KR20200113436A - Multi-layered structure and bonding method thereof - Google Patents

Multi-layered structure and bonding method thereof Download PDF

Info

Publication number
KR20200113436A
KR20200113436A KR1020190033621A KR20190033621A KR20200113436A KR 20200113436 A KR20200113436 A KR 20200113436A KR 1020190033621 A KR1020190033621 A KR 1020190033621A KR 20190033621 A KR20190033621 A KR 20190033621A KR 20200113436 A KR20200113436 A KR 20200113436A
Authority
KR
South Korea
Prior art keywords
layer
bonding
lithium
multilayer structure
graphene
Prior art date
Application number
KR1020190033621A
Other languages
Korean (ko)
Other versions
KR102438851B1 (en
Inventor
김형근
오철민
유지상
정구진
우상길
이제남
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020190033621A priority Critical patent/KR102438851B1/en
Publication of KR20200113436A publication Critical patent/KR20200113436A/en
Application granted granted Critical
Publication of KR102438851B1 publication Critical patent/KR102438851B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Laminated Bodies (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention relates to a multi-layered structure capable of manufacturing a high-performance all-solid-state lithium secondary battery, and to a bonding method thereof. The bonding method of the multi-layered structure according to the present invention comprises: a bonding layer forming step of using an atomic layer deposition process on a surface of at least one layer of a copper layer and a lithium layer and forming a bonding layer including at least one of a metal and a metal oxide; and a bonding step of bonding the copper layer, the bonding layer, and the lithium layer.

Description

다층구조체 및 그의 접합방법{Multi-layered structure and bonding method thereof}Multi-layered structure and bonding method thereof

본 발명은 다층구조체 및 그의 접합방법에 관한 것으로, 더욱 상세하게는 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 다층구조체 및 그의 접합방법에 관한 것이다.The present invention relates to a multilayer structure and a bonding method thereof, and more particularly, to a multilayer structure capable of manufacturing an all-solid-state lithium secondary battery with excellent performance and a bonding method thereof.

반도체 산업이 발달되고 집적도가 향상됨으로써 전자기기들이 점차 소형화 및 경량화되고 있다. 따라서 이에 요구되는 전류와 전력의 수준이 크게 높아지는 추세에 있다. 이러한 추세에 발맞추어 고상전지의 실용화가 가능해졌고, 이를 위해서 박막형 리튬이차전지에 대한 연구가 활발하게 이루어지고 있다.As the semiconductor industry develops and the degree of integration is improved, electronic devices are gradually becoming smaller and lighter. Accordingly, there is a trend that the levels of current and power required for this are greatly increased. In line with this trend, solid-state batteries have become practical, and for this purpose, studies on thin-film lithium secondary batteries have been actively conducted.

리튬이차전지 중, 비수용성 액체전해질 또는 고분자전해질을 포함하여 상용화된 리튬이차전지는 충방전 성능은 우수하나 액체전해질의 폭발 및 발화 위험이 있어 안전성 확보에 어려움이 있다. 또한 액체전해질과 전극, 분리막과의 전기화학 반응이 복잡하게 일어나 열화되어 결국 성능이 퇴화되거나 수명이 단축되는 문제가 있다. 그에 비해 무기 고체전해질은 액체전해질보다는 리튬이온의 전도도는 낮으나, 폭발 및 발화위험이 없는 안전한 소재라 할 수 있어 그 활용에 무게가 실리고 있다. Among lithium secondary batteries, commercially available lithium secondary batteries including non-aqueous liquid electrolytes or polymer electrolytes have excellent charge and discharge performance, but there is a risk of explosion and ignition of the liquid electrolyte, making it difficult to secure safety. In addition, there is a problem that the electrochemical reaction between the liquid electrolyte, the electrode, and the separator is complicated and deteriorated, resulting in deterioration of performance or shortening of the lifespan. In contrast, inorganic solid electrolytes have a lower conductivity of lithium ions than liquid electrolytes, but they can be said to be safe materials without risk of explosion and ignition, so their use has been put on weight.

고체전해질 소재로는 산화물계, 할라이드계, 황화물계 등 다양한 무기소재들이 제시된다. 이 중, 황화물계 고체전해질을 사용하는 전고상 리튬이차전지의 경우에는 통상 고체전해질 층을 사이에 두고 전극과 집전체가 이를 둘러싸는 구조를 취한다. 이에 따라, 전극과 집전체가 접합을 해야 하는데, 통상 사용되는 집전체 소재인 알루미늄이나 구리와 같은 금속 집전체는 전극과의 상용성이 낮아 전극과의 결착력이 낮은 문제가 발생한다. 전극과 집전체의 접합을 위하여, 바인더를 이용하는데, 전고상 리튬이차전지의 경우 전극에 다량의 고체전해질이 함유되어 있어 소량의 바인더만으로도 활물질과 고체전해질의 리튬 및 전자전도에 문제가 발생하므로 바인더의 함량을 최소화할 필요가 있다. As the solid electrolyte material, various inorganic materials such as oxide-based, halide-based, and sulfide-based materials are suggested. Among them, in the case of an all-solid-state lithium secondary battery using a sulfide-based solid electrolyte, an electrode and a current collector generally surround the solid electrolyte layer with a solid electrolyte layer therebetween. Accordingly, the electrode and the current collector need to be bonded, and a metal current collector such as aluminum or copper, which is a commonly used current collector material, has low compatibility with the electrode and a problem of low binding strength with the electrode occurs. A binder is used for bonding the electrode and the current collector.In the case of an all-solid lithium secondary battery, the electrode contains a large amount of solid electrolyte, so even a small amount of binder causes problems in lithium and electron conduction between the active material and the solid electrolyte. It is necessary to minimize the content of.

따라서, 전고상 리튬이차전지의 성능에 불리한 영향을 미치지 않는 접합방식에 대한 기술개발이 요구되고 있다. Accordingly, there is a need for technology development for a bonding method that does not adversely affect the performance of an all-solid-state lithium secondary battery.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 다층구조체 및 그의 접합방법을 제공함에 있다.The present invention has been conceived to solve the above problems, and an object of the present invention is to provide a multilayer structure capable of manufacturing an all-solid-state lithium secondary battery with excellent performance and a bonding method thereof.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 다층구조체 접합방법은 구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및 구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함한다. A method for bonding a multilayer structure according to an embodiment of the present invention to achieve the above object is a bonding layer comprising at least one of a metal and a metal oxide by using an atomic layer deposition process on the surface of at least one layer of a copper layer and a lithium layer. A bonding layer forming step of forming a; And a bonding step of bonding a copper layer, a bonding layer, and a lithium layer.

구리층은, 접합표면에 그래핀층을 포함할 수 있다. The copper layer may include a graphene layer on the bonding surface.

금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다. The metal may include at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al).

금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함할 수 있다. The metal oxide may include at least one of InOx, ZnOx, SnOx, and Al 2 O 3 .

원자층증착공정은 160℃이하에서 수행될 수 있다. The atomic layer deposition process may be performed at 160°C or less.

접합단계는, 접합층 및 리튬층 사이에 침투가능한 접합물질의 증기를 투입시켜 수행될 수 있다. The bonding step may be performed by introducing a vapor of a bonding material that can penetrate between the bonding layer and the lithium layer.

리튬층 및 접합층 사이에 리튬-접합물질 복합체가 형성될 수 있다. A lithium-junction material composite may be formed between the lithium layer and the bonding layer.

접합물질은 접합층과 동일한 물질을 포함할 수 있다. The bonding material may include the same material as the bonding layer.

그래핀층 및 접합층 사이에 그래핀-접합물질 복합체층이 형성될 수 있다. A graphene-bonding material composite layer may be formed between the graphene layer and the bonding layer.

본 발명의 다른 측면에 따르면, 구리층; 구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; A bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the copper layer; And a lithium layer positioned on the bonding layer.

본 발명의 또다른 측면에 따르면, 구리층; 구리층 상에 위치한 그래핀층; 그래핀층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; A graphene layer located on the copper layer; A bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer; And a lithium layer positioned on the bonding layer.

본 발명의 또다른 측면에 따르면, 구리층; 구리층 상의 그래핀층; 그래핀층 상에 형성된 그래핀-접합물질 복합체층; 그래핀-접합물질 복합체층 상에 형성된 원자층증착공정을 이용한 금속 및 금속산화물 중 적어도 하나의 접합물질을 포함하는 접합층; 접합층 상에 형성된 리튬-접합물질 복합체층; 및 리튬-접합물질 복합체층 상의 리튬층;을 포함하는 다층구조체가 제공된다.According to another aspect of the present invention, a copper layer; A graphene layer on a copper layer; A graphene-bonding material composite layer formed on the graphene layer; A bonding layer including at least one bonding material of metal and metal oxide using an atomic layer deposition process formed on the graphene-bonding material composite layer; A lithium-bonding material composite layer formed on the bonding layer; And a lithium layer on the lithium-junction material composite layer.

본 발명의 실시예들에 따르면, 전고상 리튬이차전지에 사용되는 리튬음극 및 구리집전체를 효과적으로 접합하여 우수한 성능의 전고상 리튬이차전지를 제조할 수 있는 효과가 있다. According to embodiments of the present invention, there is an effect of effectively bonding a lithium cathode and a copper current collector used in an all-solid-state lithium secondary battery to manufacture an all-solid-state lithium secondary battery having excellent performance.

또한, 리튬음극 및 구리집전체에 영향을 미치지 않는 저융점 금속 및 금속합금을 이용하여 접합공정을 수행하므로, 전고상 리튬이차전지의 중요구성인 리튬음극에 불리한 영향을 미치지 않으면서도 원자층증착공정을 통해 각 층의 물리-화학적 결합력이 증가되어 최소한의 두께로 접합성능이 우수한 접합층 형성이 가능하다. In addition, since the bonding process is performed using a low melting point metal and metal alloy that does not affect the lithium cathode and the copper current collector, the atomic layer deposition process does not adversely affect the lithium cathode, an important component of the all-solid-state lithium secondary battery. Through the physico-chemical bonding force of each layer is increased, it is possible to form a bonding layer with excellent bonding performance with a minimum thickness.

아울러, 구리집전체 표면에 그래핀소재를 코팅하여 전고상 리튬이차전지의 전기적 성능, 기계적 성능 및 열적 성능을 우수하게 확보할 수 있는 효과가 있다. In addition, by coating a graphene material on the surface of the copper current collector, there is an effect of excellently securing electrical performance, mechanical performance, and thermal performance of an all-solid lithium secondary battery.

도 1 내지 도 3은 본 발명의 일실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다.
도 4는 본 발명의 다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면이다.
도 5 내지 도 7은 본 발명의 또다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다.
도 8은 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다.
도 9는 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다.
1 to 3 are views provided for explaining a method of bonding a multilayer structure according to an embodiment of the present invention.
4 is a view provided to explain a method of bonding a multilayer structure according to another embodiment of the present invention.
5 to 7 are views provided to explain a method of bonding a multilayer structure according to still another embodiment of the present invention.
8 is a cross-sectional view of a multilayer structure according to another embodiment of the present invention.
9 is a cross-sectional view of a multilayer structure according to another embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 요철을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정요철 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art. In the accompanying drawings, there may be a component having a specific unevenness or a predetermined thickness, but this is for convenience of description or distinction, so even if it has a specific unevenness and a predetermined thickness, features of the components illustrated in the present invention It is not limited to only.

도 1 내지 도 3은 본 발명의 일실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다. 본 발명에 따른 다층구조체 접합방법은 구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및 구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함한다. 본 발명에 따르면, 구리층; 구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및 접합층 상에 위치한 리튬층;을 포함하는 다층구조체가 제공된다.1 to 3 are views provided for explaining a method of bonding a multilayer structure according to an embodiment of the present invention. The method of bonding a multilayer structure according to the present invention includes a bonding layer forming step of forming a bonding layer including at least one of a metal and a metal oxide on the surface of at least one layer of a copper layer and a lithium layer by using an atomic layer deposition process; And a bonding step of bonding a copper layer, a bonding layer, and a lithium layer. According to the present invention, a copper layer; A bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the copper layer; And a lithium layer positioned on the bonding layer.

본 발명에서 다층구조체는 구리층(110) 및 리튬층(130)을 접합시켜 제조된다. 본 발명의 다층구조체는 전고상 리튬이차전지의 일부구성과 동일한 구성으로서, 전고상 리튬이차전지는 일반적으로 집전체-양극-고체전해질-리튬음극-집전체로 구성된다(미도시). 본 발명의 다층구조체 접합방법은 전고상 리튬이차전지 중 리튬음극과 집전체 간의 접합에 적용될 수 있다. 본 발명의 다층구조체 접합방법은 특히, 리튬음극 및 구리집전체를 접합하는 방법으로 사용될 수 있다. In the present invention, the multilayer structure is manufactured by bonding the copper layer 110 and the lithium layer 130. The multilayer structure of the present invention has the same configuration as some of the all-solid-state lithium secondary battery, and the all-solid-state lithium secondary battery is generally composed of a current collector-anode-solid electrolyte-lithium cathode-current collector (not shown). The bonding method of a multilayer structure of the present invention can be applied to bonding between a lithium cathode and a current collector in an all-solid lithium secondary battery. The bonding method of a multilayer structure of the present invention can be used, in particular, as a method of bonding a lithium cathode and a copper current collector.

도 1을 참조하면, 집전체인 구리층(110)의 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층(120)을 형성한다. 원자층증착(atomic layer deposition: ALD) 공정은 원자단위의 증착공정으로서, 증착하고자 하는 원자의 전구체 가스를 주입하고 반응가스를 함께 주입하여 증착대상기판에 원자를 층으로 적층하여 박막을 형성시키는 공정이다. 원자층증착공정에서는 복수 회(약 5회)의 원자층증착공정을 통하여 1층의 박막층이 형성될 수 있다. Referring to FIG. 1, a bonding layer 120 including at least one of a metal and a metal oxide is formed on a surface of a copper layer 110 that is a current collector by using an atomic layer deposition process. The atomic layer deposition (ALD) process is an atomic-level deposition process, in which a precursor gas of an atom to be deposited is injected and a reaction gas is injected together to form a thin film by laminating atoms in layers on a substrate to be deposited. to be. In the atomic layer deposition process, one thin film layer may be formed through a plurality of (about 5 times) atomic layer deposition processes.

리튬의 융점은 약 180℃이므로 저온접합공정이 요구되는데, 원자층증착공정은 원자의 전구체가스를 주입하는 공정이므로 160℃이하에서도 수행가능하다. 따라서, 원자층증착공정에 따라 박막인 접합층(120)을 형성하면, 원자단위의 박막을 저온에서 형성할 수 있어서, 접합공정의 리튬층(130)에 대한 영향을 최소화할 수 있고, 접합층이 박막이므로 접합층의 두께를 최소화하여 전고상 리튬이차전지의 성능을 최대로 유지할 수 있다. Since the melting point of lithium is about 180° C., a low-temperature bonding process is required, and the atomic layer deposition process is a process of injecting a precursor gas of an atom, so it can be performed even below 160° C. Therefore, when the bonding layer 120, which is a thin film, is formed according to the atomic layer deposition process, the atomic-unit thin film can be formed at a low temperature, thereby minimizing the effect of the bonding process on the lithium layer 130, and This thin film minimizes the thickness of the bonding layer to maximize the performance of the all-solid-state lithium secondary battery.

접합층(120)에 포함되는 금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있고, 금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함할 수 있다. The metal included in the bonding layer 120 may include at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al), and the metal oxide is InOx, ZnOx, SnOx, and Al 2 O It may include at least one of 3 .

이와 달리 접합층(120)은 리튬층(130) 상에 형성될 수도 있다(도 2). Alternatively, the bonding layer 120 may be formed on the lithium layer 130 (FIG. 2).

접합층(120)이 형성되면, 구리층(110), 접합층(120) 및 리튬층(130)을 접합시킨다(도 3). 접합단계는 구리층(110), 접합층(120) 및 리튬층(130)을 인접위치시키고, 압력을 가하여 접합시킬 수 있다. 접합층(120)의 특성상 구리층(110) 및 리튬층(130)과 물리적, 화학적 결합이 가능하므로 고압을 인가할 필요가 없고, 예를 들어 압력조건은 약 0.2Mpa일 수 있다. When the bonding layer 120 is formed, the copper layer 110, the bonding layer 120, and the lithium layer 130 are bonded (FIG. 3). In the bonding step, the copper layer 110, the bonding layer 120, and the lithium layer 130 are placed adjacent to each other, and a pressure is applied to bond them. Due to the characteristics of the bonding layer 120, since physical and chemical bonding with the copper layer 110 and the lithium layer 130 is possible, there is no need to apply a high pressure, for example, the pressure condition may be about 0.2 MPa.

도 4는 본 발명의 다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면이다. 본 실시예에 따르면, 구리층(110); 구리층(110) 상에 위치한 그래핀층(140); 그래핀층(140) 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층(120); 및 접합층(120) 상에 위치한 리튬층(130);을 포함하는 다층구조체가 제공된다(도 4).4 is a view provided to explain a method of bonding a multilayer structure according to another embodiment of the present invention. According to this embodiment, the copper layer 110; A graphene layer 140 located on the copper layer 110; A bonding layer 120 including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer 140; And a lithium layer 130 located on the bonding layer 120 (FIG. 4).

본 발명에서 다층구조체(100)는 구리층(110)을 포함하는데, 이에 따라 구리층(110) 상에 그래핀을 구리를 씨드층으로 하여 직접 합성할 수 있다. 그래핀은 다양한 방법으로 제조될 수 있는데, 화학기상증착(chemical vapor deposition, CVD)공정을 이용하면 그래핀 특성이 우수하고 대량생산가능하다. 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등으로 세분될 수 있다. In the present invention, the multilayer structure 100 includes a copper layer 110, and accordingly, graphene on the copper layer 110 can be directly synthesized using copper as a seed layer. Graphene can be manufactured by various methods, and if a chemical vapor deposition (CVD) process is used, graphene properties are excellent and mass production is possible. Chemical vapor deposition methods include high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD), or chemical vapor deposition. It can be subdivided into vapor deposition (PECVD) and the like.

구리층(110) 상에 그래핀층(140)이 위치하는 경우, 본 발명에 따른 다층구조체를 포함하는 전고상 리튬이차전지는 성능이 우수해진다. 상세하게는 그래핀층(140)이 열을 발산하고, 전기적 특성이 우수해지며, 리튬층(130)에서 리튬 덴드라이트 성장(Li dendrite growth control)을 억제할 수 있다. When the graphene layer 140 is positioned on the copper layer 110, the all-solid-state lithium secondary battery including the multilayer structure according to the present invention has excellent performance. In detail, the graphene layer 140 emits heat, has excellent electrical properties, and can suppress Li dendrite growth control in the lithium layer 130.

도 5 내지 도 7은 본 발명의 또다른 실시예에 따른 다층구조체 접합방법의 설명에 제공되는 도면들이다. 본 실시예에서, 접합단계는, 제1접합층(120) 및 리튬층(130) 사이에 침투가능한 접합물질의 증기(151)를 투입시켜 수행될 수 있다.5 to 7 are views provided to explain a method of bonding a multilayer structure according to still another embodiment of the present invention. In this embodiment, the bonding step may be performed by introducing a vapor 151 of a bonding material that can penetrate between the first bonding layer 120 and the lithium layer 130.

도 5를 참조하면, 구리층(110) 상에 제1접합층(120)이 형성되어 있고, 리튬층(130)과 접합하여 다층구조체를 형성할 수 있다. 전술한 실시예에서는 압력을 가하여 최종접합을 수행한다. Referring to FIG. 5, the first bonding layer 120 is formed on the copper layer 110 and bonded to the lithium layer 130 to form a multilayer structure. In the above-described embodiment, pressure is applied to perform final bonding.

이와 달리, 본 실시예에서는 리튬층(130)과 제1접합층(120) 사이의 공간에 원자층증착공정을 이용하여 접합물질의 증기(151)를 주입하여 제2접합층(150)을 형성하여 접합을 수행한다(도 6). In contrast, in this embodiment, the second bonding layer 150 is formed by injecting the vapor 151 of the bonding material into the space between the lithium layer 130 and the first bonding layer 120 using an atomic layer deposition process. To perform bonding (Fig. 6).

리튬층(130)은 도 7에서와 같이 표면에 요철이 형성되어 있는 경우가 있는데, 만약, 전술한 실시예에서와 같이 가압하여 접합을 수행하는 경우, 요철부분에는 빈공간이 생긴 채로 접합이 될 수 있다. 따라서, 접합 후에 리튬층(130) 및 구리층(110)이 분리되거나, 전극성능 및 집전성능이 낮아질 수 있다. 그러나, 본 실시예에서와 같이 제1접합층(120) 및 리튬층(130) 사이를 원자층증착공정으로 채워주는 경우, 요철부분에 빈공간없이 모두 채워지게 되어 제2접합층(150)을 형성하므로 완전한 접합상태를 이룰 수 있다. The lithium layer 130 may have irregularities formed on the surface as shown in FIG. 7. If the bonding is performed by pressing as in the above-described embodiment, the bonding may be performed with an empty space in the irregularities. I can. Therefore, the lithium layer 130 and the copper layer 110 may be separated after bonding, or electrode performance and current collecting performance may be lowered. However, when filling between the first bonding layer 120 and the lithium layer 130 by the atomic layer deposition process as in the present embodiment, all of the uneven portions are filled without empty spaces, thereby forming the second bonding layer 150. As it is formed, a perfect bonding state can be achieved.

제1접합층(120) 및 제2접합층(150)는 동일한 물질을 포함할 수 있어서, 제1접합층(120) 및 제2접합층(150)의 계면에서의 발생할 수 있는 문제를 최소화할 수 있다.Since the first bonding layer 120 and the second bonding layer 150 may contain the same material, problems that may occur at the interface between the first bonding layer 120 and the second bonding layer 150 can be minimized. I can.

도 8은 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이고, 도 9는 본 발명의 또다른 실시예에 따른 다층구조체의 단면도이다. 도 8에 따른 실시예에서, 다층구조체(100)는 리튬층(130) 및 접합층(120) 사이에 리튬-접합물질 복합체층(160)가 형성되어 있고, 도 9에 따른 실시예에서 다층구조체(100)는 그래핀층(140) 및 접합층(120) 사이에 그래핀-접합물질 복합체층(170)이 형성될 수 있다. 8 is a cross-sectional view of a multi-layer structure according to another embodiment of the present invention, and FIG. 9 is a cross-sectional view of a multi-layer structure according to another embodiment of the present invention. In the embodiment according to FIG. 8, in the multilayer structure 100, a lithium-junction material composite layer 160 is formed between the lithium layer 130 and the bonding layer 120, and in the embodiment according to FIG. 9, the multilayer structure A graphene-bonding material composite layer 170 may be formed between the graphene layer 140 and the bonding layer 120 of 100.

즉, 본 실시예들에서, 접합층(120)이 형성될 때 원자층증착공정에 의해, 리튬층(130)과 접합층(120) 사이와 그래핀층(140)과 접합층(120) 사이에 복합체가 형성된다. 특히 오존기반 원자층증착공정의 경우, 리튬-접합물질 복합체층(160) 및 그래핀-접합물질 복합체층(170)이 형성될 가능성이 높다. 리튬-접합물질 복합체층(160)이 형성되면, 접합층(120)의 접합능력과 함께 리튬-접합물질 복합체층(160)에 의한 접합도 이루어지게 되므로 전체적인 접합특성이 우수해질 수 있다.That is, in the present embodiments, by the atomic layer deposition process when the bonding layer 120 is formed, between the lithium layer 130 and the bonding layer 120 and between the graphene layer 140 and the bonding layer 120 A complex is formed. In particular, in the case of the ozone-based atomic layer deposition process, there is a high possibility that the lithium-junction material composite layer 160 and the graphene-bond material composite layer 170 are formed. When the lithium-bonding material composite layer 160 is formed, bonding by the lithium-bonding material composite layer 160 as well as the bonding ability of the bonding layer 120 is performed, so that the overall bonding property may be excellent.

그래핀층(140)은 그 특성상 표면젖음성이 낮아 반응성이 낮다. 따라서, 그래핀층(140) 상에 그래핀-접합물질 복합체층(170)이 형성되면, 접합층(120) 형성이 더욱 용이해진다. 따라서, 그래핀-접합물질 복합체층(170)의 형성으로 전체적인 접합특성이 우수해질 수 있다. The graphene layer 140 has low surface wettability and low reactivity due to its characteristics. Therefore, when the graphene-bonding material composite layer 170 is formed on the graphene layer 140, the bonding layer 120 becomes more easily formed. Therefore, the overall bonding property may be excellent by forming the graphene-bonding material composite layer 170.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.In the above, embodiments of the present invention have been described, but those of ordinary skill in the art will add, change, delete or add components within the scope not departing from the spirit of the present invention described in the claims. Various modifications and changes can be made to the present invention by means of the like, and it will be said that this is also included within the scope of the present invention.

100: 다층구조체
110: 구리층
120: 접합층, 제1접합층
130: 리튬층
140: 그래핀층
150: 제2접합층
151: 접합물질
160: 리튬-접합물질 복합체층
170: 그래핀-접합물질 복합체층
100: multilayer structure
110: copper layer
120: bonding layer, first bonding layer
130: lithium layer
140: graphene layer
150: second bonding layer
151: bonding material
160: lithium-conjugation material composite layer
170: graphene-conjugation material composite layer

Claims (12)

구리층 및 리튬층의 적어도 하나의 층 표면에 원자층증착공정을 이용하여 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층을 형성하는 접합층형성단계; 및
구리층, 접합층 및 리튬층을 접합시키는 접합단계;를 포함하는 다층구조체 접합방법.
A bonding layer forming step of forming a bonding layer including at least one of a metal and a metal oxide on the surface of at least one layer of a copper layer and a lithium layer by using an atomic layer deposition process; And
A bonding method comprising a bonding step of bonding a copper layer, a bonding layer, and a lithium layer.
청구항 1에 있어서,
구리층은,
접합표면에 그래핀층을 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The copper layer,
A method of bonding a multilayer structure comprising a graphene layer on the bonding surface.
청구항 1에 있어서,
금속은 은(Ag), 백금(Pt), 루테늄(Ru) 및 알루미늄(Al) 중 적어도 하나를 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The metal is a multilayer structure bonding method, characterized in that it contains at least one of silver (Ag), platinum (Pt), ruthenium (Ru), and aluminum (Al).
청구항 1에 있어서,
금속산화물은 InOx, ZnOx, SnOx 및 Al2O3 중 적어도 하나를 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The metal oxide is a multilayer structure bonding method comprising at least one of InOx, ZnOx, SnOx, and Al 2 O 3 .
청구항 1에 있어서,
원자층증착공정은 160℃이하에서 수행되는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
Atomic layer deposition process is a multilayer structure bonding method, characterized in that performed at 160 ℃ or less.
청구항 1에 있어서,
접합단계는, 접합층 및 리튬층 사이에 침투가능한 접합물질의 증기를 투입시켜 수행되는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 1,
The bonding step is a multilayer structure bonding method, characterized in that it is carried out by introducing a vapor of a bonding material that can penetrate between the bonding layer and lithium layer.
청구항 6에 있어서,
리튬층 및 접합층 사이에 리튬-접합물질 복합체가 형성되는 것을 특징으로 하는 다층구조체 접합방법.
The method of claim 6,
A method for bonding a multilayer structure, characterized in that a lithium-junction material composite is formed between the lithium layer and the bonding layer.
청구항 6에 있어서,
접합물질은 접합층과 동일한 물질을 포함하는 것을 특징으로 하는 다층구조체 접합방법.
The method of claim 6,
The bonding material is a multilayer structure bonding method, characterized in that it contains the same material as the bonding layer.
청구항 2에 있어서,
그래핀층 및 접합층 사이에 그래핀-접합물질 복합체층이 형성되는 것을 특징으로 하는 다층구조체 접합방법.
The method according to claim 2,
A method for bonding a multilayer structure, characterized in that a graphene-bonding material composite layer is formed between the pinned layer and the bonding layer.
구리층;
구리층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및
접합층 상에 위치한 리튬층;을 포함하는 다층구조체.
Copper layer;
A bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the copper layer; And
A multilayer structure comprising a; lithium layer located on the bonding layer.
구리층;
구리층 상에 위치한 그래핀층;
그래핀층 상에 위치한 원자층증착공정을 이용하여 형성된 금속 및 금속산화물 중 적어도 하나를 포함하는 접합층; 및
접합층 상에 위치한 리튬층;을 포함하는 다층구조체.
Copper layer;
A graphene layer located on the copper layer;
A bonding layer including at least one of a metal and a metal oxide formed using an atomic layer deposition process located on the graphene layer; And
A multilayer structure comprising a; lithium layer located on the bonding layer.
구리층;
구리층 상의 그래핀층;
그래핀층 상에 형성된 그래핀-접합물질 복합체층;
그래핀-접합물질 복합체층 상에 형성된 원자층증착공정을 이용한 금속 및 금속산화물 중 적어도 하나의 접합물질을 포함하는 접합층;
접합층 상에 형성된 리튬-접합물질 복합체층; 및
리튬-접합물질 복합체층 상의 리튬층;을 포함하는 다층구조체.
Copper layer;
A graphene layer on a copper layer;
A graphene-bonding material composite layer formed on the graphene layer;
A bonding layer including at least one bonding material of metal and metal oxide using an atomic layer deposition process formed on the graphene-bonding material composite layer;
A lithium-bonding material composite layer formed on the bonding layer; And
A multilayer structure comprising a; lithium layer on the lithium-junction material composite layer.
KR1020190033621A 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof KR102438851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Publications (2)

Publication Number Publication Date
KR20200113436A true KR20200113436A (en) 2020-10-07
KR102438851B1 KR102438851B1 (en) 2022-09-07

Family

ID=72884582

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190033621A KR102438851B1 (en) 2019-03-25 2019-03-25 Multi-layered structure and bonding method thereof

Country Status (1)

Country Link
KR (1) KR102438851B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117689A (en) * 2012-04-17 2013-10-28 주식회사 엘지화학 The method of preparing electrodes for lithium secondary battery and the electrodes prepared by using the same
KR20160035761A (en) * 2014-09-24 2016-04-01 주식회사 엘지화학 Lithium Secondary Battery Comprising Current Collector Having Graphene Coating Layer
JP2017084515A (en) * 2015-10-26 2017-05-18 セイコーエプソン株式会社 Negative electrode layer, and all-solid-state lithium ion secondary battery
KR101833974B1 (en) * 2016-12-23 2018-03-02 주식회사 포스코 Negative electrode for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117689A (en) * 2012-04-17 2013-10-28 주식회사 엘지화학 The method of preparing electrodes for lithium secondary battery and the electrodes prepared by using the same
KR20160035761A (en) * 2014-09-24 2016-04-01 주식회사 엘지화학 Lithium Secondary Battery Comprising Current Collector Having Graphene Coating Layer
JP2017084515A (en) * 2015-10-26 2017-05-18 セイコーエプソン株式会社 Negative electrode layer, and all-solid-state lithium ion secondary battery
KR101833974B1 (en) * 2016-12-23 2018-03-02 주식회사 포스코 Negative electrode for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
KR102438851B1 (en) 2022-09-07

Similar Documents

Publication Publication Date Title
He et al. High energy density solid state lithium metal batteries enabled by Sub‐5 µm solid polymer electrolytes
Park et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries
Lee et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes
Chi et al. 3D flexible carbon felt host for highly stable sodium metal anodes
Zhu et al. Strategies based on nitride materials chemistry to stabilize Li metal anode
JP6069821B2 (en) Lithium ion secondary battery
US20190334206A1 (en) Multiple active and inter layers in a solid-state device
US20160308243A1 (en) Electrochemical cell with solid and liquid electrolytes
EP3840110B1 (en) Encapsulation system for electronic components and batteries
Lin et al. Constructing a uniform lithium iodide layer for stabilizing lithium metal anode
Shu et al. Component‐interaction reinforced quasi‐solid electrolyte with multifunctionality for flexible Li–O2 battery with superior safety under extreme conditions
Cao et al. Atomic Layer Deposition of High‐Capacity Anodes for Next‐Generation Lithium‐Ion Batteries and Beyond
Tao et al. Swallowing Lithium Dendrites in All‐Solid‐State Battery by Lithiation with Silicon Nanoparticles
JP2013512547A (en) Lithium ion battery and method for producing lithium ion battery
Lai et al. Long Cycle Life and High‐Rate Sodium Metal Batteries Enabled by Regulating 3D Frameworks with Artificial Solid‐State Interphases
JP2017531297A (en) Amorphous cathode material for battery devices
CN111384429B (en) All-solid battery
US11165101B2 (en) Hybrid solid-state cell with a sealed anode structure
Yang et al. SnF2‐Induced Highly Current‐Tolerant Solid Electrolytes for Solid‐State Sodium Batteries
US10535900B2 (en) Hybrid solid-state cell with a sealed anode structure
Pang et al. Stable lithium plating and stripping enabled by a LiPON nanolayer on PP separator
FR3068830A1 (en) ENCAPSULATION SYSTEM FOR ELECTRONIC COMPONENTS AND BATTERIES
KR102438851B1 (en) Multi-layered structure and bonding method thereof
US10454105B2 (en) Electrode for an energy accumulator and manufacturing method
US11489206B2 (en) Hybrid solid-state cell with a sealed anode structure

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant