JP2015530930A - マイクロキャリアの製造方法、及び生物学的分析の実施方法 - Google Patents

マイクロキャリアの製造方法、及び生物学的分析の実施方法 Download PDF

Info

Publication number
JP2015530930A
JP2015530930A JP2015523534A JP2015523534A JP2015530930A JP 2015530930 A JP2015530930 A JP 2015530930A JP 2015523534 A JP2015523534 A JP 2015523534A JP 2015523534 A JP2015523534 A JP 2015523534A JP 2015530930 A JP2015530930 A JP 2015530930A
Authority
JP
Japan
Prior art keywords
layer
microcarrier
dimensional structure
sacrificial
structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015523534A
Other languages
English (en)
Other versions
JP6208757B2 (ja
Inventor
ラファエル・トルネ
ニコラ・ドゥミエール
シュテファン・ガンペール
フィリップ・ルノー
Original Assignee
マイカーティス・エヌフェー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイカーティス・エヌフェー filed Critical マイカーティス・エヌフェー
Publication of JP2015530930A publication Critical patent/JP2015530930A/ja
Application granted granted Critical
Publication of JP6208757B2 publication Critical patent/JP6208757B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0893Geometry, shape and general structure having a very large number of wells, microfabricated wells

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Micromachines (AREA)

Abstract

本発明による方法は、底部層(16)、上部第1の犠牲層(17)及び絶縁層(18)を有するウエハー(15)を提供すること、第1の構造層の底面上の対応する三次元構造体を規定するために、その上に第1の構造層が堆積される三次元構造体を形成するための第1の犠牲層(17)を構造化することにある。また、本方法は、第1の構造層の上面の上に第2の三次元構造体を形成することにある。

Description

本発明は、マイクロキャリア、及びマイクロキャリアの製造方法に関する。本発明は、研究所及び臨床検査室のための生物学的及び/又は化学的分析を実施するのに適した特定のマイクロキャリアに関する。
本発明の範疇内では、マイクロキャリア又は微小粒子は、典型的には最も大きな寸法が100nmから300μmまで、好ましくは1μmから200μmまでである、微小のサイズの、任意のタイプのマイクロキャリア、任意のタイプの粒子それぞれを指す。
本発明によると、マイクロキャリアとの用語は、マイクロキャリアの表面に結合した、又はそのバルクに含浸された一以上のリガンド又は機能ユニットを含んでいる、又は含むように適合された、機能化された又は機能化されるように適合された微小粒子を指す。大きなスペクトルの化学的及び生物学的分子は、マイクロキャリアへのリガンドとして付着され得る。マイクロキャリアは多面的な機能及び/又はリガンドを有し得る。本明細書で用いられるように、機能ユニットとの用語は、上記マイクロキャリアの表面を、修正し、取り付けられ、追加し、被覆する、又は、共有結合した若しくは非共有結合した、又はそのバルクに含浸された、任意の種を定義することを意味する。これらの機能は、ハイスループットスクリーニング技術及び診断において通常用いられる全ての機能を含む。
ドラッグデリバリー又はスクリーニング及びDNAシークエンシングは一般的に非常に多量の化合物又は分子の分析を実施する段階を含む。これらの分析は典型的には、例えば、対象の化合物又は特定の標的分子に関して化学ライブラリーをスクリーニングする段階、又は分子間の対象とする化学的及び生物学的相互作用に関する試験段階を含む。それらの分析は、数千の個別の化学的及び/又は生物学的反応を実行することをしばしば要求する。
多数の実用上の問題が、このような多量の個別の反応の取扱いから生じる。最も重要な問題はおそらく、各々の個別の反応をラベル付して、追跡する必要性である。
反応の身元を追跡する一つの従来の方法は、マイクロタイタープレート(マイクロアレイ)に各反応を物理的に分けることによって達成される。しかしながら、マイクロタイタープレートの使用は、特に、用いられるマイクロタイタープレートのサイズに対する、そのためプレート上で実施され得る異なる反応の数に対する物理的な制限のようないくつかの不利な点を持ってくる。
それらの使用における制限を考慮すると、マイクロアレイは今や有利には、化学的及び/又は生物学的分析を実施するための機能性符号化微小粒子によって置き換えられる。各々の機能性符号化微小粒子は、その表面に結合した特定のリガンドを一意的に識別する符号を備えている。このような機能性符号化微小粒子の使用はランダム処理を可能にし、それは、数千の一意的機能性符号化微小粒子が全て混合されることがあり、且つ同時に分析を受けることがあることを意味する。機能性符号化微小粒子の例は、特許文献1において記載され、図1に示される。
特許文献2は、複数の機能性符号化微小粒子又はマイクロキャリア1がパックされ得る(図1)反応チャンバーとしての役割を果たす少なくともマイクロ流体チャネルを有する分析装置を記載する。マイクロ流体チャネルは、内部のマイクロキャリア1をブロックしつつ、化学的及び/又は生物学的試薬を含む液体溶液を流すことを可能にするフィルターとして作用する停止手段を備えている。上記マイクロ流体チャネルの幾何学的高さ、及び上記マイクロキャリア1の寸法は、上記マイクロキャリア1が典型的には各マイクロ流体チャネルの内部で単層配置にて配されて、上記マイクロキャリア1が互いに重なることを防止するように選択される。
それらの付着したリガンドと、流れている化学的及び/又は生物学的試薬との間での対象の好ましい反応を示すそれらの機能性符号化マイクロキャリア1は、その後、それらの符号を読み取らせることがあり、それによって好ましい反応を引き起こしたリガンドの身元へとつながる。
符号は、複数のトラバース穴2を含む独特なパターンを含み得、且つ、例えば(図1に示されるような)L字型のサイン3等の非対称方向マーク又は三角形を含み得る。この非対称方向マークは、マイクロキャリア1の上面4と底面5との間の区別を可能にする。
マイクロ流体チャネルとの用語は、微小サイズの断面を有する、つまり、典型的には約1μmから約500μmまで、好ましくは約10μmから約200μmまでである最も小さい断面の寸法を有する、閉じられたチャネル、つまり流体のための細長い通路を指す。マイクロ流体チャネルは、必ずしも直線でない、流体がマイクロ流体チャネル内で向かう方向、つまり、好ましくは、層流領域を仮定すると流体の平均速度ベクトルに対応する方向に本質的に対応する縦方向を有する。
特許文献2に記載された分析装置によって、対象の反応の検出は、マイクロ流体チャネルに存在する各々の符号化マイクロキャリア1の蛍光強度の連続的読み出しに基づき得る。言い換えると、分析における標的分子の存在が所定の蛍光信号を引き起こすことになるであろう。
しかしながら、特許文献2に記載される分析装置、及び機能性符号化微小粒子1は、蛍光信号が飽和したとき、平衡状態に達する前に、試薬又はリガンドの迅速定量化を可能としない。特許文献2の分析装置は平衡に達するために必要とされる時間を減少させるが、ナノモル濃度範囲の検体の典型的な濃度値において、10分から20分がいまだに必要とされ、一方、ピコモル濃度範囲におけるより低い濃度は、定量化のために達して役目を果たすのに数時間かかることがある。さらに、それらの蛍光信号における相異、特に分析終了後での拡散パターンさえ、約15%よりも低いエラーのマージンで定量的情報を決定しない。
これらの欠点を改善するために、特許文献3は、直円柱の形状を有するボディ6を含み、且つ、上面4、底面5、及び、底面5から突き出るスペーシング要素7を含む、図2及び3に示される、符号化マイクロキャリアを提案する。
スペーシング要素7を備えるマイクロキャリア1は、符号化マイクロキャリア1が平坦面8の上に置かれて、検出表面5が上記平面8に面するときに、図3に示されるように、ギャップdが上記平坦面8と検出表面5との間に存在することを確保するように成形される。
上述のように、符号化マイクロキャリアは、底面5(検出表面)に結合した一以上のリガンドを含む。一以上の標的検体を含み得る溶液に、リガンドが結合した符号化マイクロキャリア1が接触するとき、適正検体の有無に応じて、対象の反応が検出表面上で生じ得る。例として、対象の反応は、蛍光信号を放出又は抑制し得、それはモニターされ得る。検出表面5上の反応の検出は、対象の特定の検体の有無を決定することを可能にし得る。
また、特許文献3は、特に図4及び5に示されるように、スペーシング要素を備える複数の符号化マイクロキャリア1を含む分析システム、及び分析装置を開示する。分析装置9は、入口井戸11に接続される入口、及び、出口井戸12に接続される出口を有する少なくとも一つのマイクロ流体チャネル10を有し、上記チャネル10は、複数の上記符号化マイクロキャリア1を収容できるように成形される。マイクロ流体チャネル10は、マイクロ流体チャネル10の出口の近く配され、且つ、上記符号化マイクロキャリア1を内部にブロックしつつ液体溶液を流すことが可能なフィルターとして機能する、停止手段13を備えている。マイクロ流体チャネル10は、図5に示されるような単層配置において、少なくとも2つの符号化マイクロキャリア1が、上記マイクロ流体チャネル10の長さにわたって並んで配されることが可能である断面を有する。マイクロ流体チャネル10は、それを介して分析がモニター可能である少なくとも観測壁14を含む。典型的には、分析が蛍光信号によってモニターされるとき、観測壁は透明である。
このような分析システムにでは、符号化マイクロキャリアがマイクロ流体チャネル10に充填され、上記検出表面5が上記観測壁14に面するとき、スペーシング要素7は、上記検出表面5と上記観測壁14との間にギャップdを生成して、上記ギャップdにおける液体の循環を可能にし、上記液体は、分析に関する対象の化学的及び/又は生物学的試薬を含む。
そのため、スペーシング要素7はマイクロ流体チャネル10全てにわたってより均一な対流を可能にし、時間と共に、且つ符号化マイクロキャリア1にわたって均一な蛍光の増加をもたらす。均一な信号の増加は、蛍光変化量をモニターすることによって、最初の数秒から、流されている検体の迅速定量化を可能にする。
マイクロキャリア1が入口井戸11内に導入されるとき、上記マイクロキャリア1は、井戸11におけるそれらの沈降の間にひっくり返ることがある。そのため、いくつかのマイクロキャリア1は、マイクロチャネル10の検出壁14と反対側にそれらの検出表面5を有する。しかしながら、検出表面5に結合した分子の存在の検出は、上記表面5が検出壁11に面するときのみに可能である。そのため、誤った配向を有するマイクロキャリア1は、如何なる検出可能な信号も放出しない。
さらに、層流流体流れが、適切に配向されていないマイクロキャリア1によって乱される。実際、この場合、上記層流流体流れは、該当するマイクロキャリア1の周りを動くことを強いられるので、マイクロ流体チャネル10において不均一な流体流れの速度場を生成して、検出表面5と相互作用するように意図された標的分子及び試薬の不均一な分布につながる。これは分析の信頼性に影響する。
より一般的には、三次元構造体を備える、底面及び上面の内の一つのみを有する他の種類のマイクロキャリアによって同様の配向問題が生じ得る。
国際公開第00/63695号 国際公開第2010/072011号 国際公開第2012/106827号
本発明は、上述の不利な点の全て、又は一部を改善することを目的とする。
この目的のために、本発明は、少なくともマイクロキャリアを製造するための方法を提案し、本方法は以下の段階を含む:
a)底部層、上部第1の犠牲層、及び、上記底部層と上部層との間に位置する絶縁層を含むサンドイッチ構造を有するウエハーを提供する段階と;
b)第1の三次元ネガティブパターンを画定する第1のマスクを形成するために第1の犠牲層を構造化する段階と;
c)第1の三次元ネガティブパターンに相補的な第1の三次元構造体を形成するために、第1の犠牲層の上に第1の構造層を堆積する段階と;
d)第1の構造層の上面の上に第2の犠牲層を堆積する段階と;
e)第1の構造層の上面の上に第2の三次元ネガティブパターンを画定する第2のマスクを規定するために第2の犠牲層を構造化する段階と;
f)第1の構造層の上面の上に第2の三次元構造体を形成するために第2の三次元ネガティブパターンにおいて第2の構造層を堆積する段階と;
g)マイクロキャリアのボディの外側壁を画定するために、絶縁層まで第1の構造層及び第2の構造層を上からエッチング除去する段階であって、各ボディが少なくとも第1の下部三次元構造体及び第2の上部三次元構造体を含む段階と;
h)マイクロキャリアを解放するために、絶縁層、底部層及び犠牲層をエッチング除去する段階と。
本発明による方法によって得られるマイクロキャリアは、上面及び底面の両方の上に三次元構造体を含む。そのため、これらのマイクロキャリアが上述のマイクロチャネルにおいて用いられるとき、マイクロチャネルにおけるマイクロキャリアの配向が何であれ、生物学的及び/又は化学的分析の間での摂動流体流れの形成は防止され、層流流体流れがマイクロチャネル全体で維持される。
本発明による方法は、初期のウエハー上への次々に積み重ねられ、構造化された層によってマイクロキャリアが得られることを可能にする。
本発明の方法の実施形態によると、第1の三次元構造体及び/又は第2の三次元構造体は、その上に第1の三次元構造体及び/又は第2の三次元構造体が形成されるボディの対応する表面から突き出る少なくとも一つのスペーシング要素を含む。
上記スペーシング要素は、上記マイクロチャネルを通る層流流れを生成するために、マイクロキャリアの対応する表面と、その上に上記マイクロキャリアが置かれる表面との間にギャップを提供する。
本方法は、段階cの前に、第1の犠牲層の上に、及び第1の三次元ネガティブパターンの上へ第1の活性層を堆積する段階を含み得る。
また、本方法は、段階gの前に、
a)第2の犠牲層をエッチング除去する段階と;
b)第1の構造層及び第2の構造層の上に第2の活性層を堆積する段階と;
にある二つの追加の段階を含み得る。
例えば、第1の活性層及び/又は第2の活性層は、光学特性若しくは磁気特性を有する材料、多結晶シリコン及び/又はポリテトラフルオロエチレン、又は高屈折率を有する金属層を含む。
光学特性を有する材料を用いることは、マイクロキャリアの対応する表面から放出される蛍光信号を実質的に増加させることになる。磁気特性を有する材料は、例えば所望の方向にマイクロキャリアを配向させるために用いられ得る。多結晶シリコンの使用は、上記表面上の被覆されることになる有効面積を増加させるために、ボディの対応する表面の粗さを増加させる。最後に、ポリテトラフルオロエチレンは、マイクロキャリアと、分析の間にその上にマイクロキャリアが乗る表面との間の摩擦を減少させるために用いられ得る。
第1の活性層及び/又は第2の活性層は、酸化物若しくは窒化物、例えば二酸化ケイ素、又は金属層を含み得る。そのため、上記表面に結合した分子によって放出される信号は強化される。
本発明の他の一つの実施形態によると、上面の三次元構造体及び/又は底面の三次元構造体は、少なくとも一つの回折格子を含む。
回折格子は、分けるために設計された構造を指し、異なる方向に進むいくつかのビームへと光を回折する。回折格子は、光が照射される際、マイクロキャリアの上面の上に及び/又は底面の上に、表面プラズモン共鳴(それゆえ検出可能な信号)を生成する。さらに、回折格子は、表面プラズモン共鳴の変化を引き起こす標的分子と相互作用することが意図される。これらの変化は検出され得、上記標的分子の有無を決定し得る。英国特許第2427022号明細書は、回折格子を含むただ一つの表面を有するマイクロキャリアを開示している。
特定の実施形態では、本方法は、段階dの前に、平坦な上面を形成するために、第1の連続的な層の上面を研磨することにある段階をさらに含む。
本発明の一つの可能な実施形態では、絶縁層及び第1の犠牲層は、窒化ケイ素を含む単層等の単層を形成する。
犠牲層の内の少なくとも一つは、窒化ケイ素若しくはフォトレジスト材料で作製され得る、又は窒化ケイ素若しくはフォトレジスト材料を含み得る。
有利には、連続的な層は、シリコン、好ましくは、アモルファスシリコン若しくは多結晶シリコンで作製される、又は、シリコン、好ましくは、アモルファスシリコン若しくは多結晶シリコンを含む。
本発明はまた、本発明による方法によって得られるマイクロキャリアに関するものであり、マイクロキャリアは、上面及び底面を有するボディを含み、上記表面の各々は、三次元構造体を含む。
本発明はより良く理解されることがあり、本発明の他の詳細、特徴及び優位点は、添付の図面を参照した非限定的な実施例によって為された以下の説明を読むことで現れる。
従来技術によるマイクロキャリアの上面斜視図を示す。 マイクロキャリアの底面から突き出るスペーシング要素を有する、従来技術によるマイクロキャリアの底面斜視図を示す。 図2に示されるマイクロキャリアの断面図を示す。 従来技術による分析装置のマイクロ流体チャネルの断面図を示す。 図4のマイクロ流体チャネルに充填される符号化マイクロキャリアの上面図を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明の実施形態のよるマイクロキャリアを製造するための方法の連続的な段階を示す。 本発明によるマイクロキャリアの底面斜視図を示す。 マイクロチャネルにおける本発明によるマイクロキャリアの断面図を示す。
本発明によるマイクロキャリアの製造方法は、図6〜18を参照して説明されることになる。この方法は、以下の連続的な段階を含む。
図6に示される第1の段階は、底部層16、上部第1の犠牲層17、及び、底部層16と上部層17との間に位置する絶縁層18を含むサンドイッチ構造を有するウエハー15を提供することにある。
例えば、底部層16は、シリコン材料で作製される。絶縁体層18は、窒化ケイ素、タングステン、クロム、又はアルミニウムから選択される、二つのシリコン層を空間的に分離可能な材料で作製され得、それらの各々が底部層のための絶縁体としての役割を果たす。上部第1の犠牲層17は、低圧化学気相堆積(LPCVD)法によって、又はスパッタリング法によって絶縁体層18の上に堆積される窒化ケイ素で作製され得る。
本発明による方法は、上部第1の犠牲層17を構造化して、絶縁層18上に三次元構造体を規定する段階をさらに含む。
この目的のために、第2の段階は、上部第1の犠牲層17の上へ感光性レジスト層19を適用することにある(図7)。三次元構造体を画定するために、感光性レジスト層19は、クロム/ガラスマスク等のマスク(図示されない)を通してUV光で照射される。三次元構造体レイアウトに相当するマスクにおけるオープンパターンは、空間選択的なUV照射を提供する。レジストが空間選択的に照射されたところで、光開始剤は反応し、レジスト層の重合を開始する。その後、特定の化学が、暴露されていない且つ未反応部分の感光性レジスト層を除去するために用いられる。硬化したレジスト層19の残りのパターンは、スペーシング要素20の形状を規定する。
感光性レジスト19は、ポジティブフォトレジスト又はネガティブフォトレジストであり得る。ポジティブレジストに関する一例は、Shipley Companyによって供給されるMICROPOSIT S 1805 PHOTO RESISTであり、ネガティブフォトレジストに関する一例は、Gersteltec Engineering Solutionsによって供給されるようなGM1040 SU−8 PHOTO EPOXYである。感光性レジスト層は、スプレーコーティング、又は好ましくはスピンコーティング等の従来技術で知られる異なる技術によってウエハー上へ適用され得る。
その後、図7に示されるように、第3の段階は、その全高さにわたって第1の犠牲層17をエッチングして、上へ突き出るスペーシング要素20を画定することにある。これは、深堀り反応性シリコンエッチング(DRIE)、又はウェットエッチングによって行われ得る。
本発明の可能な実施形態では、エッチング段階は、第1の犠牲層17の一部の高さのみの上で為され得る。
図8に示される第4の段階では、感光性レジスト19は、湿式化学浴において除去される。そのため、それは、リセス21によって形成される第1の三次元ネガティブパターンを画定する第1の三次元構造体を規定する一連のスペーシング要素20を規定するきれいな単結晶シリコン層のままである。
図8に示される第5の段階は、第1の三次元ネガティブパターンを規定するリセス21に、及び突き出る要素20の上面4の上に第1の活性層22を堆積することにある。
第1の活性層22は、二酸化ケイ素を含む酸化物層等の、光学特性を有する層である。第1の層22の厚さは、赤い蛍光ラベルと動作するとき、およそ90nmと120nmとの間である。窒化物等の、任意の他の誘電材料もまた用いられ得る。必要に応じて、誘電材料が金属層と組み合わされることもある。
PECVD(プラズマ強化化学気相堆積)、蒸発、又はスパッタリング(Madou MJ, 2002, Fundamentals of microfabrication, CRC Press)等の、異なるタイプの酸化物堆積法が用いられ得る。PECVD技術からの二酸化ケイ素の堆積に関して、ジクロロシラン又はシラン及び酸素等のガスの混合物が、典型的には数百ミリTorrから数Torrまでの圧力で用いられ得る。二酸化ケイ素の堆積は、室温から300℃までの範囲に含まれる温度で実施される。
図9に示される第6の段階は、第1の構造層23の下面上に第1の相補的な三次元構造体24を形成するために、第1の三次元ネガティブパターンを形成するリセス、及び三次元構造体の上に第1の構造層23を堆積することにある。
第1の構造層23は、多結晶シリコン、又はアモルファスシリコンで作製され得、LPCVD法又はスパッタリング法を用いて堆積され得る。
図10に示される第7の段階は、第1の構造層23の上面上に第2の犠牲層25を堆積することにある。第2の犠牲層25は、例えばLPCVD法によって堆積される窒化ケイ素で作製され得る。
第8の段階は、第2の犠牲層上へ他の一つの感光性レジスト層26を適用することにある(図11)。感光性レジスト層は、クロム/ガラスマスク等のマスク(図示されない)を通してUV光によって照射される。上述のように、マスクにおけるオープンパターンは、空間選択的なUV照射を提供する。レジストが空間選択的に照射されたところで、光開始剤は反応し、レジスト層26の重合を開始する。その後、暴露されていないレジスト及び反応していないレジストを除去するために特定の化学が用いられる。硬化したレジスト層26の残りのパターンは、スペーシング要素27の形状を規定する。
その後、図11に示されるように、第9の段階は、第2の犠牲層をその全高さにわたってエッチングして、上に突き出るスペーシング要素27を画定することにある。これは、深掘り反応性シリコンエッチング(DRIE)又はウェットエッチングによって行われ得る。
図12に示される第10の段階では、感光性レジスト26が湿式化学浴において除去される。そのため、それは、リセス28によって形成される第2の三次元ネガティブパターンを画定する第2の三次元構造体を規定する一連のスペーシング要素27を規定するきれいなシリコン層のままである。
図13に示される第11の段階は、第1の構造層23の上面上に第2の三次元構造体を形成するために、第1の構造層23の上へ、第2の三次元ネガティブパターンにおいて第2の構造層29を堆積することにある。
第2の構造層29は、低圧化学気相堆積(LPCVD)のプロセスによって堆積されるアモルファスシリコン又は多結晶シリコンで作製され得る。
図14に示される第12の段階は、ドライエッチングプロセス、又はウェットエッチングプロセスを用いて、第2の犠牲層27、つまりスペーシング要素27を完全にエッチング除去することにある。
2層のマイクロキャリア1を製造するために、本発明による方法は、三次元構造体29の間に画定されたリセスにおいて、及び上部三次元構造体29にわたって第2の活性層32を堆積することにある、図14に示される第13の段階を含む。また、二酸化ケイ素を含む酸化物層等の、第2の活性層32は、光学特性を有する。第2の活性層27の厚さは、赤い蛍光ラベルと動作するとき、およそ90nmと120nmとの間である。(窒化物等の)任意の他の誘電材料、又は金属層もまた用いられ得る。
第2の活性層32は、第1の活性層22の堆積のために用いられたのと同様の方法によって堆積され得る。
図15に示される第14の段階は、第1の構造層及び第2の構造層の上に第3の犠牲層30を形成することにある。この第3の犠牲層は、個別のマイクロキャリア31の外側壁32(図17)を画定するために、第1の構造層23及び第2の構造層29が、図16に示されるように上から絶縁層までエッチング除去されることを可能にする開口部を含むマスクを形成する。そのようにするために、フォトレジストが適用され、パターニングされる。その後、ドライエッチング、ボッシュプロセス、及びドライエッチングを用いて、エッチングが実施される。ボッシュプロセスは、文献“J.K. Bhardwaj, H. Ashraf, Proc. SPIE, 2639, 224 (1995); A. Schilp, M. Hausner, M. Puech, N. Launay,H. Karagoezoglu, F. Laermer, Advanced etch tool for high etch rate deep reactive ion etching in silicon micromachining production environment, Proceeding MST 2001, Dusseldorf”において開示される。深掘り反応性イオンエッチングは、文献“Madou MJ, 2002, Fundamentals of microfabrication, CRC Press”において開示される。
画定された後、マイクロキャリア31のボディの下面及び上面の上にそれぞれ残る絶縁層18、第1の犠牲層20及び第3の犠牲層30をエッチング除去することによって、マイクロキャリアは解放される。そのため、第3の犠牲層30及び第1の犠牲層20は、ウェットエッチングによって、その後、180℃の温度まで加熱されたリン酸浴(HPO)に犠牲層を接触させることにあるボンバリリースプロセス(Bomba−release process)によって、それぞれ除去される。
解放されたマイクロキャリア1は、分析における使用まで、液体容器又は器において懸濁液で維持され得る。
図18及び19は、上述の方法で得られ、上面4及び底面5を有するボディ6を含むマイクロキャリア1を示す。第1のセットのスペーシング要素24は、ボディ6の上面4から突き出る。第2のセットのスペーシング要素29は、ボディ6の底面5から突き出る。各々のセットは、例えば20個のスペーシング要素24、29を含む。
各スペーシング要素24、29は、面取りされた直円柱の形状を有し、対応する表面4、5の外縁上に配され、ボディ6の円筒形状の外側壁22の延長において伸びる。各円形の直円柱は、マイクロキャリア1の円筒壁22によってその高さに沿って面取りされる。
代わりに、各スペーシング要素24、29は、円錐台の、又はスパイクの形状(図示されない)を有する。
スペーシング要素24、29の表面は、対応する表面4、5の20%未満、好ましくは15%未満を示す。
そのスペーシング要素24、29を備えるマイクロキャリア1は、図19に示されるように、マイクロキャリア1が平坦面14の上に置かれるときに、上記平坦面14と、ボディ6の底面5又は上面4との間にギャップdが存在することを確保するように形成される。
有利には、ギャップdの高さは、符号化マイクロキャリア1の最も大きい高さhの30%未満である(図5)。最も好ましくは、距離dは、高さhの5%より大きく、より好ましくは10%である。図の例では、符号化マイクロキャリア1の高さhは、約10μmであり、距離dは約1μmである。
マイクロキャリア31は、複数のトラバース穴2、及び、例えば(図18に示されるような)L字型のサイン3又は三角形等の非対称方向マークで作製された独特のパターンを含む符号も含む。この非対称方向マークは、マイクロキャリア31のボディ6の上面4と底面5との間の区別を可能にする。
また、ボディ6の各表面4、5は、均一な且つ連続的な活性層22、32によって覆われる。
各マイクロキャリア31は好ましくは、ディスクの形態に成形され、1μmと200μmとの間、例えば40μmの直径を有する。
各表面4、5はさらに領域を有し、符号化マイクロキャリア31が平坦面14の上に置かれるときに、互いに垂直であり且つ上記平面14に垂直である、図18に示される、軸AA及びBBに沿った2つの異なる断面に上記領域の各点が属する。上記断面AA及びBBは、スペーシング要素24、29がない。これは、マイクロキャリア31が上記平坦面14に対して横たわり、その平坦面14に対して原則的に平行な層流におけるとき、平坦面に垂直な軸の周りのマイクロキャリア31の配向がギャップdにおける流れに大きな影響を与えないことを確保する。言い換えると、反応の効率を変化させることになる、流れに関するマイクロキャリア31の好適な回転配向がない。
また、マイクロキャリア31は、機能化される、又は機能化されるように適合される。そのため、一以上のリガンド又は機能ユニットは、マイクロキャリア1の表面4、5に結合される、又はそのバルクに含浸される。
このようなマイクロキャリア31が図4に示されるものと類似の分析装置において用いられる際、マイクロチャネル10におけるマイクロキャリア1の配向が何であれ、マイクロキャリア31のボディ6の底面5、上面4それぞれと、マイクロチャネル10の底面14、上面14’それぞれとの間にギャップは常に存在する。
加えて、マイクロチャネル10のマイクロキャリア31の配向が何であれ、活性層を備える機能化された表面は、マイクロチャネル10の底面14、つまり、それを通して分析がモニターされる観測壁に常に面している。分析が蛍光信号によってモニターされる際、観測壁14は透明である。
ギャップは、マイクロ流体チャネル10全てにわたって、且つボディ6の機能化された表面4、5全てにわたって均一な対流を可能にし、時間と共に均一な蛍光の増加をもたらす。従って、流されている検体は、迅速に且つ確実に定量化され得る。
本発明の他の実施形態は、本明細書に開示される発明のプラクティス、及び明細書の考察から当業者にとって明確になるであろう。明細書及び実施例は単に例示的なものとして考えられるものと意図されており、本発明の真の範疇及び精神は、以下の特許請求の範囲によって指定される。
1 マイクロキャリア
4 上面
5 底面
6 ボディ
10 マイクロチャネル
14 平坦面
15 ウエハー
16 底部層
17 第1の犠牲層
18 絶縁層
20 スペーシング要素
21 第1の三次元ネガティブパターン
22 第1の活性層
23 第1の構造層
24 第1の三次元構造体、下部三次元構造体、スペーシング要素
25 第2の犠牲層
28 第2の三次元ネガティブパターン
29 第2の三次元構造体、第2の構造層、スペーシング要素
30 第3の犠牲層
31 マイクロキャリア
32 外側壁
32 第2の活性層

Claims (12)

  1. 少なくともマイクロキャリアを製造するための方法であって、
    a)底部層(16)、上部第1の犠牲層(17)、及び、前記底部層(16)と上部層(17)との間に位置する絶縁層(18)を含むサンドイッチ構造を有するウエハー(15)を提供する段階と;
    b)第1の三次元ネガティブパターン(21)を画定する第1のマスクを形成するために第1の犠牲層(17)を構造化する段階と;
    c)第1の三次元ネガティブパターン(21)に相補的な第1の三次元構造体を形成するために、第1の犠牲層(17)の上に第1の構造層(23)を堆積する段階と;
    d)第1の構造層(23)の上面の上に第2の犠牲層(25)を堆積する段階と;
    e)第1の構造層(23)の上面の上に第2の三次元ネガティブパターン(28)を画定する第2のマスクを規定するために第2の犠牲層(25)を構造化する段階と;
    f)第1の構造層の上面の上に第2の三次元構造体を形成するために、第2の三次元ネガティブパターン(28)において第2の構造層(29)を堆積する段階と;
    g)マイクロキャリア(31)のボディの外側壁(32)を画定するために絶縁層まで第1の構造層(23)及び第2の構造層(29)を上からエッチング除去する段階であって、各ボディが少なくとも第1の下部三次元構造体(24)及び第2の上部三次元構造体(29)を含む段階と;
    h)マイクロキャリアを解放するために、絶縁層(18)、底部層(16)及び犠牲層をエッチング除去する段階と;
    を含む方法。
  2. 第1の三次元構造体及び/又は第2の三次元構造体は、その上に第1の三次元構造体及び/又は第2の三次元構造体が形成されるボディの対応する表面から突き出る少なくとも一つのスペーシング要素(24、29)を含む、請求項1に記載の方法。
  3. 段階cの前に、第1の犠牲層の上に、及び第1の三次元ネガティブパターン(21)の上へ第1の活性層(22)を堆積する段階をさらに含む、請求項1又は2に記載の方法。
  4. 段階gの前に、
    a)第2の犠牲層(25)をエッチング除去する段階と;
    b)第1の構造層及び第2の構造層の上に第2の活性層(32)を堆積する段階と;
    にある段階をさらに含む、請求項1から3の何れか一項に記載の方法。
  5. 第1の活性層(22)又は第2の活性層(32)の内の少なくとも一つが、光学特性又は磁気特性を有する材料、多結晶シリコン及び/又はポリテトラフルオロエチレン、又は高屈折率を有する金属層を含む、請求項3又は4に記載の方法。
  6. 第1の活性層(22)及び/又は第2の活性層(32)が、酸化物若しくは窒化物、又は金属層、例えば二酸化ケイ素、又は金属層を含む、請求項5に記載の方法。
  7. 各マイクロキャリア(31)の第1の三次元構造体(24)及び第2の三次元構造体(29)の内の少なくとも一つが、少なくとも回折格子を含む、請求項1から6の何れか一項に記載の方法。
  8. 段階dの前に、平坦な上面を形成するために、第1の構造層(23)の上面を研磨することにある段階をさらに含む、請求項1から7の何れか一項に記載の方法。
  9. 絶縁層(18)及び第1の犠牲層(17)が、窒化ケイ素を含む単層等の単層を形成する、請求項1から8の何れか一項に記載の方法。
  10. 犠牲層(17、25)の内の少なくとも一つが、窒化ケイ素若しくはフォトレジスト材料で作製される、又は、窒化ケイ素若しくはフォトレジスト材料を含む、請求項1から9の何れか一項に記載の方法。
  11. 第1の構造層(23)及び第2の構造層(29)が、シリコン、好ましくはアモルファスシリコン又は多結晶シリコンを含む、請求項1から10の何れか一項に記載の方法。
  12. 請求項1から11の何れか一項に記載の方法によって得られるマイクロキャリア(31)であって、マイクロキャリアが上面(4)及び底面(5)を有するボディ(6)を含み、表面(4、5)の各々が三次元構造体(24、29)を含む、マイクロキャリア(31)。
JP2015523534A 2012-07-24 2013-07-23 マイクロキャリアの製造方法、及び生物学的分析の実施方法 Expired - Fee Related JP6208757B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12177717.1 2012-07-24
EP12177717.1A EP2690058A1 (en) 2012-07-24 2012-07-24 Method for producing microcarriers and for performing biological assays
PCT/EP2013/065544 WO2014016309A1 (en) 2012-07-24 2013-07-23 Method for producing microcarriers and for performing biological assays

Publications (2)

Publication Number Publication Date
JP2015530930A true JP2015530930A (ja) 2015-10-29
JP6208757B2 JP6208757B2 (ja) 2017-10-04

Family

ID=48832933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015523534A Expired - Fee Related JP6208757B2 (ja) 2012-07-24 2013-07-23 マイクロキャリアの製造方法、及び生物学的分析の実施方法

Country Status (5)

Country Link
US (1) US9400275B2 (ja)
EP (2) EP2690058A1 (ja)
JP (1) JP6208757B2 (ja)
CN (1) CN104640804B (ja)
WO (1) WO2014016309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515110A (ja) * 2017-01-11 2020-05-21 クアルコム,インコーポレイテッド ワイヤレス通信用の信号スクランブリングシーケンス技法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041369A1 (en) * 2000-05-12 2001-11-15 Genemaster Biotechnology Corp. Method for producing micro-carrier and test method by using said micro-carrier
JP2002542484A (ja) * 1999-04-16 2002-12-10 テイボテク・エヌ・ブイ マイクロキャリアのコード化
US20050244955A1 (en) * 2004-04-21 2005-11-03 The Regents Of The University Of California Automated, programmable, high throughput, multiplexed assay system for cellular and biological assays
JP2005536725A (ja) * 2002-08-20 2005-12-02 シヴェラ コーポレイション マルチプレックス実験用の回折格子ベースのコード化マイクロパーティクル
WO2011044708A1 (en) * 2009-10-14 2011-04-21 Biocartis Sa Method for producing microparticles
JP2012513593A (ja) * 2008-12-23 2012-06-14 ビオカルティ ソシエテ アノニム アッセイ装置および生物学的アッセイを行う方法
WO2012106827A1 (en) * 2011-02-07 2012-08-16 Biocartis Sa Improved encoded macrocarriers, assay system using them and method for performing an assay

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872804B2 (en) * 2002-08-20 2011-01-18 Illumina, Inc. Encoded particle having a grating with variations in the refractive index
GB2427022B (en) 2005-06-08 2008-05-28 Toshiba Res Europ Ltd An encoded carrier
EP2690059A1 (en) * 2012-07-24 2014-01-29 Biocartis SA Method for producing microcarriers
EP2690057A1 (en) * 2012-07-24 2014-01-29 Biocartis SA Method for producing structured microcarriers
US9618520B2 (en) * 2013-04-25 2017-04-11 Vladislav B. Bergo Microarray compositions and methods of their use

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542484A (ja) * 1999-04-16 2002-12-10 テイボテク・エヌ・ブイ マイクロキャリアのコード化
US20010041369A1 (en) * 2000-05-12 2001-11-15 Genemaster Biotechnology Corp. Method for producing micro-carrier and test method by using said micro-carrier
JP2005536725A (ja) * 2002-08-20 2005-12-02 シヴェラ コーポレイション マルチプレックス実験用の回折格子ベースのコード化マイクロパーティクル
US20050244955A1 (en) * 2004-04-21 2005-11-03 The Regents Of The University Of California Automated, programmable, high throughput, multiplexed assay system for cellular and biological assays
JP2012513593A (ja) * 2008-12-23 2012-06-14 ビオカルティ ソシエテ アノニム アッセイ装置および生物学的アッセイを行う方法
WO2011044708A1 (en) * 2009-10-14 2011-04-21 Biocartis Sa Method for producing microparticles
JP2013507621A (ja) * 2009-10-14 2013-03-04 ビオカルティ ソシエテ アノニム 微小粒子の製造方法
WO2012106827A1 (en) * 2011-02-07 2012-08-16 Biocartis Sa Improved encoded macrocarriers, assay system using them and method for performing an assay
JP2014504733A (ja) * 2011-02-07 2014-02-24 バイオカーティス ソシエテ アノニム 改良コード化マイクロキャリア、それらを用いるアッセイシステム、およびアッセイの実施方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515110A (ja) * 2017-01-11 2020-05-21 クアルコム,インコーポレイテッド ワイヤレス通信用の信号スクランブリングシーケンス技法
US11303481B2 (en) 2017-01-11 2022-04-12 Qualcomm Incorporated Signal scrambling sequence techniques for wireless communications

Also Published As

Publication number Publication date
CN104640804A (zh) 2015-05-20
EP2877425B1 (en) 2016-09-28
JP6208757B2 (ja) 2017-10-04
EP2690058A1 (en) 2014-01-29
WO2014016309A1 (en) 2014-01-30
US9400275B2 (en) 2016-07-26
CN104640804B (zh) 2016-10-12
EP2877425A1 (en) 2015-06-03
US20150153333A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Serra et al. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications
US20130302910A1 (en) Encoded microcarriers, assay system using them and method for performing an assay
US10967370B2 (en) Microfluidic device and method for manufacturing the same
JP6277188B2 (ja) マイクロキャリアの製造方法
JP6223448B2 (ja) 構造化マイクロキャリアの製造方法
WO2012051451A2 (en) Highly efficient plasmonic devices, molecule detection systems, and methods of making the same
JP6208757B2 (ja) マイクロキャリアの製造方法、及び生物学的分析の実施方法
KR101758145B1 (ko) 바이오 어세이를 위한 마이크로 입자의 제조방법 및 이에 의해 제조된 바이오 어세이를 위한 마이크로 입자
阿尻大雅 Development of Highly Sensitive Label-Free Detection Method and its Practical Application Using Micro-and Nanofluidic Devices
EP2685262A1 (en) Method and device for performing biological and/or chemical assays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170907

R150 Certificate of patent or registration of utility model

Ref document number: 6208757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees