KR102438851B1 - Multi-layered structure and bonding method thereof - Google Patents

Multi-layered structure and bonding method thereof Download PDF

Info

Publication number
KR102438851B1
KR102438851B1 KR1020190033621A KR20190033621A KR102438851B1 KR 102438851 B1 KR102438851 B1 KR 102438851B1 KR 1020190033621 A KR1020190033621 A KR 1020190033621A KR 20190033621 A KR20190033621 A KR 20190033621A KR 102438851 B1 KR102438851 B1 KR 102438851B1
Authority
KR
South Korea
Prior art keywords
layer
bonding
lithium
graphene
copper
Prior art date
Application number
KR1020190033621A
Other languages
Korean (ko)
Other versions
KR20200113436A (en
Inventor
김형근
오철민
유지상
정구진
우상길
이제남
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020190033621A priority Critical patent/KR102438851B1/en
Publication of KR20200113436A publication Critical patent/KR20200113436A/en
Application granted granted Critical
Publication of KR102438851B1 publication Critical patent/KR102438851B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)

Abstract

우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 다층구조체 및 그의 접합방법이 제안된다. 본 발명에 따른 다층구조체 접합방법은 구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및 구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함한다. A multilayer structure capable of manufacturing an all-solid-state lithium secondary battery with excellent performance and a bonding method thereof are proposed. A method for bonding a multilayer structure according to the present invention comprises: a bonding layer forming step of forming a bonding layer including at least one of a metal and a metal oxide on the surface of at least one of a copper layer and a lithium layer using an atomic layer deposition process; and a bonding step of bonding the copper layer, the bonding layer, and the lithium layer.

Description

다층구조체 및 그의 접합방법{Multi-layered structure and bonding method thereof}Multi-layered structure and bonding method thereof

본 발명은 다층구조체 및 그의 접합방법에 관한 것으로, 더욱 상세하게는 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 다층구조체 및 그의 접합방법에 관한 것이다.The present invention relates to a multilayer structure and a bonding method thereof, and more particularly, to a multilayer structure capable of manufacturing an all-solid-state lithium secondary battery with excellent performance and a bonding method thereof.

반도체 산업이 발달되고 집적도가 향상됨으로써 전자기기들이 점차 소형화 및 경량화되고 있다. 따라서 이에 요구되는 전류와 전력의 수준이 크게 높아지는 추세에 있다. 이러한 추세에 발맞추어 고상전지의 실용화가 가능해졌고, 이를 위해서 박막형 리튬이차전지에 대한 연구가 활발하게 이루어지고 있다.As the semiconductor industry develops and the degree of integration is improved, electronic devices are becoming smaller and lighter. Therefore, there is a trend that the level of current and power required for this is greatly increased. In line with this trend, the practical use of solid-state batteries has become possible, and for this purpose, research on thin-film lithium secondary batteries is being actively conducted.

리튬이차전지 중, 비수용성 액체전해질 또는 고분자전해질을 포함하여 상용화된 리튬이차전지는 충방전 성능은 우수하나 액체전해질의 폭발 및 발화 위험이 있어 안전성 확보에 어려움이 있다. 또한 액체전해질과 전극, 분리막과의 전기화학 반응이 복잡하게 일어나 열화되어 결국 성능이 퇴화되거나 수명이 단축되는 문제가 있다. 그에 비해 무기 고체전해질은 액체전해질보다는 리튬이온의 전도도는 낮으나, 폭발 및 발화위험이 없는 안전한 소재라 할 수 있어 그 활용에 무게가 실리고 있다. Among lithium secondary batteries, commercial lithium secondary batteries including non-aqueous liquid electrolytes or polymer electrolytes have excellent charge/discharge performance, but there is a risk of explosion and ignition of the liquid electrolyte, so it is difficult to secure safety. In addition, there is a problem in that the electrochemical reaction between the liquid electrolyte, the electrode, and the separator is complicated and deteriorated, resulting in deterioration of performance or shortening of lifespan. On the other hand, inorganic solid electrolytes have lower lithium ion conductivity than liquid electrolytes, but are safe materials without the risk of explosion or ignition.

고체전해질 소재로는 산화물계, 할라이드계, 황화물계 등 다양한 무기소재들이 제시된다. 이 중, 황화물계 고체전해질을 사용하는 전고상 리튬이차전지의 경우에는 통상 고체전해질 층을 사이에 두고 전극과 집전체가 이를 둘러싸는 구조를 취한다. 이에 따라, 전극과 집전체가 접합을 해야 하는데, 통상 사용되는 집전체 소재인 알루미늄이나 구리와 같은 금속 집전체는 전극과의 상용성이 낮아 전극과의 결착력이 낮은 문제가 발생한다. 전극과 집전체의 접합을 위하여, 바인더를 이용하는데, 전고상 리튬이차전지의 경우 전극에 다량의 고체전해질이 함유되어 있어 소량의 바인더만으로도 활물질과 고체전해질의 리튬 및 전자전도에 문제가 발생하므로 바인더의 함량을 최소화할 필요가 있다. As solid electrolyte materials, various inorganic materials such as oxide-based, halide-based, and sulfide-based materials are presented. Of these, in the case of an all-solid-state lithium secondary battery using a sulfide-based solid electrolyte, an electrode and a current collector generally surround the solid electrolyte layer with a solid electrolyte layer therebetween. Accordingly, the electrode and the current collector must be bonded, and a metal current collector, such as aluminum or copper, which is a current collector material, has low compatibility with the electrode and low bonding strength with the electrode. A binder is used for bonding the electrode and the current collector. In the case of an all-solid-state lithium secondary battery, since a large amount of solid electrolyte is contained in the electrode, a small amount of binder causes problems in lithium and electron conduction between the active material and the solid electrolyte. It is necessary to minimize the content of

따라서, 전고상 리튬이차전지의 성능에 불리한 영향을 미치지 않는 접합방식에 대한 기술개발이 요구되고 있다. Therefore, there is a demand for technology development for a bonding method that does not adversely affect the performance of the all-solid-state lithium secondary battery.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 다층구조체 및 그의 접합방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a multilayer structure capable of manufacturing an all-solid-state lithium secondary battery with excellent performance and a bonding method thereof.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 다층구조체 접합방법은 구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및 구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함한다. In a multilayer structure bonding method according to an embodiment of the present invention for achieving the above object, a bonding layer comprising at least one of a metal and a metal oxide using an atomic layer deposition process on the surface of at least one layer of a copper layer and a lithium layer A bonding layer forming step of forming a; and a bonding step of bonding the copper layer, the bonding layer, and the lithium layer.

구리층은, 접합표면에 그래핀층을 포함할 수 있다. The copper layer may include a graphene layer on the bonding surface.

금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. The metal may include at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al).

금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함할 수 있다. The metal oxide may include at least one of InOx, ZnOx, SnOx, and Al 2 O 3 .

원자층증착공정은 160℃이하에서 수행될 수 있다. The atomic layer deposition process may be performed at 160° C. or less.

접합단계는, 접합층 및 리튬층 사이에 침투가능한 접합물질의 증기를 투입시켜 수행될 수 있다. The bonding step may be performed by injecting vapor of a bonding material that can penetrate between the bonding layer and the lithium layer.

리튬층 및 접합층 사이에 리튬-접합물질 복합체가 형성될 수 있다. A lithium-junction material composite may be formed between the lithium layer and the bonding layer.

접합물질은 접합층과 동일한 물질을 포함할 수 있다. The bonding material may include the same material as the bonding layer.

그래핀층 및 접합층 사이에 그래핀-접합물질 복합체층이 형성될 수 있다. A graphene-bonding material composite layer may be formed between the graphene layer and the bonding layer.

본 발명의 다른 측면에 따르면, 구리층; 구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; a bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on a copper layer; and a lithium layer positioned on the bonding layer.

본 발명의 또다른 측면에 따르면, 구리층; 구리층 상에 위치한 그래핀층; 그래핀층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; a graphene layer located on the copper layer; a bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer; and a lithium layer positioned on the bonding layer.

본 발명의 또다른 측면에 따르면, 구리층; 구리층 상의 그래핀층; 그래핀층 상에 형성된 그래핀-접합물질 복합체층; 그래핀-접합물질 복합체층 상에 형성된 원자층증착공정을 이용한 금속 및 금속산화물 중 적어도 하나의 접합물질을 포함하는 접합층; 접합층 상에 형성된 리튬-접합물질 복합체층; 및 리튬-접합물질 복합체층 상의 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; a graphene layer on a copper layer; a graphene-junction material composite layer formed on the graphene layer; a bonding layer comprising at least one bonding material of a metal and a metal oxide using an atomic layer deposition process formed on the graphene-bonding material composite layer; a lithium-junction material composite layer formed on the bonding layer; and a lithium layer on the lithium-junction material composite layer; a multilayer structure comprising a.

본 발명의 실시예들에 따르면, 전고상 리튬이차전지에 사용되는 리튬음극 및 구리집전체를 효과적으로 접합하여 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 효과가 있다. According to the embodiments of the present invention, there is an effect that an all-solid-state lithium secondary battery having excellent performance can be manufactured by effectively bonding the lithium negative electrode and the copper current collector used in the all-solid-state lithium secondary battery.

또한, 리튬음극 및 구리집전체에 영향을 미치지 않는 저융점 금속 및 금속합금을 이용하여 접합공정을 수행하므로, 전고상 리튬이차전지의 중요구성인 리튬음극에 불리한 영향을 미치지 않으면서도 원자층증착공정을 통해 각 층의 물리-화학적 결합력이 증가되어 최소한의 두께로 접합성능이 우수한 접합층 형성이 가능하다. In addition, since the bonding process is performed using a low-melting-point metal and metal alloy that does not affect the lithium anode and copper current collector, the atomic layer deposition process is performed without adversely affecting the lithium anode, which is an important component of an all-solid-state lithium secondary battery. Through this, the physical-chemical bonding strength of each layer is increased, making it possible to form a bonding layer with excellent bonding performance with a minimum thickness.

아울러, 구리집전체 표면에 그래핀소재를 코팅하여 전고상 리튬이차전지의 전기적 성능, 기계적 성능 및 열적 성능을 우수하게 확보할 수 있는 효과가 있다. In addition, by coating the graphene material on the surface of the copper current collector, there is an effect of ensuring excellent electrical performance, mechanical performance, and thermal performance of the all-solid-state lithium secondary battery.

도 1 내지 도 3은 본 발명의 일실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다.
도 4는 본 발명의 다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면이다.
도 5 내지 도 7은 본 발명의 또다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다.
도 8은 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다.
도 9는 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다.
1 to 3 are views provided for explaining a method for bonding a multilayer structure according to an embodiment of the present invention.
4 is a view provided to explain a method for bonding a multi-layer structure according to another embodiment of the present invention.
5 to 7 are views provided for explaining a method for bonding a multilayer structure according to another embodiment of the present invention.
8 is a cross-sectional view of a multilayer structure according to another embodiment of the present invention.
9 is a cross-sectional view of a multi-layered structure according to another embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 요철을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정요철 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiment of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided in order to more completely explain the present invention to those of ordinary skill in the art. In the accompanying drawings, there may be components shown to have specific unevenness or a predetermined thickness, but this is for convenience of explanation or distinction, so even if the present invention has specific unevenness and predetermined thickness, the characteristics of the components shown It is not limited to

도 1 내지 도 3은 본 발명의 일실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다. 본 발명에 따른 다층구조체 접합방법은 구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및 구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함한다. 본 발명에 따르면, 구리층; 구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.1 to 3 are views provided for explaining a method for bonding a multilayer structure according to an embodiment of the present invention. A method for bonding a multilayer structure according to the present invention comprises: a bonding layer forming step of forming a bonding layer including at least one of a metal and a metal oxide on the surface of at least one of a copper layer and a lithium layer using an atomic layer deposition process; and a bonding step of bonding the copper layer, the bonding layer, and the lithium layer. According to the present invention, a copper layer; a bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on a copper layer; and a lithium layer positioned on the bonding layer.

본 발명에서 다층구조체는 구리층(110) 및 리튬층(130)을 접합시켜 제조된다. 본 발명의 다층구조체는 전고상 리튬이차전지의 일부구성과 동일한 구성으로서, 전고상 리튬이차전지는 일반적으로 집전체-양극-고체전해질-리튬음극-집전체로 구성된다(미도시). 본 발명의 다층구조체 접합방법은 전고상 리튬이차전지 중 리튬음극과 집전체 간의 접합에 적용될 수 있다. 본 발명의 다층구조체 접합방법은 특히, 리튬음극 및 구리집전체를 접합하는 방법으로 사용될 수 있다. In the present invention, the multilayer structure is manufactured by bonding the copper layer 110 and the lithium layer 130 . The multilayer structure of the present invention has the same configuration as a partial configuration of an all-solid-state lithium secondary battery, and the all-solid-state lithium secondary battery generally consists of a current collector - a positive electrode - a solid electrolyte - a lithium negative electrode - a current collector (not shown). The multilayer structure bonding method of the present invention can be applied to bonding between a lithium negative electrode and a current collector in an all-solid-state lithium secondary battery. In particular, the method for bonding a multilayer structure of the present invention can be used as a method for bonding a lithium negative electrode and a copper current collector.

도 1을 참조하면, 집전체인 구리층(110)의 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층(120)을 형성한다. 원자층증착(atomic layer deposition: ALD) 공정은 원자단위의 증착공정으로서, 증착하고자 하는 원자의 전구체 가스를 주입하고 반응가스를 함께 주입하여 증착대상기판에 원자를 층으로 적층하여 박막을 형성시키는 공정이다. 원자층증착공정에서는 복수 회(약 5회)의 원자층증착공정을 통하여 1층의 박막층이 형성될 수 있다. Referring to FIG. 1 , a bonding layer 120 including at least one of a metal and a metal oxide is formed on the surface of a copper layer 110 as a current collector by using an atomic layer deposition process. The atomic layer deposition (ALD) process is an atomic-level deposition process, in which a precursor gas of atoms to be deposited is injected and a reaction gas is injected together to form a thin film by stacking atoms on a deposition target substrate in layers. to be. In the atomic layer deposition process, one thin film layer may be formed through the atomic layer deposition process a plurality of times (about 5 times).

리튬의 융점은 약 180℃이므로 저온접합공정이 요구되는데, 원자층증착공정은 원자의 전구체가스를 주입하는 공정이므로 160℃이하에서도 수행가능하다. 따라서, 원자층증착공정에 따라 박막인 접합층(120)을 형성하면, 원자단위의 박막을 저온에서 형성할 수 있어서, 접합공정의 리튬층(130)에 대한 영향을 최소화할 수 있고, 접합층이 박막이므로 접합층의 두께를 최소화하여 전고상 리튬이차전지의 성능을 최대로 유지할 수 있다. Since the melting point of lithium is about 180°C, a low-temperature bonding process is required. Since the atomic layer deposition process is a process of injecting a precursor gas of atoms, it can be performed even at 160°C or less. Therefore, when the bonding layer 120, which is a thin film, is formed according to the atomic layer deposition process, the atomic unit thin film can be formed at a low temperature, so that the influence of the bonding process on the lithium layer 130 can be minimized, and the bonding layer Since it is a thin film, the performance of the all-solid-state lithium secondary battery can be maximized by minimizing the thickness of the bonding layer.

접합층(120)에 포함되는 금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있고, 금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함할 수 있다. The metal included in the bonding layer 120 may include at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al), and the metal oxide is InOx, ZnOx, SnOx, and Al 2 O It may include at least one of 3 .

이와 달리 접합층(120)은 리튬층(130) 상에 형성될 수도 있다(도 2). Alternatively, the bonding layer 120 may be formed on the lithium layer 130 ( FIG. 2 ).

접합층(120)이 형성되면, 구리층(110), 접합층(120) 및 리튬층(130)을 접합시킨다(도 3). 접합단계는 구리층(110), 접합층(120) 및 리튬층(130)을 인접위치시키고, 압력을 가하여 접합시킬 수 있다. 접합층(120)의 특성상 구리층(110) 및 리튬층(130)과 물리적, 화학적 결합이 가능하므로 고압을 인가할 필요가 없고, 예를 들어 압력조건은 약 0.2Mpa일 수 있다. When the bonding layer 120 is formed, the copper layer 110 , the bonding layer 120 , and the lithium layer 130 are bonded to each other ( FIG. 3 ). In the bonding step, the copper layer 110 , the bonding layer 120 , and the lithium layer 130 may be placed adjacent to each other and bonded by applying pressure. Since the bonding layer 120 can be physically and chemically bonded to the copper layer 110 and the lithium layer 130 due to the nature of the bonding layer 120 , there is no need to apply a high pressure, for example, the pressure condition may be about 0.2 Mpa.

도 4는 본 발명의 다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면이다. 본 실시예에 따르면, 구리층(110); 구리층(110) 상에 위치한 그래핀층(140); 그래핀층(140) 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층(120); 및 접합층(120) 상에 위치한 리튬층(130);을 포함하는 다층구조체가 제공된다(도 4).4 is a view provided to explain a method for bonding a multi-layer structure according to another embodiment of the present invention. According to this embodiment, the copper layer 110; a graphene layer 140 positioned on the copper layer 110; a bonding layer 120 including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer 140; And a lithium layer 130 positioned on the bonding layer 120; is provided a multi-layer structure comprising a (FIG. 4).

본 발명에서 다층구조체(100)는 구리층(110)을 포함하는데, 이에 따라 구리층(110) 상에 그래핀을 구리를 씨드층으로 하여 직접 합성할 수 있다. 그래핀은 다양한 방법으로 제조될 수 있는데, 화학기상증착(chemical vapor deposition, CVD)공정을 이용하면 그래핀 특성이 우수하고 대량생산가능하다. 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등으로 세분될 수 있다. In the present invention, the multilayer structure 100 includes a copper layer 110 , and thus graphene may be directly synthesized on the copper layer 110 using copper as a seed layer. Graphene can be manufactured by various methods. By using a chemical vapor deposition (CVD) process, graphene has excellent properties and can be mass-produced. Chemical vapor deposition methods include high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD), or chemical vapor deposition. It can be subdivided into vapor deposition (PECVD) and the like.

구리층(110) 상에 그래핀층(140)이 위치하는 경우, 본 발명에 따른 다층구조체를 포함하는 전고상 리튬이차전지는 성능이 우수해진다. 상세하게는 그래핀층(140)이 열을 발산하고, 전기적 특성이 우수해지며, 리튬층(130)에서 리튬 덴드라이트 성장(Li dendrite growth control)을 억제할 수 있다. When the graphene layer 140 is positioned on the copper layer 110 , the all-solid-state lithium secondary battery including the multilayer structure according to the present invention has excellent performance. In detail, the graphene layer 140 may dissipate heat, improve electrical properties, and suppress lithium dendrite growth control in the lithium layer 130 .

도 5 내지 도 7은 본 발명의 또다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다. 본 실시예에서, 접합단계는, 제1접합층(120) 및 리튬층(130) 사이에 침투가능한 접합물질의 증기(151)를 투입시켜 수행될 수 있다.5 to 7 are views provided for explaining a method for bonding a multilayer structure according to another embodiment of the present invention. In the present embodiment, the bonding step may be performed by injecting the vapor 151 of the bonding material permeable between the first bonding layer 120 and the lithium layer 130 .

도 5를 참조하면, 구리층(110) 상에 제1접합층(120)이 형성되어 있고, 리튬층(130)과 접합하여 다층구조체를 형성할 수 있다. 전술한 실시예에서는 압력을 가하여 최종접합을 수행한다. Referring to FIG. 5 , the first bonding layer 120 is formed on the copper layer 110 , and may be bonded to the lithium layer 130 to form a multi-layered structure. In the above-described embodiment, the final bonding is performed by applying pressure.

이와 달리, 본 실시예에서는 리튬층(130)과 제1접합층(120) 사이의 공간에 원자층증착공정을 이용하여 접합물질의 증기(151)를 주입하여 제2접합층(150)을 형성하여 접합을 수행한다(도 6). Contrary to this, in this embodiment, vapor 151 of the bonding material is injected into the space between the lithium layer 130 and the first bonding layer 120 using an atomic layer deposition process to form the second bonding layer 150 . to perform bonding (FIG. 6).

리튬층(130)은 도 7에서와 같이 표면에 요철이 형성되어 있는 경우가 있는데, 만약, 전술한 실시예에서와 같이 가압하여 접합을 수행하는 경우, 요철부분에는 빈공간이 생긴 채로 접합이 될 수 있다. 따라서, 접합 후에 리튬층(130) 및 구리층(110)이 분리되거나, 전극성능 및 집전성능이 낮아질 수 있다. 그러나, 본 실시예에서와 같이 제1접합층(120) 및 리튬층(130) 사이를 원자층증착공정으로 채워주는 경우, 요철부분에 빈공간없이 모두 채워지게 되어 제2접합층(150)을 형성하므로 완전한 접합상태를 이룰 수 있다. There are cases where the lithium layer 130 has irregularities formed on its surface as shown in FIG. 7 . If, as in the above-described embodiment, bonding is performed by pressing, bonding may be performed with an empty space in the uneven portion. can Therefore, the lithium layer 130 and the copper layer 110 may be separated after bonding, or electrode performance and current collecting performance may be lowered. However, as in the present embodiment, when the space between the first bonding layer 120 and the lithium layer 130 is filled by the atomic layer deposition process, all of the concavo-convex portions are filled without empty space, so that the second bonding layer 150 is formed. Thus, a perfect bonding state can be achieved.

제1접합층(120) 및 제2접합층(150)는 동일한 물질을 포함할 수 있어서, 제1접합층(120) 및 제2접합층(150)의 계면에서의 발생할 수 있는 문제를 최소화할 수 있다.The first bonding layer 120 and the second bonding layer 150 may include the same material, so that problems that may occur at the interface between the first bonding layer 120 and the second bonding layer 150 can be minimized. can

도 8은 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이고, 도 9는 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다. 도 8에 따른 실시예에서, 다층구조체(100)는 리튬층(130) 및 접합층(120) 사이에 리튬-접합물질 복합체층(160)가 형성되어 있고, 도 9에 따른 실시예에서 다층구조체(100)는 그래핀층(140) 및 접합층(120) 사이에 그래핀-접합물질 복합체층(170)이 형성될 수 있다. 8 is a cross-sectional view of a multi-layered structure according to another embodiment of the present invention, and FIG. 9 is a cross-sectional view of a multi-layered structure according to another embodiment of the present invention. In the embodiment according to FIG. 8 , in the multilayer structure 100 , a lithium-junction material composite layer 160 is formed between the lithium layer 130 and the bonding layer 120 , and in the embodiment according to FIG. 9 , the multilayer structure At 100 , the graphene-junction material composite layer 170 may be formed between the graphene layer 140 and the bonding layer 120 .

즉, 본 실시예들에서, 접합층(120)이 형성될 때 원자층증착공정에 의해, 리튬층(130)과 접합층(120) 사이와 그래핀층(140)과 접합층(120) 사이에 복합체가 형성된다. 특히 오존기반 원자층증착공정의 경우, 리튬-접합물질 복합체층(160) 및 그래핀-접합물질 복합체층(170)이 형성될 가능성이 높다. 리튬-접합물질 복합체층(160)이 형성되면, 접합층(120)의 접합능력과 함께 리튬-접합물질 복합체층(160)에 의한 접합도 이루어지게 되므로 전체적인 접합특성이 우수해질 수 있다.That is, in the present embodiments, when the bonding layer 120 is formed, between the lithium layer 130 and the bonding layer 120 and between the graphene layer 140 and the bonding layer 120 by an atomic layer deposition process. A complex is formed. In particular, in the case of the ozone-based atomic layer deposition process, the lithium-junction material composite layer 160 and the graphene-junction material composite layer 170 are highly likely to be formed. When the lithium-junction material composite layer 160 is formed, since bonding by the lithium-junction material composite layer 160 is also made along with the bonding ability of the bonding layer 120 , overall bonding characteristics may be improved.

그래핀층(140)은 그 특성상 표면젖음성이 낮아 반응성이 낮다. 따라서, 그래핀층(140) 상에 그래핀-접합물질 복합체층(170)이 형성되면, 접합층(120) 형성이 더욱 용이해진다. 따라서, 그래핀-접합물질 복합체층(170)의 형성으로 전체적인 접합특성이 우수해질 수 있다. The graphene layer 140 has low surface wettability due to its characteristics, and thus has low reactivity. Accordingly, when the graphene-bonding material composite layer 170 is formed on the graphene layer 140 , the bonding layer 120 is more easily formed. Accordingly, the overall bonding characteristics may be improved by the formation of the graphene-bonding material composite layer 170 .

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.In the above, although embodiments of the present invention have been described, those of ordinary skill in the art can add, change, delete or add components within the scope that does not depart from the spirit of the present invention described in the claims. The present invention may be variously modified and changed by such as, and it will be said that it is also included within the scope of the present invention.

100: 다층구조체
110: 구리층
120: 접합층, 제1접합층
130: 리튬층
140: 그래핀층
150: 제2접합층
151: 접합물질
160: 리튬-접합물질 복합체층
170: 그래핀-접합물질 복합체층
100: multi-layer structure
110: copper layer
120: bonding layer, first bonding layer
130: lithium layer
140: graphene layer
150: second bonding layer
151: bonding material
160: lithium-junction material composite layer
170: graphene-bonding material composite layer

Claims (12)

구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및
구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함하는 다층구조체 접합방법.
a bonding layer forming step of forming a bonding layer including at least one of a metal and a metal oxide on the surface of at least one of the copper layer and the lithium layer using an atomic layer deposition process; and
A bonding step of bonding the copper layer, the bonding layer, and the lithium layer;
청구항 1에 있어서,
구리층은,
접합표면에 그래핀층을 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
copper layer,
A method for bonding a multilayer structure comprising a graphene layer on the bonding surface.
청구항 1에 있어서,
금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The metal includes at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al).
청구항 1에 있어서,
금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The metal oxide comprises at least one of InOx, ZnOx, SnOx, and Al 2 O 3 .
청구항 1에 있어서,
원자층증착공정은 160℃이하에서 수행되는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
Atomic layer deposition process is a multi-layer structure bonding method, characterized in that carried out at 160 ℃ or less.
청구항 1에 있어서,
접합단계는, 접합층 및 리튬층 사이에 침투가능한 접합물질의 증기를 투입시켜 수행되는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The bonding step is performed by injecting vapor of a bonding material that can penetrate between the bonding layer and the lithium layer.
청구항 6에 있어서,
리튬층 및 접합층 사이에 리튬-접합물질 복합체가 형성되는 것을 특징으로 하는 다층구조체 접합방법.
7. The method of claim 6,
A method for bonding a multilayer structure, characterized in that a lithium-junction material complex is formed between the lithium layer and the bonding layer.
청구항 6에 있어서,
접합물질은 접합층과 동일한 물질을 포함하는 것을 특징으로 하는 다층구조체 접합방법.
7. The method of claim 6,
The bonding material comprises the same material as the bonding layer.
청구항 2에 있어서,
그래핀층 및 접합층 사이에 그래핀-접합물질 복합체층이 형성되는 것을 특징으로 하는 다층구조체 접합방법.
3. The method according to claim 2,
A method for bonding a multilayer structure, characterized in that a graphene-bonding material composite layer is formed between the graphene layer and the bonding layer.
구리층;
구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및
접합층 상에 위치한 리튬층;을 포함하는 다층구조체.
copper layer;
a bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on a copper layer; and
A multilayer structure comprising a; lithium layer positioned on the bonding layer.
구리층;
구리층 상에 위치한 그래핀층;
그래핀층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및
접합층 상에 위치한 리튬층;을 포함하는 다층구조체.
copper layer;
a graphene layer located on the copper layer;
a bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer; and
A multilayer structure comprising a; lithium layer positioned on the bonding layer.
구리층;
구리층 상의 그래핀층;
그래핀층 상에 형성된 그래핀-접합물질 복합체층;
그래핀-접합물질 복합체층 상에 형성된 원자층증착공정을 이용한 금속 및 금속산화물 중 적어도 하나의 접합물질을 포함하는 접합층;
접합층 상에 형성된 리튬-접합물질 복합체층; 및
리튬-접합물질 복합체층 상의 리튬층;을 포함하는 다층구조체.
copper layer;
a graphene layer on a copper layer;
a graphene-junction material composite layer formed on the graphene layer;
a bonding layer comprising at least one bonding material of a metal and a metal oxide using an atomic layer deposition process formed on the graphene-bonding material composite layer;
a lithium-junction material composite layer formed on the bonding layer; and
A multi-layered structure including a lithium layer on the lithium-junction material composite layer.
KR1020190033621A 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof KR102438851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Publications (2)

Publication Number Publication Date
KR20200113436A KR20200113436A (en) 2020-10-07
KR102438851B1 true KR102438851B1 (en) 2022-09-07

Family

ID=72884582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Country Status (1)

Country Link
KR (1) KR102438851B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084515A (en) * 2015-10-26 2017-05-18 セイコーエプソン株式会社 Negative electrode layer, and all-solid-state lithium ion secondary battery
KR101833974B1 (en) * 2016-12-23 2018-03-02 주식회사 포스코 Negative electrode for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2811562B1 (en) * 2012-04-17 2016-10-26 LG Chem, Ltd. Method of manufacturing electrode for lithium secondary cell
KR101772416B1 (en) * 2014-09-24 2017-08-29 주식회사 엘지화학 Lithium Secondary Battery Comprising Current Collector Having Graphene Coating Layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084515A (en) * 2015-10-26 2017-05-18 セイコーエプソン株式会社 Negative electrode layer, and all-solid-state lithium ion secondary battery
KR101833974B1 (en) * 2016-12-23 2018-03-02 주식회사 포스코 Negative electrode for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
KR20200113436A (en) 2020-10-07

Similar Documents

Publication Publication Date Title
KR102072534B1 (en) Amorphous cathode material for battery device
US20190334206A1 (en) Multiple active and inter layers in a solid-state device
US20120270114A1 (en) Lithium ion battery and method for manufacturing of such battery
TW201445795A (en) Electrochemical cell with solid and liquid electrolytes
US20120040233A1 (en) Barrier for thin film lithium batteries made on flexible substrates and related methods
CN105190953A (en) Electrochemical cells comprising fibril materials, such as fibril cellulose materials
Tao et al. Swallowing Lithium Dendrites in All‐Solid‐State Battery by Lithiation with Silicon Nanoparticles
JP2011508951A (en) Homogeneous double layer solid film deposition for structural and / or electrochemical properties
US11165101B2 (en) Hybrid solid-state cell with a sealed anode structure
Hitz et al. Ion‐Conducting, Electron‐Blocking Layer for High‐Performance Solid Electrolytes
CN111384429B (en) All-solid battery
CN102881937A (en) Secondary battery
US20200106135A1 (en) Hybrid solid-state cell with a sealed anode structure
Pang et al. Stable lithium plating and stripping enabled by a LiPON nanolayer on PP separator
FR3068830B1 (en) ENCAPSULATION SYSTEM FOR ELECTRONIC COMPONENTS AND BATTERIES
KR102438851B1 (en) Multi-layered structure and bonding method thereof
US10454105B2 (en) Electrode for an energy accumulator and manufacturing method
JP6653991B2 (en) Stabilized anode for lithium battery and method for producing the same
JP5228415B2 (en) All-solid battery and method for producing all-solid battery
WO2019017375A1 (en) Hybrid capacitor
IL293784A (en) Battery, in particular thin-film battery, with a novel encapsulation system
JP2010080210A (en) Battery and method for manufacturing the same
KR20180023380A (en) Lithium ion battery and method of preparing the same
JP2009218160A (en) Secondary battery and its manufacturing method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant