JP2015530558A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2015530558A
JP2015530558A JP2015534902A JP2015534902A JP2015530558A JP 2015530558 A JP2015530558 A JP 2015530558A JP 2015534902 A JP2015534902 A JP 2015534902A JP 2015534902 A JP2015534902 A JP 2015534902A JP 2015530558 A JP2015530558 A JP 2015530558A
Authority
JP
Japan
Prior art keywords
valve core
valve
hole
cavity
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015534902A
Other languages
Japanese (ja)
Other versions
JP6134386B2 (en
Inventor
金耿
阮義兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenling Hengfa Aircondition Components Co ltd
Original Assignee
Wenling Hengfa Aircondition Components Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenling Hengfa Aircondition Components Co ltd filed Critical Wenling Hengfa Aircondition Components Co ltd
Publication of JP2015530558A publication Critical patent/JP2015530558A/en
Application granted granted Critical
Publication of JP6134386B2 publication Critical patent/JP6134386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/325Expansion valves having two or more valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Abstract

【課題】本発明は、従来の膨張弁の弁芯がバネの作用力によって頻繁に衝撃を受けて、弁の耐用年数が低減する問題を解決するための空調の技術分野に属する膨張弁を提供する。【解決手段】該膨張弁は、入口端と出口端を有するケーシングを含む。ケーシング内には、キャビティーを有する直筒形の弁体が固定され、弁体の側壁には、キャビティーとケーシングを連通する入口と出口とが設けられており、ケーシングと弁体の間には入口と出口を仕切るスペーサが設けられている。キャビティー内には、キャビティーに沿って摺動し、かつ互いに対向する弁芯Aと弁芯Bが設けられ、弁芯Aと弁芯Bの間のキャビティーの中央部には止め輸が固定されている。キャビティーの両端それぞれには、それぞれ弁芯Aと弁芯Bを止め輸に向かって移動させるバネユニットが設けられ、弁芯Aと弁芯Bの間には、弁芯Aと弁芯Bに対して緩衝作用を果たすことが可能な減衰構造が設けられている。減衰構造が存在するため、弁芯Aが弁芯Bに間近する時、緩衝過程を経て、弁芯の間の衝撃を低減し、膨張弁の耐久性を高めることができる。【選択図】図1The present invention provides an expansion valve belonging to the technical field of air conditioning for solving the problem that the valve core of a conventional expansion valve is frequently impacted by the acting force of a spring and the useful life of the valve is reduced. To do. The expansion valve includes a casing having an inlet end and an outlet end. A straight cylindrical valve body having a cavity is fixed in the casing, and an inlet and an outlet for communicating the cavity and the casing are provided on a side wall of the valve body. Between the casing and the valve body, A spacer is provided to separate the inlet and the outlet. In the cavity, there are provided a valve core A and a valve core B that slide along the cavity and face each other, and a stopper is placed in the center of the cavity between the valve core A and the valve core B. It is fixed. At both ends of the cavity, a spring unit is provided for stopping and moving the valve core A and the valve core B toward each other, and between the valve core A and the valve core B, the valve core A and the valve core B A damping structure capable of performing a buffering action is provided. Since the damping structure exists, when the valve core A approaches the valve core B, the shock between the valve cores can be reduced through a buffering process, and the durability of the expansion valve can be increased. [Selection] Figure 1

Description

本発明は空調の技術領域に属し、インバーター空調冷凍用機械における自動膨張弁に関する。 The present invention belongs to the technical field of air conditioning, and relates to an automatic expansion valve in an inverter air conditioning refrigeration machine.

膨張弁は冷凍システムでの重要な部材であり、通常は凝縮器と蒸発器の間に取付けられている。膨張弁は蒸発器により蒸発される気体を、圧縮機で高温高圧の液体冷媒に増圧・液化し、更にその絞り口によって低温低圧の噴霧状液態冷媒に絞り、その後、冷媒は蒸発器により熱量が吸収されることにより、冷凍効果を実現している。膨張弁は蒸発器末端の過熱度変化を通じて弁の流量を制御するため、流量が非常に小さくなって蒸発器面積を充分に利用できなくなったり、及び流量が非常に大きくなって蒸発器面積の不足により、冷媒が完全に気化せず、圧縮機に吸引されて液態が生じることを防止している。空調用膨張弁は機械式膨張弁と電子式膨張弁に分離されており、従来のインバーター空調は主に電子式膨張弁により通過直径を調節してその差圧を制御するため、設計要求に基づいて冷媒の液化と気化を制御し、一部の空調も電子式弁の代わりに機械式膨張弁を利用している。 The expansion valve is an important part of the refrigeration system and is usually installed between the condenser and the evaporator. The expansion valve boosts and liquefies the gas evaporated by the evaporator into a high-temperature and high-pressure liquid refrigerant by the compressor, and further throttles it to a low-temperature and low-pressure spray-like liquid refrigerant by the throttle port. The refrigeration effect is realized by absorbing water. The expansion valve controls the flow rate of the valve through a change in superheat at the end of the evaporator, so the flow rate becomes very small and the evaporator area cannot be fully used, or the flow rate becomes very large and the evaporator area is insufficient. This prevents the refrigerant from being completely vaporized and sucked into the compressor to form a liquid state. The expansion valve for air conditioning is separated into a mechanical expansion valve and an electronic expansion valve, and the conventional inverter air conditioning mainly controls the differential pressure by adjusting the passage diameter by the electronic expansion valve. The system controls the liquefaction and vaporization of the refrigerant, and some air conditioning systems use mechanical expansion valves instead of electronic valves.

電子式弁はデジタル信号により駆動モータを駆動して電子式弁の通過直径の大きさを制御するため、弁の前後に一定の圧力差を有するように保証し、十分な凝縮器と蒸発器の作用を発揮させている。更に、圧縮機モータの回転速度の周波数変更の調節が可能であるため、モータの回転速度を即時に調節することができ、これにより、圧縮機モータの回転速度と電子式膨張弁モータの回転角度が同期に変化して、電子式弁の前後の差圧の一定を保証し、そのため、空調の効率が高くなる。 The electronic valve uses a digital signal to drive the drive motor to control the passage diameter of the electronic valve, ensuring that there is a constant pressure difference across the valve, and that sufficient condenser and evaporator The effect is demonstrated. Furthermore, since the frequency change of the rotation speed of the compressor motor can be adjusted, the rotation speed of the motor can be adjusted immediately, and thus the rotation speed of the compressor motor and the rotation angle of the electronic expansion valve motor can be adjusted. Changes synchronously to ensure a constant differential pressure before and after the electronic valve, which increases the efficiency of the air conditioning.

しかし、電子式弁の価格が高いため、電子式膨張弁の代わりに毛細管を利用し、更に普通の圧縮機の代わりに周波数変更可能の圧縮機を利用している。もし、毛細管の前後の圧力差が設計要求を満たさない場合、周波数変更可能の圧縮機の回転速度を変更して、毛細管の前後の圧力差が設計要求を満たすようにする。
引用文献1では、双方向流通の温度膨張弁を公開し、弁体と動力ヘッド部材を含み、弁体には第1接続口と第2接続口が設けられ、弁体内には第1接続口と第2接続口を連通する弁口が設けられている。弁口の下側には調節バネ、動力ヘッド部材から動力を得る伝達棒により互いに支持される弁芯部材が設置されており、前記弁芯の部材上には第1接続口と第2接続口を連通する絞り孔が設けられ、該絞り孔内には、該絞り孔を開放または閉鎖する可動部材が設けられていることを特徴とする。絞り孔と可動部材が適合して、温度膨張弁内部の一方向絞り構造を構成し、その構造が一方向絞り弁に類似する。該構造は、温度膨張弁を双方向に流通させており、もし、空調システムに応用される時、取り付けが便利で、溶接継目の数が多くなることによる潜在漏洩点を減少し、かつ、空調システムの製造コストを低減することができた。しかし、このような双方向流通における膨張弁は、双方向流通を実現することができるが、本当の意味での双方向流通ではなかった。該弁において、順方向に流れる時、温度センシングにおける温度変化により、弁の口径の変化を実現することができる。逆方向に流れる時、弁の口径が変化されず、弁芯上の絞り孔を通して流れるため、冷媒の流れる際の不要な阻止力が増加して、空調のエネルギー消耗を増加している。更に、逆方向に流れる時、絞り孔が可動部材によって塞がれて、弁芯を押し開いて流す必要があるため、弁芯がバネの作用力によって頻繁に衝撃を受けて、弁の耐用年数が低減していた。
However, since the price of the electronic valve is high, a capillary tube is used instead of the electronic expansion valve, and a compressor capable of changing the frequency is used instead of an ordinary compressor. If the pressure difference before and after the capillary does not satisfy the design requirement, the rotational speed of the compressor capable of changing the frequency is changed so that the pressure difference before and after the capillary satisfies the design requirement.
In Cited Document 1, a two-way circulation temperature expansion valve is disclosed, including a valve body and a power head member, the valve body is provided with a first connection port and a second connection port, and the valve body has a first connection port. And a valve port communicating with the second connection port. A valve core member that is supported by a control spring and a transmission rod that receives power from a power head member is installed below the valve port, and the first connection port and the second connection port are provided on the valve core member. And a movable member that opens or closes the throttle hole is provided in the throttle hole. The throttle hole and the movable member are adapted to form a one-way throttle structure inside the temperature expansion valve, and the structure is similar to the one-way throttle valve. The structure allows the temperature expansion valve to flow in both directions, and when applied to an air conditioning system, it is convenient to install, reduces potential leakage points due to the increased number of welded seams, and is air conditioned. The manufacturing cost of the system could be reduced. However, such an expansion valve in bidirectional flow can realize bidirectional flow, but is not truly bidirectional flow. In the valve, when flowing in the forward direction, a change in the diameter of the valve can be realized by a temperature change in temperature sensing. When flowing in the reverse direction, the diameter of the valve is not changed and flows through the throttle hole on the valve core, so that an unnecessary blocking force when the refrigerant flows increases and the energy consumption of the air conditioning increases. Furthermore, when it flows in the opposite direction, the throttle hole is blocked by the movable member, and it is necessary to push and open the valve core. Therefore, the valve core is frequently impacted by the acting force of the spring, and the service life of the valve Was reduced.

中国特許第200510048901.9 公報Chinese Patent No. 200510048901.9

本発明の目的は、従来技術の上記問題点を解決するため、圧縮機の出力流量を制御して即時に弁の通過直径を調節し、かつ弁の前後の圧力差を保証する膨張弁を提供する。 An object of the present invention is to provide an expansion valve that controls the output flow rate of a compressor to immediately adjust the passage diameter of the valve and guarantees a pressure difference before and after the valve in order to solve the above-mentioned problems of the prior art. To do.

本発明の目的は下記の技術手段により実現される。膨張弁は、入口端と出口端を有するケーシングを含み、前記ケーシング内にはキャビティーを有する直筒状の弁体が固定されている。前記弁体の側壁上にはキャビティーとケーシングを連通する入口と出口が設けられ、前記ケーシングと弁体の間には入口と出口を仕切るスペーサが設けられており、前記キャビティー内には、キャビティーに沿って摺動し、かつ対向する弁芯Aと弁芯Bが設けられている。弁芯Aと弁芯Bの間における前記キャビティーの中央部には止め輸が固定され、前記キャビティーの両端それぞれには、弁芯Aと弁芯Bが止め輸に向かって移動するように付勢するバネユニットが設けられ、前記弁芯Aと弁芯Bの間には、弁芯Aと弁芯Bが緩衝作用を有する減衰構造が設けられている。 The object of the present invention is realized by the following technical means. The expansion valve includes a casing having an inlet end and an outlet end, and a straight cylindrical valve body having a cavity is fixed in the casing. An inlet and an outlet communicating the cavity and the casing are provided on the side wall of the valve body, and a spacer for partitioning the inlet and the outlet is provided between the casing and the valve body, and in the cavity, A valve core A and a valve core B that slide along the cavity and face each other are provided. A stopper is fixed to the central portion of the cavity between the valve core A and the valve core B, and the valve core A and the valve core B are moved toward the stopper at both ends of the cavity. A biasing spring unit is provided, and a damping structure in which the valve core A and the valve core B have a buffering action is provided between the valve core A and the valve core B.

順方向において、冷媒が入口端からケーシング内に入る時、スペーサが存在するため、入口から弁体のキャビティーのみに入ることにより、バネユニットは、冷媒の推進力で圧縮されて短くなって、弁芯Bを止め輸から離れるように推進させるため、冷媒は弁体の出口から排出されて、最後にケーシングの出口端から流出する。逆方向において、冷媒が出口端からケーシング内に入る時、スペーサが存在するため、出口から弁体のキャビティーのみに入ることにより、バネユニットは、冷媒の推進力で圧縮されて短くなって、弁芯Aを止め輸から離れるように推進されるため、冷媒は弁体の入口から排出されて、最後にケーシングの入口端から流出する。膨張弁は適切な雌雄弁芯構造を有し、即ち、弁芯Aと弁芯Bであり、圧力管路の圧力差の変化によっていずれか1つの弁芯の動作を制御している。減衰構造が存在するため、弁芯Aが弁芯Bに接近する時、安定な緩衝過程を経て、弁芯の間の衝撃を低減し、弁芯Aと弁芯Bが当接する際の摩損を減少して、膨張弁の耐用年数を高めている。 In the forward direction, when the refrigerant enters the casing from the inlet end, since the spacer exists, by entering only the cavity of the valve body from the inlet, the spring unit is compressed and shortened by the driving force of the refrigerant, In order to propel the valve core B away from the stop, the refrigerant is discharged from the outlet of the valve body and finally flows out from the outlet end of the casing. In the reverse direction, when the refrigerant enters the casing from the outlet end, since the spacer exists, by entering only the valve body cavity from the outlet, the spring unit is compressed and shortened by the driving force of the refrigerant, Since the valve core A is propelled away from the stop, the refrigerant is discharged from the inlet of the valve body and finally flows out from the inlet end of the casing. The expansion valve has an appropriate male and female valve core structure, that is, a valve core A and a valve core B, and the operation of one of the valve cores is controlled by a change in the pressure difference of the pressure line. Since the damping structure exists, when the valve core A approaches the valve core B, the shock between the valve cores is reduced through a stable buffering process, and the wear when the valve core A and the valve core B come into contact with each other is reduced. Decreasing and extending the service life of the expansion valve.

前記膨張弁において、前記止め輸は、ガイディング孔、環状凹部、環状凹部と入口を連通する導流孔、弁体に嵌め込まれる位置止め溝を含む。ガイディング孔は弁芯Aとの係合に用いられて、弁芯Aを止め輸内に進入させることにより、位置止め溝が止め輸をキャビティー内に堅固に固定することができる。 In the expansion valve, the stopper includes a guiding hole, an annular recess, a flow introduction hole communicating the annular recess and the inlet, and a positioning groove fitted into the valve body. The guiding hole is used for engagement with the valve core A, and when the valve core A is stopped, the positioning groove can firmly fix the stopper in the cavity.

前記膨張弁において、前記減衰構造は、弁芯Aと弁芯Bとを含む。弁芯Aのヘッド部は、前円柱、前絞り円錐部、後円柱、後絞り円錐部、前ガイディング柱を有する。前記弁芯Bは、弁芯Aのヘッド部に係合する後絞り円錐孔、後円柱孔、貫通溝、前絞り円錐孔と前円柱孔を含み、前記弁芯Bには、前円柱孔と出口を互いに連通させる導流口が設けられている。弁芯Aの後円柱が弁芯Bの前円柱孔内に挿入される時、弁芯Bと弁芯Aの間には、互いに閉鎖する一方向に導通されるキャビティーである前減衰キャビティーが形成される。弁芯Aの前案内柱と止め輸の内孔が互いに係合し、互いの係合間隙が小さいため、弁芯Aと止め輸の間には互いに閉鎖するキャビティーである中減衰キャビティーが形成される。弁芯が前へ移動して弁をオフにする時、優れた緩衝作用を有して、弁芯の衝撃を低減し、弁の耐久性を高めている。 In the expansion valve, the damping structure includes a valve core A and a valve core B. The head portion of the valve core A has a front cylinder, a front throttle cone, a rear cylinder, a rear throttle cone, and a front guiding column. The valve core B includes a rear throttle conical hole, a rear cylindrical hole, a through groove, a front throttle conical hole, and a front cylindrical hole that are engaged with the head portion of the valve core A, and the valve core B includes a front cylindrical hole and A diversion port is provided for communicating the outlets with each other. When the rear cylinder of the valve core A is inserted into the front cylinder hole of the valve core B, the front damping cavity is a cavity that is connected to the valve core B and the valve core A in a unidirectionally closed cavity. Is formed. Since the front guide post of the valve core A and the inner hole of the stopper are engaged with each other and the engagement gap between the valve core A and the stopper is small, there is an intermediate damping cavity that is a cavity that is closed between the valve core A and the stopper. It is formed. When the valve core moves forward and the valve is turned off, it has an excellent buffering action, reducing the impact of the valve core and increasing the durability of the valve.

他の1つの手段である前記膨張弁において、前記弁芯Bには弁体の外部と貫通溝を連通する貫通孔が設けられている。冷媒が小さい時、弁芯Aと弁芯Bが作動しなくなって、冷媒が貫通孔から貫通溝内に入り、その後、止め輸、弁体の出口を経過して流出する。小流量の冷媒により弁芯Aと弁芯Bが作動されないことにより、各弁芯の間の摩損が減少し、バネユニットの耐久性を高めている。 In the expansion valve, which is another means, the valve core B is provided with a through hole communicating with the outside of the valve body and the through groove. When the refrigerant is small, the valve core A and the valve core B stop operating, the refrigerant enters the through groove from the through hole, and then flows out after passing through the outlet of the valve body. Since the valve core A and the valve core B are not actuated by the small flow rate of refrigerant, the wear between the valve cores is reduced, and the durability of the spring unit is enhanced.

前記膨張弁において、前記貫通孔内には毛細管が埋め込まれている。冷凍システムでは所定の圧力低下が発生し、毛細管はその流動阻止力に基づいて長手方向に沿って圧力低下を発生することにより、冷媒の流量を制御し、及び凝縮器と蒸発器の差圧を維持して、異なる冷凍が最小となる連続冷凍がされるように保証されている。 In the expansion valve, a capillary tube is embedded in the through hole. A predetermined pressure drop occurs in the refrigeration system, and the capillary generates a pressure drop along the longitudinal direction based on its flow blocking force, thereby controlling the flow rate of the refrigerant and reducing the differential pressure between the condenser and the evaporator. It is guaranteed that continuous refrigeration is maintained to minimize different refrigeration.

他の1つの手段である前記膨張弁において、前記弁芯A上には貫通溝と前円柱孔を連通する導流溝が設けられている。流量が小さい時、冷媒は、貫通溝から前円柱孔内に直接入り、2つの弁芯の間の互いの運動を防止して、弁芯の運動により発生する摩損を減少している。 In the expansion valve, which is another means, a flow guide groove is provided on the valve core A to connect the through groove and the front cylindrical hole. When the flow rate is small, the refrigerant enters directly into the front cylindrical hole from the through groove, preventing mutual movement between the two valve cores and reducing wear caused by the movement of the valve core.

他の1つの手段である前記膨張弁において、前記弁芯Bには貫通溝と導流口を連通する貫通孔が設けられている。流量が小さい時、冷媒は、貫通溝から導流口に直接入る。 In the expansion valve, which is another means, the valve core B is provided with a through hole that communicates the through groove with the flow inlet. When the flow rate is small, the refrigerant enters the flow inlet directly from the through groove.

他の1つの手段である前記膨張弁において、前記弁芯A上には後絞り円錐孔と前円柱孔を貫通する貫通孔が設けられている。流量が小さい時、冷媒は、後絞り円錐孔から前円柱孔内に直接入る。 In the expansion valve, which is another means, a through-hole penetrating the rear throttle conical hole and the front cylindrical hole is provided on the valve core A. When the flow rate is small, the refrigerant enters the front cylindrical hole directly from the rear conical hole.

他の1つの手段は、前記膨張弁において、前記弁芯A上には軸方向に弁芯Aを貫通する貫通孔が設けられている。小流量の冷媒は、弁芯の通路から弁体のキャビティーに直接入った後、バネ台のオリフィスから弁体に排出される。 Another means is that in the expansion valve, a through-hole that penetrates the valve core A in the axial direction is provided on the valve core A. The small flow rate refrigerant enters the valve body cavity directly from the passage of the valve core, and then is discharged from the orifice of the spring base to the valve body.

前記膨張弁において、前記バネユニットはバネ台とバネを含み、前記バネの一端は、弁芯Aまたは弁芯Bに当接し、他端はバネ台に当接する。前記バネ台は弁体の両端に固定され、バネ台の端部には、前記ケーシングに連通するオリフィスが設けられており、前記弁芯Aと弁芯Bの末端は、弁体と係合して間隙を小さくする円柱体と減衰環溝を有し、前記減衰環溝上には開口された減衰環が設けられている。バネ台、弁体、弁芯Aまたは弁芯Bと減衰環の間には後減衰キャビティーが形成されて、膨張弁の方向制御キャビティーとなる。
前記膨張弁において、前記バネ台は、バネの揺動を制限する位置制限棒を有する。位置制限棒を増設することで、バネの軸方向での揺動幅が制限されて、バネが負荷を超えて作動しないように保証し、バネの耐久性を高めている。
In the expansion valve, the spring unit includes a spring base and a spring, and one end of the spring contacts the valve core A or the valve core B, and the other end contacts the spring base. The spring base is fixed to both ends of the valve body, and at the end of the spring base, an orifice communicating with the casing is provided, and the ends of the valve core A and the valve core B are engaged with the valve body. A cylindrical body for reducing the gap and an attenuation ring groove are provided, and an opening attenuation ring is provided on the attenuation ring groove. A post-attenuation cavity is formed between the spring base, the valve body, the valve core A or the valve core B and the damping ring, and serves as a direction control cavity for the expansion valve.
In the expansion valve, the spring base has a position limiting rod for limiting the swing of the spring. By adding a position limiting rod, the swinging width in the axial direction of the spring is limited, so that the spring does not operate exceeding the load, and the durability of the spring is increased.

前記膨張弁において、前記ケーシングの入口端と出口端には濾過網モジュールが設けられ、前記濾過網モジュールは、ケーシングに固定される濾過網スタンドと濾過網を含む。濾過網モジュールは冷媒に混ざっている異物を濾過して、膨張弁モジュールが塞がることを防止する。 In the expansion valve, filter net modules are provided at an inlet end and an outlet end of the casing, and the filter net module includes a filter net stand and a filter net fixed to the casing. The filter network module filters foreign matter mixed in the refrigerant to prevent the expansion valve module from being blocked.

従来技術に比べて、膨張弁は以下のような特徴を有する。
1、構造が簡単であり、方向転換弁を通じて冷凍管路の圧力変化を制御して膨張弁の方向を制御することができる。
2、減衰構造により、キャビティーと出口と入口の圧力差を平衡に維持して、冷媒を液状に圧縮するために必要な圧力を保証する。更に、冷媒の流量が小さい時、弁芯が作動せず、バネの頻繁な動作を減少して、膨張弁モジュールの耐用年数を高めることができる。
3、弁芯Aと弁芯Bの間には前減衰キャビティーが形成されることにより、弁芯Aと弁芯Bが接触する時、優れた緩衝作用を有して、それらの衝撃を低減し、膨張弁の耐久性を高めることができる。
4、止め輸と弁芯Aの間には中減衰キャビティーが形成され、弁芯Aまたは弁芯Bと弁体の間には後減衰キャビティーが形成されるため、弁芯Aまたは弁芯Bが弁座から離れる時、優れた緩衝作用を有し、バネが瞬間に作動することによる振動の発生を防ぎ、バネの騒音を低減して、膨張弁の耐久性を高めることができる。
5、弁芯Aのヘッドと弁芯Bが適切に係合して、冷媒の流量変化に従って、絞りにおけるスリットサイズが変化する。そのため、冷媒の流動による抵抗を減少して、全体の空調のエネルギー効果比を大きく向上することができる。
Compared to the prior art, the expansion valve has the following characteristics.
1. The structure is simple and the direction of the expansion valve can be controlled by controlling the pressure change of the refrigeration pipe through the direction change valve.
2. The damping structure maintains the pressure difference between the cavity, the outlet and the inlet in equilibrium, and guarantees the pressure required to compress the refrigerant into a liquid state. Furthermore, when the flow rate of the refrigerant is small, the valve core does not operate and the frequent operation of the spring can be reduced, so that the service life of the expansion valve module can be increased.
3. A pre-damping cavity is formed between the valve core A and valve core B, so that when the valve core A and valve core B are in contact, they have excellent buffering action and reduce their impact In addition, the durability of the expansion valve can be increased.
4. A middle damping cavity is formed between the stop and the valve core A, and a rear damping cavity is formed between the valve core A or the valve core B and the valve body. When B moves away from the valve seat, it has an excellent buffering effect, prevents the occurrence of vibration due to the momentary operation of the spring, reduces the noise of the spring, and increases the durability of the expansion valve.
5. The head of the valve core A and the valve core B are appropriately engaged, and the slit size in the throttle changes according to the change in the refrigerant flow rate. Therefore, the resistance due to the flow of the refrigerant can be reduced, and the energy effect ratio of the entire air conditioning can be greatly improved.

図1は、実施例1における膨張弁の構造を示す図である。FIG. 1 is a diagram illustrating a structure of an expansion valve in the first embodiment. 図2は、実施例1における弁芯Bの構造を示す図である。FIG. 2 is a view showing the structure of the valve core B in the first embodiment. 図3は、実施例1における弁芯Aの構造を示す図である。FIG. 3 is a view showing the structure of the valve core A in the first embodiment. 図4は、実施例1における止め輸の構造を示す図である。FIG. 4 is a view showing the structure of the retaining in Example 1. 図5は、実施例1におけるバネ台の構造を示す図である。FIG. 5 is a diagram illustrating the structure of the spring base in the first embodiment. 図6は、実施例2における小流量の導流軌跡構造を示す図である。FIG. 6 is a diagram illustrating a flow guiding structure with a small flow rate in the second embodiment. 図7は、実施例3における小流量の導流軌跡構造を示す図である。FIG. 7 is a diagram showing a flow guiding structure with a small flow rate in the third embodiment. 図8は、実施例4における小流量の導流軌跡構造を示す図である。FIG. 8 is a diagram showing a flow guiding structure with a small flow rate in the fourth embodiment. 図9は、実施例5における小流量の導流軌跡構造を示す図である。FIG. 9 is a diagram illustrating a structure for introducing a small flow rate in the fifth embodiment. 図10は、実施例6における小流量の導流軌跡構造を示す図である。FIG. 10 is a diagram illustrating a flow guiding structure with a small flow rate in the sixth embodiment.

以下は本発明の具体的実施例と図面を用いて、本発明の技術手段に対して詳細に説明を行うが、本発明はこれらの実施例に制限されない。 Hereinafter, the technical means of the present invention will be described in detail with reference to specific embodiments and drawings of the present invention, but the present invention is not limited to these embodiments.

<実施例1>
図1に示されたように、膨張弁は、入口端101と出口端102を有するケーシング10を含み、ケーシング10内にはキャビティーを有する直筒状の弁体1が固定され、弁体1の側壁上にはキャビティーとケーシング10を連通する入口11と出口12が設けられている。ケーシング10と弁体1の間には入口11と出口12を仕切るスペーサ8が設けられ、キャビティー内にはキャビティーに沿って摺動する弁芯A2と弁芯B3が設けられ、弁芯A2と弁芯B3の間のキャビティーの中央部には止め輸7が固定されている。キャビティーの両端それぞれには、弁芯A2と弁芯B3が止め輸7に向かって移動するように付勢するバネユニットが設けられており、弁芯A2と弁芯B3の間には、弁芯A2と弁芯B3に対して緩衝作用を果たす可能な減衰構造が設けられている。
<Example 1>
As shown in FIG. 1, the expansion valve includes a casing 10 having an inlet end 101 and an outlet end 102, and a straight cylindrical valve body 1 having a cavity is fixed in the casing 10, On the side wall, an inlet 11 and an outlet 12 for communicating the cavity and the casing 10 are provided. A spacer 8 for separating the inlet 11 and the outlet 12 is provided between the casing 10 and the valve body 1, and a valve core A2 and a valve core B3 that slide along the cavity are provided in the cavity, and the valve core A2 A stopper 7 is fixed at the center of the cavity between the valve core B3 and the valve core B3. At each end of the cavity, a spring unit is provided to urge the valve core A2 and the valve core B3 to move toward the stopper 7 and between the valve core A2 and the valve core B3, A damping structure capable of buffering the core A2 and the valve core B3 is provided.

具体的には、図1、図2、図3、図4、図5に示されたように、止め輸7は、ガイディング孔73、環状凹部74、環状凹部74と入口11を連通する導流孔71、弁体1と互いに嵌合する位置止め溝72を含む。減衰構造は、弁芯A2と弁芯B3とを含み、該弁芯A2のヘッド部は、前円柱21、前絞り円錐部22、後円柱23、後絞り円錐部24、前ガイディング柱25を有しており、前記弁芯B3は、弁芯A2のヘッド部に係合する後絞りの円錐孔31、後円柱孔32、貫通溝33、前絞り円錐孔35と前円柱孔36を有しており、弁芯B3上には前円柱孔36と出口12を互いに連通する導流口37が設けられている。 Specifically, as shown in FIGS. 1, 2, 3, 4, and 5, the stopper 7 has a guiding hole 73, an annular recess 74, a guide that communicates the annular recess 74 with the inlet 11. It includes a flow stop 71 and a positioning groove 72 that fits with the valve body 1. The damping structure includes a valve core A2 and a valve core B3, and the head portion of the valve core A2 includes a front cylinder 21, a front throttle cone 22, a rear cylinder 23, a rear throttle cone 24, and a front guiding column 25. The valve core B3 includes a rear throttle conical hole 31, a rear cylindrical hole 32, a through groove 33, a front throttle conical hole 35, and a front cylindrical hole 36 that engage with the head portion of the valve core A2. On the valve core B3, a flow introduction port 37 that communicates the front cylindrical hole 36 and the outlet 12 with each other is provided.

バネユニットはバネ台5とバネ4を含み、バネ4の一端は、弁芯A2または弁芯B3に当接し、他端は、バネ台5に当接する。バネ台5は、弁体1の両端に固定され、かつオリフィス52が設けられて前記ケーシング10の一端に連通し、バネ台5はバネ4の揺動を制限する位置制限棒51を有する。弁芯A2と弁芯B3の末端は、弁体1に係合して間隙を小さくする円柱体と減衰環溝26を有し、減衰環溝26には開口された減衰環6が設けられている。ケーシング10の入口端101と出口端102には濾過網モジュール9が設けられ、濾過網モジュール9はケーシング10に固定される濾過網スタンドと濾過網を含む。 The spring unit includes a spring base 5 and a spring 4. One end of the spring 4 abuts on the valve core A2 or the valve core B3, and the other end abuts on the spring base 5. The spring base 5 is fixed to both ends of the valve body 1 and is provided with an orifice 52 so as to communicate with one end of the casing 10. The spring base 5 has a position limiting rod 51 for limiting the swing of the spring 4. The ends of the valve core A2 and the valve core B3 have a cylindrical body that engages with the valve body 1 to reduce the gap and an attenuation ring groove 26. The attenuation ring groove 26 is provided with an opened attenuation ring 6. Yes. A filter net module 9 is provided at the inlet end 101 and the outlet end 102 of the casing 10, and the filter net module 9 includes a filter net stand and a filter net fixed to the casing 10.

冷媒はケーシング10から入り、濾過網モジュール9を経過した後、それぞれ制御通路と案内通路の2つ通路に分離して弁に入る。
もし、冷媒が弁芯B3の片側の出口端102から入る場合、
制御通路において、冷媒はケーシング10の出口端102から入り、出口端102の濾過網モジュール9を経過した後、更にバネ台5のオリフィス52を経過して弁芯B3に作用し、弁の出口12の圧力が入口11の圧力より大きいため、弁芯B3を推進する。この時、弁芯A2、弁体1とバネ台5により囲まれるキャビティー内の冷媒は、バネ台5のオリフィス52を通じて弁体1から排出されて、流路に合流する。弁芯B3が止め輸7に密着すると、弁芯B3が動作を停止して排出される。
The refrigerant enters from the casing 10, passes through the filter network module 9, and then enters the valve after being separated into two passages, a control passage and a guide passage.
If the refrigerant enters from the outlet end 102 on one side of the valve core B3,
In the control passage, the refrigerant enters from the outlet end 102 of the casing 10, and after passing through the filter network module 9 at the outlet end 102, further passes through the orifice 52 of the spring base 5 and acts on the valve core B3, thereby causing the valve outlet 12 to pass. Is greater than the pressure at the inlet 11, so the valve core B3 is propelled. At this time, the refrigerant in the cavity surrounded by the valve core A2, the valve body 1 and the spring base 5 is discharged from the valve body 1 through the orifice 52 of the spring base 5, and joins the flow path. When the valve core B3 comes into close contact with the stopper 7, the valve core B3 stops operating and is discharged.

案内通路において、弁体1の入口11と出口12はスペーサ8に仕切られているため、冷媒は弁体1の出口12のみに入って弁芯B3の導流口37に入り、更に弁芯A2と弁芯B3の間の間隙、止め輸7の環状凹部74を経過して、止め輸7の導流孔71と弁体1の入口11により弁体1に排出され、更に、弁体1とケーシング10の間の間隙、この箇所で制御通路と合流した後、入口端101で濾過網スタンドと濾過網からなる濾過網モジュール9を経過してから、ケーシング10の入口端101により弁に排出される。 In the guide passage, the inlet 11 and the outlet 12 of the valve body 1 are partitioned by the spacer 8, so that the refrigerant enters only the outlet 12 of the valve body 1 and enters the inlet 37 of the valve core B3, and further the valve core A2 Between the valve core B3 and the annular recess 74 of the stopper 7 and is discharged to the valve body 1 by the introduction hole 71 of the stopper 7 and the inlet 11 of the valve body 1, and further, After joining the control passage at this space between the casings 10, after passing through the filtration network module 9 consisting of a filtration network stand and a filtration network at the inlet end 101, it is discharged to the valve by the inlet end 101 of the casing 10. The

もし、冷媒が弁芯A2の片側の入口端101から入る場合、
制御通路において、冷媒はバネ台5のオリフィス52に入って弁芯A2に作用し、弁の入口11の圧力が出口12の圧力より大きいため、弁芯A2を押圧して止め輸7に接近させる。この時、弁芯B3、弁体1とバネ台5により囲まれるキャビティー内の冷媒がバネ台5のオリフィス52により弁体1から排出されてから、流れ通路に合流する。弁芯A2が止め輸7に密着すると、弁芯A2が作動を停止してアンロードする。
If refrigerant enters from the inlet end 101 on one side of the valve core A2,
In the control passage, the refrigerant enters the orifice 52 of the spring base 5 and acts on the valve core A2, and since the pressure at the inlet 11 of the valve is larger than the pressure at the outlet 12, the valve core A2 is pressed to approach the stopper 7 . At this time, the refrigerant in the cavity surrounded by the valve core B3, the valve body 1 and the spring base 5 is discharged from the valve body 1 by the orifice 52 of the spring base 5, and then merges with the flow passage. When the valve core A2 comes into close contact with the stopper 7, the valve core A2 stops operating and unloads.

案内通路において、弁体1の入口11と出口12はスペーサ8により仕切られているため、冷媒は弁体1の入口11のみに入って、止め輸7の導流孔71を経過した後、止め輸7の環状凹部74に入り、更に弁芯A2と弁芯B3の間の間隙を経過してから、弁芯B3の導流口37と弁体1の出口12から弁体1に排出されており、更に、弁体1とケーシング10の間の間隙、この箇所で制御通路と合流した後、出口端102で濾過網スタンドと濾過網からなる濾過網モジュール9を通過してから、ケーシング10の出口端102により弁に排出される。 In the guide passage, the inlet 11 and the outlet 12 of the valve body 1 are partitioned by the spacer 8, so that the refrigerant enters only the inlet 11 of the valve body 1 and passes through the flow guide hole 71 of the stopper 7 and then stops. After entering the annular recess 74 of the transfer 7 and further passing through the gap between the valve core A2 and the valve core B3, it is discharged to the valve body 1 from the inlet 37 of the valve core B3 and the outlet 12 of the valve body 1. In addition, after joining the control passage at this space between the valve body 1 and the casing 10, after passing through the filter network module 9 comprising the filter network stand and the filter network at the outlet end 102, the casing 10 The outlet end 102 is discharged into the valve.

弁芯の移動経路には、弁芯A2と弁芯B3の間に位置して互いに閉鎖するキャビティーと、止め輸7と弁芯A2の間に位置して互いに閉鎖されるキャビティーが設けられ、更に、弁体1、バネ台5と弁芯A2または弁芯B3の間に位置して互いに閉鎖されるキャビティーが存在するため、弁芯A2または弁芯B3が移動する際に、複数の減衰を発生させることができる。複数の減衰が存在するため、弁芯A2または弁芯B3が移動する時、安定な緩衝過程を経て、2つの弁芯の衝撃が低減され、更に弁芯の円錐状のヘッドと弁芯B3とが当接する際の摩損を低減して、膨張弁の耐用年数を高めることができる。 The movement path of the valve core is provided with a cavity that is positioned between the valve core A2 and the valve core B3 and is closed between each other, and a cavity that is positioned between the stopper 7 and the valve core A2 and is closed between each other. Furthermore, since there is a cavity which is located between the valve body 1, the spring base 5 and the valve core A2 or the valve core B3 and is closed to each other, when the valve core A2 or the valve core B3 moves, a plurality of Attenuation can be generated. Due to the presence of multiple damping, when the valve core A2 or the valve core B3 moves, the impact of the two valve cores is reduced through a stable buffering process, and the conical head of the valve core and the valve core B3 The wear of the expansion valve can be reduced, and the service life of the expansion valve can be increased.

<実施例2>
実施例2の構造と原理は実施例1とほぼ類似し、図6に示されたように、実施例1との区別は、小流量の導流軌跡構造が増設されている。小流量の導流軌跡構造において、弁芯B3上には弁体1の外部と貫通溝33を連通する貫通孔34が設けられ、貫通孔34内には毛細管が埋め込まれている。毛細管を増設することで、貫通孔34の流量を変更することができる。
<Example 2>
The structure and principle of the second embodiment are substantially similar to those of the first embodiment, and as shown in FIG. 6, the small-flow-flow guide locus structure is added to the first embodiment. In the flow path structure with a small flow rate, a through hole 34 communicating with the outside of the valve element 1 and the through groove 33 is provided on the valve core B3, and a capillary tube is embedded in the through hole 34. By adding a capillary tube, the flow rate of the through hole 34 can be changed.

<実施例3>
実施例3の構造と原理は実施例2とほぼ類似し、図7に示されたように、実施例2との区別は、小流量の導流軌跡構造である。小流量の導流軌跡構造において、弁芯A2上には貫通溝33と前円柱孔36を連通する導流溝27が設けられている。
<Example 3>
The structure and principle of the third embodiment are almost similar to those of the second embodiment, and as shown in FIG. 7, the distinction from the second embodiment is a small flow rate guide structure. In the flow path structure with a small flow rate, a flow guide groove 27 that communicates the through groove 33 and the front cylindrical hole 36 is provided on the valve core A2.

<実施例4>
実施例4の構造と原理は実施例2とほぼ類似し、図8に示されたように、実施例2との区別は、小流量の導流軌跡構造である。小流量の導流軌跡構造において、弁芯B3上には貫通溝33と導流口37を連通する貫通孔34が設けられている。
<Example 4>
The structure and principle of the fourth embodiment are substantially similar to those of the second embodiment, and as shown in FIG. 8, the distinction from the second embodiment is a small flow rate guiding locus structure. In the flow guiding structure with a small flow rate, a through hole 34 is provided on the valve core B3 to communicate the through groove 33 and the flow inlet 37.

<実施例5>
実施例5の構造と原理は実施例2とほぼ類似し、図9に示されたように、実施例2との区別は、小流量の導流軌跡構造である。小流量の導流軌跡構造において、弁芯A2上には後絞り円錐孔31と前円柱孔36を貫通する貫通孔34が設けられている。
<Example 5>
The structure and principle of the fifth embodiment are substantially similar to those of the second embodiment, and as shown in FIG. 9, the distinction from the second embodiment is a small-flow-introduction trajectory structure. In the flow path structure with a small flow rate, a through hole 34 penetrating the rear conical conical hole 31 and the front cylindrical hole 36 is provided on the valve core A2.

<実施例6>
実施例6の構造と原理は実施例2とほぼ類似し、図10に示されたように、実施例2との区別は、小流量の導流軌跡構造である。小流量の導流軌跡構造において、弁芯A2上には軸方向で弁芯A2を貫通する貫通孔34が設けられている。小流量の冷媒は弁体1の出口12により弁体1に排出されず、バネ台5のオリフィス52により直接弁体1に排出される。
<Example 6>
The structure and principle of the sixth embodiment are almost similar to those of the second embodiment, and as shown in FIG. 10, the distinction from the second embodiment is a small flow guide structure. In the flow guiding structure with a small flow rate, a through hole 34 is provided on the valve core A2 so as to penetrate the valve core A2 in the axial direction. The refrigerant having a small flow rate is not discharged to the valve body 1 by the outlet 12 of the valve body 1 but is directly discharged to the valve body 1 by the orifice 52 of the spring base 5.

本発明における具体的実施例は、本発明の精神に対して例を挙げて説明するものである。本発明における当業者は、本発明の具体的実施例に対するいろんな修正または補充または類似の手段を代替することができるが、本発明の主旨から離れず、または特許請求の範囲を超えないことに理解するべきである。 The specific embodiments of the present invention are described by way of example with respect to the spirit of the present invention. Those skilled in the art will understand that various modifications or supplements or similar means to the specific embodiments of the invention may be substituted, but do not depart from the spirit of the invention or exceed the scope of the claims. Should do.

1 弁体
11 入口
12 出口
2 弁芯A
21 前円柱
22 前絞り円錐部
23 後円柱
24 後絞り円錐部
25 前ガイディング柱
26 減衰環溝
27 導流溝
3 弁芯B
31 後絞り円錐孔
32 後円柱孔
33 貫通溝
34 貫通孔
35 前絞り円錐孔
36 前円柱孔
37 導流口
4 バネ
5 バネ台
51 位置制限棒
52 オリフィス
6 減衰環
7 止め輸
71 導流孔
72 位置止め溝
73 ガイディング孔
74 環状凹部
8 スペーサ
9 濾過網モジュール
10 ケーシング
101 入口端
102 出口端
1 Disc
11 Entrance
12 Exit
2 Valve core A
21 Front cylinder
22 Front conical section
23 Rear cylinder
24 Rear diaphragm cone
25 Front guiding pillar
26 Damping ring groove
27 Conveying groove
3 Valve core B
31 Rear conical hole
32 Rear cylindrical hole
33 Through groove
34 Through hole
35 Front conical hole
36 Front cylindrical hole
37
4 Spring
5 Spring stand
51 Position limit bar
52 Orifice
6 Damping ring
7 Transfer
71
72 Position stop groove
73 Guiding hole
74 Annular recess
8 Spacer
9 Filter module
10 Casing
101 Entrance end
102 Exit end

Claims (10)

膨張弁において、
入口端(101)と出口端(102)を有するケーシング(10)を含み、
前記ケーシング(10)内には、キャビティーを有する直筒形の弁体(1)が固定され、前記弁体(1)の側壁上にはキャビティーとケーシング(10)を連通する入口(11)と出口(12)が設けられており、
前記ケーシング(10)と弁体(1)の間には、入口(11)と出口(12)が仕切られるスペーサ(8)が設けられ、
前記キャビティー内にはキャビティーに沿って摺動し、かつ互いに対向する弁芯A(2)と弁芯B(3)が設けられており、
弁芯A(2)と弁芯B(3)の間における前記キャビティーの中央部には止め輸(7)が設けられ、前記キャビティーの両端それぞれには弁芯A(2)と弁芯B(3)を止め輸(7)に向かって移動させるバネユニットが設けられており、
前記弁芯A(2)と弁芯B(3)の間には弁芯A(2)と弁芯B(3)に対して緩衝作用を果たすことが可能な減衰構造が設けられている、ことを特徴とする膨張弁。
In the expansion valve,
Including a casing (10) having an inlet end (101) and an outlet end (102);
A straight cylindrical valve body (1) having a cavity is fixed in the casing (10), and an inlet (11) for communicating the cavity and the casing (10) on the side wall of the valve body (1). And an exit (12)
Between the casing (10) and the valve body (1), a spacer (8) for partitioning the inlet (11) and the outlet (12) is provided,
A valve core A (2) and a valve core B (3) that slide along the cavity and face each other are provided in the cavity,
A stopper (7) is provided at the center of the cavity between the valve core A (2) and the valve core B (3), and the valve core A (2) and the valve core are respectively provided at both ends of the cavity. There is a spring unit that stops B (3) and moves it toward (7)
Between the valve core A (2) and the valve core B (3) is provided a damping structure capable of buffering the valve core A (2) and the valve core B (3), An expansion valve characterized by that.
前記止め輸(7)は、ガイディング孔(73)と、環状凹部(74)と、環状凹部(74)と入口(11)を連通する導流孔(71)と、弁体(1)に嵌め込まれる位置止め溝(72)と、を含む、ことを特徴とする請求項1に記載の膨張弁。 The stop (7) includes a guiding hole (73), an annular recess (74), a flow guide hole (71) communicating with the annular recess (74) and the inlet (11), and a valve body (1). The expansion valve according to claim 1, further comprising a positioning groove (72) to be fitted. 前記減衰構造は、弁芯A(2)と弁芯B(3)と、を含み、
該弁芯A(2)のヘッド部は、前円柱(21)、前絞り円錐部(22)、後円柱(23)、後絞り円錐部(24)、前ガイディング柱(25)を有し、
前記弁芯B(3)は、前記弁芯A(2)のヘッド部にマッチする後絞り円錐孔(31)、後円柱孔(32)、貫通溝(33)、前絞り円錐孔(35)と前円柱孔(36)を有し、
前記弁芯B(3)には、前円柱孔(36)と出口(12)を互いに連通する導流口(37)が設けられている、ことを特徴とする請求項2に記載の膨張弁。
The damping structure includes a valve core A (2) and a valve core B (3),
The head portion of the valve core A (2) has a front cylinder (21), a front throttle cone (22), a rear cylinder (23), a rear throttle cone (24), and a front guiding column (25). ,
The valve core B (3) includes a rear throttle conical hole (31), a rear cylindrical hole (32), a through groove (33), and a front throttle conical hole (35) that match the head portion of the valve core A (2). And a front cylindrical hole (36),
The expansion valve according to claim 2, wherein the valve core B (3) is provided with a flow introduction port (37) that allows the front cylindrical hole (36) and the outlet (12) to communicate with each other. .
前記弁芯B(3)には、弁体(1)の外部と貫通溝(33)を連通する貫通孔(34)が設けられている、ことを特徴とする請求項3に記載の膨張弁。 The expansion valve according to claim 3, wherein the valve core B (3) is provided with a through hole (34) communicating with the outside of the valve body (1) and the through groove (33). . 前記弁芯A(2)には、貫通溝(33)と前円柱孔(36)を連通する導流溝(27)が設けられる、ことを特徴とする請求項3に記載の膨張弁。 The expansion valve according to claim 3, wherein the valve core A (2) is provided with a flow guide groove (27) communicating the through groove (33) and the front cylindrical hole (36). 前記弁芯B(3)には、貫通溝(33)と導流口(37)を連通する貫通孔(34)が設けられる、ことを特徴とする請求項3に記載の膨張弁。 The expansion valve according to claim 3, wherein the valve core B (3) is provided with a through hole (34) communicating with the through groove (33) and the flow guide port (37). 前記弁芯A(2)には、後絞り円錐孔(31)と前円柱孔(36)を連通する貫通孔(34)が設けられる、ことを特徴とする請求項3に記載の膨張弁。 The expansion valve according to claim 3, wherein the valve core A (2) is provided with a through hole (34) communicating with the rear throttle conical hole (31) and the front cylindrical hole (36). 前記弁芯A(2)上には、軸方向で弁芯A(2)を貫通する貫通孔(34)が設けられる、ことを特徴とする請求項3に記載の膨張弁。 The expansion valve according to claim 3, wherein a through hole (34) penetrating the valve core A (2) in the axial direction is provided on the valve core A (2). 前記バネユニットは、バネ台(5)とバネ(4)を含み、
前記バネ(4)の一端は、弁芯A(2)または弁芯B(3)に当接し、他端は、バネ台(5)に当接しており、
前記バネ台(5)は弁体(1)の両端に固定され、バネ台(5)の端部には、前記ケーシング(10)に連通するオリフィス(52)が設けられており、
前記弁芯A(2)と弁芯B(3)の末端は、弁体(1)に係合する間隙を有する円柱体と減衰環溝(26)とを有し、前記減衰環溝(26)には、開口された減衰環(6)が設けられる、ことを特徴とする請求項1から請求項8のいずれか1項に記載の膨張弁。
The spring unit includes a spring base (5) and a spring (4),
One end of the spring (4) is in contact with the valve core A (2) or the valve core B (3), and the other end is in contact with the spring base (5),
The spring base (5) is fixed to both ends of the valve body (1), and the end of the spring base (5) is provided with an orifice (52) communicating with the casing (10),
The ends of the valve core A (2) and the valve core B (3) have a cylindrical body having a gap engaging with the valve body (1) and an attenuation ring groove (26), and the attenuation ring groove (26 9) An expansion valve according to any one of claims 1 to 8, characterized in that an open damping ring (6) is provided.
前記ケーシング(10)の入口端(101)と出口端(102)には、濾過網モジュール(9)が設けられ、前記濾過網モジュール(9)は、ケーシング(10)に固定される濾過網スタンドと濾過網と、を含む、ことを特徴とする請求項9に記載の膨張弁。 The inlet end (101) and outlet end (102) of the casing (10) are provided with a filter net module (9), and the filter net module (9) is a filter net stand fixed to the casing (10). The expansion valve according to claim 9, further comprising: a filter net.
JP2015534902A 2012-10-26 2013-09-29 Bidirectional expansion valve Expired - Fee Related JP6134386B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210419218.1 2012-10-26
CN201210419218.1A CN102878734B (en) 2012-10-26 2012-10-26 Expansion valve
PCT/CN2013/084559 WO2014063558A1 (en) 2012-10-26 2013-09-29 Expansion valve

Publications (2)

Publication Number Publication Date
JP2015530558A true JP2015530558A (en) 2015-10-15
JP6134386B2 JP6134386B2 (en) 2017-05-24

Family

ID=47480164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015534902A Expired - Fee Related JP6134386B2 (en) 2012-10-26 2013-09-29 Bidirectional expansion valve

Country Status (4)

Country Link
US (1) US20150276286A1 (en)
JP (1) JP6134386B2 (en)
CN (1) CN102878734B (en)
WO (1) WO2014063558A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232389A (en) * 2014-06-10 2015-12-24 温嶺市恒發空調部件有限公司Wenling Hengfa Aircondition Components Co.,Ltd Automatic bidirectional expansion valve

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878734B (en) * 2012-10-26 2014-10-15 温岭市恒发空调部件有限公司 Expansion valve
EP2821736A1 (en) 2013-07-04 2015-01-07 Danfoss A/S An expansion valve with a two-step variable orifice area
EP2821734A1 (en) 2013-07-04 2015-01-07 Danfoss A/S An expansion valve comprising a stop element
EP2821735A1 (en) 2013-07-04 2015-01-07 Danfoss A/S An expansion valve with a variable orifice area
CN107906805B (en) * 2017-12-18 2023-07-28 浙江泽顺制冷科技有限公司 Expansion valve
US10330362B1 (en) * 2017-12-20 2019-06-25 Rheem Manufacturing Company Compressor protection against liquid slug
CN109114853A (en) * 2018-09-26 2019-01-01 温岭市恒发空调部件有限公司 A kind of expansion valve
CN109374385B (en) * 2018-10-23 2021-04-23 江苏艾洛特医药研究院有限公司 RNA cell molecule inspection device
CN110185666B (en) * 2019-06-10 2021-06-29 徐州阿马凯液压技术有限公司 Hydraulic valve reversing buffer device
CN113404867A (en) * 2020-03-17 2021-09-17 盾安环境技术有限公司 Expansion valve
CN111841378B (en) * 2020-08-04 2022-12-30 成都格拉斯曼科技有限公司 Liquid medicine agitating unit of glass production water line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104469U (en) * 1982-01-11 1983-07-15 日立建機株式会社 relief valve
JP2004257676A (en) * 2003-02-27 2004-09-16 Tgk Co Ltd Reversible inflating device
JP2005265230A (en) * 2004-03-17 2005-09-29 Tgk Co Ltd Bidirectional expansion device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134860A (en) * 1991-05-20 1992-08-04 Carrier Corporation Variable area refrigerant expansion device having a flexible orifice for heating mode of a heat pump
US5901750A (en) * 1996-02-06 1999-05-11 Nartron Corporation Variable flow orifice valve assembly
US5715704A (en) * 1996-07-08 1998-02-10 Ranco Incorporated Of Delaware Refrigeration system flow control expansion valve
DE60016586T2 (en) * 1999-05-20 2005-12-22 Carrier Corp., Farmington DISTRIBUTION MACHINE AND METHOD FOR CLEANING ON SITE OF DISTRIBUTION MACHINE
JP3726015B2 (en) * 2000-10-05 2005-12-14 株式会社テージーケー Expansion valve
DE10305947A1 (en) * 2003-02-12 2004-08-26 Robert Bosch Gmbh An expansion unit for a cooling system, where the expansion unit is an electromagnetic slide valve useful especially for regulating the high pressure of an automobile air conditioning system
JP4981663B2 (en) * 2005-04-27 2012-07-25 イーグル工業株式会社 Switching valve
US7832232B2 (en) * 2006-06-30 2010-11-16 Parker-Hannifin Corporation Combination restrictor cartridge
JP2008215797A (en) * 2007-02-07 2008-09-18 Tgk Co Ltd Expansion valve
CN101520100B (en) * 2008-02-29 2011-08-24 浙江三花股份有限公司 One-way control valve
CN102686921B (en) * 2009-09-30 2014-03-26 大金工业株式会社 Rotary valve
CN102116547B (en) * 2011-04-07 2013-04-24 宁波奥柯汽车空调有限公司 Short tube throttle valve for air conditioner
CN202915612U (en) * 2012-10-26 2013-05-01 温岭市恒发空调部件有限公司 Expansion valve
CN102878734B (en) * 2012-10-26 2014-10-15 温岭市恒发空调部件有限公司 Expansion valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104469U (en) * 1982-01-11 1983-07-15 日立建機株式会社 relief valve
JP2004257676A (en) * 2003-02-27 2004-09-16 Tgk Co Ltd Reversible inflating device
JP2005265230A (en) * 2004-03-17 2005-09-29 Tgk Co Ltd Bidirectional expansion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232389A (en) * 2014-06-10 2015-12-24 温嶺市恒發空調部件有限公司Wenling Hengfa Aircondition Components Co.,Ltd Automatic bidirectional expansion valve

Also Published As

Publication number Publication date
CN102878734A (en) 2013-01-16
WO2014063558A1 (en) 2014-05-01
CN102878734B (en) 2014-10-15
US20150276286A1 (en) 2015-10-01
JP6134386B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6134386B2 (en) Bidirectional expansion valve
JP6581313B2 (en) Compressor and refrigeration system provided with the same
JP5022120B2 (en) Motorized valves for air conditioning systems
JP5480753B2 (en) Motorized valve
CN101910694B (en) Pressure control valve device
JP5696093B2 (en) Motorized valve
WO2014063559A1 (en) Expansion valve assembly and one-way expansion valve and two-way flowing expansion valve
CN100545549C (en) Expansion valve and control method thereof
US7980482B2 (en) Thermostatic expansion valve having a restricted flow passage for noise attenuation
JP5802539B2 (en) Compound valve
EP2375116B1 (en) Flow reversing valve and heat pump device using the same
CN107304843A (en) Electric expansion valve
CN106133420B (en) Throttling set
CN106917913A (en) Motor-driven valve
JP4056378B2 (en) Differential pressure valve
CN106170670B (en) Throttling set
CN105466088B (en) Heating power expansion valve and heat pump system with the heating power expansion valve
JP5836689B2 (en) Motorized valve
CN107559433B (en) Dehumidification electronic expansion valve of air conditioning system
JP5988646B2 (en) Three-way valve and air conditioner equipped with the three-way valve
CN105485979B (en) Heating power expansion valve and heat pump system with the heating power expansion valve
CN1453532B (en) Throttle valve and air conditioner
CN109268566A (en) Solenoid valve
CN210107823U (en) Bidirectional throttling filter and air conditioner
CN108253162A (en) Expand switch valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170421

R150 Certificate of patent or registration of utility model

Ref document number: 6134386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees