JP2015513192A - Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same - Google Patents

Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same Download PDF

Info

Publication number
JP2015513192A
JP2015513192A JP2014560867A JP2014560867A JP2015513192A JP 2015513192 A JP2015513192 A JP 2015513192A JP 2014560867 A JP2014560867 A JP 2014560867A JP 2014560867 A JP2014560867 A JP 2014560867A JP 2015513192 A JP2015513192 A JP 2015513192A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
active material
current collector
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014560867A
Other languages
Japanese (ja)
Other versions
JP6058038B2 (en
Inventor
デホン・キム
ジェ・ヒュン・イ
テ・ジン・パク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2015513192A publication Critical patent/JP2015513192A/en
Application granted granted Critical
Publication of JP6058038B2 publication Critical patent/JP6058038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0692Regulating the thickness of the coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本発明は、電極活物質、バインダー及び導電材を含む電極合剤が集電体に塗布されている二次電池用電極の製造方法であって、前記集電体に40nm以下の酸化アルミニウム(Al2O3)層が形成されるように集電体の表面を処理する過程を含むことによって、電極合剤と集電体との接着力を改善させることを特徴とする二次電池用電極の製造方法、及び、このような方法を用いて製造された二次電池用電極を提供する。The present invention relates to a method for manufacturing an electrode for a secondary battery in which an electrode mixture containing an electrode active material, a binder and a conductive material is applied to a current collector, wherein the current collector has an aluminum oxide (Al2O3) of 40 nm or less. A method for producing an electrode for a secondary battery, comprising improving the adhesion between the electrode mixture and the current collector by including a step of treating the surface of the current collector so that a layer is formed; And the electrode for secondary batteries manufactured using such a method is provided.

Description

本発明は、電極活物質、バインダー及び導電材を含む電極合剤がアルミニウム集電体に塗布されている二次電池用電極の製造方法及びそれを用いて製造される電極に係り、詳細には、前記集電体に40nm以下の酸化アルミニウム(Al)層が形成されるように集電体の表面を処理する過程を含むことによって、電極合剤と集電体との接着力を改善させることを特徴とする二次電池用電極の製造方法及びそれを用いて製造される電極に関する。 The present invention relates to a method for producing an electrode for a secondary battery in which an electrode mixture containing an electrode active material, a binder, and a conductive material is applied to an aluminum current collector, and an electrode produced using the method. Including the step of treating the surface of the current collector such that an aluminum oxide (Al 2 O 3 ) layer of 40 nm or less is formed on the current collector, thereby increasing the adhesive force between the electrode mixture and the current collector It is related with the manufacturing method of the electrode for secondary batteries characterized by making it improve, and the electrode manufactured using it.

モバイル機器に対する技術開発及び需要が増加するに伴い、エネルギー源としての二次電池に対する需要が急増しており、そのような二次電池の中でも、高いエネルギー密度と作動電位を示し、サイクル寿命が長く、自己放電率の低いリチウム二次電池が商用化されて広く使用されている。   As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources has increased rapidly. Among such secondary batteries, high energy density and working potential are exhibited, and cycle life is long. Lithium secondary batteries with a low self-discharge rate have been commercialized and widely used.

また、最近は、環境問題への関心が高まるにつれて、大気汚染の主要原因の一つであるガソリン車両、ディーゼル車両などの化石燃料を使用する車両を代替し得る電気自動車(EV)、ハイブリッド電気自動車(HEV)などに対する研究が多く行われている。このような電気自動車(EV)、ハイブリッド電気自動車(HEV)などの動力源としては、主にニッケル水素金属(Ni−MH)二次電池が使用されているが、高いエネルギー密度、高い放電電圧及び出力安定性のリチウム二次電池を使用する研究が活発に行われており、一部は商用化されている。   Recently, as interest in environmental problems has increased, electric vehicles (EV) and hybrid electric vehicles that can replace fossil fuel vehicles such as gasoline vehicles and diesel vehicles, which are one of the major causes of air pollution. Many studies on (HEV) have been conducted. Nickel metal hydride (Ni-MH) secondary batteries are mainly used as power sources for such electric vehicles (EV) and hybrid electric vehicles (HEV). However, high energy density, high discharge voltage and Research on the use of output-stable lithium secondary batteries has been active, and some have been commercialized.

リチウム二次電池は、電極集電体上にそれぞれ活物質が塗布されている正極と負極との間に多孔性の分離膜が介在された電極組立体に、リチウム塩を含む非水系電解質が含浸されている構造となっている。   In a lithium secondary battery, a non-aqueous electrolyte containing a lithium salt is impregnated in an electrode assembly in which a porous separation membrane is interposed between a positive electrode and a negative electrode, each of which is coated with an active material on an electrode current collector. It has become a structure.

このようなリチウム二次電池は、正極のリチウムイオンが負極に挿入及び脱離される過程を繰り返しながら、充電及び放電が進行する。電極活物質の種類によって電池の理論容量は差があるが、一般的にサイクルが進行するにつれて充電及び放電容量が低下するという問題が発生するようになる。   In such a lithium secondary battery, charging and discharging proceed while repeating the process in which lithium ions of the positive electrode are inserted and removed from the negative electrode. Although the theoretical capacity of the battery varies depending on the type of electrode active material, generally, the problem arises that the charge and discharge capacity decreases as the cycle progresses.

このような現象は、電池の充電及び放電が進行するにつれて発生する電極の体積変化によって、電極活物質間または電極活物質と集電体との間が分離されて、前記活物質がその機能を果たすことができなくなることに最も大きな原因がある。また、挿入及び脱離される過程において、負極に挿入されたリチウムイオンが十分に抜け出ることができず、負極の活性点が減少するようになり、これによって、サイクルが進行するにつれて電池の充放電容量及び寿命特性が減少することもある。   Such a phenomenon is caused by separation between electrode active materials or between an electrode active material and a current collector due to a change in the volume of the electrode that occurs as the battery is charged and discharged, and the active material performs its function. The biggest cause is the inability to fulfill. In addition, in the process of insertion and desorption, the lithium ions inserted into the negative electrode cannot be sufficiently removed, and the active point of the negative electrode is reduced, so that the charge / discharge capacity of the battery as the cycle progresses In addition, the life characteristics may be reduced.

これと関連して、バインダーは、電極活物質相互間及び電極活物質と電流集電体との間に接着力を提供し、電池の充放電による体積膨張を抑制することで、電池の特性に重要な影響を及ぼす。   In this connection, the binder provides adhesion between the electrode active materials and between the electrode active material and the current collector, and suppresses volume expansion due to charging / discharging of the battery, thereby improving battery characteristics. Has an important impact.

しかし、接着力を増加させるために、二次電池の製造工程においてバインダーを多量使用する場合、相対的に導電材または電極活物質の量が減少するため、電極の伝導性が低下し、電池容量が低下し、また、電極スラリーの濃度が過度に薄くなり得るため、電極を塗布する過程が容易でないという問題がある。   However, when a large amount of binder is used in the manufacturing process of the secondary battery in order to increase the adhesive strength, the amount of the conductive material or the electrode active material is relatively decreased, so that the conductivity of the electrode is lowered and the battery capacity is reduced. In addition, the concentration of the electrode slurry can be excessively thin, and thus there is a problem that the process of applying the electrode is not easy.

したがって、適正量のバインダーを使用しながらも、電極活物質と集電体との間に優れた接着力を提供して二次電池の性能を改善することができる技術に対する必要性が非常に高い実情である。   Therefore, there is a great need for a technology that can improve the performance of the secondary battery by providing an excellent adhesive force between the electrode active material and the current collector while using an appropriate amount of binder. It is a fact.

本発明は、上記のような従来技術の問題点及び過去から要請されてきた技術的課題を解決することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and technical problems that have been requested from the past.

本出願の発明者らは、鋭意研究と様々な実験を重ねた結果、後述するように、40nm以下の酸化アルミニウム(Al)層が形成されるようにアルミニウム集電体の表面を処理した後、電極合剤を塗布する場合、所望の効果を達成できることを見出し、本発明を完成するに至った。 As a result of intensive research and various experiments, the inventors of the present application processed the surface of the aluminum current collector so as to form an aluminum oxide (Al 2 O 3 ) layer of 40 nm or less, as will be described later. After that, when applying the electrode mixture, it was found that the desired effect can be achieved, and the present invention has been completed.

したがって、本発明は、電極活物質、バインダー及び導電材を含む電極合剤がアルミニウム集電体に塗布されている二次電池用電極の製造方法であって、前記集電体に40nm以下の酸化アルミニウム(Al)層が形成されるように集電体の表面を処理する過程を含むことによって、電極合剤と集電体との接着力を改善させることを特徴とする二次電池用電極の製造方法に関する。 Accordingly, the present invention provides a method for manufacturing an electrode for a secondary battery in which an electrode mixture containing an electrode active material, a binder and a conductive material is applied to an aluminum current collector, wherein the current collector is oxidized to 40 nm or less. A secondary battery comprising a process of treating a surface of a current collector so as to form an aluminum (Al 2 O 3 ) layer, thereby improving an adhesive force between the electrode mixture and the current collector The present invention relates to an electrode manufacturing method.

一般に、アルミニウムは、空気中の酸素と反応して酸化アルミニウム(Al)を形成するので、アルミニウム集電体の場合、空気中で1〜5nmの自然酸化アルミニウム(Al)層を形成する。 Generally, aluminum reacts with oxygen in the air to form aluminum oxide (Al 2 O 3 ), so in the case of an aluminum current collector, a natural aluminum oxide (Al 2 O 3 ) layer of 1 to 5 nm in air. Form.

このような酸化アルミニウム層は、電池セルの作動過程で発生し得るアルミニウム集電体の腐食を防止することができるだけでなく、その形態が多孔質であるので電極合剤と電極との間の接触面積を広くすることができるので、充放電サイクル特性の向上など、二次電池の諸性能を向上させることができる。   Such an aluminum oxide layer not only prevents the corrosion of the aluminum current collector that may occur in the operation process of the battery cell, but also because the form is porous, the contact between the electrode mixture and the electrode Since the area can be widened, various performances of the secondary battery such as improvement of charge / discharge cycle characteristics can be improved.

しかし、電池の高電圧充放電過程において酸化アルミニウム(Al)層は一部が分解され得るため、酸化アルミニウム層がもっと厚く形成されるようにすることが必要である。 However, since a part of the aluminum oxide (Al 2 O 3 ) layer can be decomposed during the high-voltage charge / discharge process of the battery, it is necessary to make the aluminum oxide layer thicker.

そこで、本発明は、詳細には10〜40nm、より詳細には20〜30nmの厚さにアルミニウム集電体に形成されるように表面処理を施す過程を含む。このような酸化アルミニウム層の厚さは、電極合剤との接着力を増加させながら、電池の諸性能を向上させることができる最適の範囲であり、酸化アルミニウム層が厚すぎると、電極合剤との接着力は増加するが、イオン伝導性が減少するため好ましくなく、酸化アルミニウム層が薄すぎると、本願発明の所望の電極合剤との接着力増加の効果が低下することがある。   Therefore, the present invention includes a process of performing a surface treatment so that the aluminum current collector is formed to a thickness of 10 to 40 nm in detail, and more specifically 20 to 30 nm. The thickness of such an aluminum oxide layer is an optimum range in which various performances of the battery can be improved while increasing the adhesive force with the electrode mixture. If the aluminum oxide layer is too thick, the electrode mixture However, if the aluminum oxide layer is too thin, the effect of increasing the adhesive strength with the desired electrode mixture of the present invention may be reduced.

アルミニウム集電体の表面を処理して酸化アルミニウム層を形成する方法は、当業界で公知のものであれば制限がないが、本発明におけるような特定の厚さを有する酸化アルミニウム層は、詳細には、熱処理または電気的処理を通じて形成することができる。   The method of forming the aluminum oxide layer by treating the surface of the aluminum current collector is not limited as long as it is known in the art, but the aluminum oxide layer having a specific thickness as in the present invention is detailed. Can be formed through heat treatment or electrical treatment.

一つの例として、前記熱処理は、100〜500℃の酸素雰囲気の1〜150mTorrで、0.5〜5時間行うことができ、より詳細には、200〜450℃の酸素雰囲気の30〜100mTorrで、1〜3時間行うことができる。   As an example, the heat treatment may be performed at 1 to 150 mTorr in an oxygen atmosphere at 100 to 500 ° C. for 0.5 to 5 hours, and more specifically, at 30 to 100 mTorr in an oxygen atmosphere at 200 to 450 ° C. 1 to 3 hours.

上記で定めた温度、圧力、時間の範囲は、本願発明に係る所望の厚さの酸化アルミニウム層を得るための条件であって、上記で定めた範囲を逸脱する場合、所望の効果を得ることができないため好ましくない。   The temperature, pressure, and time ranges defined above are conditions for obtaining an aluminum oxide layer having a desired thickness according to the present invention, and when deviating from the ranges defined above, a desired effect is obtained. It is not preferable because it cannot be done.

他の例として、前記電気的処理は、30〜300Vの印加電圧で1mA/cm〜200mA/cmの電流密度下で、1〜5時間行うことができる。このような電気的処理は、集電体に電圧を印加して、電極酸化方式に従って行われ、硫酸10〜20%程度のような酸性溶液に集電体を担持して行われてもよい。 As another example, the electrical treatment, under a current density of 1mA / cm 2 ~200mA / cm 2 at an applied voltage of 30~300V, can be carried out from 1 to 5 hours. Such electrical treatment is performed according to an electrode oxidation method by applying a voltage to the current collector, and may be performed by supporting the current collector in an acidic solution such as about 10 to 20% sulfuric acid.

このような熱処理条件または電気的物質処理条件は、本願発明で定めるアルミニウム集電体の表面に形成される酸化アルミニウムの厚さを形成できる条件において決定できることは勿論である。   Such heat treatment conditions or electrical material treatment conditions can of course be determined under conditions that can form the thickness of the aluminum oxide formed on the surface of the aluminum current collector defined in the present invention.

前記電極は、正極又は負極、または、正極及び負極であってもよい。   The electrode may be a positive electrode or a negative electrode, or a positive electrode and a negative electrode.

二次電池用正極は、正極集電体上に正極活物質、導電材及びバインダーの混合物を塗布した後、乾燥及びプレスして製造され、必要によっては、前記混合物に充填剤をさらに添加することもある。   A positive electrode for a secondary battery is manufactured by applying a mixture of a positive electrode active material, a conductive material and a binder on a positive electrode current collector, followed by drying and pressing, and if necessary, further adding a filler to the mixture. There is also.

前記正極集電体は、一般に3〜500μmの厚さに製造する。このような正極集電体は、当該電池に化学的変化を誘発せずに高い導電性を有するものであれば、特に制限されるものではないが、上述したように、アルミニウムであってもよい。   The positive electrode current collector is generally manufactured to a thickness of 3 to 500 μm. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without inducing a chemical change in the battery, but may be aluminum as described above. .

前記正極活物質は、下記化学式1で表されるスピネル構造のリチウム金属酸化物を含むことができる。   The positive electrode active material may include a lithium metal oxide having a spinel structure represented by the following chemical formula 1.

LiMn2−y4−z (化学式1) Li x M y Mn 2-y O 4-z A z ( Formula 1)

上記式中、0.9≦x≦1.2、0<y<2、0≦z<0.2であり、Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される一つ以上の元素であり;Aは、−1または−2価の一つ以上のアニオンである。   In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y <2, 0 ≦ z <0.2, and M is Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu , B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti and Bi are one or more elements; A is one or more of −1 or −2 Anion.

前記リチウム金属酸化物は、より詳細には、下記化学式2で表すことができる。   More specifically, the lithium metal oxide can be represented by the following chemical formula 2.

LiNiMn2−y (化学式2) Li x Ni y Mn 2-y O 4 ( Chemical Formula 2)

上記式中、0.9≦x≦1.2、0.4≦y≦0.5であり;前記リチウム金属酸化物は、より詳細には、LiNi0.5Mn1.5またはLiNi0.4Mn1.6であってもよい。 In the above formula, 0.9 ≦ x ≦ 1.2 and 0.4 ≦ y ≦ 0.5; the lithium metal oxide is more specifically LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 may also be used.

但し、追加的に、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)などの層状化合物や、1またはそれ以上の遷移金属で置換された化合物;化学式Li1+xMn2−x(ここで、xは0〜0.33である。)、LiMnO、LiMn、LiMnOなどのリチウムマンガン酸化物;リチウム銅酸化物(LiCuO);LiV、LiFe、V、Cuなどのバナジウム酸化物;化学式LiNi1−x(ここで、M=Co、Mn、Al、Cu、Fe、Mg、BまたはGaであり、x=0.01〜0.3である。)で表されるNiサイト型リチウムニッケル酸化物;化学式LiMn2−x(ここで、M=Co、Ni、Fe、Cr、ZnまたはTaであり、x=0.01〜0.1である。)またはLiMnMO(ここで、M=Fe、Co、Ni、CuまたはZnである。)で表されるリチウムマンガン複合酸化物;LiNiMn2−xで表されるスピネル構造のリチウムマンガン複合酸化物(x=0.01〜0.6である。);化学式のLiの一部がアルカリ土金属イオンで置換されたLiMn;ジスルフィド化合物;Fe(MoOなどが含まれてもよい。 However, in addition, a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ) or a compound substituted with one or more transition metals; chemical formula Li 1 + x Mn 2−x O 4 (here, x is 0 to 0.33), lithium manganese oxide such as LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); LiV 3 O 8 , Vanadium oxides such as LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 ; chemical formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or a Ga, is x = 0.01 to 0.3 Ni site type lithium nickel oxide represented by);. formula LiMn 2-x M x O 2 ( where, M = C , Ni, a Fe, Cr, Zn or Ta, is x = 0.01 to 0.1.) Or Li 2 Mn 3 MO 8 (wherein is M = Fe, Co, Ni, Cu or Zn Lithium manganese composite oxide represented by LiNi x Mn 2−x O 4 , a lithium manganese composite oxide having a spinel structure represented by LiNi x Mn 2−x O 4 (x = 0.01 to 0.6); LiMn 2 O 4 partially substituted with alkaline earth metal ions; a disulfide compound; Fe 2 (MoO 4 ) 3 and the like may be included.

前記導電材は、通常、正極活物質を含んだ混合物全体の重量を基準として1〜50重量%で添加される。このような導電材は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維や金属繊維などの導電性繊維;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などを使用することができる。   The conductive material is usually added at 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material. Such a conductive material is not particularly limited as long as it has conductivity without inducing a chemical change in the battery. For example, graphite such as natural graphite or artificial graphite; carbon black, acetylene Carbon black such as black, ketjen black, channel black, furnace black, lamp black and thermal black; conductive fiber such as carbon fiber and metal fiber; metal powder such as carbon fluoride, aluminum and nickel powder; zinc oxide, titanium Conductive whiskers such as potassium acid; conductive metal oxides such as titanium oxide; conductive materials such as polyphenylene derivatives can be used.

前記バインダーは、活物質と導電材などの結合及び集電体に対する結合を助ける成分であって、通常、正極活物質を含む混合物全体の重量を基準として1〜50重量%で添加される。このようなバインダーの例としては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、様々な共重合体などを挙げることができる。   The binder is a component that assists the binding between the active material and the conductive material and the current collector, and is usually added at 1 to 50% by weight based on the total weight of the mixture including the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, fluororubber, various copolymers and the like.

前記充填剤は、正極の膨張を抑制する成分として選択的に使用され、当該電池に化学的変化を誘発せずに繊維状材料であれば特に制限されるものではなく、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質が使用される。   The filler is selectively used as a component for suppressing the expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without inducing a chemical change in the battery. For example, polyethylene, polypropylene, etc. Olefin polymers of the above; fibrous materials such as glass fibers and carbon fibers are used.

反面、前記負極は、負極集電体上に負極活物質を塗布、乾燥及びプレスして製造され、必要に応じて、上述したような導電材、バインダー、充填剤などを選択的にさらに含むことができる。   On the other hand, the negative electrode is manufactured by applying a negative electrode active material on a negative electrode current collector, drying and pressing, and optionally further includes a conductive material, a binder, a filler, and the like as described above. Can do.

前記負極集電体は、一般に3〜500μmの厚さに製造される。このような負極集電体は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特に制限されるものではないが、上述したように、アルミニウムであってもよい。   The negative electrode current collector is generally manufactured to a thickness of 3 to 500 μm. Such a negative electrode current collector is not particularly limited as long as it has conductivity without inducing a chemical change in the battery, but may be aluminum as described above.

前記負極活物質は、下記化学式3で表されるリチウム金属酸化物を含むことができる。   The negative electrode active material may include a lithium metal oxide represented by the following chemical formula 3.

LiM’4−c (化学式3) Li a M ′ b O 4-c Ac (Chemical Formula 3)

上記式中、M’は、Ti、Sn、Cu、Pb、Sb、Zn、Fe、In、Al及びZrからなる群から選択される一つ以上の元素であり;a及びbは、0.1≦a≦4、0.2≦b≦4の範囲でM’の酸化数(oxidation number)によって決定され;cは、0≦c<0.2の範囲でAの酸化数によって決定され;Aは、−1または−2価の一つ以上のアニオンである。   In the above formula, M ′ is one or more elements selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al, and Zr; Determined by the oxidation number of M ′ in the range of ≦ a ≦ 4, 0.2 ≦ b ≦ 4; c is determined by the oxidation number of A in the range of 0 ≦ c <0.2; Is one or more anions having a valence of −1 or −2.

前記リチウム金属酸化物は、下記化学式4で表すことができる。   The lithium metal oxide can be represented by the following chemical formula 4.

LiTi (化学式4) Li a Ti b O 4 (Chemical Formula 4)

より詳細には、前記リチウム金属酸化物は、Li1.33Ti1.67またはLiTiであってもよい。 More specifically, the lithium metal oxide may be Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 .

但し、追加的に、難黒鉛化炭素、黒鉛系炭素などの炭素;LiFe(0≦x≦1)、LiWO(0≦x≦1)、SnMe1−xMe’(Me:Mn、Fe、Pb、Ge;Me’:Al、B、P、Si、周期律表の1族、2族、3族元素、ハロゲン;0<x≦1;1≦y≦3;1≦z≦8)などの金属複合酸化物;リチウム金属;リチウム合金;ケイ素系合金;錫系合金;SnO、SnO、PbO、PbO、Pb、Pb、Sb、Sb、Sb、GeO、GeO、Bi、Bi、Biなどの金属酸化物;ポリアセチレンなどの導電性高分子;Li−Co−Ni系材料;チタン酸化物;リチウムチタン酸化物などを使用することができる。 However, in addition, carbon such as non-graphitizable carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ≦ x ≦ 1), Li x WO 2 (0 ≦ x ≦ 1), Sn x Me 1-x Me ′ y O z (Me: Mn, Fe, Pb, Ge; Me ′: Al, B, P, Si, Group 1, Group 2, Group 3 element of the periodic table, halogen; 0 <x ≦ 1; 1 ≦ y ≦ 3; 1 ≦ z ≦ 8), etc .; lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , metal oxides such as Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , Bi 2 O 5 ; conductive polymers such as polyacetylene; Li-Co-Ni materials; titanium oxide; lithium titanium oxide can be used. That.

一つの例において、前記負極活物質としてリチウムチタン酸化物(LTO)を使用する場合、LTO自体の電子伝導度が低いので、上記のような電極構造であり得る。また、この場合、LTOの高い電位によって、相対的に高電位を有するLiNiMn2−x(x=0.01〜0.6である。)のスピネルリチウムマンガン複合酸化物を正極活物質として使用することができる。 In one example, when lithium titanium oxide (LTO) is used as the negative electrode active material, since the electronic conductivity of LTO itself is low, the electrode structure may be as described above. Further, in this case, the spinel lithium manganese composite oxide of LiNi x Mn 2−x O 4 (x = 0.01 to 0.6) having a relatively high potential is activated by the high potential of LTO. Can be used as a substance.

このようなリチウムチタン酸化物(LTO)及びLiNiMn2−x(x=0.01〜0.6である。)のスピネルリチウムマンガン複合酸化物を電極活物質として使用する電池は、高電圧を示すため、充放電過程でアルミニウム集電体の腐食が激しくなることがある。しかし、本発明に係る二次電池は、酸化アルミニウムが所定の厚さに形成されている二次電池用電極を使用するので、高電圧でもアルミニウム集電体の腐食を防止することができるので、優れた充放電サイクル特性を示すことができる。 Cells using such lithium titanium oxide (LTO), and LiNi (a x = 0.01~0.6.) X Mn 2 -x O 4 spinel lithium-manganese composite oxide as an electrode active material, Since the high voltage is exhibited, corrosion of the aluminum current collector may become severe during the charge / discharge process. However, since the secondary battery according to the present invention uses a secondary battery electrode in which aluminum oxide is formed to a predetermined thickness, corrosion of the aluminum current collector can be prevented even at a high voltage. Excellent charge / discharge cycle characteristics can be exhibited.

また、本発明は、40nmの酸化アルミニウム(Al)層が形成されているAl集電体に、電極活物質、導電材、バインダーを含む電極合剤が塗布されていることを特徴とする二次電池用電極を提供する。前記酸化アルミニウム層は、上述したように、詳細には10〜40nm、より詳細には20〜30nmの厚さに形成することができる。 Further, the present invention is characterized in that an electrode mixture containing an electrode active material, a conductive material, and a binder is applied to an Al current collector on which a 40 nm aluminum oxide (Al 2 O 3 ) layer is formed. An electrode for a secondary battery is provided. As described above, the aluminum oxide layer can be formed to a thickness of 10 to 40 nm in detail, and more specifically 20 to 30 nm.

前記電極活物質は、正極活物質又は負極活物質、または、正極活物質及び負極活物質であり、前記正極活物質は、下記化学式1で表されるスピネル構造のリチウム金属酸化物を含み、前記負極活物質は、下記化学式3で表される酸化物を含むことができる。   The electrode active material is a positive electrode active material or a negative electrode active material, or a positive electrode active material and a negative electrode active material, and the positive electrode active material includes a lithium metal oxide having a spinel structure represented by the following chemical formula 1, The negative electrode active material can include an oxide represented by Chemical Formula 3 below.

LiMn2−y4−z (化学式1)
LiM’4−c (化学式3)
Li x M y Mn 2-y O 4-z A z ( Formula 1)
Li a M ′ b O 4-c Ac (Chemical Formula 3)

上記式中、0.9≦x≦1.2、0<y<2、0≦z<0.2であり、
Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される一つ以上の元素であり、
Aは、−1または−2価の一つ以上のアニオンである。
In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y <2, 0 ≦ z <0.2,
M is one selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi. Two or more elements,
A is one or more anions having a valence of −1 or −2.

上記式中、M’は、Ti、Sn、Cu、Pb、Sb、Zn、Fe、In、Al及びZrからなる群から選択される一つ以上の元素であり、
a及びbは、0.1≦a≦4、0.2≦b≦4の範囲でM’の酸化数(oxidation number)によって決定され、
cは、0≦c<0.2の範囲でAの酸化数によって決定され、
Aは、−1または−2価の一つ以上のアニオンである。
In the above formula, M ′ is one or more elements selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al, and Zr.
a and b are determined by an oxidation number of M ′ within a range of 0.1 ≦ a ≦ 4 and 0.2 ≦ b ≦ 4,
c is determined by the oxidation number of A in the range 0 ≦ c <0.2;
A is one or more anions having a valence of −1 or −2.

前記正極活物質及び負極活物質は、上述したように限定することができ、詳細には、正極活物質はLiNi0.5Mn1.5またはLiNi0.4Mn1.6であってもよく、負極活物質はLi1.33Ti1.67またはLiTiであってもよい。 The positive electrode active material and the negative electrode active material may be limited as described above. In detail, the positive electrode active material may be LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4 . The negative electrode active material may be Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 .

このような二次電池用電極は、上述したような製造方法で製造できることは勿論である。   Of course, such an electrode for a secondary battery can be manufactured by the manufacturing method as described above.

また、本発明は、前記正極と負極との間に分離膜が介在した構造の電極組立体に、リチウム塩含有電解液が含浸されている構造からなる、二次電池を提供する。   The present invention also provides a secondary battery having a structure in which a lithium salt-containing electrolyte is impregnated in an electrode assembly having a structure in which a separation membrane is interposed between the positive electrode and the negative electrode.

前記分離膜は、正極と負極との間に介在し、高いイオン透過度及び機械的強度を有する絶縁性の薄い薄膜が使用される。一般に、分離膜の気孔径は0.01〜10μmで、厚さは5〜300μmである。このような分離膜としては、例えば、耐化学性及び疎水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維またはポリエチレンなどで作られたシートや不織布などが使用される。電解質としてポリマーなどの固体電解質が使用される場合には、固体電解質が分離膜を兼ねることもできる。   As the separation membrane, an insulating thin film having high ion permeability and mechanical strength is used between the positive electrode and the negative electrode. Generally, the pore size of the separation membrane is 0.01 to 10 μm and the thickness is 5 to 300 μm. As such a separation membrane, for example, a chemically resistant and hydrophobic olefin polymer such as polypropylene; a sheet or a nonwoven fabric made of glass fiber or polyethylene is used. When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte can also serve as a separation membrane.

前記リチウム塩含有電解液は電解液及びリチウム塩からなっており、前記電解液としては、非水系有機溶媒、有機固体電解質、無機固体電解質などが使用されるが、これらに限定されるものではない。   The lithium salt-containing electrolytic solution is composed of an electrolytic solution and a lithium salt. As the electrolytic solution, a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, or the like is used, but is not limited thereto. .

前記非水系有機溶媒としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロキシフラン(franc)、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒を使用することができる。   Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, and tetrahydroxyfuran (franc). 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1 , 3-Dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propion It can be used aprotic organic solvent such as ethyl.

前記有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリエジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などを使用することができる。   Examples of the organic solid electrolyte include a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an aggregation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, and an ionic dissociation group. A polymer etc. can be used.

前記無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩などを使用することができる。 Examples of the inorganic solid electrolyte, for example, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, LiSiO 4, LiSiO 4 -LiI-LiOH, Li 2 SiS 3, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, Li nitrides such as Li 3 PO 4 -Li 2 S- SiS 2, halides, etc. can be used sulfate.

前記リチウム塩は、前記非水系電解質に溶解しやすい物質であって、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、四フェニルホウ酸リチウム、イミドなどを使用することができる。 The lithium salt is a substance that is easily dissolved in the non-aqueous electrolyte. For example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium tetraphenylborate, imide and the like can be used.

また、電解液には、充放電特性、難燃性などの改善の目的で、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが添加されてもよい。場合によっては、不燃性を付与するために、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒をさらに含ませることもでき、高温保存特性を向上させるために二酸化炭酸ガスをさらに含ませることもでき、FEC(Fluoro−Ethylene Carbonate)、PRS(Propene sultone)などをさらに含ませることができる。   In addition, for the purpose of improving charge / discharge characteristics, flame retardancy, etc., for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene. Derivatives, sulfur, quinoneimine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, aluminum trichloride and the like may be added. In some cases, a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further added to impart incombustibility, and a carbon dioxide gas may be further included to improve high-temperature storage characteristics. Further, FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), and the like can be further included.

一つの例において、LiPF、LiClO、LiBF、LiN(SOCFなどのリチウム塩を、高誘電性溶媒であるECまたはPCの環状カーボネートと、低粘度溶媒であるDEC、DMCまたはEMCの線状カーボネートとの混合溶媒に添加して、リチウム塩含有非水系電解質を製造することができる。 In one example, a lithium salt such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , EC or PC cyclic carbonate as a high dielectric solvent, and DEC, DMC as low viscosity solvents. Or it can add to the mixed solvent with the linear carbonate of EMC, and lithium salt containing non-aqueous electrolyte can be manufactured.

本発明はまた、前記二次電池を単位電池として含む電池モジュールを提供し、前記電池モジュールを含む電池パックを提供する。   The present invention also provides a battery module including the secondary battery as a unit battery, and a battery pack including the battery module.

前記電池パックは、高温安定性、長いサイクル特性及び高いレート特性などが要求される中大型デバイスの電源として使用することができる。   The battery pack can be used as a power source for medium- and large-sized devices that require high-temperature stability, long cycle characteristics, and high rate characteristics.

前記中大型デバイスの例としては、電気的モータによって動力を受けて動くパワーツール(power tool);電気自動車(Electric Vehicle、EV)、ハイブリッド電気自動車(Hybrid Electric Vehicle、HEV)、プラグインハイブリッド電気自動車(Plug−in Hybrid Electric Vehicle、PHEV)などを含む電気車;電気自転車(E−bike)、電気スクーター(E−scooter)を含む電気二輪車;電気ゴルフカート(electric golf cart);電力貯蔵用システムなどを挙げることができるが、これに限定されるものではない。   Examples of the medium- and large-sized devices include a power tool that is powered by an electric motor; an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid electric vehicle. (Plug-in Hybrid Electric Vehicle, PHEV) and the like; Electric bicycles (E-bikes), Electric motorcycles including electric scooters (E-scooters); Electric golf carts; Electric power storage systems, etc. However, the present invention is not limited to this.

<実施例1>
アルミニウム集電体を、200℃の酸素雰囲気の50mTorrで、2時間熱処理を施して、アルミニウム集電体の表面に酸化アルミニウム(Al)層が形成されるようにした。その後、LiNi0.5Mn1.5(正極活物質)90重量%、Super−P(導電剤)5重量%及びPVdF(結合剤)5重量%をNMPに添加して製造した正極合剤を、上記で製造されたアルミニウム集電体に塗布して、二次電池用正極を製造した。
<Example 1>
The aluminum current collector was subjected to heat treatment at 50 mTorr in an oxygen atmosphere at 200 ° C. for 2 hours so that an aluminum oxide (Al 2 O 3 ) layer was formed on the surface of the aluminum current collector. Thereafter, 90% by weight of LiNi 0.5 Mn 1.5 O 4 (positive electrode active material), 5% by weight of Super-P (conductive agent) and 5% by weight of PVdF (binder) were added to NMP to produce the positive electrode composite. The agent was applied to the aluminum current collector produced above to produce a positive electrode for a secondary battery.

<実施例2>
実施例1において、400℃の酸素雰囲気の50mTorrで、2時間熱処理を施して、アルミニウム集電体の表面に酸化アルミニウム(Al)層が形成されるようにしたこと以外は、実施例1と同様の方法で二次電池用正極を製造した。
<Example 2>
In Example 1, except that an aluminum oxide (Al 2 O 3 ) layer was formed on the surface of the aluminum current collector by heat treatment at 50 mTorr in an oxygen atmosphere at 400 ° C. for 2 hours. The positive electrode for secondary batteries was manufactured by the same method as 1.

<実施例3>
実施例1において、200℃の酸素雰囲気の100mTorrで、2時間熱処理を施して、アルミニウム集電体の表面に酸化アルミニウム(Al)層が形成されるようにしたこと以外は、実施例1と同様の方法で二次電池用正極を製造した。
<Example 3>
In Example 1, except that an aluminum oxide (Al 2 O 3 ) layer was formed on the surface of the aluminum current collector by performing heat treatment at 100 mTorr in an oxygen atmosphere at 200 ° C. for 2 hours. The positive electrode for secondary batteries was manufactured by the same method as 1.

<実施例4>
実施例1において、400℃の酸素雰囲気の100mTorrで、2時間熱処理を施して、アルミニウム集電体の表面に酸化アルミニウム(Al)層が形成されるようにしたこと以外は、実施例1と同様の方法で二次電池用正極を製造した。
<Example 4>
In Example 1, except that an aluminum oxide (Al 2 O 3 ) layer was formed on the surface of the aluminum current collector by performing heat treatment at 100 mTorr in an oxygen atmosphere at 400 ° C. for 2 hours. The positive electrode for secondary batteries was manufactured by the same method as 1.

<実施例5>
実施例1において、100℃の酸素雰囲気の50mTorrで、2時間熱処理を施して、アルミニウム集電体の表面に酸化アルミニウム(Al)層が形成されるようにしたこと以外は、実施例1と同様の方法で二次電池用正極を製造した。
<Example 5>
In Example 1, except that an aluminum oxide (Al 2 O 3 ) layer was formed on the surface of the aluminum current collector by performing heat treatment for 2 hours at 50 mTorr in an oxygen atmosphere at 100 ° C. The positive electrode for secondary batteries was manufactured by the same method as 1.

<実施例6>
アルミニウム集電体上に熱処理を施していないこと以外は、実施例1と同様の方法で二次電池用正極を製造した。
<Example 6>
A positive electrode for a secondary battery was produced in the same manner as in Example 1 except that no heat treatment was performed on the aluminum current collector.

<実験例1>
上記実施例1〜6で製造された正極の酸化アルミニウム層の厚さ及び接着力を測定して、下記表1に示す。
<Experimental example 1>
The thickness and adhesion of the aluminum oxide layer of the positive electrode produced in Examples 1 to 6 above were measured and shown in Table 1 below.

Figure 2015513192
Figure 2015513192

上記表1によれば、実施例1〜6において、温度または圧力が大きくなるほど、アルミニウムと酸素がよく反応して、酸化アルミニウム層の厚さが大きくなることがわかり、酸化アルミニウムの厚さが大きくなるほど、接着力が増加することがわかる。   According to Table 1 above, it can be seen that in Examples 1 to 6, as the temperature or pressure increases, aluminum and oxygen react well to increase the thickness of the aluminum oxide layer, and the thickness of the aluminum oxide increases. It can be seen that the adhesive force increases.

以上説明したように、本発明に係る二次電池用電極の製造方法は、所定の厚さを有する酸化アルミニウム(Al)層が形成されるようにアルミニウム集電体の表面を処理する過程を含むことで、集電体の表面積を増加させることによって、集電体と電極合剤との接着力を向上させ、充放電サイクル特性の向上など、二次電池の諸性能を向上させることができる。 As described above, in the method for manufacturing an electrode for a secondary battery according to the present invention, the surface of the aluminum current collector is treated so that an aluminum oxide (Al 2 O 3 ) layer having a predetermined thickness is formed. Increasing the surface area of the current collector by including the process, improving the adhesion between the current collector and the electrode mixture, and improving the performance of the secondary battery, such as improved charge / discharge cycle characteristics Can do.

本発明の属する分野における通常の知識を有する者であれば、上記内容に基づいて本発明の範疇内で様々な応用及び変形を行うことが可能であろう。   A person having ordinary knowledge in the field to which the present invention belongs can make various applications and modifications within the scope of the present invention based on the above contents.

Claims (22)

電極活物質、バインダー及び導電材を含む電極合剤がアルミニウム集電体に塗布されている二次電池用電極の製造方法であって、前記集電体に40nm以下の酸化アルミニウム層が形成されるように前記集電体の表面を処理する過程を含み、前記電極合剤と前記集電体との接着力を改善させることを特徴とする、二次電池用電極の製造方法。   A method for manufacturing an electrode for a secondary battery in which an electrode mixture containing an electrode active material, a binder and a conductive material is applied to an aluminum current collector, wherein an aluminum oxide layer of 40 nm or less is formed on the current collector Thus, the process of treating the surface of the said collector is improved, The adhesive force of the said electrode mixture and the said collector is improved, The manufacturing method of the electrode for secondary batteries characterized by the above-mentioned. 前記集電体に10〜40nmの酸化アルミニウム層が形成されるように前記集電体の表面を処理する過程を含むことを特徴とする、請求項1に記載の二次電池用電極の製造方法。   2. The method of manufacturing an electrode for a secondary battery according to claim 1, comprising a step of treating a surface of the current collector such that an aluminum oxide layer having a thickness of 10 to 40 nm is formed on the current collector. . 前記集電体に20〜30nmの酸化アルミニウム層が形成されるように前記集電体の表面を処理する過程を含むことを特徴とする、請求項2に記載の二次電池用電極の製造方法。   The method of manufacturing an electrode for a secondary battery according to claim 2, comprising a step of treating a surface of the current collector such that an aluminum oxide layer having a thickness of 20 to 30 nm is formed on the current collector. . 前記表面処理過程は、熱処理または電気的処理を通じて行われることを特徴とする、請求項1に記載の二次電池用電極の製造方法。   The method of claim 1, wherein the surface treatment process is performed through heat treatment or electrical treatment. 前記熱処理は、100〜500℃の酸素雰囲気の1〜150mTorrで行われることを特徴とする、請求項4に記載の二次電池用電極の製造方法。   5. The method of manufacturing an electrode for a secondary battery according to claim 4, wherein the heat treatment is performed at 1 to 150 mTorr in an oxygen atmosphere at 100 to 500 ° C. 6. 前記熱処理は、200〜450℃の酸素雰囲気の30〜100mTorrで行われることを特徴とする、請求項5に記載の二次電池用電極の製造方法。   The method for manufacturing an electrode for a secondary battery according to claim 5, wherein the heat treatment is performed at 30 to 100 mTorr in an oxygen atmosphere at 200 to 450C. 前記電気的処理は、30〜300Vの印加電圧で、1mA/cm〜200mA/cmの電流密度下で行われることを特徴とする、請求項4に記載の二次電池用電極の製造方法。 The electrical treatment at an applied voltage of 30~300V, 1mA / cm 2 and wherein the carried out that at a current density of a ~200mA / cm 2, the manufacturing method of the secondary battery electrode according to claim 4 . 前記電極は、正極又は負極、または、正極及び負極であることを特徴とする、請求項1に記載の二次電池用電極の製造方法。   The method for producing an electrode for a secondary battery according to claim 1, wherein the electrode is a positive electrode or a negative electrode, or a positive electrode and a negative electrode. 前記正極は、正極活物質として、下記化学式1で表されるスピネル構造のリチウム金属酸化物を含むことを特徴とする、請求項8に記載の二次電池用電極の製造方法:
LiMn2−y4−z (化学式1)
上記式中、0.9≦x≦1.2、0<y<2、0≦z<0.2であり、
Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される一つ以上の元素であり、
Aは、−1または−2価の一つ以上のアニオンである。
The method for manufacturing an electrode for a secondary battery according to claim 8, wherein the positive electrode includes a lithium metal oxide having a spinel structure represented by the following chemical formula 1 as a positive electrode active material:
Li x M y Mn 2-y O 4-z A z ( Formula 1)
In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y <2, 0 ≦ z <0.2,
M is one selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi. Two or more elements,
A is one or more anions having a valence of −1 or −2.
前記リチウム金属酸化物は、下記化学式2で表されることを特徴とする、請求項9に記載の二次電池用電極の製造方法:
LiNiMn2−y (化学式2)
上記式中、0.9≦x≦1.2、0.4≦y≦0.5である。
The method for producing an electrode for a secondary battery according to claim 9, wherein the lithium metal oxide is represented by the following chemical formula 2:
Li x Ni y Mn 2-y O 4 ( Chemical Formula 2)
In the above formula, 0.9 ≦ x ≦ 1.2 and 0.4 ≦ y ≦ 0.5.
前記リチウム金属酸化物は、LiNi0.5Mn1.5またはLiNi0.4Mn1.6であることを特徴とする、請求項10に記載の二次電池用電極の製造方法。 11. The method of manufacturing an electrode for a secondary battery according to claim 10, wherein the lithium metal oxide is LiNi 0.5 Mn 1.5 O 4 or LiNi 0.4 Mn 1.6 O 4. . 前記負極は、負極活物質として、下記化学式3で表されるリチウム金属酸化物を含むことを特徴とする、請求項8に記載の二次電池用電極の製造方法:
LiM’4−c (化学式3)
上記式中、M’は、Ti、Sn、Cu、Pb、Sb、Zn、Fe、In、Al及びZrからなる群から選択される一つ以上の元素であり、
a及びbは、0.1≦a≦4、0.2≦b≦4の範囲でM’の酸化数によって決定され、
cは、0≦c<0.2の範囲でAの酸化数によって決定され、
Aは、−1または−2価の一つ以上のアニオンである。
The method for producing an electrode for a secondary battery according to claim 8, wherein the negative electrode includes a lithium metal oxide represented by the following chemical formula 3 as a negative electrode active material:
Li a M ′ b O 4-c Ac (Chemical Formula 3)
In the above formula, M ′ is one or more elements selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al, and Zr.
a and b are determined by the oxidation number of M ′ within the range of 0.1 ≦ a ≦ 4 and 0.2 ≦ b ≦ 4,
c is determined by the oxidation number of A in the range 0 ≦ c <0.2;
A is one or more anions having a valence of −1 or −2.
前記リチウム金属酸化物は、下記化学式4で表されることを特徴とする、請求項12に記載の二次電池用電極の製造方法:
LiTi (化学式4)
上記式中、0.5≦a≦3、1≦b≦2.5である。
The method for manufacturing an electrode for a secondary battery according to claim 12, wherein the lithium metal oxide is represented by the following chemical formula 4:
Li a Ti b O 4 (Chemical Formula 4)
In the above formula, 0.5 ≦ a ≦ 3 and 1 ≦ b ≦ 2.5.
前記リチウム金属酸化物は、Li1.33Ti1.67またはLiTiであることを特徴とする、請求項13に記載の二次電池用電極の製造方法。 The method of manufacturing an electrode for a secondary battery according to claim 13, wherein the lithium metal oxide is Li 1.33 Ti 1.67 O 4 or LiTi 2 O 4 . 電極活物質、バインダー及び導電材を含む電極合剤がアルミニウム集電体に塗布されている二次電池用電極であって、前記集電体に40nm以下の酸化アルミニウム層が形成されていることを特徴とする、二次電池用電極。   It is an electrode for a secondary battery in which an electrode mixture containing an electrode active material, a binder and a conductive material is applied to an aluminum current collector, and an aluminum oxide layer of 40 nm or less is formed on the current collector A secondary battery electrode. 前記電極活物質は、正極活物質又は負極活物質、または、正極活物質及び負極活物質であり、前記正極活物質は、下記化学式1で表されるスピネル構造のリチウム金属酸化物を含み、前記負極活物質は、下記化学式3で表される酸化物を含むことを特徴とする、請求項15に記載の二次電池用電極:
LiMn2−y4−z (化学式1)
LiM’4−c (化学式3)
上記式中、0.9≦x≦1.2、0<y<2、0≦z<0.2であり、
Mは、Al、Mg、Ni、Co、Fe、Cr、V、Ti、Cu、B、Ca、Zn、Zr、Nb、Mo、Sr、Sb、W、Ti及びBiからなる群から選択される一つ以上の元素であり、
Aは、−1または−2価の一つ以上のアニオンであり、
M’は、Ti、Sn、Cu、Pb、Sb、Zn、Fe、In、Al及びZrからなる群から選択される一つ以上の元素であり、
a及びbは、0.1≦a≦4、0.2≦b≦4の範囲でM’の酸化数によって決定され、
cは、0≦c<0.2の範囲でAの酸化数によって決定され、
Aは、−1または−2価の一つ以上のアニオンである。
The electrode active material is a positive electrode active material or a negative electrode active material, or a positive electrode active material and a negative electrode active material, and the positive electrode active material includes a lithium metal oxide having a spinel structure represented by the following chemical formula 1, The electrode for a secondary battery according to claim 15, wherein the negative electrode active material includes an oxide represented by the following chemical formula 3:
Li x M y Mn 2-y O 4-z A z ( Formula 1)
Li a M ′ b O 4-c Ac (Chemical Formula 3)
In the above formula, 0.9 ≦ x ≦ 1.2, 0 <y <2, 0 ≦ z <0.2,
M is one selected from the group consisting of Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti, and Bi. Two or more elements,
A is one or more −1 or −2 anions,
M ′ is one or more elements selected from the group consisting of Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al, and Zr,
a and b are determined by the oxidation number of M ′ within the range of 0.1 ≦ a ≦ 4 and 0.2 ≦ b ≦ 4,
c is determined by the oxidation number of A in the range 0 ≦ c <0.2;
A is one or more anions having a valence of −1 or −2.
請求項15に記載の電極を含むことを特徴とする、二次電池。   A secondary battery comprising the electrode according to claim 15. 前記二次電池はリチウム二次電池であることを特徴とする、請求項17に記載の二次電池。   The secondary battery according to claim 17, wherein the secondary battery is a lithium secondary battery. 請求項18に記載の二次電池を単位電池として含むことを特徴とする、電池モジュール。   A battery module comprising the secondary battery according to claim 18 as a unit battery. 請求項19に記載の電池モジュールを含むことを特徴とする、電池パック。   A battery pack comprising the battery module according to claim 19. 請求項20に記載の電池パックを含むことを特徴とする、デバイス。   A device comprising the battery pack according to claim 20. 前記デバイスは、電気自動車、ハイブリッド電気自動車、プラグインハイブリッド電気自動車、または電力貯蔵用システムであることを特徴とする、請求項21に記載のデバイス。   The device of claim 21, wherein the device is an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage system.
JP2014560867A 2012-04-17 2013-04-17 Secondary battery manufacturing method and secondary battery manufactured using the same Active JP6058038B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0039451 2012-04-17
KR20120039451 2012-04-17
PCT/KR2013/003214 WO2013157832A1 (en) 2012-04-17 2013-04-17 Method of manufacturing electrode for lithium secondary cell and electrode manufactured by using same

Publications (2)

Publication Number Publication Date
JP2015513192A true JP2015513192A (en) 2015-04-30
JP6058038B2 JP6058038B2 (en) 2017-01-11

Family

ID=49383719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560867A Active JP6058038B2 (en) 2012-04-17 2013-04-17 Secondary battery manufacturing method and secondary battery manufactured using the same

Country Status (6)

Country Link
US (1) US9673444B2 (en)
EP (1) EP2811562B1 (en)
JP (1) JP6058038B2 (en)
KR (2) KR101542052B1 (en)
CN (1) CN104321915A (en)
WO (1) WO2013157832A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224402A (en) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 All-solid battery and manufacturing method for the all-solid battery
JP2019160513A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Positive electrode, lithium ion secondary battery, and manufacturing method of positive electrode

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205463A (en) * 2012-04-18 2014-12-10 株式会社Lg化学 Electrode assembly and lithium secondary battery including same
CN107154499B (en) * 2017-04-14 2020-05-15 宁德时代新能源科技股份有限公司 Lithium battery containing current collector and preparation method thereof
CN107123812B (en) * 2017-04-14 2020-05-19 宁德时代新能源科技股份有限公司 Positive current collector, and preparation method and application thereof
KR102469471B1 (en) * 2017-12-14 2022-11-21 주식회사 엘지에너지솔루션 Cathode for lithium rechargeable battery, and lithium rechargeable battery including the same
US10886523B2 (en) * 2018-05-24 2021-01-05 Xerion Advanced Battery Corporation Electroplating lithiated transition metal oxides using low purity starting precursors
CN110660993B (en) * 2018-06-29 2021-02-09 宁德时代新能源科技股份有限公司 Negative pole piece, preparation method thereof and electrochemical device
KR102438851B1 (en) * 2019-03-25 2022-09-07 한국전자기술연구원 Multi-layered structure and bonding method thereof
CN111826691B (en) * 2020-08-21 2021-09-21 东北大学 Method for preparing zinc-tantalum alloy by using solvated ionic liquid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156328A (en) * 1998-11-19 2000-06-06 Toyota Motor Corp Manufacture of collector used in capacitor or battery
JP2007250376A (en) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
JP2008282797A (en) * 2007-04-12 2008-11-20 Panasonic Corp Collector for non-aqueous secondary battery and its manufacturing method
JP2012028033A (en) * 2010-07-20 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744130B2 (en) * 1990-11-30 1995-05-15 エルナー株式会社 Method for forming anode foil for electrolytic capacitors
JPH11260350A (en) * 1999-01-14 1999-09-24 Sanyo Electric Co Ltd Nonaqueous system secondary battery
JP3959708B2 (en) * 2001-11-19 2007-08-15 株式会社デンソー Method for producing positive electrode for lithium battery and positive electrode for lithium battery
JP3754374B2 (en) * 2002-01-17 2006-03-08 三洋電機株式会社 Method for producing electrode for lithium secondary battery
KR100523728B1 (en) * 2003-08-06 2005-10-26 주식회사 에너랜드 Supercapacitor with reduced internal resistance
KR100529108B1 (en) * 2003-09-26 2005-11-15 삼성에스디아이 주식회사 Current collector for lithium-sulfur battery and lithium-sulfur battery comprising same
JP4381273B2 (en) * 2004-10-01 2009-12-09 株式会社東芝 Secondary battery and method for manufacturing secondary battery
JP2008103132A (en) 2006-10-18 2008-05-01 Furukawa Sky Kk Aluminum foil for collector of lithium ion cell, and lithium ion cell using it
JP4435194B2 (en) * 2007-03-27 2010-03-17 株式会社東芝 Non-aqueous electrolyte battery, battery pack and automobile
JP4730405B2 (en) * 2008-07-11 2011-07-20 トヨタ自動車株式会社 Battery electrode foil used for positive electrode plate of lithium ion battery, positive electrode plate for lithium ion battery, lithium ion battery, vehicle, battery-equipped device, method for producing battery electrode foil used for positive electrode plate of lithium ion battery, And method for producing positive electrode plate for lithium ion battery
JP4711151B2 (en) * 2008-11-13 2011-06-29 トヨタ自動車株式会社 Positive electrode current collector and manufacturing method thereof
JP2012033279A (en) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd Lithium ion secondary battery
CN102400102A (en) * 2010-09-10 2012-04-04 鸿富锦精密工业(深圳)有限公司 Metal surface anti-fingerprint treatment method and metal product prepared by the metal surface anti-fingerprint treatment method
JP5299710B2 (en) 2010-12-13 2013-09-25 トヨタ自動車株式会社 Positive electrode current collector and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156328A (en) * 1998-11-19 2000-06-06 Toyota Motor Corp Manufacture of collector used in capacitor or battery
JP2007250376A (en) * 2006-03-16 2007-09-27 Nippon Foil Mfg Co Ltd Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
JP2008282797A (en) * 2007-04-12 2008-11-20 Panasonic Corp Collector for non-aqueous secondary battery and its manufacturing method
JP2012028033A (en) * 2010-07-20 2012-02-09 Hitachi Vehicle Energy Ltd Secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017224402A (en) * 2016-06-13 2017-12-21 トヨタ自動車株式会社 All-solid battery and manufacturing method for the all-solid battery
JP2019160513A (en) * 2018-03-12 2019-09-19 トヨタ自動車株式会社 Positive electrode, lithium ion secondary battery, and manufacturing method of positive electrode
JP6992614B2 (en) 2018-03-12 2022-01-13 トヨタ自動車株式会社 Manufacturing method of positive electrode, lithium ion secondary battery, and positive electrode

Also Published As

Publication number Publication date
US20140377658A1 (en) 2014-12-25
KR101542052B1 (en) 2015-08-05
US9673444B2 (en) 2017-06-06
KR20130117689A (en) 2013-10-28
JP6058038B2 (en) 2017-01-11
KR20150035848A (en) 2015-04-07
EP2811562A1 (en) 2014-12-10
EP2811562B1 (en) 2016-10-26
CN104321915A (en) 2015-01-28
WO2013157832A1 (en) 2013-10-24
EP2811562A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP6058038B2 (en) Secondary battery manufacturing method and secondary battery manufactured using the same
JP6169679B2 (en) Electrode and secondary battery including the same
JP2015513182A (en) Method for manufacturing electrode for lithium secondary battery and electrode manufactured using the same
JP6484895B2 (en) Secondary battery electrode with improved energy density and lithium secondary battery including the same
JP6130051B2 (en) Electrode active material with improved energy density and lithium secondary battery including the same
US9318777B2 (en) Secondary battery having improved safety
KR101527748B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
JP5980964B2 (en) High performance lithium secondary battery
JP2015510249A (en) Multi-layered electrode and method of manufacturing the same
JP5860174B2 (en) Method for producing electrode for lithium secondary battery
JP5889477B2 (en) Electrode assembly and lithium secondary battery including the same
KR101495302B1 (en) Multi Layered Electrode and the Method of the Same
JP6204581B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101506451B1 (en) Anode for Secondary Battery
JP5944572B2 (en) Secondary battery electrode and secondary battery including the same
JP6240100B2 (en) High performance lithium secondary battery
KR101514303B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
US20130273427A1 (en) Secondary battery having improved safety
KR20130116810A (en) Cathode for secondary battery
KR101514297B1 (en) The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same
KR101587854B1 (en) The Method of Preparing Electrodes for Secondary Battery and the Electrodes Prepared by Using the Same
KR101497907B1 (en) The Method of Preparing Electrodes for Lithium Secondary Battery and the Electrodes Prepared by Using the Same
KR101497351B1 (en) Lithium Secondary Battery Including Excess Amount of Electrolyte
KR20130117346A (en) The electrode mixture and the method for preparing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6058038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250