることで、プレレージングを容易に検知し、良好なデータ取得が可能な被検体情報取得装置を作製することができた。
<実施例6>
実施例6は実施例1に用いた被検体情報取得装置と同じ構成部材で作成をおこない、プレレージングの判定後の制御として、フィードフォワード制御をおこなった。具体的には、プレレージングが発生したとき、判定部123により上記判定基準に基づいてプレレージングが発生したと検知される。そのときの1パルスごとの光音響信号データにプレレージングが発生したという情報を併記して出力する機構をフィードフォワード制御として設ける。
これにより、異常発光を含むデータを画像化する際に間引いて利用することができるようになり、良好なデータ取得が可能な光音響測定システムを作製することができる。なお、プレレージングが発生しないときはその発生しなかったという情報も併記するようにし、上記間引く処理をせずにそのまま画像再構成を行い、プレレージングが発生したレーザー光に基づいて画像再構成が行われたことを操作者に知らせるようにしても良い。
<変形例>
各実施例の説明は本発明を説明する上での例示であり、本発明は、発明の趣旨を逸脱しない範囲で適宜変更または組み合わせて実施することができる。本発明は、上記処理や手段は、技術的な矛盾が生じない限りにおいて、自由に組み合わせて実施することができる。なお、本発明の種々の特徴は上記の実施例に限られるものではなく、広く応用可能なものである。また、上記の実施例1から6の被検体情報取得装置は、例えば、プログラム(ソフトウェア)に従って動作するCPUやメモリ等を備えた情報処理装置を用いて実現できる。或いは、この被検体情報取得装置の各構成要素を情報の入出力や演算が可能な回路等のハードウェアにより構成しても良い。
<比較技術>
図8は本発明に対する比較技術を示す図である。比較技術は実施例1に用いたレーザー光センサー以外は、実施例1と同じ構成である。比較技術に用いたレーザー光センサー124について説明する。素子部125の位置は実施例1の例えば図3に示す素子部109aと同一の位置に設けられているが、素子部109aと異なり素子部125は分割されていない、いわゆる単素子センサーである。単素子センサーで1パルスのパルス幅の時間の全エネルギーを積算した場合を考える。この場合、プレレージングが発生するときの、プレレージングとジャイアントパルス発光の双方を合わせた総光量エネルギーは、プレレージングが発生しないときのジャイアントパルス発光単体の総光量エネルギーと大きな差が出ない。
そのためこの比較技術に係る単素子センサーのレーザー光センサー124ではプレレージングの判定ができない。このため、この比較技術であるセンサーを用いた被検体情報取得装置では良好な被検体情報に関するデータの取得ができなかった。一方、本発明の各実施例によればプレレージング光を検出し、プレレージングによる影響を低減した良好な画像を取得可能な被検体情報取得装置を提供できることは上に述べたとおりである。
102 レーザー光源、104 照射部、105 受信部、106 音響波信号処理部、107 検出部、201 出力鏡、202 反射鏡、203 共振器、204 励起部、205 レーザー媒質、211 レーザーコントローラー

Claims (11)

  1. 二つの反射体と、前記二つの反射体の間に設けられるQスイッチとを含むレーザー共振器と、
    レーザー媒質を光励起する励起部と、
    前記一方の反射体から出力するレーザー光の進行方向に垂直な面における前記レーザー光の強度が分布する範囲よりも狭い範囲で前記レーザー光の強度を検出する検出部と、
    前記検出部の検出結果に基づいて前記レーザー光にプレレージング光が含まれているか否かを判定する判定部と、
    前記レーザー光を被検体に照射する照射部と、
    前記レーザー光の照射に基づいて前記被検体から伝播する音響波を受信する受信部と、
    前記受信部の受信結果に基づいて前記被検体についての情報を取得する取得部と、
    前記検出部の前段に設けられ、前記判定部の判定結果に基づいて前記レーザー光の出力を制御する制御部とを備える被検体情報取得装置。
  2. 前記制御部は前記判定結果に基づいて前記レーザー共振器を制御することにより前記レーザー光の出力を制御する請求項1に記載の被検体情報取得装置。
  3. 前記制御部は前記判定結果に基づいて前記QスイッチのQ値を制御する請求項2に記載の被検体情報取得装置。
  4. 前記制御部は前記判定結果に基づいて前記Qスイッチの温度を制御することにより前記Q値を制御する請求項3に記載の被検体情報取得装置。
  5. 前記判定部は前記検出結果と所定の値とを比較し、この比較結果に基づいて前記判定を行う請求項1乃至4のいずれか1項に記載の被検体情報取得装置。
  6. 前記所定の値は前記レーザー光の強度が分布する範囲での前記レーザー光の強度の平均値に基づいた値である請求項5に記載の被検体情報取得装置。
  7. 前記取得部は前記受信結果に加え、前記判定結果に基づいて前記被検体についての情報を取得する請求項1乃至6のいずれか1項に記載の被検体情報取得装置。
  8. 前記取得部は前記判定部が前記プレレージング光が含まれていないと判定するときの前記受信結果に基づいて前記被検体についての情報を取得する請求項7に記載の被検体情報取得装置。
  9. 前記取得部は前記判定部が前記プレレージング光が含まれていると判定するときの前記受信結果を用いないで前記被検体についての情報を取得する請求項8に記載の被検体情報取得装置。
  10. 前記検出部は前記狭い範囲で前記分布のピークを検出する請求項1乃至9のいずれか1項に記載の被検体情報取得装置。
  11. 前記検出部はラインセンサーまたはエリアセンサーである請求項1乃至10のいずれか1項に記載の被検体情報取得装置。
JP2014125527A 2014-06-18 2014-06-18 被検体情報取得装置 Pending JP2016002372A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014125527A JP2016002372A (ja) 2014-06-18 2014-06-18 被検体情報取得装置
US14/736,381 US20150366459A1 (en) 2014-06-18 2015-06-11 Object information acquiring apparatus and laser apparatus used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014125527A JP2016002372A (ja) 2014-06-18 2014-06-18 被検体情報取得装置

Publications (1)

Publication Number Publication Date
JP2016002372A true JP2016002372A (ja) 2016-01-12

Family

ID=54868543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014125527A Pending JP2016002372A (ja) 2014-06-18 2014-06-18 被検体情報取得装置

Country Status (2)

Country Link
US (1) US20150366459A1 (ja)
JP (1) JP2016002372A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112057041B (zh) * 2020-08-07 2021-12-28 中国科学院深圳先进技术研究院 偏振光声成像探头及光声成像装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2718705B2 (ja) * 1988-07-27 1998-02-25 株式会社日立製作所 光音響信号検出方法及びその装置
US5355383A (en) * 1992-12-03 1994-10-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for detection and control of prelasing in a Q-switched laser
JP4716663B2 (ja) * 2004-03-19 2011-07-06 株式会社リコー レーザ加工装置、レーザ加工方法、及び該加工装置又は加工方法により作製された構造体
ITMI20051609A1 (it) * 2005-08-29 2007-02-28 Laservall Spa Sorgente laser a stato solido pompata lateralmente e procedimento di pompaggio di una sorgente laser a stato solido
US8954130B2 (en) * 2010-12-17 2015-02-10 Canon Kabushiki Kaisha Apparatus and method for irradiating a medium
JP5995414B2 (ja) * 2011-06-20 2016-09-21 キヤノン株式会社 レーザー装置

Also Published As

Publication number Publication date
US20150366459A1 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP6296927B2 (ja) 被検体情報取得装置およびレーザー装置
JP5995414B2 (ja) レーザー装置
JP6219258B2 (ja) レーザ装置、及び光音響計測装置
US11324402B2 (en) Laser device and photoacoustic measurement apparatus
WO2012114730A1 (ja) 光音響計測装置及び光音響信号検出方法
WO2016084720A1 (en) Object information acquiring apparatus and method of controlling the same
JP2014086531A (ja) レーザー装置およびその制御方法
JP2015018867A (ja) 被検体情報取得装置およびレーザー装置
JP6052802B2 (ja) レーザ装置、その制御方法、及び光音響計測装置
US10365251B2 (en) Apparatus with laser controlling unit which decreases a time difference between subsequently pulsed lasers
JP2016007222A (ja) 被検体情報取得装置
JP2007082608A (ja) 試料分析装置
JP2016007256A (ja) 光音響計測装置及び光音響計測方法
JP2016002372A (ja) 被検体情報取得装置
JP6595703B2 (ja) レーザ装置および光音響計測装置
JP6739641B2 (ja) 光音響計測装置
JP5889061B2 (ja) 光加熱による固体表面温度の計測装置及び計測方法
JP2018125539A (ja) レーザー装置および情報取得装置
JPWO2019044593A1 (ja) 光音響画像生成装置および画像取得方法
JP6334165B2 (ja) 光音響計測装置及び光音響計測方法
JP5976613B2 (ja) レーザチャンバ、固体レーザ装置、及び光音響計測装置
JP2017184937A (ja) 情報取得装置
US20160183806A1 (en) Photoacoustic apparatus
JP2012170768A (ja) 光音響画像化装置および光音響画像化装置の故障検知方法